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We study in detail static spherically symmetric solutions of nonlinear Pauli-Fierz theory. We obtain a

numerical solution with a constant density source. This solution shows a recovery of the corresponding

solution of general relativity via the Vainshtein mechanism. This result has already been presented by us in

a recent paper, and we give here more detailed information on it as well as on the procedure used to obtain

it. We give new analytic insights into this problem, in particular, for what concerns the question of the

number of solutions at infinity. We also present a weak-field limit which allows one to capture all the

salient features of the numerical solution, including the Vainshtein crossover and the Yukawa decay.
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I. INTRODUCTION

Motivated by the wish to find consistent large distance
modifications of gravity, theories of ‘‘massive gravity’’
have recently attracted some attention (see e.g. [1] for a
review). Starting from the unique consistent quadratic
theory for a Lorentz invariant massive spin 2, the Pauli-
Fierz theory (henceforth PF) [2], it is easy to build a simple
nonlinear completion at the price of introducing a non-
dynamical external metric. We will consider here such a
nonlinear Pauli-Fierz (henceforth NLPF) theory that we
will define precisely below. One of the crucial issues to be
answered in models of massive gravity is how to recover
metrics sufficiently close to the ones obtained in Einstein’s
general relativity (henceforth GR) to pass standard tests of
the latter theory, while at the same time having significant
deviations from GR at large distances. A first major ob-
stacle in this way is related to the so-called van Dam–
Veltman–Zakharov (vDVZ) discontinuity [3]. Indeed, the
vDVZ discontinuity states that the quadratic Pauli-Fierz
theory does not have linearized GR as a limit when the
mass of the graviton is sent to zero. In particular, the
quadratic Pauli-Fierz theory leads to physical predictions
so different from those of GR, such as those for light
bending around the Sun, that one can rule out this theory
based on the simplest tests of GR in the Solar System.
However, soon after the discovery of the vDVZ disconti-
nuity, it was realized that the discontinuity might in fact
disappear in nonlinear Pauli-Fierz theories [4]. This is
because a careful examination of static spherically sym-
metric solutions of those theories by Vainshtein showed
that the solutions of the linearized nonlinear Pauli-Fierz
theories (i.e. those of simple Pauli-Fierz theory) were
only valid at distances larger than a distance scale, the
Vainshtein radius RV , which goes to infinity when the mass
of the graviton is sent to zero. On the other hand Vainshtein
showed that there existed a well-behaved (as the mass of
the graviton is sent to zero) expansion valid at distances

smaller than RV , this expansion being defined as an expan-
sion around the Schwarzschild solution of GR. What
Vainshtein did not show is the possibility to join together
those two expansions as expansions of one single non-
singular underlying solution, as underlined, in particular,
by Boulware and Deser soon after Vainshtein’s work first
appeared [5]. The vDVZ discontinuity and its possible cure
à la Vainshtein reappeared later in more complicated (and
probably more realistic) models. Those include the Dvali-
Gabadadze-Porrati (DGP in the following) model [6] and
its sequels [7], which have attracted a lot of attention, in
particular, as far as application to cosmology is concerned
[8–12]; the ‘‘degravitation’’ models [13], the Galileon
and k-Mouflage models [14], the recent models of
Refs. [15–17], as well as possibly the Hořava-Lifshitz
theory [18] (see e.g. [19]).
The search for an everywhere nonsingular asymptotically

flat solution featuring the Vainshtein recovery has proven to
be a difficult task. For example, Damour et al. found, in
Ref. [20] by numerical integration of the equations of mo-
tion, that singularities always appeared in static spherically
symmetric solutions of the kind considered by Vainshtein
and concluded that the Vainshtein mechanism was not work-
ing. This issue was recently reexamined by us, and in
Ref. [21] we reported briefly (disagreeing with the results
of Ref. [20]) on the numerical discovery of a static, spheri-
cally symmetric, asymptotically flat solution of massive
gravity showing for the first time the Vainshtein recovery
of GR. The aim of this work is to provide more details on
this solution and on the way it has been obtained. Before
doing so, let us however underline that we do not call for a
realistic use of the kind of NLPF theory presented here (see
however [17,22]). Indeed, such theories are believed to suffer
from various deadly pathologies, like the ‘‘Boulware-Deser
ghost’’ [5] and the related strong coupling. Rather, we use
the NLPF as a toy model to investigate the issue of the
success or failure of the Vainshtein mechanism.
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This paper is organized as follows. In the next, mostly
introductory, Sec. II, we first introduce the NLPF we will
be looking at (Sec. II A), the ansatz considered (Sec. II B),
the Vainshtein mechanism in brief (Sec. II C), and then
with more details, together with the so-called decoupling
limit (DL) that played a crucial role in the numerical
integration of the field equations (Sec. II D). Then
(Sec. III), we give some analytic insight on the putative
solution, starting first from standard perturbation theory
(Sec. III A) yielding, in particular, a large distance expan-
sion, presenting later expansions valid at intermediate and
small distances (Secs. III C and III D). In this section we
also discuss with some detail the crucial issue of the
number of solutions at infinity, arguing that there exist
infinitely many such solutions which are not captured by
the standard perturbative expansion (Sec. III B). In the next
Sec. IV we introduce a new approximation able to capture
both the Vainshtein recovery and the large distance
Yukawa decay. Section V is devoted to the detailed pre-
sentation of our numerical results. We conclude in Sec. VI.
Three Appendixes contain more technicalities.

