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5Institut de Ciències de l’Espai (CSIC-IEEC), Facultat de Ciències, Campus UAB, Torre C5 parells, E-08193 Bellaterra, Spain
6California Institute of Technology, Pasadena, CA 91125, USA

(Received 16 June 2010; published 5 November 2010)

Higher dimensional black holes play an exciting role in fundamental physics, such as high energy

physics. In this paper, we use the formalism and numerical code reported in [1] to study the head-on

collision of two black holes. For this purpose we provide a detailed treatment of gravitational wave

extraction in generic D dimensional space-times, which uses the Kodama-Ishibashi formalism. For the

first time, we present the results of numerical simulations of the head-on collision in five space-time

dimensions, together with the relevant physical quantities. We show that the total radiated energy, when

two black holes collide from rest at infinity, is approximately ð0:089� 0:006Þ% of the center of mass

energy, slightly larger than the 0.055% obtained in the four-dimensional case, and that the ringdown signal

at late time is in very good agreement with perturbative calculations.

DOI: 10.1103/PhysRevD.82.104014 PACS numbers: 04.25.dg, 04.50.Gh

I. INTRODUCTION

Black objects in higher dimensional space-times have a
remarkably richer structure than their four dimensional
counterparts. They appear in a variety of configurations
(e.g., black holes, black branes, black rings, black
Saturns), and display complex stability phase diagrams
(see [2] for an overview). They might also play a key role
in high energy physics: High energy physics scenarios, such
as the gauge-gravity duality [3] or TeV gravity models [4–
8], suggest that dynamical processes involving higher di-
mensional black holes (BHs) may be relevant for under-
standing the physics under experimental scrutiny at particle
colliders, such as the Large Hadron Collider (LHC) or the
Relativistic Heavy Ion Collider. These processes can be
quite violent and highly nonlinear, as in the case of BH
collisions. Numerical relativity, which solves Einstein’s
equations on supercomputers, is therefore the only available
tool for high-precision studies of such BH systems.
Fortunately, the field of numerical relativity has matured
considerably over the last five years (see Refs. [9,10] for

reviews), and its techniques can now be extended to a much
wider class of space-times. Space-times of generic dimen-
sionality or with more general asymptotics, feature most
prominently among such generalizations. Recent applica-
tions to the study of higher dimensional BH instabilities
may be found in Refs. [11,12], using the formalism devel-
oped in Ref. [13]; an application to the study of AdS-like
asymptotics may be found in Ref. [14]. Further applications
of numerical relativity to more general types of space-times
have been discussed in Ref. [1], hereafter denoted as
Paper I, wherein we have started a long-term effort to evolve
BH space-times in higher dimensions numerically, and
developed a framework to perform numerical simulations
of D dimensional space-times with an SOðD� 2Þ isometry
group (for D � 5) or SOðD� 3Þ (for D � 6).
One scenario in which BH collisions play a very well

defined role is that of TeV-scale gravity, i.e., scenarios in
which the fundamental Planck scale is of the order of the
TeV. The beginning of the scientific runs at the LHC makes
accurate theoretical modelling of the experimental signa-
tures of this scenario for LHC collisions very timely. In this
scenario, for center of mass energies well above the TeV
threshold, recall that LHC collisions will reach 14 TeV,
parton-parton collision will be dominated by the gravita-
tional interaction, and should be well described by any
classical gravitational objects with the same gravitational
energy. For modelling simplicity, it is convenient to choose
these objects to be BHs [15–27]. Because of the dominance
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of the gravitational interaction, we may further neglect the
electric charge of the holes; charge dependant effects should
give subleading corrections to the relevant observables. For
sufficiently small impact parameters, these trans-Planckian
collisions are expected to form a BH [16,17], as follows
from Thorne’s hoop conjecture [28] which recently has
received support from the numerical work of Choptuik
and Pretorius [29]. Therefore, there is substantial evidence
that modelling the individual partons as BHs is not biasing
the final result of the parton scattering process towards BH
formation. Indeed, this is the idea that, above the funda-
mental Planck scale, matter does not matter; it only matters
the gravitational energy that each parton carries.

After formation, the BH should then decay via Hawking
evaporation. In order to filter experimental data, this pro-
cess has been modeled by dedicated Monte Carlo event
generators, such as TRUENOIR, CATFISH, CHARYBDIS2 or
BLACKMAX [17,30–33]. The latter two are being used by

the ATLAS experiment at the LHC. These generators
clearly exhibit the very distinct experimental signatures
of BH evaporation, including higher multiplicity of jets
and larger transverse momentum than those produced by
any standard model process [34]. The event generators also
model the BH production phase from the parton-parton
scattering, for which they need as an input the threshold
impact parameter for BH formation and the energy lost in
gravitational radiation during the parton-parton collision.
At the moment, the best estimates for these quantities are
based on trapped surface methods [35]. Accurate results
can, however, be obtained from full-blown numerical
simulations, as has already been seen in four dimensions
[36–38]. Such results will be instrumental in a more
accurate phenomenological modelling of BH production/
evaporation in particle colliders. Observe that, even if no
evidence for BH formation/evaporation is found at the
LHC, such accurate modelling will matter for setting
precise lower bounds on the fundamental Planck scale.

In this paper we present the first fully nonlinear treat-
ment of a head-on collision of BHs in a higher dimensional
space-time, together with an analysis of the relevant physi-
cal quantities. This is achieved by solving the correspond-
ing Einstein equations numerically, for which we use the
formalism and code reported in Paper I. Once given the
numerically constructed space-time, one is still left with
the question of extracting physically meaningful quanti-
ties, such as the energy and linear and angular momentum
carried away by the gravitational radiation.

In four space-time dimensions, two distinct formalisms
have been developed to extract the physical information
(see e.g., Ref. [39] for a review of both formalisms). One is
based on the Regge-Wheeler-Zerilli perturbation theory
for the Schwarzschild BH [40,41]; the other is based on
the Newman-Penrose formalism [42], which was used by
Teukolsky to study perturbations of algebraically special
space-times [43], a class which includes the Kerr BH.

A higher dimensional generalization of the Newman-
Penrose formalism has been developed in Refs. [44–47].
Unfortunately, the condition of being algebraically special
does not seem to be as powerful for the study of exact
solutions or their perturbations in higher dimensions as it
was in four dimensions. For instance, the Goldberg-Sachs
theorem is not valid any longer in higher dimensions
[46,47]. For the study we present herein, however, it
suffices to use the higher dimensional generalization of
the Regge-Wheeler-Zerilli formalism, because the final
result of a head-on collision of two D dimensional, non-
spinning BHs approaches, at late times, a D dimensional
Schwarzschild, i.e., Tangherlini [48] BH. Fortunately, the
perturbation theory of the latter BH has been fully devel-
oped, in arbitrary dimensions, by Kodama and Ishibashi
[49]. Our remaining task is to obtain the relevant gauge-
invariant quantities from our numerical data, a procedure
that we shall describe in detail in this paper.
After implementing this wave-extraction formalism we

apply it to study the head-on collision of two BHs in four
and five dimensional space-times. In four dimensions we
recover previous results in the literature, and we perform a
number of tests on the numerical coordinate system, to
ensure it is appropriate for the wave-extraction formalism.
We estimate that around 0.055% of the center of mass
energy is radiated when two BHs, at rest at infinity, collide.
This result is in good agreement with those reported in the
literature [50]. The five dimensional results are entirely
new. We show that the kinematics of the BHs before the
merging follow, to a good precision, the Newtonian pre-
diction. We estimate that around 0.089% of the center of
mass energy is radiated as gravitational waves, when two
BHs collide from rest at infinity, and present the associated
wave forms. We stress that these results refer to a fully
nonlinear evolution of Einstein’s field equations.
This paper is organized as follows: In Sec. II we apply

the Kodama-Ishibashi (KI) formalism to the space-times
considered in Paper I. By assuming that the numerical
space-time is a small deviation from the Tangherlini solu-
tion, one is able to relate [see relations (2.3)] the numerical
metric to the KI metric perturbations and to compute
gauge-invariant quantities using Eqs. (2.28) and (2.29).
These are then used to construct a master function �
[see Eq. (2.54)] from which all relevant information about
the radiation can be computed. In Secs. III and IV we
present results obtained from the evolution of Brill-
Lindquist initial data in D ¼ 4, 5, respectively, that repre-
sents the collision of two equal-mass, nonspinning BHs
which are initially at rest. In order to calibrate the accuracy
of the wave-extraction formalism, we perform a number of
tests, including tests on the numerical coordinates them-
selves. We compute the time derivative of the master
function �, energy fluxes and total energy radiated. We
give some final remarks in Sec. V and discuss future steps
in this research program. Two appendices cover technical
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details on the coordinate transformation between the nu-
merical and wave-extraction frames (Appendix A) and on
the D dimensional harmonic expansion of axisymmetric
tensors (Appendix B).

II. GRAVITATIONALWAVE EXTRACTION
IN D DIMENSIONAL AXIALLY
SYMMETRIC SPACE-TIMES

A. Coordinate frames

In the approach developed in Paper I, we perform a
dimensional reduction by isometry on the (D� 4) sphere
SD�4, in such a way that the D dimensional vacuum
Einstein equations are rewritten as an effective 3þ 1 di-
mensional time evolution problem with source terms that
involve a scalar field. The evolution equations are expressed
in the Baumgarte-Shapiro-Shibata-Nakamura formulation
[51,52], and numerically implemented using amodification
of the LEAN code [50].

