
Slowly rotating black hole solutions to Hořava-Lifshitz gravity
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We present a new stationary solution to the field equations of Hořava-Lifshitz gravity with the detailed

balance condition and for any value of the coupling constant � > 1=3. This is the generalization of the

corresponding spherically symmetric solution earlier found by Lü, Mei, and Pope to include a small

amount of angular momentum. For the relativistic value � ¼ 1, the solution describes slowly rotating AdS

type black holes. With a soft violation of the detailed balance condition and for � ¼ 1, we also find such a

generalization for the Schwarzschild type black hole solution of the theory. Finally, using the canonical

Hamiltonian approach, we calculate the mass and the angular momentum of these solutions.
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I. INTRODUCTION

General relativity being the best classical theory of
gravitation fails to describe gravity at high enough energy
scales, where gravitational dynamics becomes essentially
quantum in nature. This fact has led to the idea of modi-
fication of general relativity which, in physical terms,
originates in the first studies of perturbative quantum
gravity (see a review paper [1]). In the quantum context,
general relativity results in austere ultraviolet (UV) diver-
gences in perturbation theory, defying the renormalizabil-
ity. Curing the problem of UV divergences can be achieved
by adding to the Einstein-Hilbert action higher-derivative
correction terms [2]. Unfortunately, this procedure generi-
cally entails violation of unitarity and disastrous instabil-
ities appear in the theory [3].

Recently, Hořava proposed a new intriguing way of
curing these pathologies by endowing the theory with
scaling properties which at short distances lead to an
anisotropy between space and time [4] (see also [5]).
This type of anisotropic scaling is well known in con-
densed matter systems and historically traces back to the
classic work of Lifshitz [6]. The degree of the anisotropy
between space and time is characterized by a number z,
called dynamical critical exponent, the value of which is of
crucial importance for the well-defined UV behavior of the
theory. Hořava [4] developed a gravity model which in the
UV limit exhibits an anisotropic scaling with z ¼ 3
Lifshitz fixed point and leads to a power-counting renor-
malizable theory of interacting nonrelativistic gravitons in
3þ 1 dimensions. As for the relativistic invariance, it
appears as an emergent invariance in the infrared (IR) limit
through the relevant deformations of the theory which
realize the scaling with z ¼ 1. This theory is now known
as Hořava-Lifshitz (HL) gravity and is supposed to be a
promising candidate for a UV completion of general rela-
tivity or its IR modification.

Shortly after its advent, HL gravity has been an active
arena for many investigations. Some fundamental issues
related to the internal structure of the theory as well as its

physically interesting extensions were considered in
[7–11]. Cosmological implications of HL gravity have
been studied in a number of papers (see for instance,
[12–16]). In particular, it was shown that the higher-order
spatial derivatives, which are inherent in the theory, have a
drastic effect on the early history of the Universe, resulting
in regular cyclic and bouncing solutions [12–15]. It is also
interesting that HL gravity provides a new mechanism for
scale-invariant cosmological perturbations without invok-
ing the idea of inflation [12,16] (see also a recent review
[17] and references therein). However, it should be empha-
sized that HL gravity suffers from a number of drawbacks
as well. Without the projectability condition, but with the
detailed balance condition, a scalar field becomes unstable
in the UV limit [13], the theory exhibits scalar instabilities
in the IR limit [18] and also suffers from the strong
coupling problem [7,9,19], resulting in serious inconsis-
tencies [20]. Furthermore, the theory does not give rise to
scale-invariant perturbations [21] until the detailed balance
condition is broken in the UV limit [22].
Another issue of fundamental significance is black hole

solutions in HL gravity. The authors of [23] found a class
of static and spherically symmetric solutions with a cos-
mological constant. Among these solutions, the AdS type
black hole solution exhibits an asymptotic behavior, which
is essentially different from the Schwarzschild-AdS black
hole in general relativity. This means that general relativity
is not always recovered in the IR limit. With a relevant
deformation of the action, HL gravity also admits an
asymptotically flat static black hole solution [24], which
is a counterpart of the usual Schwarzschild black hole.
Various extensions and physical properties of these solu-
tions were studied [25–32]. Meanwhile, possible observa-
tional signatures of the asymptotically flat black holes in
HL gravity were examined in [33–35] through the classical
tests of gravitational effects in both the Solar System and
the strong gravity regime near the black holes.
In light of these developments, it makes sense to ask the