II. GENERALITIES ABOUT STATIC
SPHERICALLY SYMMETRIC SOLUTIONS

A. Action and covariant equations

We will consider the theory defined by the action

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
M2

P

2
Rg þ Lg

�
þ Sint½f; g�: (1)

In the above action, Rg is the Ricci scalar computed with

the metric g��, f�� is a nondynamical metric,MP is a mass

scale, and Lg denotes a generic matter Lagrangian with a

minimal coupling to the metric g (and not to the metric f),
and Sint½f; g� is an interaction term with nonderivative
couplings between the two metrics. Following the nota-
tions of Damour et al. [23], these interaction terms are in
the form

SðaÞint ¼ � 1

8
m2M2

P

Z
d4xV ðaÞðg; fÞ

� � 1

8
m2M2

P

Z
d4x

ffiffiffiffiffiffiffi�g
p

VðaÞðg�1fÞ (2)

with V ðaÞðg; fÞ � ffiffiffiffiffiffiffi�g
p

VðaÞðg�1fÞ a suitable ‘‘potential’’

density. There is much freedom in the choice of these
potentials. In this paper we will mostly concentrate on
the following term (henceforth called AGS), considered,
in particular, by Arkani-Hamed et al. in Ref. [24],

Sint ¼ � 1

8
m2M2

P

Z
d4x

ffiffiffiffiffiffiffi�g
p

H��H��ðg��g�� � g��g��Þ;
(3)

where g�� denotes the inverse of the metric g��, and H��

is defined by

H�� ¼ g�� � f��:

We will also comment on other forms for the potential. In
the equation above, m is the graviton mass and MP the
reduced Planck mass, given by

M�2
P ¼ 8�GN;

in terms of the Newton constant GN . The theory described
by the action (1)–(3) is invariant under common diffeo-
morphisms which transform the metric as

g��ðxÞ ¼ @�x
0�ðxÞ@�x0�ðxÞg0��ðx0ðxÞÞ;

f��ðxÞ ¼ @�x
0�ðxÞ@�x0�ðxÞf0��ðx0ðxÞÞ:

A crucial property of the potential (3) is that when g is
expanded to second order around the canonical Minkowski
metric ��� as g�� ¼ ��� þ h�� and f has the canonical

Minkowski form ���, the potential at quadratic order for

h�� takes the Pauli-Fierz form. The equations of motion,

derived from action (1), read

M2
PG�� ¼ ðT�� þ Tg

��Þ; (4)

where G�� denotes the Einstein tensor computed with the

metric g, T�� is the energy momentum tensor of matter

fields, and Tg
�� is the effective energy momentum tensor

coming from the variation with respect to the metric g of
the interaction term Sint. T

g
�� depends nonderivatively on

both metrics f and g and is defined as usual as

Tg
��ðxÞ ¼ � 2ffiffiffiffiffiffiffi�g

p �

�g��ðxÞSintðf; gÞ:

A simple, but nontrivial, consequence of Eq. (4) is obtained
by taking a g-covariant derivative r of both sides of the
equation; one gets, using the Bianchi identities and the
conservation of the matter energy momentum tensor,

r�T�� ¼ 0; (5)

the constraint

r�Tg
�� ¼ 0 (6)

which the effective energy momentum tensor should obey.
This equation will turn out to play an important role in the
following.