In Paper I we considered different generalizations of
‘‘axial symmetries’’ to higher dimensions: either D � 5
dimensional space-times with SOðD� 2Þ isometry group,
orD � 6 dimensional space-times with SOðD� 3Þ isome-
try group. In this work we only study the former case,
which allows us to model head-on collisions of nonspin-
ning BHs; we dub hereafter these space-times as axially
symmetric. Although the corresponding symmetry mani-
fold is the (D� 3) sphere SD�3, the quotient manifold in
our dimensional reduction is its submanifold SD�4. The
coordinate frame in which the numerical simulations are
performed is

ðx�;�1; . . . ; �D�4Þ ¼ ðt; x; y; z; �1; . . . ; �D�4Þ; (2.1)

where the angles�1; . . . ; �D�4 describe the quotient mani-
fold SD�4 and do not appear explicitly in the simulations.
Here, z is the symmetry axis, i.e., the collision line.

In the frame (2.1), the space-time metric has the form
(cf. Eqs (2.14, 2.21) of Paper I)

ds2 ¼ g��ðx�Þdx�dx� þ �ðx�Þd�D�4

¼ ��2dt2 þ �ijðdxi þ �idtÞðdxj þ �jdtÞ
þ �ðx�Þd�D�4; (2.2)

where x� ¼ ðt; xiÞ, �ðx�Þ is a scalar field and �, �i are the
lapse function and the shift vector, respectively. It is worth
noting that, although inD ¼ 4 a general axially symmetric
space-time has nonvanishing mixed components of the
metric (like gt�), in D � 5 such components vanish in an

appropriate coordinate frame, as we have shown in Paper I.
With an appropriate transformation of the four dimen-

sional coordinates x�, the residual symmetry left after the
dimensional reduction on SD�4 can be made manifest:
x� ! ðx ��; �Þ ( �� ¼ 0; 1; 2),

g��ðx�Þdx�dx� ¼ g �� ��ðx ��Þdx ��dx �� þ g��ðx ��Þd�2 (2.3)

and

�ðx�Þ ¼ sin2�g��ðx ��Þ; (2.4)

so that Eq. (2.2) takes the form ds2 ¼ g �� ��dx
��dx �� þ

g��d�D�3, as discussed in Paper I.
To extract the gravitational waves far away from the

symmetry axis we employ the KI formalism [49], which
generalizes the Regge-Wheeler-Zerilli [40,41] approach to
higher dimensions. We require that the space-time, far
away from the BHs, is approximately spherically symmet-
ric. Note, that spherical symmetry in D dimensions means
symmetry with respect to rotations on SD�2; this is an
approximate symmetry which holds asymptotically far
away from the axis and which is manifest in the coordinate
frame:

ðxa; ��;�;�1; . . . ;�D�4Þ¼ ðt;r; ��;�;�1; . . . ;�D�4Þ: (2.5)

Note that xa ¼ t, r and that we have introduced polarlike
coordinates ��; � 2 ½0; 	� to ‘‘build up’’ the manifold SD�2

in the background, together with a radial spherical coor-
dinate r, which is the areal coordinate in the background.
The coordinate frame (2.5) is defined in such a way that

the metric can be expressed as a stationary background

ðdsð0ÞÞ2 (i.e., the Tangherlini metric) plus a perturbation

ðdsð1ÞÞ2 which decays faster than 1=rD�3 for large r:

ðdsð0ÞÞ2 ¼ gð0Þabdx
adxb þ r2d�D�2

¼ gð0Þtt dt
2 þ gð0Þrr dr2 þ r2d�D�2

¼ gð0Þtt dt
2 þ gð0Þrr dr2 þ r2ðd ��2 þ sin2 ��d�D�3Þ

¼ �
�
1� rD�3

S

rD�3

�
dt2 þ

�
1� rD�3

S

rD�3

��1
dr2

þ r2½d ��2 þ sin2 ��ðd�2 þ sin2�d�D�4Þ�;
(2.6)

ðdsð1ÞÞ2 ¼ habdx
adxb þ ha ��dx

ad ��þ h �� ��d ��2

þ h��d�D�3: (2.7)

Here, the Schwarzschild radius rS replaces the parameter
� used in Paper I and is related to the Arnowitt-Deser-
Misner mass M by

rD�3
S ¼ 16	M

ðD� 2ÞAD�2

; (2.8)

where AD�2 is the area of the (D� 2) sphere [see

Eq. (B20)]. For instance, rS ¼ 2M in D ¼ 4 and rS ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8M=ð3	Þp

in D ¼ 5.
When we define the coordinate frame (2.5), we also

require that the coordinate � in this frame coincides with
the coordinate � appearing in Eq. (2.3). With this choice,
the axial symmetry of the space-time implies that
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ha� ¼ h ��� ¼ 0; (2.9)

as in Eq. (2.7), and � ¼ sin2�g��, i.e., Eq. (2.4).
The transformation from the coordinates x� ¼ ðt; x; y; zÞ

in which the numerical simulation is implemented to the
coordinates ðxa; ��; �Þ ¼ ðt; r; ��; �Þ in which the wave ex-
traction is performed is given by

x ¼ R sin �� cos�; (2.10)

y ¼ R sin �� sin�; (2.11)

z ¼ R cos ��; (2.12)

where R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and by the reparametrization of

the radial coordinate

R ¼ RðrÞ: (2.13)

We note that Eqs. (2.1) and (2.13) correctly transform the
three-metric �ij describing the initial data

�ijdx
idxj ¼ c ð4=D�3ÞðdR2 þ R2ðd ��2 þ sin2 ��d�2ÞÞ;

(2.14)

where, as discussed in Paper I, we choose Brill-Lindquist
initial data,

c ¼ 1þ rD�3
S;1

4rD�3
1

þ rD�3
S;2

4rD�3
2

; (2.15)

in order to simulate a head-on collision of BHs starting from
rest. Here, rS;i and ri denote the Schwarzschild radius and

the initial position of the i-th BH, respectively. Far away
from the axis the conformal factor is given by c ! 1þ
perturbations. Therefore, the splitting of the metric into a
Tangherlini background plus a perturbation, Eqs. (2.6) and
(2.7), can be recovered on the initial time-slice, if we define
the reparametrization (2.13) appropriately.

Our guess is that the transformation (2.1) and (2.13)
yields the ‘‘Tangherliniþ perturbation’’ splitting (2.6) and
(2.7) during the entire evolution of the system. This
statement can be checked numerically by verifying the
following relations (see Appendix B):

G tt � 1

K0D	

Z 	

0
d ��sinD�3 ��

Z 	

0
d�gttð ��; �Þ � gð0Þtt ¼ 0;

(2.16)

G tr � 1

K0D	

Z 	

0
d ��sinD�3 ��

Z 	

0
d�gtRð ��; �Þ ¼ 0;

(2.17)

G rr � 1

K0D	

Z 	

0
d ��sinD�3 ��

Z 	

0
d�gRRð ��; �Þ � gð0Þrr ¼ 0;

(2.18)

where K0D ¼ R
	
0 d ��ðsin ��ÞD�3, together with the axisym-

metry conditions (2.4) and (2.9). As we will discuss in

Sec. III, Eqs. (2.4), (2.9), (2.16), (2.17), and (2.18) are
indeed satisfied with high accuracy throughout the numeri-
cal evolution. The preservation of the above identities
during the numerical evolution justifies also the identi-
fication of the time coordinate in the numerical and
wave-extraction frames, and our use of the KI formalism.
Finally, Eqs. (2.2), (2.6), and (2.7) yield the 3þ 1

splitting

ds2 ¼ ðdsð0ÞÞ2 þ ðdsð1ÞÞ2
¼ g �� ��dx

��dx �� þ ðr2sin2 ��þ h��Þd�D�3

¼ g �� ��dx
��dx �� þ ðr2sin2 ��þ h��Þ

� ðd�2 þ sin2�d�D�4Þ
¼ ��2dt2 þ �ijðdxi þ �idtÞ

� ðdxj þ �jdtÞ þ �d�D�4; (2.19)

where x �� ¼ ðt; r; ��Þ. With the 3þ 1 splitting, the axisym-
metry conditions (2.4) and (2.9) take the form

� ¼ ���sin
2�; �R� ¼ � ��� ¼ �� ¼ 0: (2.20)

The variable r can be determined from the angular com-
ponents of the metric (2.19), by averaging out h �� ��, h�� (see
Appendix B); its explicit expression is given by

ðrðRÞÞ2 ¼ 1

ðD� 2ÞK0D

Z 	

0
d ��½� �� ��ðsin ��ÞD�3

þ ðD� 3Þ���ðsin ��ÞD�5�: (2.21)

As we will discuss in Sec. III, we find that the areal radius r
is very close to R.