following question:What is the rotating counterparts of the
static black hole solutions, with or without cosmological
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constant, in HL gravity? To the best of our knowledge,
today this question remains largely open. There is the only
case of [36], where the authors managed to discuss near
horizon geometries of putative extremal Kerr-AdS type
black holes, for special range of parameters of the HL
theory and for special values of the parameters of these
black holes. On the other hand, it is clear that in strive to
answer the above question, it would be of great importance
to find genuinely HL analogs of the familiar Kerr and
Kerr-AdS solutions of general relativity. In this paper, we
consider a rotating solution to HL gravity (with the detailed
balance condition) in the limit of slow rotation, but for any
value of the dynamical coupling constant � > 1=3. For the
relativistic value � ¼ 1, this solution describes slowly
rotating AdS type black holes. With a soft violation of
the detailed balance condition and � ¼ 1, we also consider
slowly rotating asymptotically flat black holes. In Sec. II
we briefly recall the basic ingredients of HL gravity, giving
the full set of the field equations, which involves an arbi-
trary parameter of the soft violation. Here we also discuss
static and spherically symmetric solutions to these equa-
tions. In Sec. III we solve the field equations by linearizing
them with respect to a small rotation parameter. For this
purpose, we use the metric ansatz, involving the only
off-diagonal component governed by a small rotation
parameter. In Sec. IV using the canonical Hamiltonian
approach, we calculate the mass and the angular momen-
tum for the slowly rotating solutions.

II. HORı́AVA-LIFSHITZ GRAVITYAND STATIC
BLACK HOLES

We begin with a brief review of the basic ingredients and
the field equations of HL gravity. As the basic idea behind
Hořava’s proposal is to choose different scalings of space
and time in the UV limit, it is fitting to formulate the theory
in terms of ADM type coordinates. As is known [37], the
use of such coordinates implies a ð3þ 1Þ decomposition of
the spacetime metric in the form

ds2 ¼ �N2dt2 þ gijðdxi þ NidtÞðdxj þ NjdtÞ; (1)

where N is the lapse function, Ni is the shift vector, and gij
is the three-dimensional spatial metric. In HL gravity [4]
two conditions were invoked: (i) the ‘‘detailed balance’’
condition, which implies that the potential term in the
action originates from Euclidean three-dimensional topo-
logical massive gravity, and (ii) the ‘‘projectability’’ con-
dition, requiring that the lapse function does not depend on
spatial coordinates. In our description below, as in a num-
ber of cases before (see for instance, [23,24]) we will relax
both of these conditions.

With the metric decomposition given in Eq. (1), the
Einstein-Hilbert action is written in the form

IEH ¼ 1

16�G

Z
dtd3x

ffiffiffi
g

p
NðKijK

ij �K2 þR� 2�Þ; (2)

where G is the Newtonian gravitational constant, R ¼
gijRij is the three-dimensional Ricci scalar, � is the

cosmological constant. The extrinsic curvature of the
ADM decomposition is given by

Kij ¼ 1

2N
ð _gij �DiNj �DjNiÞ; K ¼ gijKij; (3)

where the dot stands for the derivative with respect to time
and the covariant derivative operator D is defined with
respect to the spatial metric gij.

The total action of HL gravity is given by (see [4,24])

I ¼
Z

dtd3x
ffiffiffi
g

p
N

�
2

�2
ðKijK

ij � �K2Þ þ �2�2ð�W þ �Þ
8ð1� 3�Þ

�
�
R� 3�2

W

�W þ �

�
þ �2�2ð1� 4�Þ

32ð1� 3�Þ R2

� �2

2!4

�
Cij ��!2

2
Rij

��
Cij ��!2

2
Rij

��
; (4)

where �, �,�,! are coupling constants and�W is a three-
dimensional cosmological constant and Cij is the symmet-
ric, traceless, and covariantly conserved Cotton tensor
defined as