B. Static spherically symmetric ansatz
and boundary conditions

In this paper we study static spherically symmetric
solutions of the theory (1)–(3) and we take the nondynam-
ical metric f to be flat, i.e. to parametrize (possibly only
part of) a Minkowski space-time. Note that it is possible to
consider f to be dynamical as well (see e.g. [20,22,23,25]);
for simplicity wewill not consider this possibility here, and
consider the flatness of f as a prerequisite of our model.
Hence, we consider static spherically symmetric configu-
rations using the following ansatz:
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g��dx
�dx� ¼ �e�ðRÞdt2 þ e�ðRÞdR2 þ R2d�2;

f��dx
�dx� ¼ �dt2 þ

�
1� R�0ðRÞ

2

�
2
e��ðRÞdR2

þ e��ðRÞR2d�2;

(7)

where �, �, and � are unknown functions and d�2 is the
metric of a unit 2-sphere

d�2 ¼ d	2 þ sin2	d’2:

This ansatz, where both metrics are diagonal in a common
gauge, is not the most general one (see [25]); however, it is
the one relevant for the study of the Vainshtein mechanism
of massive gravity which is the aim of the present work
(see e.g. [20]). It is easy to check that for the ansatz (7), the
tensors G�� and Tg

�� are both diagonal (the diagonal

character of Tg
�� follows from the fact that its components

are made by taking products of the diagonal matrices f,
f�1, g, and g�1). The tt and RR components of (4) and the
nontrivial part of Bianchi identities (6) read

e���

�
�0

R
þ 1

R2
ðe� � 1Þ

�
¼ 8�GNðTg

tt þ 
e�Þ; (8a)

�0

R
þ 1

R2
ð1� e�Þ ¼ 8�GNðTg

RR þ Pe�Þ; (8b)

� 1

m2M2
P

1

R
r�Tg

�R ¼ 0; (8c)

where the source energy momentum tensor T�
� is assumed

to have the perfect fluid form

T�
� ¼ diagð�
; P; P; PÞ;

with total mass

M �
Z R�

0
4�R2
dR:

The matter conservation equation reads

P0 ¼ ��0

2
ð
þ PÞ: (9)

In the integration of the field equations, we will only
consider cases where the source has a constant density
inside its radius. For the potential (3), we have

Tg
tt ¼ m2M2

Pft; Tg
RR ¼ m2M2

PfR;

r�Tg
�R ¼ �m2M2

Pfg;

where we use the following notations [20]:

ft ¼ e���2�

4

�
ð3e�þ� þ e� � 2e�Þ

�
1� R�0

2

�
2 þ e�ð2e� � e�Þ � 3e�þ�ð2e�þ� þ e� � 2e�Þ

�
; (10a)

fR ¼ e���2�

4

�
ð3e�þ� � e� � 2e�Þ

�
1� R�0

2

�
2 þ e�ð2e� þ e�Þ � 3e�þ�ð�2e�þ� þ e� þ 2e�Þ

�
; (10b)

fg ¼ �
�
1� R�0

2

�
e���2���

8R
½8ðe� � 1Þð3e�þ� � e� � e�Þ þ 2Rðð3e�þ� � 2e�Þð�0 þ 4�0 � �0Þ

� e�ð�0 þ 4�0 þ �0ÞÞ � R2ðð3e�þ� � 2e�Þð�0�0 � 2�00 ��0�0 þ ð�0Þ2Þ
� e�ð�0�0 � 2�00 þ�0�0 þ ð�0Þ2Þ � 2e�ð�0Þ2Þ�: (10c)

Besides the components (8a) and (8b), the field equation
(4) has nontrivial 		 and ’’ components. However, it is
easy to check that the set of equations (8) and (9) is
equivalent to Eqs. (4) and (5) once the ansatz (7) is chosen.

The system (8) and (9), is a system of ordinary differ-
ential equations (ODEs) that requires five boundary con-
ditions [respectively the values of �, �, �, �0 as well as P
at some (finite) boundary] to be integrated along the radial
coordinate R. One is also looking for an asymptotically flat
solution such that � and � must vanish at large R, and one
should also require that the solution is nonsingular in
R ¼ 0. To fulfill this condition and avoid a conical singu-
larity at the origin, we will require that

�ðR ¼ 0Þ ¼ 0: (11)

The solution found will also be such that

�0ðR ¼ 0Þ ¼ 0:

In the following sections we first recall some properties
of the so-called Vainshtein mechanism which, if valid,
opens a way to recover solutions of general relativity in
massive gravity for small graviton mass. Then we recall
some of our previous results on the so-called decoupling
limit of the theory considered, which played a crucial role
for the integration of the field equations.