B. Harmonic expansion

In the KI formalism [49] (see also [53]), the background
space-time has the form (2.6)

ðdsð0ÞÞ2 ¼ gð0ÞABdx
AdxB ¼ gð0Þabdx

adxb þ r2d�D�2

¼ gð0Þabdx
adxb þ r2��i �jd�

�id�
�j; (2.22)

i.e., the Tangherlini metric, where the xA coordinates refer
to the full space-time. The space-time perturbations can be
decomposed into spherical harmonics on the (D� 2)-

sphere SD�2. They are functions of the D� 2 angles �
�i ¼

ð ��; �;�1; . . . ; �D�4Þ. We denote the metric of SD�2 by ��i �j,

and with a subscript :�i the covariant derivative with respect
to this metric. Finally, we denote the covariant derivative

with respect to the metric gð0Þab with a subscript ja.
As discussed in [49], there are three types of spherical

harmonics:

(i) The scalar harmonics Sð��iÞ, which are solutions of

hS ¼ �
�i �jS:�i �j ¼ �k2S; (2.23)

with k2 ¼ lðlþD� 3Þ, l ¼ 0; 1; 2; . . . . The scalar
harmonics S depend on the integer l and on other
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indices; we leave such dependence implicit. We also
define

S �i¼�1

k
S;�i; S �i �j¼

1

k2
S:�i �jþ

1

D�2
��i �jS: (2.24)

Observe that �
�i �jS �i �j ¼ 0.

Each harmonic mode of the metric perturbation

gMN ¼ hMN can be decomposed as


gab ¼ hab ¼ fabS; (2.25)


ga�i ¼ ha�i ¼ rfaS �i; (2.26)


g�i �j ¼ h�i �j ¼ 2r2ðHL��i �jS þHTS �i �jÞ; (2.27)

where fab, fa, HL, HT are functions of xa ¼ ðt; rÞ.
Note, that in each of these expressions there is a sum
over the indices of the harmonic.
For l > 1, the metric perturbations can be expressed
in terms of the following gauge-invariant variables
[53]:

F ¼ HL þ 1

D� 2
HT þ 1

r
Xar

ja;

Fab ¼ fab þ Xajb þ Xbja;
(2.28)

where we have defined

Xa ¼ r

k

�
fa þ r

k
HTja

�
: (2.29)

(ii) The vector harmonics V �ið��iÞ, solutions of
�
�i �jV �k:�i �j ¼ �k2VV �k; (2.30)

with k2V ¼ lðlþD� 3Þ � 1, l ¼ 1; 2; . . . . These
harmonics satisfy the relation

V �i
:�i ¼ 0: (2.31)

The harmonic expansion of the corresponding met-
ric perturbations is given by Eqs. (2.26) and (2.27),
with S �i replaced by V �i, S �i �j replaced by

V �i �j ¼ � 1

2kV
ðV�i: �j þ V �j:�iÞ; (2.32)

and HL ¼ 0.

(iii) The tensor harmonics T �i �jð��iÞ, solutions of
�
�i �jT �r �s :�i �j ¼ �k2TT �r �s; (2.33)

with k2T ¼ lðlþD� 3Þ � 2, l ¼ 1; 2; . . . . These
harmonics satisfy,

�
�i �jT �i �j ¼ 0; T :�i �j

: �j ¼ 0: (2.34)

In the D ¼ 4 case they vanish. The harmonic ex-
pansion of the corresponding metric perturbations

is given by (2.27), with S �i �j replaced by T �i �j and

HL ¼ 0.

C. Implementation of axisymmetry

In an axially symmetric space-time, the metric pertur-
bations are symmetric with respect to SD�3. Therefore, the
harmonics in the expansion of hMN depend only on the
angle �� (which does not belong to SD�3). Furthermore,
since there are no off-diagonal terms in the metric (cf.
Paper I), the only nonvanishing ga�i components are ga ��;
the only components g�i �j are either proportional to ��i �j, or

all vanishing but g �� ��. This implies that only scalar spheri-
cal harmonics can appear in the expansion of the metric
perturbations. Indeed, if

V �i ¼ ðV ��; 0; . . . ; 0Þ; V �i ¼ V �ið ��Þ; (2.35)

then Eq. (2.31) gives

V �i
:�i ¼ V ��

; ��
¼ 0 ) V �� ¼ 0 ) V �i ¼ 0: (2.36)

Similarly, from Eq. (2.34) we obtain T �i �j ¼ 0.

The scalar harmonics, solutions of Eq. (2.23) and which
depend only on the coordinate ��, are given by the

Gegenbauer polynomials CðD�3Þ=2
l , as discussed in

Refs. [54–56]; writing explicitly the index l, they take
the form

S lð ��Þ ¼ ðKlDÞ�1=2CðD�3Þ=2
l ðcos ��Þ; (2.37)

where the normalization KlD is chosen such that

Z
d�D�2SlSl0 ¼ 
ll0 ;

Z
d�D�2Sl; ��Sl0; �� ¼ 
ll0k

2;

(2.38)

and k2 ¼ lðlþD� 3Þ [see Appendix B]. By computing
Sl�i, Sl�i �j from Eqs. (2.24) [using Eq. (2.23)] we find

S l �� �� ¼
D� 3

k2ðD� 2ÞW l; (2.39)

S l�� ¼ � sin2 ��

k2ðD� 2ÞW l; (2.40)

where we have defined

W lð ��Þ ¼ Sl; �� �� � cot ��Sl; ��: (2.41)

Therefore, the metric perturbations are given by

hab ¼ flabSlð ��Þ; (2.42)

ha �� ¼ rflaSlð ��Þ �� ¼ � 1

k
rflaSlð ��Þ; ��; (2.43)
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h �� �� ¼ 2r2ðHl
LSlð ��Þ þHl

TSlð ��Þ �� ��Þ

¼ 2r2
�
Hl

LSlð ��Þ þHl
T

D� 3

k2ðD� 2ÞW lð ��Þ
�
; (2.44)

h�� ¼ 2r2ðHl
Lsin

2 ��Slð ��Þ þHl
TSlð ��Þ��Þ

¼ 2r2sin2 ��

�
Hl

LSlð ��Þ �Hl
T

1

k2ðD� 2ÞW lð ��Þ
�
:

(2.45)

The quantities fab, fa, HL, HT are (see Appendix B):

flabðt; rÞ ¼
AD�3ffiffiffiffiffiffiffiffi
KlD

p
Z 	

0
d ��ðsin ��ÞD�3habC

ðD�3Þ=2
l ; (2.46)

faðt; rÞ ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþD� 3Þp

r

AD�3ffiffiffiffiffiffiffiffi
KlD

p

�
Z 	

0
d ��ðsin ��ÞD�3ha ��C

ðD�3Þ=2
l; ��

ðcos ��Þ; (2.47)

HLðt; rÞ ¼ 1

2ðD� 2Þr2
AD�3ffiffiffiffiffiffiffiffi
KlD

p
Z 	

0
d ��ðsin ��ÞD�3

�
�
h �� �� þ

D� 3

sin2 ��
h��

�
CðD�3Þ=2
l ðcos ��Þ; (2.48)

HTðt; rÞ ¼ 1

2r2ðk2 �Dþ 2Þ
AD�3ffiffiffiffiffiffiffiffi
KlD

p
Z 	

0
d ��ðsin ��ÞD�3

�
�
h �� �� �

1

sin2 ��
h��

�
Wlð ��Þ; (2.49)

where hab ¼ habðt; r; ��Þ, ha �� ¼ ha ��ðt; r; ��Þ, h �� �� ¼
h �� ��ðt; r; ��Þ, h�� ¼ h��ðt; r; ��Þ and CðD�3Þ=2

l ¼
CðD�3Þ=2
l ðcos ��Þ.
In terms of these quantities, using Eqs. (2.28) and (2.29),

we get the gauge-invariant quantities F, Fab.
As we have discussed above, this approach has been

developed for D> 4, since in D ¼ 4 the off-diagonal
terms gt�, gr� are not vanishing in general axially sym-

metric space-times. However, we can extend our frame-
work toD ¼ 4 if we restrict ourselves to axially symmetric
space-times with gt� ¼ gr� ¼ 0. In this way, we can test

our formalism by comparing our results to the existing
literature. For instance, we note that in D ¼ 4 the pertur-
bation functions are related to the expressions in Ref. [57],
with the identifications

flab ¼ H0; H1; H2; (2.50)

� r

k
fla ¼ h0; h1; (2.51)

2HT

k2
¼ G; (2.52)

2HL þHT ¼ K: (2.53)

We also remark that in the transverse-traceless gauge, only
HT is nonvanishing, but in a generic gauge (like the one
used in the numerical simulations) all these quantities are
in principle nonvanishing.