Cij ¼ �iklffiffiffi
g

p Dk

�
Rj

l �
1

4
�j

lR

�
: (5)

Here we have also introduced the additional parameter

� ¼ 8�2ð1� 3�Þ
�2

; (6)

characterizing a soft violation of the detailed balance
condition [24]. This leads to the modification of the IR
behavior of the theory to allow a Minkowski vacuum
solution for �W ! 0. Next, rescaling the time coordinate
as t ! ct and comparing the IR limit of action (4) with that
given in Eq. (2), where � ¼ 1, we deduce that the speed of
light, the Newtonian constant, and the cosmological con-
stant appear as emergent quantities which are given by the
relations

c¼ �2�

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�W þ�

1� 3�

s
; G¼ �2c2

32�
; �¼ 3

2

�2
W

�W þ�
:

(7)

We recall that � is the dynamical coupling constant of HL
gravity which governs the contribution to the theory com-
ing from the trace of the extrinsic curvature. From Eq. (7) it
follows that the sign of the cosmological constant is sensi-
tive to the value of �. We see that for � > 1=3 and � ¼ 0 it
must be negative. However, for the same �, as noted in
[23], one can also consider the positive cosmological con-
stant by making an analytical continuation with � ! i�,
!2 ! �i!2. In what follows, we shall consider the case of
the negative cosmological constant.
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The field equations of HL gravity are obtained by vary-
ing action (4) with respect to variables N, Ni, and gij. The
result consists of the Hamiltonian constraint

� 2

�2
ðKijK

ij � �K2Þ þ �2�2ð�W þ �Þ
8ð1� 3�Þ

�
R� 3�2

W

�W þ �

�

þ �2�2ð1� 4�Þ
32ð1� 3�Þ R2 � �2

2!4
ZijZ

ij ¼ 0; (8)

and the momentum constraint

4

�2
DjðKij � �gijKÞ ¼ 0; (9)

due to the variations �N and �Ni, respectively, and the
dynamical equation, due to the variation �gij, which is
given by

Eij ¼ 0; (10)

where

Eij ¼ 2

�2
Eð1Þ
ij � 2�

�2
Eð2Þ
ij þ �2�2ð�W þ �Þ

8ð1� 3�Þ Eð3Þ
ij

þ �2�2ð1� 4�Þ
32ð1� 3�Þ Eð4Þ

ij þ �2�

4!2
Eð5Þ
ij � �2

2!4
Eð6Þ
ij (11)

with

Eð1Þ
ij ¼ 2NðiDjkjKk

jÞ � 2Kk
ðiDjÞNk � NkDkKij � 2NKikK

k
j �

1

2
gijNKklK

kl þ NKKij þ _Kij;

Eð2Þ
ij ¼

�
1

2
NK2 � Nk@kK þ _K

�
gij þ 2Nði@jÞK;

Eð3Þ
ij ¼

�
Rij � 1

2
gij

�
R� 3�2

W

�W þ �

�
�DiDj þ gijD

2

�
N;

Eð4Þ
ij ¼ 2

�
Rij � 1

4
gijR�DiDj þ gijD

2

�
NR;

Eð5Þ
ij ¼ �2DkDði½ZjÞ

kN� þD2ðNZijÞ þ gijDkDlðNZklÞ;

Eð6Þ
ij ¼

�
� 1

2
gijZklZ

kl þ 2ZikZ
k
j � 2ZkðiCjÞ

k þ gijZklC
kl

�
N �Dk½Tkl

ðiRjÞl� þ Rn
lDn½Tkl

ðigjÞk� �Dn½Tkl
ngkðiRjÞl�

�D2Dk½Tkl
ðigjÞl� þDn½glðiDjÞ�DkT

kl
n þDlDðiDjkjTkl

jÞ þ gijD
nDkDlT

kl
n: (12)

Here we have used the notations D2 ¼ DiD
i,

Zij ¼ Cij ��!2

2
Rij; Tij

k ¼
Nffiffiffi
g

p �ijlZlk (13)

and a symmetrization procedure over the indices enclosed
in round parentheses is implied. These equations are
slightly different from those obtained in [12,23], but pre-
cisely recover them for the vanishing parameter (� ! 0) of
the soft violation of the detailed balance condition.