C. Vainshtein mechanism in brief

The (quadratic) Pauli-Fierz theory is known to suffer
from the vDVZ discontinuity, i.e. the fact that when one
lets the massm of the graviton vanish, one does not recover
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predictions of general relativity. For example, if one ad-
justs the parameters (namely the Planck scale) such that the
Newton constant agrees with the one measured by some
type of Cavendish experiment, then the light bending as
predicted by Pauli-Fierz theory (and for a vanishingly
small graviton mass) will be 3=4 of the one obtained by
linearizing GR [3].1 One way to see this is to consider
solutions of equations of motion (4) which are static and
spherically symmetric and which would describe the met-
ric around a spherically symmetric body such as the Sun.
To do so, using the ansatz (7) is especially convenient
because in this form, the g metric can be easily compared
with the standard Schwarzschild solution. If one tries to
find a solution expanding in the Newton constantGN , as we
recall in the next section, one finds immediately the vDVZ
discontinuity appearing in the form of a different (m inde-
pendent) absolute value of the coefficients in front of the
first nontrivial correction to flat space-time in gtt and gRR
components (neglecting the Yukawa decay by assuming
the Compton wavelength of the graviton is much larger
than other distances of interest). Indeed, those corrections
are obtained at first order in GN , i.e. by linearizing the field
equations, in which case the NLPF and PF theories are
equivalent by definition. However, as first noticed by
Vainshtein [4], the computation of the next order correction
in the NLPF shows that the first order approximation
ceases to be valid at distances to the source smaller than
a composite scale, the Vainshtein radius defined by

RV ¼ ðm�4RSÞ1=5;
where RS is the Schwarzschild radius of the source. This
Vainshtein radius obviously diverges when one letsm go to
zero. It is also much larger than the Solar System size for a
massive graviton with a Compton wavelength of the order
of the Hubble radius and RS taken to be the Schwarzschild
radius of the Sun. Hence, one cannot rule out massive
gravity based on Solar System observations and on the
results of the original works on the vDVZ discontinuity
[3]. Vainshtein also showed that an expansion around the
standard Schwarzschild solution (defined as an expansion
in the graviton massm) can be obtained (as we recall in the
next section). This expansion is well behaved when the
mass of the graviton is sent to zero, opening the possibility
of a recovery of GR solution at small distances R of the

source. Indeed, the domain of validity of this second
expansion was shown to be R � RV . Moreover, the cor-
rections found by Vainshtein to the Schwarzschild solution
are nonanalytic in the Newton constant which can explain
the failure of the attempt to obtain an everywhere valid
solution expanding in the Newton constant.

D. The decoupling limit and the Vainshtein mechanism

The Vainshtein mechanism can be enlightened taking
the so-called decoupling limit (DL) of the theory consid-
ered. Indeed this limit gives the scalings of the different
metric coefficients expected to hold (for an interesting
range of distances to be specified below), should the
Vainshtein mechanism be valid. The DL has been inves-
tigated by us in a previous work [26], and those investiga-
tions turned out also to be crucial to obtain the solutions of
the full system presented here and in Ref. [21]. Hence, it is
the purpose of this section to briefly present the salient
features of the DL and its application to the study of the
Vainshtein mechanism. Instead of the way it was originally
introduced [24], we will define here the DL directly in the
equations of motion [26]. Indeed, it can be shown that
the full system of equations (8) reduces to a much simpler
one in the DL defined as follows:

MP ! 1; m ! 0; �� const;

T��=MP � const;

where � is an energy scale defined by

� ¼ ðm4MPÞ1=5:
This scale is associated with the strongest self-interaction
of the model (for more details see [24,26]). Taking the DL,
Eqs. (8) become

�0

R
þ �

R2
¼ �m2

2
ð3�þ R�0Þ þ 


M2
P

; (12a)

�0

R
� �

R2
¼ m2�; (12b)

�

R2
¼ �0

2R
þQð�Þ; (12c)

where Q is the only nonlinear part left over in the DL. As
seen above, the DL amounts to linearizing Gg

tt and G
g
RR (as

well as the sources), keeping the part of ft and fR linear in
�, linearizing fg and keeping also the piece of fg which is

quadratic in �. As appears above, the linearization of fg
does not contain any pieces depending on �. Q is the only
part of the pieces left over in the DL which depends on the

choice of potential VðaÞ (provided the theory is in the NLPF
category). For AGS potential, Q is given by

Q ¼ � 1

2

�
�02

2
þ��00 þ 4��0

R

�
: (13)

Note that we have neglected the pressure P in the above
equations (12), since this is a direct consequence of taking

1The fact it is smaller is easy to understand: the essential
difference between Pauli-Fierz theory and linearized GR comes
from an extra propagating scalar mode present in the massive
theory. This mode exerts an extra attraction in the massive case
compared to the massless case. Hence, if one wants measure-
ments of the force exerted between nonrelativistic masses to
agree, the coupling constant of the massive theory should be
smaller than that of the massless theory. But light bending is
blind to the scalar sector—because the light energy momentum
tensor is traceless. Hence, provided the two theories agree on the
force between nonrelativistic probes, the massive theory would
predict a smaller light bending than the massless one.
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the decoupling limit in the matter conservation equation
(9). From the three equations (12) a single equation on �
can be extracted, which after integration and matching of
the solution to the source, reads

2Qð�Þ þ 3

2
m2� ¼ RS

R3
ðoutside sourceÞ; (14a)

2Qð�Þ þ 3

2
m2� ¼ RS

R3�
ðinside sourceÞ; (14b)

where R� is the radius of the source and where we assumed
that the density of the source is constant. Note the right-
hand side (rhs) of (14b) is constant, in contrast to that of
Eq. (14a).