D. Extracting gravitational waves at infinity

In the KI framework, the emitted gravitational waves
are described by the master function �. To compute �
in terms of the gauge-invariant quantities F, Fab one
should perform a Fourier transform or a time integration
(see [49]). This can be avoided if we compute directly
�;t, given by1

�;t ¼ ðD� 2ÞrðD�4Þ=2 �Fr
t þ 2rF;t

k2 �Dþ 2þ ðD�2ÞðD�1Þ
2

rD�3
S

rD�3

;

(2.54)

where k2 ¼ lðlþD� 3Þ. In the TT gauge, the gravita-
tional perturbation is described by HT , which decays as

rðD�2Þ=2 with increasing r, whereas the other perturbation
functions have a faster decay (see [54]). In this gauge,
the asymptotic behavior of the master function is

� ’ 2rðD�2Þ=2HT

k2
; (2.55)

and tends to an oscillating function with constant am-
plitude as r ! 1. The asymptotic behavior of � has
been checked numerically (cf. Sec. III).
Writing the index l explicitly, the energy flux in each

l—multipole is [54]

dEl

dt
¼ 1

32	

D� 3

D� 2
k2ðk2 �Dþ 2Þð�l

;tÞ2: (2.56)

The total energy emitted in the process is then

E ¼ X1
l¼2

Z þ1

�1
dt

dEl

dt
: (2.57)

III. HEAD-ON COLLISION FROM REST IN D ¼ 4

The numerical simulations of head-on collisions of
equal-mass binaries starting from rest have been performed
with the LEAN code originally introduced in Ref. [50],
modified along Sec. 3 of Ref. [58] and adapted to higher
dimensional space-times in Paper I. The LEAN code is
based on the CACTUS computational toolkit [59] and uses
the CARPET mesh refinement package [60,61], the apparent
horizon finder AHFINDERDIRECT [62,63] and the puncture
initial data solver of Ref. [64]. Head-on collisions in four
dimensional space-times have been studied extensively in
the literature and provide valuable opportunities to

1Note that there is a factor r missing in Eq. 3.15 of Ref. [49].
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calibrate the wave-extraction formalism. These tests are
the subject of the remainder of this section, while we
discuss our new results for five dimensional space-times
in Sec. IV below.

In order to test our implementation of the KI formalism
inD ¼ 4, we have simulated head-on collision of an equal-
mass, nonspinning BH binary initially at rest. The parame-
ters used in this simulation are shown in Table I. This
particular system is well understood and enables us to
compare our results derived from the KI formalism against
those obtained using both, the Regge-Wheeler-Zerilli wave
extraction and the Newman-Penrose framework; cf.
[50,57] for corresponding literature studies.

In order to perform these tests, we need to relate our
master function � of Sec. II D to the variables used in
traditional four dimensional studies. Specifically, a
straightforward calculation shows that the Zerilli wave

function �� adopted in Ref. [57] for l ¼ 2 multipoles and
the outgoing Weyl scalar�4 used in [50] can be expressed
in terms of � according to

�� ¼ 6�; (3.1)

r�4 ¼
ffiffiffi
6

p
�;tt: (3.2)

Note that the imaginary part of�4 vanishes in the case of a
head-on collision, due to symmetry.

The resolution is h ¼ rS=96 for all results reported in
this section except for the convergence study in Sec. III C
which also uses the lower resolutions hc ¼ rS=80 and
hm ¼ rS=88.

2 Gravitational waves have been extracted at

three different coordinate radii R [cf. Eq. (2.13)], which we
denote by Rex ¼ 30rS, 40rS, 50rS.

A. Tests on the numerical coordinates

The procedure described in Sec. II assumes that the
numerical space-time consists of a small deviation from
the Schwarzschild-Tangherlini metric. In order to ensure
that the gravitational waves are extracted in an appropriate
coordinate system we perform a number of checks. We first
test the relations (2.16), (2.17), and (2.18). In Fig. 1 we
show Gtt, i.e., the difference between the numerical gtt,
averaged over the extraction sphere and the corresponding
component of the assumed background metric. Here we
evaluate the background metric by assuming, as a first
approximation, that the Schwarzschild radius of the BH
is rS ¼ rS;1 þ rS;2.
The deviation of the full 4-metric from the

Schwarzschild-Tangherlini background decreases as the
extraction radius increases. Indeed, a straightforward cal-
culation shows that a deviation 
rS of the Schwarzschild
radius from the background value leads to Gtt �

rD�3

S =rD�3, i. e. 
rS=r for D ¼ 4. In the left panel of

Fig. 1 we therefore show the deviation Gtt rescaled by r.
We further apply a time shift to account for the different
propagation time of the wave to reach the extraction radii.
As shown in the figure, the deviation from the
Schwarzschild line element is small and decreases �1=r
in accordance with our expectation. We also note that a
deviation 
rS represents a monopole perturbation of the
background which decouples from the quadrupole wave
signal at perturbative order, so that its impact on our results
is further reduced.
In summary, we can give an uncertainty estimate for the

approximation rS ¼ rS;1 þ rS;2 for the Schwarzschild ra-

dius of the final BH, which ignores the energy loss through
gravitational radiation. As demonstrated by the left panel
of Fig. 1, at late times jRex=rSGttj � 0:01, and, since
r ’ Rex (as we discuss below), we obtain the upper bound

TABLE I. Grid structure and initial parameters of the head-on collisions starting from rest in D ¼ 4 and D ¼ 5. The grid setup is
given in terms of the ‘‘radii’’ of the individual refinement levels, in units of rS, as well as the resolution near the punctures h (see
Sec. IIE in [50] for details). d is the initial coordinate separation of the two punctures and L denotes the proper initial separation.

Run D Grid Setup d=rS L=rS

HD4c 4 fð128; 64; 32; 16; 8Þ � ð1; 0:5; 0:25Þ; h ¼ rS=80g 5.257 7.154

HD4m 4 fð128; 64; 32; 16; 8Þ � ð1; 0:5; 0:25Þ; h ¼ rS=88g 5.257 7.154

HD4f 4 fð128; 64; 32; 16; 8Þ � ð1; 0:5; 0:25Þ; h ¼ rS=96g 5.257 7.154

HD5a 5 fð256; 128; 64; 32; 16; 8; 4Þ � ð0:5; 0:25Þ; h ¼ rS=84g 1.57 1.42

HD5b 5 fð256; 128; 64; 32; 16; 8; 4Þ � ð0:5; 0:25Þ; h ¼ rS=84g 1.99 1.87

HD5c 5 fð256; 128; 64; 32; 16; 8; 4Þ � ð1; 0:5Þ; h ¼ rS=84g 2.51 2.41

HD5d 5 fð256; 128; 64; 32; 16; 8; 4Þ � ð1; 0:5Þ; h ¼ rS=84g 3.17 3.09

HD5ec 5 fð256; 128; 64; 32; 16; 8Þ � ð2; 1; 0:5Þ; h ¼ rS=60g 6.37 6.33

HD5em 5 fð256; 128; 64; 32; 16; 8Þ � ð2; 1; 0:5Þ; h ¼ rS=72g 6.37 6.33

HD5ef 5 fð256; 128; 64; 32; 16; 8Þ � ð2; 1; 0:5Þ; h ¼ rS=84g 6.37 6.33

HD5f 5 fð256; 128; 64; 32; 16; 8Þ � ð2; 1; 0:5Þ; h ¼ rS=84g 10.37 10.35

2In order to ensure that our fundamental unit is of physical
dimension length for all values of space-time dimension D, we
believe it convenient to express our results in units of the radius
rS (given by rD�3

S � rD�3
S;1 þ rD�3

S;2 ) of the ‘‘total’’ event horizon
as opposed to the total BH mass M commonly used in four
dimensional numerical relativity. In D ¼ 4, of course, rS ¼ 2M.
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rS
rS

&
r

rS
Gtt � 0:01: (3.3)

This crude analysis sets an upper bound of �1% on the
fraction of the center of mass energy radiated as gravita-
tional waves. We further note that the close agreement
between gtt and its Tangherlini counterpart implies that
the time coordinate employed in the numerical simulation
and the Tangherlini coordinate time coincide. By analyzing
Gtr and Grr in the same manner, we find that relations
(2.16), (2.17), and (2.18) are satisfied with an accuracy of
one part in 102 throughout the evolution, and one part in
103 at late times, when the space-time consists of a single
distorted black hole.

In practice, gravitational waves are extracted on spheri-
cal shells of constant coordinate radius. The significance of
the areal radius associated with such a coordinate sphere in
the context of extrapolation of GW signals has been
studied in detail in Ref. [65]. For our purposes, the most
important question is to what extent gauge effects change
the areal radius (2.21) of our extraction spheres. For this
purpose, we show its time evolution in the right panel of
Fig. 1 for different values of Rex. The reassuring result is
that the areal radius exceeds its coordinate counterpart by
about 1% at Rex ¼ 50rS and remains nearly constant in
time.

B. Waveforms

As a benchmark for our wave extraction, we compare
our results obtained with independent wave extraction
tools; (i) the explicitly four dimensional Zerilli formalism
and (ii) the Newman-Penrose scalars. For this purpose we
have evolved model HD4f and extracted the Zerilli func-

tion according to the procedure described in [57] (see also
Eqs. (2.50), (2.51), (2.52), and (2.53) above) and the

Newman-Penrose scalar �4 as summarized in [50].
These are compared with the KI wave function �;t and

its time derivative�;tt in Fig. 2. Except for a small amount

of high frequency noise in the junk radiation at t � 25rS,
we observe excellent agreement between the different ex-
traction methods. Next we consider the dependence of the
wave signal on the extraction radius. In Fig. 3 we show the
l ¼ 2 component of �;t extracted at three different radii

and shifted in time by Rex. As is apparent from the figure,
the wave function shows little variation with Rex at large
distances, in agreement with expectations.
A further test of the wave signal arises from its late-time

behavior which is dominated by the BH ringdown [66], an
exponentially damped sinusoid of the form e�i!t, with !
being a characteristic frequency called quasinormal mode
frequency. Using well-known methods [66–68], we esti-
mate this frequency to be rS!� 0:746� 0:002�
ið0:176� 0:002Þ. This can be compared with theo-
retical predictions from a linearized approach, yielding
rS! ¼ 0:747 344� i0:177 925. Finally, we consider the
numerical convergence of our results. In Fig. 4, we plot
the differences obtained for �;t extracted at Rex ¼ 30rS,
using the different resolutions of the three models HD4
listed in Table I. The differences thus obtained are consis-
tent with 4th order convergence. This implies a discretiza-
tion error in the l ¼ 2 component of�;t of about 4% for the

grid resolutions used in this work.