Exact solutions to these equations which describe static
black holes were obtained in [23,24], using the standard
spherically symmetric ansatz for the spacetime metric

ds2 ¼� ~N2ðrÞfðrÞdt2 þ dr2

fðrÞþ r2ðd�2 þ sin2�d	2Þ (14)

for which the Cotton tensor Cij and the extrinsic curvature

Kij vanish identically. In [23], it was shown that with this

metric ansatz the field equations given in (8)–(10) admit
three different solutions. For the vanishing soft violation
parameter, � ! 0, but with arbitrary dynamical coupling �
one has the solution

f ¼ 1��Wr
2; (15)

which leaves the function ~N unconstrained. The other two
solutions are given by

f ¼ 1��Wr
2 � 
rp� ; ~N ¼ �r1�2p� ; (16)

where 
 and � are integration constants and

p� ¼ 2�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�� 2

p
�� 1

: (17)

We shall further focus on the solution, which exhibits a
well-defined asymptotic behavior in the � ¼ 1 limit. This
corresponds to the case with p ¼ p�. Furthermore, for
the solution to be real, it is required that � > 1=3. Since
for � 2 ð1=3;1Þ we have p 2 ð�1; 2Þ, the r2 term in the
metric function f given in (16) becomes dominant at
large distances. In the limit � ¼ 1 (p ¼ 1=2), we arrive
at the solution with

f ¼ 1��Wr
2 � 


ffiffiffi
r

p
; ~N ¼ �; (18)

where the constant 
 can be related to the ADM mass of
the spacetime [26] and the constant � can be set equal to
unity by a redefinition of the time coordinate. This gives us
the static AdS type black hole solution to HL gravity [23].
We recall that this solution was obtained within the de-
tailed balance condition (� ¼ 0). This explains the reason
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why the solution is significantly different from the
usual AdS-Schwarzschild black hole solution. The authors
of [23] argued that a deviation slightly from the detailed
balance condition provides us with the AdS-Schwarzschild
black hole of HL gravity.

On the other hand, for an arbitrary soft violation
parameter, � � 0, there exists an asymptotically flat non-
rotating black hole solution [24] for � ¼ 1 and�W ¼ 0. In
this case, we have

f ¼ 1� �r2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2r4 þ ~
r

p
; ~N ¼ ~�: (19)

With this function, choosing ~
 ¼ �4�GM and ~� ¼ 1, it is
easy to see that the metric in (14) becomes the standard
Schwarzschild one in the limit 4GM=�r3 � 1. We see that
there also exist two event horizons located at

r� ¼ GM

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2�ðGMÞ2
s �

: (20)

With Eq. (6) in mind, it follows that the requirement of
cosmic censorship results in the bound �ðGMÞ2 � 1=2. In
the regime of general relativity for which �ðGMÞ2 � 1,
the outer horizon approaches the usual Schwarzschild
radius, rþ ! 2GM, whereas, the inner horizon shrinks to
the singularity at r ¼ 0.

III. SLOWLY ROTATING SOLUTIONS

It is clear that the static and spherically symmetric
solutions, which have been discussed above, are only

special cases of more general solutions with rotational
dynamics. However, such exact solutions to HL gravity
have not been found yet. On this route, it would be cer-
tainly of great interest to find the HL counterparts of the
familiar Kerr and Kerr-AdS black holes. An attempt under-
taken in [36] succeeded to present only near horizon limits
of extremal Kerr-AdS type black holes for a special range
of parameters of both HL gravity and the black holes. Here
we wish to consider the rotating solutions by imposing
the restriction only on their angular momentum. Namely,
we restrict ourselves to slow rotation, considering only
linear order in rotation parameter perturbations around
the known spherically symmetric metrics [23,24]. In doing
this, we assume that the spectrum of small gravitational
perturbations of a spherically symmetric solution in HL
gravity, as that of in the case of ordinary general relativity
[38], contains the only zero mode which descends from the
presence of slow rotation. This allows us to employ the
following ansatz for the stationary metric:

ds2 ¼ � ~N2ðrÞfðrÞdt2 þ dr2

fðrÞ þ r2ðd�2 þ sin2�d	2Þ
þ 2agðrÞsin2�dtd	; (21)

which involves the only off-diagonal component with a
small rotation parameter a.
Next, for this metric ansatz we calculate the nonvanish-

ing components of the spatial tensor in (11). Discarding all
terms involving quadratic and higher powers in a, we
obtain that