The essence of the Vainshtein mechanism, as well as the
related scalings of the solutions can be understood from
Eq. (14a), which allows one to obtain �, as well as from
Eqs. (12a) and (12b) which enables one to get � and � once
� is known. Indeed, one can guess the existence of two
different regimes for Eq. (14a), namely, the linear and the
nonlinear regimes. In the linear regime, the nonlinear part
Q can first be neglected. This regime is valid for R � RV ,
and the asymptotic solutions, ��1 and ��1, read

��1 ’ 2

3

RS

m2R3

�
1þO

�
R5
V

R5

��
;

��1 ’ � ��1
2

’ 2

3

RS

R

�
1þO

�
R5
V

R5

��
:

(15)

From (15), it follows that ��1 ’ �2 ��1, which is a mani-
festation of the vDVZ discontinuity, and results, e.g., in the
mentioned difference between light bending in GR and in
PF theory. In the nonlinear regime, the linear term on the
left-hand side (lhs) of (14) is neglected compared to the
nonlinear Q term. In this regime (valid for R � RV) two
different scalings can be identified.

The first scaling, henceforth called the Vainshtein scal-
ing, is found assuming that the lhs cancels the rhs for the
leading term in the expansion of�. That is, in vacuum, one
assumes that the leading term ��0 is such that

Qð ��0Þ ’ RS=R
3: (16)

For Q given by (13), the leading behaviors of the metric
function read

��V ’
ffiffiffiffiffiffiffiffiffi
8RS

9R

s �
1þO

�
R

RV

�
5=2

�
;

��V ’ �RS

R

�
1þO

�
R

RV

�
5=2

�
;

��V ’ RS

R

�
1þO

�
R

RV

�
5=2

�
:

(17)

In this regime, one recovers at dominant order the results of
linearized general relativity, namely ��V �� ��V . Inside the
source, following a similar logic, one can look for a solu-
tion to Eq. (14b) ���;V , such that the leading behavior gives
Qð ���;VÞ � RS=R

3�. We find

���;V ¼
ffiffiffiffiffiffiffi
RS

R�

s �
~BV� 1

10 ~BV

ðR=R�Þ2
�
þ 3

20
ðmRÞ2þ��� ; (18a)

���;V ¼ ��0þRSR
2

2R3�
þ ~BV

4

ffiffiffiffiffiffiffi
RS

R�

s
ðmRÞ2þ��� ; (18b)

���;V ¼RSR
2

R3�
� ~BV

2

ffiffiffiffiffiffiffi
RS

R�

s
ðmRÞ2þ��� ; (18c)

where ~BV and ��0 are constants of integration, to be fixed by
matching the solutions outside the source, Eq. (17), and
inside the source.
A second scaling is possible, leading to the restoring of

general relativity in the nonlinear regime [26]. This is what
we called the Q scaling, whose leading behavior corre-
sponds to a zero mode of the nonlinear operator Q. This
zero mode is defined such thatQð ��Þ � 0, in which case the
rhs term RS=R

3 compensating the nonlinear piece of (14a)
is subdominant. The Q-scaling solution of (14a) reads in
vacuum,

��Q¼ðmRVÞ2
�
AQ

�
RV

R

�
2þ

�
BQ� 1

3AQ

ln

�
R

RV

��
R

RV

�
; (19a)

��Q¼�RS

R
þ1

2
AQðRVmÞ4 lnðR=RVÞ; (19b)

��Q¼RS

R
�AQ

2
ðRVmÞ4: (19c)

From (19) it is clearly seen that general relativity is re-
stored for small R. Note that the Q solution (19) is a richer
family compared to the Vainshtein scaling (17), since it
contains two constants, AQ and BQ. Inside a source, it is not

hard to guess that the leading behavior of the Q scaling is
also given by the Q scaling (19) outside the source

�� �;Q¼ðmRVÞ2 ~AQ

�
RV

R

�
2
; ���;Q¼�RS

R
; ���;Q¼RS

R
;

(20)

since the leading term of Q scaling does not touch the rhs
of Eqs. (14), Note, however, that the subdominant terms are
different for the Q scalings inside and outside the source.
Note also that this scaling leads to a curvature singularity at
R ¼ 0 and does not obey the boundary condition (11).
In Ref. [26], we integrated numerically the DL system

(12). We found that solutions interpolating between the
above described asymptotic regimes indeed exist. We were
able to identify the following two families of solutions. For
a given choice of parameters RS, m, and R�, there is one
solution f ��N;V; ��N;V; ��N;Vg which interpolates between the