C. Radiated energy

Once the KI function �;t is known, the energy flux can

be computed from Eq. (2.56). For comparison, we have
also determined the flux from the outgoing Newman-
Penrose scalar �4 according to Eq. (22) in Ref. [14]. The
flux and energy radiated in the l ¼ 2 multipole, obtained
with the two methods at Rex ¼ 50rS is shown in Fig. 5 and
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FIG. 1 (color online). Left panel: Gtt calculated from Eq. (2.16) for D ¼ 4, at different extraction radii. This quantity has been
shifted in time to account for the different extraction radii and rescaled by the corresponding Rex. The late-time behavior is shown in
the inset. Right panel: time evolution of areal radius [cf. (2.21)] extracted at the radii Rex ¼ 30rS (black solid line), Rex ¼ 40rS (red
dashed line) and Rex ¼ 50rS (green dashed-dotted line).
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demonstrates agreement within the numerical uncertainties
of about 4% for either result. We obtain an integrated
energy of 5:5� 10�4M and 5:3� 10�4M, respectively,
for the gravitational wave energy radiated in l ¼ 2, where
M denotes the center of mass energy.

The energy in the l ¼ 2 mode is known to contain more
than 99% of the total radiated energy [50]. Our analysis is
compatible with this finding; while the energy in the l ¼ 3
mode is zero by symmetry, our result for the energy in the
l ¼ 4 mode obtained from the KI master function is 3
orders of magnitude smaller than that of the l ¼ 2
contribution.

IV. HEAD-ON COLLISION FROM REST IN D ¼ 5

Having tested the wave-extraction formalism in four
dimensions, we now turn our attention to the new results
obtained for head-on collisions of BHs in five dimensional
space-times. As before, we consider nonspinning BH bi-
naries initially at rest with coordinate separation d. Note
that in five space-time dimensions the Schwarzschild
radius is related to the Arnowitt-Deser-Misner mass M
via Eq. (2.8),

r2S ¼
8M

3	
: (4.1)
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FIG. 3 (color online). The l ¼ 2 component of the KI wave
function �;t extracted at the radii Rex ¼ 30rS (black solid line),

Rex ¼ 40rS (red dashed line) and Rex ¼ 50rS (green dashed-
dotted line). They have been shifted in time by the correspond-
ing Rex.
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FIG. 2 (color online). Left panel: Time derivatives of the l ¼ 2 modes of the KI function � (black solid line), and of the Zerilli
function �� (red dashed line) extracted for model HD4f at Rex ¼ 30rS. The KI function has been rescaled by a constant factor [cf. (3.1)]

which accounts for the different normalizations of both formulations. Right panel: comparison of the second time derivative �;tt with

the outgoing Newman-Penrose scalar �4 for the same model. The KI wave function has been rescaled according to Eq. (3.2).
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rescaled by the factor Q ¼ 1:58 expected for 4th order conver-
gence [14].
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We therefore define the total Schwarzschild radius rS such
that r2S ¼ r2S;1 þ r2S;2. By using this definition, rS has physi-

cal dimension of length and provides a suitable unit for
measuring both, results and grid setup.

As summarized in Table I, we consider a sequence of
BH binaries with initial coordinate separation ranging from
d ¼ 3:17rS to d ¼ 10:37rS. The table further lists the
proper separation L along the line of sight between the
holes and the grid configurations used for the individual
simulations.

A. Tests on the numerical coordinates

In order to verify the assumptions underlying our formal-
ism, we have analyzed the coordinate system in analogy to
Sec. III A. First, we have evaluated the averaged areal
radius on extraction spheres of constant coordinate radius.

The result shown in the left panel of Fig. 6 demonstrates
that the coordinate and areal radius agree within about 1
part in 104 for Rex � 40rS. The Tangherlini coordinate r
equals by construction the areal radius and our approxima-
tion of setting r � Rex in the wave-extraction zone is
satisfied with high precision.
Second, we evaluate the deviation of the metric compo-

nents according to Eqs. (2.16), (2.17), and (2.18). From the
discussion in Sec. III A we expect Gtt � r2=r2S in D ¼ 5.
Our results in the right panel of Fig. 6 confirm this expec-
tation and demonstrate that our space-time is indeed per-
turbatively close to that of a Tangherlini metric at sufficient
distances from the black holes; deviations in Gtt are well
below 1 part in 103 at Rex ¼ 60rS. Furthermore, we can
estimate the crudeness of the approximation r2S ¼ r2S;1 þ
r2S;2 for the Schwarzschild radius of the final BH: as shown
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FIG. 5 (color online). Energy flux (left panel) and radiated energy (right panel) for the l ¼ 2 mode extracted at Rex ¼ 50rS from the
KI wave function �;t (black solid curve) and the Newman-Penrose scalar �4 (red dashed curve).
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component R2
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in the right panel of Fig. 6, at late times jR2
ex=r

2
SGttj � 0:01;

this value gives an upper bound on the radiated energy.
For the third test, we recall that our higher dimensional

implementation does not employ the full isometry group of
the S2 sphere in D ¼ 5 dimensions and axial symmetry
manifests itself instead in the conditions (2.20) on the
metric components and the scalar field. We find these
conditions to be satisfied within 1 part in 108 and 1 part
in 1016, respectively, in our numerical simulations which
thus represent axially symmetric configurations with high
precision.

B. Newtonian collision time

An estimate of the time at which the holes ‘‘collide,’’ can
be obtained by considering a Newtonian approximation to
the kinematics of two point particles in D ¼ 5. In the
weak-field regime, Einstein’s equations reduce to
‘‘Newton’s law’’ a ¼ �rBðxÞ, with h00 ¼ �2BðxÞ ¼
rD�3
S =2rD�3. The Newtonian time it takes for two point-

masses (with Schwarzschild parameters rS;1 and rS;2) to
collide from rest with initial distance L in D dimensions is
then given by

tfree fall
rS

¼ I
D� 3

�
L

rS

�ðD�1=2Þ
; (4.2)

where rD�3
S ¼ rD�3

S;1 þ rD�3
S;2 and

I ¼
Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðð5�DÞ=ðD�3ÞÞ

1� z

s
dz ¼ ffiffiffiffi

	
p �ð12 þ 1

D�3Þ
�ð1þ 1

D�3Þ
: (4.3)

For D ¼ 4, one recovers the standard result tfree fall ¼
	

ffiffiffiffiffiffiffiffiffiffiffiffiffi
L3=r3S

q
rS, whereas for D ¼ 5 we get

tfree fall ¼ ðL=rSÞ2rS: (4.4)

In general relativity, BH trajectories and merger times are
intrinsically observer dependent quantities. For our com-
parison with Newtonian estimates we have chosen relativ-
istic trajectories as viewed by observers adapted to the
numerical coordinate system. While the lack of fundamen-
tally gauge-invariant analogues in general relativity
prevents us from deriving rigorous conclusions, we believe
such a comparison to serve the intuitive interpretation of
results obtained within the ‘‘moving puncture’’ gauge.
Bearing in mind these caveats, we plot in Fig. 7 the
analytical estimate of the Newtonian time of collision,
together with the numerically computed time of formation
of a common apparent horizon. Also shown in Fig. 7 is the
time at which the separation between the individual hole’s
puncture trajectory decreases below the Schwarzschild
parameter rS. The remarkable agreement provides yet
another example of how well numerically successful gauge
conditions appear to be adapted to the black hole kinemat-
ics. It is beyond the scope of this paper to investigate
whether this is coincidental or whether such agreement is

necessary or at least helpful for gauge conditions to ensure
numerical stability. Suffice it to say at this stage that
similar conclusions were reached by Anninos et al. [69]
and Lovelace et al. [70] in similar four dimensional
scenarios.

C. Waveforms

We now discuss in detail the gravitational wave signal
generated by the head-on collision of two BHs in five
dimensions. For this purpose, we plot in Fig. 8 the l ¼ 2
multipole of the KI function�;t for modelHD5ef obtained

at different extraction radii. Qualitatively, the signal looks
similar to that shown in the left panel of Fig. 2 forD ¼ 4. A
small spurious wave pulse due to the initial data construc-
tion is visible at �t � 0. This so-called ‘‘junk radiation’’
increases in magnitude if the simulation starts with smaller
initial separation of the holes.We return to this issue further
below, when we study the dependence of the gravitational
radiation on the initial BH separation. The physical part of
the wave form is dominated by the merger signal around
�t ¼ 50rS, followed by the (exponentially damped) ring-
down,whereas the infall of the holes before�t ¼ 40rS does
not produce a significant amount of gravitational waves.
Comparison of the wave forms extracted at different radii
demonstrates excellent agreement, in particular, for those
extracted at Rex ¼ 40rS and 60rS. Extrapolation of the
radiated energy to infinite extraction radius yield a relative
error of 5% at Rex ¼ 60rS, indicating that such radii are
adequate for the analysis presented in this work.
Because of symmetry, no gravitational waves are emit-

ted in the l ¼ 3 multipole, so that l ¼ 4 represents the
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FIG. 7 (color online). Estimates for the time it takes for two
equal-mass BHs to collide in D ¼ 5. The first estimate is given
by the time tCAH elapsed until a single common apparent horizon
engulfs both BHs (diamonds), the second estimate is obtained by
using the trajectory of the BHs, i.e., the time ttraj at which their

separation has decreased below the Schwarzschild radius
(circles). Finally, these numerical results are compared against
a simple Newtonian estimate, given by Eq. (4.4) [blue solid line].
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second strongest contribution to the wave signal. As dem-
onstrated in the right panel of Fig. 2, however, its ampli-
tude is 2 orders of magnitude below that of the quadrupole.