Err ¼ �2�2
ffiffiffi
f

p
~N

8ð3�� 1Þr2
�
ðln ~NÞ0

�
ð�� 1Þf0 � 2�

f� 1

r
� 2rð�W þ�Þ

�
þð�� 1Þ

�
f00 � 2

f� 1

r2

�
þ 1

2f

�
ð2�� 1Þ ðf� 1Þ2

r2

� 2�
f� 1

r
f0 þ�� 1

2
f02 þ 2ð�W þ�Þð1� f� rf0Þ � 3r2�2

W

��
;

E�� ¼ �2�2rf3=2 ~N

16ð3�� 1Þ
� ~N00
~N

�
ð�� 1Þf0 � 2�

f� 1

r
� 2rð�W þ�Þ

�
�ðln ~NÞ0

2r2f
½3rf0½�2�þ 2r2ð�W þ�Þþ rð1��Þf0�

þ 2f½2ð1� fÞþ 5�rf0 þ 2r2ð�W þ�Þþ 2r2ð1��Þf00��� 1

r3f
½�1þ 2�þ 3r4�2

W þð3� 2�Þf2 þ�r2ðf02 � f00Þ

þ r4ð�W þ�Þf00 þ 2rf0½1þ r2ð�W þ�Þþ r2ð1��Þf00� þ f½�2þ 2rð�� 2Þf0 þ�r2f00 þ r3ð1��Þf000��
�
;

E		 ¼ sin2�E��: (22)

Here and in the following the prime denotes differentiation
with respect to the radial coordinate r. We note that to the
first order in rotation parameter a, the above expressions do
not depend on a at all. It is also not difficult to check that
with the metric ansatz (21), the Hamiltonian constraint (8)
does not contain any term involving the rotation parameter
a as well. As a consequence, we have

�2�2

8ð1� 3�Þr2
�
ð2�� 1Þ ðf� 1Þ2

r2
� 2�

f� 1

r
f0

þ �� 1

2
f02 þ 2ð�W þ �Þð1� f� rf0Þ � 3r2�2

W

�
¼ 0:

(23)
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In obtaining the above expressions we have used the fact
that in the linear approximation in a, the extrinsic curva-
ture has the only nonvanishing component Kr	 ¼ OðaÞ.
Therefore, its trace vanishes, K ¼ 0. Furthermore, in this
approximation the Cotton tensor Cij vanishes as well. With
all this in mind, it is straightforward to check that the
metric functions given in (16) for � > 1=3 and � ¼ 0 as
well as those given in (19) for � � 0, � ¼ 1, and �W ¼ 0,
satisfy the dynamical equations

Err ¼ 0; E�� ¼ 0; E		 ¼ 0; (24)

along with the constraint Eq. (23). Similarly, substituting
the metric form (21) in the momentum constraint (9) and
keeping only linear in a terms, we arrive at the equation

� 2a
ffiffiffi
f

p
�2r4

�
r4

~N

�
g

r2

�0�0 ¼ 0: (25)

We note that this equation is valid for any value of �, as
there is no contribution from the trace of the extrinsic
curvature (K ¼ 0). Integrating (25), using the explicit
form of ~NðrÞ given in (16), we find that

g ¼ �r2 þ 

r2p
; (26)

where � and  are constants of integration. In the limiting
case � ! 1, we have

g ¼ �r2 þ 

r
: (27)

In the asymptotically flat case, when � � 0, � ¼ 1, and
�W ¼ 0, one can use ~N ¼ const to integrate Eq. (25). As a
consequence, we again arrive at Eq. (27).