‘‘Vainshtein’’ asymptotic scalings given respectively by
(15), (17), and (18), see Table I. Note that the Vainshtein
solution is unique for fixed RS, m, and R�, since the free
constant ~BV in (18) is fixed by the requirement of the
asymptotic flatness (15) [26]. Apart from this Vainshtein
solution, we have found a one-parameter family of solu-
tions f ��N;Q; ��N;Q; ��N;Qg which interpolates between the
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solutions given by (15), and the Q scalings (19) and (20),
see Table II. In contrast to the Vainshtein solution, this
solution is not uniquely fixed by the asymptotic flatness.
There is a freedom in the choice of AQ in (19), so that

the family of solutions corresponds to a curve in the
ðAQ; BQÞ plane of solutions (19).

Although the solutions we found in DL are solutions of a
simplified version of the full system, they should be valid
in some range of distances R for the full system. Indeed, let
us estimate the validity of DL solutions (see also [26]). To
do this we compare the terms left over in the DL system of
equations (12) with the terms we dropped from the original
system (8). First of all, keeping only linear terms in � and �
on the rhs of (8) requires R � RS outside the source, as in
GR. The second condition comes from comparison of the
linear terms containing � with those containing � and � in
the expansion of the rhs of (8a) and (8b). In the DL, the
linear terms containing � are neglected, and one can see
that those terms can only be neglected at distances
R � m�1 for the full system. That is, those first two
conditions state that the DL can at best recover linearized
GR and will not capture the expected Yukawa decay of the
solution. The third condition arises from the neglecting of
terms in the nonlinear regime. Indeed, the quadratic terms
in �, �, and � on the rhs of the expansion of (8a) and (8b)
must be subdominant for DL to be valid for the full system.
Similarly, the cubic terms on the rhs of (8c) should be small
compared to the quadratic ones, left over in DL. This gives
nothing new for the Vainshtein scaling, namely, R � RS.
However, this leads to a more rigid constraint for the
Q scaling

R � RVðmRSÞ1=5: (21)

To summarize, the DL solution, having the Vainshtein
asymptotic at small R and the linear asymptotic solution
for large R, is expected to be a good approximation for the
solution of the full system in the range,

RS � R � m�1;

while the DL solution, approximating the Q scaling at
small R and the linear asymptotic solution for large R,

should be a good approximation for the solution of the full
system in the range,

RVðmRSÞ1=5 � R � m�1:

If a not too compact source of radius R� � RS is included
into the picture, one can check using the dominant behav-
ior (18) that the Vainshtein solution even remains a good
approximation of a full solution until the origin. This will
later be confirmed by our numerical integration. On the
other hand, even when a large source is included, the DL
Q-scaling solution stops being relevant for the full system

at the distance R ¼ RVðmRSÞ1=5.
In the following, we will look for a solution of the full

system (8), and we will use our understanding of the DL as
a guideline. As we will report, our numerical attempts to
find a solution of the full system with theQ scaling asymp-
totic only lead to singular solutions, and accordingly, we
will mostly focus on the extension of the Vainshtein scaling
to the full system, rather than on the Q-scaling solution.

III. INTEGRATION OF THE FIELD EQUATIONS:
ANALYTIC INSIGHTS

Before turning to present the numerical integration of the
full system of Eqs. (8) and (9), it is convenient to present
below some results one can obtain analytically. Those will
mostly be given in the form of series expansions. We have
no proof of the convergence of those series, and we in fact
believe (and will give some arguments below) that those
series are divergent, being then asymptotic expansions.
However, we found those series useful for three main
reasons: First they allowed us to set boundary or ‘‘initial’’
conditions for the numerical integration with the required
precision; second, they were also useful to check that the
numerical solutions we found were not singular at the origin
of the radial coordinate system; and third, because they help
investigating the uniqueness of the solutions at infinity.2

Let us first outline the organization of this section as
well as its main results, allowing a reader not interested in
technical details to skip all but this introduction. The first
Sec. III A explains with some detail the solution of
standard perturbation theory. This perturbation theory is
defined as an expansion in a small parameter � where at
each order, all the metric functions �, �, and� are assumed
to be proportional to � raised to the same power. The

TABLE II. Solution containing the Q scaling.

R R � R� R� � R � RV R � RV

��N;Q m2R4
V
~AQ 	 R�2 m2R4

VAQ 	 R�2 2RS=ð3m2R3Þ
��N;Q �RS=R �RS=R �4RS=ð3RÞ
��N;Q RS=R RS=R 2RS=ð3RÞ

TABLE I. Solution containing the Vainshtein scaling.