A convergence analysis also using the lower resolution
simulations of models HD5ec and HD5em is shown in
Fig. 9 and demonstrates overall convergence of third to
fourth order, consistent with the numerical implementa-
tion. From this analysis we obtain a conservative estimate
of about 4% for the discretization error in the wave form.

In practice, numerical simulations will always start with
a finite separation of the two black holes. In order to assess
how accurately we are thus able to approximate an infall
from infinity, we have varied the initial separation for
models HD5a to HD5f as summarized in Table I. For small

d we observe two effects which make the physical inter-
pretation of models HD5a–HD5c difficult. First, the am-
plitude of the spurious initial radiation increases and
second, the shorter infall time causes an overlap of this
spurious radiation with the merger signal. As demonstrated
in Fig. 10 for models HD5e and HD5f, however, we can
safely neglect the spurious radiation as well as the impact
of a final initial separation, provided we use a sufficiently
large initial distance d * 6rS of the BH binary. Here, we
compare the radiation emitted during the head-on collision
of BHs starting from rest with initial separations 6:37rS
and 10:37rS. The wave forms have been shifted in time by
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FIG. 8 (color online). Left panel: The l ¼ 2 component of the KI wave form for model HD5ef extracted at radii Rex=rS ¼ 20, 40 and
60 and shifted in time by Rex=rS. Right panel: The l ¼ 2 and l ¼ 4 mode of the KI function for the same simulation, extracted at
Rex=rS ¼ 60. For clarity, the l ¼ 4 component has been rescaled by a factor of 100.
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FIG. 9 (color online). Convergence analysis of the l ¼ 2 com-
ponent of the KI function generated by model HD5e extracted at
Rex ¼ 60rS. The difference between the medium and high
resolution wave forms has been amplified by the factors 1.97
(red dashed line) and 2.33 (green dashed-dotted line) indicating
third and fourth order convergence.
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FIG. 10 (color online). The l ¼ 2 components of the KI func-
tion as generated by a head-on collision of BHs with initial
(coordinate) distance d ¼ 6:37rS (black solid line) and d ¼
10:37rS (red dashed line). The wave functions have been shifted
in time such that the formation of a common apparent horizon
corresponds to �t ¼ 0 and taking into account the time it
takes for the waves to propagate up to the extraction radius
Rex ¼ 60rS.
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the extraction radius Rex ¼ 60rS and such that the forma-
tion of a common apparent horizon occurs at �t ¼ 0. The
merger signal starting around �t ¼ 0 shows excellent
agreement for the two configurations and is not affected
by the spurious signal visible for HD5e at �t � �50rS.

We conclude this discussion with two aspects of the
post-merger part of the gravitational radiation, the ring-
down and the possibility of GW tails. After formation of a
common horizon, the wave form is dominated by an ex-
ponentially damped sinusoid, as the merged hole rings
down into a stationary state. By fitting our results with a
exponentially damped sinusoid, we obtain a characteristic
frequency

rS! ¼ 0:955� 0:005� ið0:255� 0:005Þ: (4.5)

This value is in excellent agreement with perturbative
calculations, which predict a lowest quasinormal fre-
quency rS! ¼ 0:9477� i0:2561 for l ¼ 2 [56,66,71].
A well-known feature in gravitational wave forms gen-

erated in BH space-times with D ¼ 4 as well as D> 4 are
the so-called power-law tails [72–75]. In odd dimensional
space-times an additional, different kind of late-time power
tails arises, which does not depend on the presence of a
BH. These are due to a peculiar behavior of the wave-
propagation in flat odd dimensional space-times because
the Green’s function has support inside the entire light-
cone [75]. We have attempted to identify such power-law
tails in our signal at late times, by subtracting a best-fit
ringdown wave form. Unfortunately, we cannot, at this
stage, report any evidence of such a power-law in our
results, most likely because the low amplitude tails are
buried in numerical noise.

D. Radiated energy

Comparison of Figs. 3 and 10 for the GW quadrupole
in D ¼ 4 and D ¼ 5 shows a larger wave amplitude in
the five dimensional case and thus indicates that this
case may radiate more energy. We now investigate this
question quantitatively by calculating the energy flux
from the KI master function via Eq. (2.56). The fluxes
thus obtained for the l ¼ 2 multipole of models HD5ef
and HD5f in Table I, extracted at Rex ¼ 60rS, are shown
in Fig. 11. As in the case of the KI master function in
Fig. 10, we see no significant variation of the flux for the
two different initial separations. The flux reaches a
maximum value of dE=dt� 3:4� 10�4rS, and is then
dominated by the ringdown flux. The energy flux from
the l ¼ 4 mode is typically 4 orders of magnitude
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FIG. 11 (color online). Energy flux in the l ¼ 2 component of
the KI wave function �;t, extracted at Rex ¼ 60rS, for models

HD5ef (black solid line) and HD5f (red dashed line) in Table I.

The fluxes have been shifted in time by the extraction radius
Rex ¼ 60rS and the time tCAH at which the common apparent
horizon forms.
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FIG. 12 (color online). Left panel: Fraction of the center of mass energy, Erad=M, radiated in the l ¼ 2 mode of the KI function
shifted in time such that the origin of the time axis corresponds to the formation of a common apparent horizon. Right panel: Fraction
of the center of mass energy 1�MAH=M radiated during the collision, estimated using apparent horizon information. The oscillations
in this diagnostic quantity have a frequency comparable to the l ¼ 2 quasinormal mode frequency.
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smaller; this is consistent with the factor of 100 differ-
ence of the corresponding wave multipoles observed in
Fig. 8, and the quadratic dependence of the flux on the
wave amplitude.

The total integrated energy emitted throughout the head-
on collision is presented in the left panel of Fig. 12. We find
that a fraction of Erad=M ¼ ð8:9� 0:6Þ � 10�4 of the
center of mass energy is emitted in the form of gravita-
tional radiation. We have verified for these models that the
amount of energy contained in the spurious radiation is
about 3 orders of magnitude smaller than in the physical
merger signal.

An independent estimate for the radiated energy can be
obtained from the apparent horizon area A4 in the effective
four dimensional space-time by using the spherical sym-
metry of the post-merger remnant hole. Energy balance
then implies that the energy E radiated in the form of GWs
is given by

E

M
¼ 1�MAH

M
¼ 1� A4

4	r2S
; (4.6)

where MAH is the apparent horizon mass. The estimate
E=M is shown in Fig. 12 and reveals a behavior qualita-
tively similar to a damped sinusoid with constant offset.
Indeed, by using a least square fit, we obtain a complex
frequency rS!� 0:97� i0:29, again similar to the funda-
mental l ¼ 2 quasinormal mode frequency [see discussion
around Eq. (4.5)]. At late times, 1�MAH=M asymptotes
to 1�MAH=M� ð9:3� 0:8Þ � 10�4 which agrees very
well with the GW estimate, within the numerical un-
certainties.

V. DISCUSSION

In this paper we have developed a formalism to extract
gravitational radiation observables from numerical simu-
lations of head-on collisions of BHs in D dimensions.
Moreover, we have performed such simulations in D ¼
4, 5. The D ¼ 4 case serves as a test of our formalism and
demonstrates consistency of our results with the literature.
The D ¼ 5 case is entirely new. Besides obtaining the
corresponding wave forms, we have shown that the total
energy released in the form of gravitational waves is
approximately ð0:089� 0:006Þ% of the initial center of
mass energy of the system, for a head-on collision of two

BHs starting from rest at very large distances. As a
comparison, the analogous process in D ¼ 4 releases a
slightly smaller quantity: ð0:055� 0:006Þ%. We summa-
rize the main results for head-on collisions of two BHs
starting from rest in four and five space-time dimensions in
Table II.
We have further performed a variety of tests of the wave-

extraction formalism. Besides testing the proximity of the
numerical coordinate system to the Tangherlini back-
ground space-time, we have demonstrated good agreement
between the radiated energy as derived directly from the KI
master function with the values obtained from the horizon
area of the post-merger remnant hole. Finally, the ring-
down part of the wave form yields a quasinormal mode
frequency in excellent agreement with predictions from
BH perturbation theory.
The radiative efficiency Erad=M in Table II shows that

head-on collisions starting from rest in five dimensions
generate about 1.6 times as much GW energy as their
four dimensional counterparts. It will be very interesting
to investigate to what extent this observation holds for
wider classes of BH collisions. We can compare the radia-
tion efficiency with the upper limit derived by Hawking
[76] from the requirement that the horizon area must not
decrease in the collision. This leads to the area bound
Earea

M 	 1� 2�ðð1Þ=ðD�2ÞÞ. Evidently, this bound decreases

with dimensionality, while in the present computation it
increases when going from D ¼ 4 to D ¼ 5. As also
shown in the table, the generation of GWs in head-on
collisions starting from rest is about 3 orders of magnitude
below this bound. In four dimensions it has already been
demonstrated that there exist more violent processes which
release more radiation than the head-on collisions consid-
ered in this work [36–38].
In the context of this work, it would be particularly

interesting to compute the gravitational radiation emitted
when a point particle falls into a higher dimensional BH
(the four dimensional calculation is done in the classic
work by Davis et al. [77]). This analysis can be done by
linearizing Einstein’s equations. While such an analysis
was done for infall at high energies [54,55], it has not been
done for infalls from rest. The four dimensional case shows
that by scaling the point-particle results properly with the
reduced mass, one gets surprisingly good agreement with
full nonlinear studies [78]. An obvious question is whether

TABLE II. Main results for head-on collisions in D ¼ 4 and 5 dimensions. We list the ring
down frequency !, the total energy radiated in gravitational waves, the upper bound Earea on the
radiated energy obtained from Hawking’s area theorem and the fractional energy in the l ¼ 4
multipole relative to the quadrupole radiation.