In summary, we conclude that the metric

ds2 ¼ � ~NðrÞ2fðrÞdt2 þ dr2

fðrÞ þ r2ðd�2 þ sin2�d	2Þ
þ 2N	ðrÞdtd	 (28)

is the solution to the field equations of HL gravity line-
arized in rotation parameter a, for any � > 1=3 and with
the detailed balance condition, � ¼ 0. The metric func-
tions are given by

f ¼ 1��Wr
2 � 
rp;

~N ¼ ~Nð1Þr1�2p;

N	 ¼ gasin2�;

(29)

and we recall that

p ¼ 2�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�� 2

p
�� 1

: (30)

This metric generalizes the static and spherically symmet-
ric solution, earlier found in [23] to include a small amount
of angular momentum. For the relativistic value of the
coupling constant, � ¼ 1 (p ¼ 1=2), this metric describes
a slowly rotating AdS type black hole in HL gravity.
Meanwhile, with a soft violation of the detailed balance

condition, � � 0, the metric in (28) generalizes asymptoti-
cally flat nonrotating black hole solution of [24] with

f ¼ 1� �r2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2r4 þ ~
r

p
;

~N ¼ ~Nð1Þ;
N	 ¼ gasin2�;

(31)

and for � ¼ 1 and �W ¼ 0. Clearly, the function g can
alternatively be written as

g ¼ N	ð1Þ
a

r2 þ 

r2p
: (32)

In the above expressions, for a further convenience, we
have renamed the constants of integration as asymptotic
values ~Nð1Þ and N	ð1Þ, keeping in mind � ¼ 1, for
which ~N ¼ ~Nð1Þ. In this case, without loss of generality,
we can set ~Nð1Þ ¼ 1 and N	ð1Þ ¼ 0. However, in the
following we will keep them general to calculate the
physical parameters of the solutions in the framework of
the Hamiltonian approach.

IV. MASS AND ANGULAR MOMENTUM

In this section we calculate the mass and the angular
momentum of the solution in (28) using the canonical
Hamiltonian approach [39]. This approach was earlier
employed in [25,26] to obtain the mass and entropy of
the static AdS type black holes in HL gravity. In the
Hamiltonian approach, the action of HL gravity (4) takes
the form

I ¼
Z

dtd3xð�ij _gij � NH � NiH iÞ þ B; (33)

where

�ij ¼ 2

�2

ffiffiffi
g

p ðKij � �KgijÞ; (34)

H ¼ ffiffiffi
g

p �
2

�2
ðKijK

ij��K2Þ��2�2ð�W þ�Þ
8ð1� 3�Þ

�
�
R� 3�2

W

�W þ�

�
��2�2ð1� 4�Þ

32ð1� 3�Þ R2 þ �2

2!4
ZijZ

ij

�
;

(35)

H i ¼ �2Dj�i
j; (36)

and B is a surface term, which is needed for a well-defined
variational principle. We recall that in our case _gij ¼ 0 and

the lapse function N ¼ ~N
ffiffiffi
f

p
. We shall focus on solution

(28) with the metric functions given in (29) and (32). With
this in mind, it is straightforward to show that the action
in (33) can be written in the form
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I ¼ �2�ðt2 � t1Þ
Z

drd�ð ~N ffiffiffi
f

p
H þ N	H 	Þ þ B

(37)

with

H ¼ �2�2

8ð3�� 1Þ
sin�ffiffiffi
f

p
�
�� 1

2
b02 � 2�

r
bb0 þ 2�� 1

r2
b2
�
;

(38)

H 	 ¼ 2a

�2

sin3�
~N2

½ ~Nðr2g00 � 2gÞ� ~N0ðr2g0 � 2rgÞ�; (39)

where we have introduced the new function

b ¼ 1��Wr
2 � f: (40)

Next, taking into account that N	 ¼ ag=r2 we perform in
(37) the integration over �. Varying the resulting expres-
sion with respect to the functions b and g, we find that

�I¼�ðt2 � t1Þ
�
�2�2�

2ð3�� 1Þ
�
ð�� 1Þ ~Nb0�b� 2�

r
~Nb�b

�

þ 16�

3�2

�
g
~N
�g0 �g0

~N
�g� g

~N2

�
g0 � 2

r
g

�
� ~N

�
a2
�
þ�B;