R R � R� R� � R � RV R � RV

��N;V const
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8RS=ð9RÞ

p
2RS=ð3m2R3Þ

��N;V const �RS=R �4RS=ð3RÞ
��N;V const	 R2 RS=R 2RS=ð3RÞ

2Similar series expansions were used in Ref. [20] to argue that
the system we investigate here has a unique asymptotically flat
solution. It was then argued on the basis of this, that it was
a priori unlikely that one could match this unique solution to a
solution obtained à la Vainshtein, expanding around the
Schwarzschild solution, as will be explained in Sec. III C. As
we will see our results do not support this conclusion on the
uniqueness of the asymptotically flat solution, hence removing
the argument given in Ref. [20] to explain the singularities found
by the numerical integration done in this last reference.
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parameter � is expected to be proportional to the mass of
the source (or to its density). Solutions of the perturbation
theory out of the source are obtained at each order in � in
the form of asymptotic series both for small distances and
for large distances. Those series are expressed in terms of
the dimensionless quantity z ¼ Rm. Hence, we obtain a
double series expansion (into � and z). The ‘‘small dis-
tance’’ expansion, which is an expansion valid at small z
(at a fixed order �), is similar to the regime (15) of the DL,
and is found (by comparing successive orders in �) to be no
longer valid at distances smaller than the Vainshtein radius
in agreement with Vainshtein’s computation. This small
distance series expansion depends on two unknown inte-
gration constants which have to be fixed by matching to the
source. On the other hand, the ‘‘large distance’’ (large z)
expansion is uniquely fixed and has no free parameter.
However, we argue in Sec. III B that this is not enough to
define a unique solution at infinity, namely, because we
show that a nonperturbative correction can always be
added to the unique solution of perturbation theory we
identified. This is argued to be related to the fact the series
presented are not convergent series, in analogy with what
we have shown for the decoupling limit [26]. Then, we
present expansions valid inside the Vainshtein radius first
outside the source (Sec. III C), then inside it (Sec. III D).
The expansion inside the Vainshtein radius (Sec. III C), but
outside of the source, is obtained expanding the functions
around GR, in a small parameter �0 which is by definition
proportional to m2. At each order in �0, one can then
expand the functions in powers of R=RS (RS being the
Schwarzschild radius of the source). One thus obtains
again a double expansion. This expansion allows one to
compute the first nontrivial corrections to the GR solution.
Those corrections will then later be compared to the ones
found by the numerics. One key property of the Vainshtein
mechanism is related to the existence of those double
expansions, to the fact that the associated series appear
not to be convergent allowing the addition of ‘‘nonpertur-
bative corrections’’ such as the ones mentioned above, and
to the fact, as discovered by Vainshtein, that the solution in
the ‘‘below RV’’ regime features corrections to GR which
are nonanalytic in the � parameter of the standard pertur-
bation theory. Last (Sec. III D), we obtain a new expansion
valid inside the source that will be later compared to the
numerical solution, and also used by us to study the regu-
larity of the solution at the origin.

A. Standard perturbation theory in vacuum

Looking for a solution of the system (8) and (9) far from a
source, the first obvious way is to look for a scheme where
the functions �, �, and � can then be expanded as

� ¼ �0 þ �1 þ � � � ;
� ¼ �0 þ �1 þ � � � ;
� ¼ �0 þ�1 þ � � � ;

(22)

where �i, �i, and�i are assumed to be proportional to �iþ1,
� being a small parameter, and such that �iþ1 � �i,
�iþ1 � �i, and �iþ1 � �i, at least for some range of
distances. This is what we will call here standard perturba-
tion theory. Before going further, let us first introduce a new
dimensionless radial coordinate z defined by z ¼ Rm. In
this unit, R ¼ m�1 corresponds to z ¼ 1, and R ¼ RV

translates to z ¼ a, where a is defined as

a � RVm: (23)

Using this variable, the lowest order �0, �0, and �0 are
obtained solving the system (8a)–(8c) linearized which
reads

�0

z
þ �

z2
þ 1

2
ð�þ 3�þ z�0Þ ¼ 0;

�0

z
� �

z2
� 1

2
ð�þ 2�Þ ¼ 0; �0 � 2�

z
¼ 0:

The asymptotically flat solution of the above linear system
can be found analytically; it is given by [20,27]

�0 ¼ �C
4b

3z
e�z; (24a)

�0 ¼ C
2b

3

�
1þ 1

z

�
e�z; (24b)