D rS!ðl ¼ 2Þ Erad=Mð%Þ Earea=Mð%Þ Erad
l¼4=E

rad
l¼2

4 0:7473� i0:1779 0.055 29.3 <10�3

5 0:9477� i0:2561 0.089 20.6 <10�4

HELVI WITEK et al. PHYSICAL REVIEW D 82, 104014 (2010)

104014-14



such an agreement extends to generic number of space-
time dimensions. Investigations with a similar purpose, but
using a different technique, were carried out in
Refs. [79,80].

The numbers reported here for the total energy loss in
gravitational waves should increase significantly in high
energy collisions, which are the most relevant scenarios
for the applications described in the Introduction. Indeed,
in the four dimensional case, it is known that ultrarela-
tivistic head-on collisions of equal-mass nonrotating BHs
release up to 14% of the initial center of mass energy
into gravitational radiation [36]. The analogous number
in higher dimensions is as yet unknown and will be
subject of the next stages of our research programme.
Preliminary results by Gal’tsov et al. [81,82] strongly
suggest enhancement of radiation emission for higher
dimensions, in agreement with the D ¼ 5 results shown
here. Even more energy may be released in high energy
collisions with nonvanishing impact parameter. In
[37,38] it was shown that this number can be as large
as 35% in D ¼ 4. The formalism developed in Paper I
allows, in principle, the study of analogous processes in
D � 6. We hope to be able to report on these results in
the near future.
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APPENDIX A: COORDINATE TRANSFORMATION

In order to extract gravitational radiation using the KI
formalism one has to perform a coordinate transformation
from Cartesian coordinates, which are used during the
numerical evolution, to those adapted for wave extraction.
The physical 3-metric �ij, the lapse function � and the

shift vector �i computed on our Cartesian grid are inter-
polated onto a Cartesian patch. In terms of these quantities
we compute the 4-metric g�� in Cartesian coordinates

according to Eq. (2.2):

g��dx
�dx� ¼ ð��2 þ �ij�

i�jÞdt2 þ �ij�
idtdxj

þ �ij�
jdtdxi þ �ijdx

idxj: (A1)

Then, we transform the 4-metric in Cartesian coordinates
into spherical coordinates, defined by Eq. (2.1)

x ¼ R sin �� cos�; (A2)

y ¼ R sin �� sin�; (A3)

z ¼ R cos ��; (A4)

where ��; � 2 ½0; 	� and R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. If we denote

the metric in spherical coordinates by gS�� and define � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, the explicit form of the transformation is

gStR ¼ gtx sin �� cos�þ gty sin �� sin�þ gtz cos ��; (A5)

gS
t ��
¼ zðgtx cos�þ gty sin�Þ � �gtz; (A6)

gSt� ¼ �ygtx þ xgty; (A7)

gSRR ¼ gxxsin
2 ��cos2�þ 2gxysin

2 �� cos� sin�

þ 2gxz sin �� cos� cos ��þ gyysin
2 ��sin2�

þ 2gyz sin �� sin� cos ��þ gzzcos
2 ��; (A8)

gS
R ��

¼ zðgxx sin ��cos2�þ 2gxy sin �� cos� sin�

þ gyy sin ��sin
2�þ gxz cos �� cos�þ gyz cos �� sin�Þ

� ðxgxz þ ygyz þ zgzzÞ sin ��; (A9)

gSR� ¼ ð�ygxx sin �� cos�þ xgxy sin �� cos�� ygxy sin �� sin�

þ xgyy sin �� sin�� ygxz cos ��þ xgyz cos ��Þ; (A10)

gS�� ��
¼ z2ðgxxcos2�þ 2gxy cos� sin�þ gyysin

2�Þ
� 2zðxgxz þ ygyzÞ þ �2gzz; (A11)

gS��� ¼ zð�ygxx cos�þ xgxy cos�� ygxy sin�

þ xgyy sin�Þ þ �ðygxz � xgyzÞ; (A12)
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gS�� ¼ R2sin2 ��ðgxxsin2�� 2gxy cos� sin�þ gyycos
2�Þ:
(A13)

Henceforth, we will drop the superscript S and use g�� for

the metric in spherical coordinates.
The areal radius r is related to R by a reparametrization

R ¼ RðrÞ, given by Eq. (B50), which depends on the
components g �� ��, g�� only. As shown in Sec. III, we find
that this reparametrization is nearly constant throughout
our numerical simulations. Therefore, the quantities
grr; gtr, gr ��; gr� can be obtained from gRR; gtR; gR ��; gR�
by a simple rescaling: because

dR

dr
’ 1; (A14)

we have grr ’ gRR, and similar relations hold for the other
components.

APPENDIX B: HARMONIC EXPANSION OF
AXISYMMETRIC TENSORS IN D DIMENSIONS

As discussed in Sec. II C, scalar spherical harmonics in
D dimensions Slð ��; �;�1; . . . ; �D�4Þ are solutions of
Eq. (2.23)

hSl ¼ �
�i �jSl:�i �j ¼ �k2Sl; (B1)

with k2 ¼ lðlþD� 3Þ. Axisymmetric scalar spherical
harmonics are functions of the coordinate �� only,
Sl ¼ Slð ��Þ. Therefore, Eq. (B1) becomes

hSlð ��Þ ¼ Sl; �� �� þ ðD� 3Þ cot ��Sl; �� ¼ �k2Sl; (B2)

since

S l: �� �� ¼ Sl; �� �� (B3)

S l:�� ¼ ��
��
��Sl; �� ¼ sin �� cos ��Sl; ��; (B4)

S l:�1�1 ¼ ��
��
�1�1Sl; �� ¼ sin2� sin �� cos ��Sl; ��; (B5)

etc. The quantities Sl�i �j defined in Eq. (2.24) are then

Sl�i �j ¼
1

k2
Sl:�i �j þ

1

D� 2
��i �jSl

¼ 1

k2ðD� 2Þ ððD� 2ÞSl:�i �j þ k2��i �jSlÞ

¼ 1

k2ðD� 2Þ diagððD� 3ÞW l;

� sin2 ��W l;�sin2 ��sin2�W l; . . .Þ (B6)

where

W lð ��Þ ¼ Sl; �� �� � cot ��Sl; �� ¼ sin ��

�Sl; ��

sin ��

�
; ��
: (B7)

Indeed, using Eq. (B2) one finds

k2ðD� 2ÞSl �� �� ¼ ðD� 2ÞSl; �� �� þ k2Sl

¼ ðD� 3ÞðSl; �� �� � cot ��Sl; ��Þ; (B8)

k2ðD� 2ÞSl�� ¼ ðD� 2ÞSl;�� þ k2sin2 ��Sl

¼ sin2 ��ððD� 2Þ cot ��Sl; �� þ k2SlÞ
¼ sin2 ��ð�Sl; �� �� þ cot ��Sl; ��Þ; (B9)

and therefore

S l �� �� ¼ D� 3

k2ðD� 2ÞW l; (B10)

S l�� ¼ � sin2 ��

k2ðD� 2ÞW l; (B11)

and likewise for the other components.
Axisymmetric scalar spherical harmonics, as discussed

in Sec. II C, can be written in terms of Gegenbauer
polynomials [cf. (2.37)]:

S lð ��Þ ¼ ðKlDÞ�1=2CðD�3Þ=2
l ðcos ��Þ: (B12)

If we define

Wlðcos ��Þ ¼ CðD�3Þ=2
l; �� ��

ðcos ��Þ � cot ��CðD�3Þ=2
l; ��

ðcos ��Þ;
(B13)

we have

W lð ��Þ ¼ ðKlDÞ�1=2WðD�3Þ=2
l ðcos ��Þ: (B14)

We impose the normalization (2.38)Z
d�D�2SlSl0 ¼ 
ll0 ;

Z
d�D�2Sl; ��Sl0; �� ¼ 
ll0k

2:

(B15)