(41)

where we have omitted the terms vanishing when the
equations of motion hold. Furthermore, it is clear that the
contribution from the boundary term must cancel the first
two terms in this expression. In the approach under con-
sideration, the mass and angular momentum are defined as
the conjugates to the asymptotic displacements ~Nð1Þ and
N	ð1Þ. Therefore, after some manipulations, we find that
at r ! 1

B ¼ ðt2 � t1Þ
�
� ~Nð1Þ

�
��2�2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�� 2

p 
2

�

þ N	ð1Þ
�
� 32�ðpþ 1Þ

3�2 ~Nð1Þ a

��
þ B0; (42)

where B0 is an arbitrary constant of integration that can be
set equal to zero. In obtaining this expression we have used
the formulas

½ð�� 1Þ ~Nb0�b�1 ¼ ~Nð1Þ
2

ð2�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�� 2

p Þ�
2; (43)

�
2�

r
~Nb�b

�
1
¼ � ~Nð1Þ�
2; (44)

�
g
~N
�g0

�
1
¼ �2p

N	ð1Þ
~Nð1Þa �; (45)

�
g0
~N
�g

�
1
¼ 2

N	ð1Þ
~Nð1Þa �; (46)

�
g
~N2

�
g0 � 2

r
g

�
� ~N

�
1
¼ 0; (47)

which are obtained by means of Eqs. (29) and (32). It is
now easy to identify the mass and the angular momentum
from (42). We have

M ¼ ��2�2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�� 2

p 
2; (48)

J ¼ � 32�ðpþ 1Þ
3�2 ~Nð1Þ a; (49)

where we can now set ~Nð1Þ ¼ 1 for � ¼ 1. It also follows
that one can set N	ð1Þ ¼ 0, as it does not contribute to the
physical parameters of the solution. For a ¼ 0, this result
agrees with that found in [25,26].
Performing similar calculations for a slowly rotating

asymptotically flat black hole which is described by metric
(28) with the functions given in (31), we find that

M ¼ ��2�2

4
~
; J ¼ � 16�

�2
a: (50)

We note that these expressions are in agreement with those
given in (48) and (49) for � ¼ 1 (p ¼ 1=2) and 
2 ! ~
.
Taking into account the emergent quantities in (7) along
with Eq. (6) for � ¼ 1, we deduce that

~
 ¼ �4�GM; a ¼ �2GJ (51)

in the regime of general relativity. We note that the value of
~
 in (51) agrees with that given in [24]. Next, choosing in
the second equation of (50) the integration constant as

 ¼ ��4�2

64
~
 ¼ � �2

16�
M; (52)

it is easy to see that

J ¼ Ma; (53)

just as for a slowly rotating Kerr black hole in general
relativity.

V. CONCLUSION

Hořava-Lifshitz gravity is a new power-counting renor-
malizable theory of interacting nonrelativistic gravitons
in 3þ 1 dimensions. Many attractive features as well as
many intriguing physical and cosmological implications of
this theory make sense to consider it as a possible candi-
date for a UV completion of general relativity. Among
other implications, the black hole solutions to the theory
are certainly of particular interest. In the existing literature,
there are a number of static and spherically symmetric
black hole solutions to HL gravity. However, rotating
counterparts of these solutions, including both exact
Kerr and Kerr-AdS type solutions have not been found
yet. In this paper, as a first step towards this goal, we
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have found a new stationary solution to HL gravity with the
detailed balance condition and for any value of the cou-
pling constant � > 1=3. This solution generalizes the cor-
responding static solution of [23] to include a small amount
of angular momentum. For the relativistic value of the
coupling constant, � ¼ 1, the solution corresponds to
a slowly rotating AdS type black hole of HL gravity.
Abandoning the detailed balance condition and going
over into the value of � ¼ 1, we have also found a slowly
rotating and asymptotically flat black hole solution,
thereby generalizing the Schwarzschild type solution of
[24]. Using the canonical Hamiltonian approach, we have

calculated the mass and the angular momentum of these
solutions.
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