UsingZ 	

0
d ��ðsin ��ÞD�3CðD�3Þ=2

l ðcos ��ÞCðD�3Þ=2
l0 ðcos ��Þ ¼ 
ll0K̂

lD;

(B16)

Z 	

0
d ��ðsin ��ÞD�3CðD�3Þ=2

l; ��
ðcos ��ÞCðD�3Þ=2

l0; �� ðcos ��Þ

¼ 
ll0k
2K̂lD; (B17)

and

K̂ lD ¼ 24�D	�ðlþD� 3Þ
ðlþ D�3

2 Þð�ðD�3
2 ÞÞ2�ðlþ 1Þ ; (B18)

we have

KlD ¼ K̂lDAD�3; (B19)

where
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A D�3 ¼ 2	ðD�2Þ=2

�ðD�2
2 Þ (B20)

is the surface of the (D� 3) sphere SD�3. Note thatR
d�D�2ð
 
 
Þ ¼ AD�3

R
d ��ðsin ��ÞD�3ð
 
 
Þ. With the

definitions (2.24) Sl�i ¼ � 1
kSl;�i,Z 	

0
d~�ðsin ��ÞD�3Slð~�ÞSl0 ð ��Þ ¼ 
ll0A�1

D�3; (B21)

Z 	

0
d~�ðsin~�ÞD�3�

�i �jSl�iSl0 �j ¼
Z 	

0
d~�ðsin~�ÞD�3Sl ��ð ��ÞSl0 ��ð ��Þ

¼ 
ll0A�1
D�3:

(B22)

Furthermore, we note that Eqs. (B2) and (B7) imply

W l þ ðD� 2Þ cot ��Sl; �� þ k2Sl ¼ 0; (B23)

so that

W l; �� þ ðD� 2Þ cot ��Sl; �� �� �
D� 2

sin2 ��
Sl; �� þ k2Sl; ��

¼ W l; �� þ ðD� 2Þ cot ��W l þ ðk2 �Dþ 2ÞSl; ��;

(B24)

and thereforeZ 	

0
d ��ðsin ��ÞD�3W lW l0 ¼

Z 	

0
d ��ðsin ��ÞD�3W l sin ��

�Sl0; ��

sin ��

�
; ��

¼�ðD�2Þ
Z 	

0
d ��ðsin ��ÞD�3W lcot ��Sl0; ��

�
Z 	

0
d ��ðsin ��ÞD�3W l; ��Sl0; ��

¼ðk2�Dþ2Þ
Z 	

0
d ��ðsin ��ÞD�3Sl; ��Sl0; ��

¼
ll0A�1
D�3k

2ðk2�Dþ2Þ: (B25)

We thus obtainZ
d�D�2W lW l0 ¼ 
ll0k

2ðk2 �Dþ 2Þ: (B26)

The perturbations flabðt; rÞ, flaðt; rÞ, Hl
Lðt; rÞ, Hl

Tðt; rÞ ap-
pearing in the expansion of the metric perturbations (2.3)

hab ¼ flabSlð ��Þ; (B27)

ha �� ¼ � 1

k
rflaSlð ��Þ; ��; (B28)

h �� �� ¼ 2r2
�
Hl

LSlð ��Þ þHl
T

D� 3

k2ðD� 2ÞW lð ��Þ
�
; (B29)

h�� ¼ 2r2sin2 ��

�
Hl

LSlð ��Þ �Hl
T

1

k2ðD� 2ÞW lð ��Þ
�
:

(B30)

are given by the following integrals, as follows from
Eqs. (B12), (B14), (B15), and (B26):

flabðt; rÞ ¼
Z

d�D�2habSl

¼ AD�3ffiffiffiffiffiffiffiffi
KlD

p
Z 	

0
d ��ðsin ��ÞD�3habC

ðD�3Þ=2
l ; (B31)

faðt; rÞ ¼ � 1

kr

Z
d�D�2ha ��Sl; ��; (B32)

¼ � 1

kr

AD�3ffiffiffiffiffiffiffiffi
KlD

p
Z 	

0
d ��ðsin ��ÞD�3ha ��C

ðD�3Þ=2
l; ��

; (B33)

HLðt; rÞ ¼ 1

2ðD� 2Þr2
Z

d�D�2

�
h �� �� þ

D� 3

sin2 ��
h��

�
Sl;

(B34)

¼ 1

2ðD� 2Þr2
AD�3ffiffiffiffiffiffiffiffi
KlD

p
Z 	

0
d ��ðsin ��ÞD�3

�
�
h �� �� þ

D� 3

sin2 ��
h��

�
CðD�3Þ=2
l ; (B35)

HTðt; rÞ ¼ 1

2r2ðk2 �Dþ 2Þ
Z

d�D�2

�
�
h �� �� �

1

sin2 ��
h��

�
W l; (B36)

¼ 1

2r2ðk2 �Dþ 2Þ
AD�3ffiffiffiffiffiffiffiffi
KlD

p
Z 	

0
d ��ðsin ��ÞD�3

�
�
h �� �� �

1

sin2 ��
h��

�
Wl; (B37)

where hab ¼ habðt; r; ��Þ, ha �� ¼ ha ��ðt; r; ��Þ, h �� �� ¼
h �� ��ðt; r; ��Þ, h�� ¼ h��ðt; r; ��Þ, CðD�3Þ=2

l ¼ CðD�3Þ=2
l ðcos ��Þ,

and Wl ¼ Wlðcos ��Þ.
We also note that the background Tangherlini metric

depends on the l ¼ 0 harmonic only; the integral of its
components over l � 2 harmonics vanish. Therefore, if we
decompose the space-time metric (see Appendix A) as

g�� ¼ gð0Þ�� þ h�� with �, � ¼ ðt; r; ��; �Þ and gð0Þ�� is the

Tangherlini background metric, we can compute the inte-
grals (B) in terms of the metric g��

ftt ¼ 1

	

AD�3ffiffiffiffiffiffiffiffi
KlD

p
Z

d ��ðsin ��ÞD�3CðD�3Þ=2
l

Z
d�gttð ��; �Þ;

(B38)

ftr ¼ 1

	

AD�3ffiffiffiffiffiffiffiffi
KlD

p
Z

d ��ðsin ��ÞD�3CðD�3Þ=2
l

Z
d�gtrð ��; �Þ;

(B39)
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frr ¼ 1

	

AD�3ffiffiffiffiffiffiffiffi
KlD

p
Z

d ��ðsin ��ÞD�3CðD�3Þ=2
l

Z
d�grrð ��; �Þ;

(B40)

ft ¼ � 1

kr	

AD�3ffiffiffiffiffiffiffiffi
KlD

p

�
Z

d ��ðsin ��ÞD�3@ ��C
ðD�3Þ=2
l

Z
d�gt ��ð ��; �Þ; (B41)

fr ¼ � 1

kr	

AD�3ffiffiffiffiffiffiffiffi
KlD

p

�
Z

d ��ðsin ��ÞD�3@ ��C
ðD�3Þ=2
l

Z
d�gr ��ð ��; �Þ; (B42)

HL ¼ 1

2ðD� 2Þr2	
AD�3ffiffiffiffiffiffiffiffi
KlD

p
Z

d ��ðsin ��ÞD�3CðD�3Þ=2
l

�
Z

d�

�
g �� ��ð ��; �Þ þ ðD� 3Þ g��ð

��; �Þ
sin2 ��

�
; (B43)

HT ¼ 1

2ðk2 �Dþ 2Þr2	
AD�3ffiffiffiffiffiffiffiffi
KlD

p

�
Z

d ��ðsin ��ÞD�3Wl

Z
d�

�
g �� ��ð ��; �Þ �

g��ð ��; �Þ
sin2 ��

�
:

(B44)

Furthermore, from Eqs. (2.28) and (B38)–(B44) we deduce

F;t ¼ @tHL þ 1

D� 2
@tHT þ 1

k
fðrÞ

�
@tfr þ r

k
@t@rHT

�
;

(B45)

Fr
t ¼ fðrÞ

�
frt þ r

k
ð@tfr þ @rftÞ þ 1

k
ft

þ 2r

k2
ð@tHT þ r@t@rHTÞ

�
� r

k
@rfðrÞ

�
ft þ r

k
@tHT

�
:

(B46)

Conversely, since the perturbations do not depend on the
l ¼ 0 harmonic, the background metric g�� can be ob-

tained as follows:

gð0Þtt ¼ 1

K0D	

Z 	

0
d ��sinD�3 ��

Z 	

0
d�gttð ��; �Þ; (B47)

gð0Þtr ¼ 0 ¼ 1

K0D	

Z 	

0
d ��sinD�3 ��

Z 	

0
d�gtrð ��; �Þ; (B48)

gð0Þrr ¼ 1

K0D	

Z 	

0
d ��sinD�3 ��

Z 	

0
d�grrð ��; �Þ: (B49)

Finally, to compute the areal radius r we note that g �� �� ¼
r2 þ h �� �� and g�� ¼ r2sin2 ��þ h��. Both the perturbations
h �� �� and h�� contain harmonics of different type (Sl, Sl;�i �j);

to extract the background we need the combination in
Eq. (B43):

r2 ¼ 1

ðD� 2ÞK0D	

Z 	

0
d ��sinD�3 ��

Z 	

0
d�

�
�
g �� �� þ ðD� 3Þ g��

sin2 ��

�
: (B50)
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