�0 ¼ C
2b

3z

�
1þ 1

z
þ 1

z2

�
e�z; (24c)

where

b � a5 ¼ ðRVmÞ5 ¼ RSm;

and C is a dimensionless integration constant. The value of
the constant of integration C can in principle be determined
by integrating the system inward andmatching to the source,
as can be done in a similar case in GR. There, indeed, an
integration constant with the same status arises, when one
integrates the linearized Einstein equations in the vacuum
around a static spherically symmetric source. This constant
of integration is then seen to give the Schwarzschild mass,
once matched to the source. Here, an alternative way to
proceed is to use our knowledge of the decoupling limit.
Indeed, requiring the solution to be very close to the decou-
pling limit solution (15) in the range RV � R � m�1, i.e.,
a � z � 1, fixes the constant to be

C ¼ 1: (25)

In Sec. VB, we will show that this choice of constant of
integration is also in agreement with the numerical integra-
tion. Accordingly, from here on and until the end of this
article, we will assume (except at some scattered places)
C ¼ 1. Note however that when dealing with the equations
in vacuum, the value of this constant is irrelevant. Having
fixed C one notices that the solution (24) features the
expected behavior for the gravitational potential of a mas-
sive graviton: it has a Yukawa decay and the ‘‘Newtonian’’
part �0 is 4=3 larger than the GR result (in the range
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of distances R � m�1) while the radial part �0 is 2=3
smaller, a structure related to the vDVZ discontinuity. Our
expansion parameter � can then be defined as � � C	 b;
note that it is indeed much smaller than 1 for usual astro-
physical sources and a graviton of cosmological size
Compton length.

To go beyond the lowest order (24), the first step consists
of rewriting the system of equations (8), separating explic-
itly the linear terms from the nonlinear ones:

�0

z
þ �

z2
þ 1

2
ð�þ 3�þ z�0Þ ¼ ft;
2 �Gtt;
2;

�0

z
� �

z2
� 1

2
ð�þ 2�Þ ¼ fR;
2 �GRR;
2;

�

z2
� �0

2z
¼ 1

z
fg;
2:

(26)

In the above system, we have used the expression (10) for
the functions fi and the fi;
2, and Gii;
2 stand for the

nonlinear part of the functions fi and of the components
of the Einstein’s tensor in spherical coordinates. At each
order n, the functions �n, �n, and �n (with n 
 1) can be
obtained by solving the above system where the left-hand
side consists of a linear operator acting on the unknown �n,
�n, and �n, while the right-hand side is obtained keeping
the order �nþ1 and consists of nonlinear expressions de-
pending on the �i, �i, and �i (with i < n). As will be
shown in detail in Appendix A, the functions �n, �n, and
�n (with n 
 1) can be expressed as asymptotic (and
formal) expansions in large z (large distance) or small z
(small distance) regimes. We now discuss the main prop-
erties of those expansions, starting, for reasons we will
explain, by the small distance expansion.

1. Small distance expansion

An expansion, asymptotic at small z, can be obtained in
the form

�n ¼ z2
�
�
e�z

z5

�
nþ1 X1

i¼0

Xn
k¼0

�n;i;kz
iðz5 logzÞn�k;

�n ¼ z4
�
�
e�z

z5

�
nþ1 X1

i¼0

Xn
k¼0

�n;i;kz
iðz5 logzÞn�k;

�n ¼ z4
�
�
e�z

z5

�
nþ1 X1

i¼0

Xn
k¼0

�n;i;kz
iðz5 logzÞn�k:

(27)

Note that the form of this expansion was sketched in
Ref. [20], with however some important differences: the
corresponding expansion given there is stopping at a finite
value of i at each order n and did not contain any loga-
rithms. As shown in Appendix A, it is however not possible
to obtain such a simplified expansion. As detailed in the
same Appendix, two important properties of the expansion
(27) are as follows. First, when solving for the order n, the
coefficients�n;i;k, �n;i;k, and �n;i;k are determined only after

choosing two arbitrary constants. This is because the linear
operator appearing on the left-hand side of Eq. (26) has two
independent zero modes [among which is the zero order
solution (24)] which can be expanded formally in the same
way as above.3 One way to fix those constants would be to
enforce at small z the hierarchy �iþ1 � �i, �iþ1 � �i, and
�iþ1 � �i. We have in fact checked that it is possible to do
so at order n ¼ 1. However, it is hard to go further because
it is far from obvious that the expansions considered are
convergent. The question of convergence is actually quite
hard to address, since it requires one to know the behavior
of the coefficients �n;i;k, �n;i;k, and �n;i;k. This can be

achieved quite easily for a subset of those coefficients.
Indeed, let us, at each order n retain the dominant term in
the expansion (27) at small z (i.e. for R � m�1). We obtain,
for z � 1 the following expansion for �:

�� X1
n¼0

�nþ1 �n;0;n

z3þ5n
: (28)

Equivalently, this is what is obtained in the limit m ! 0. In
fact, and this is the second important property wewould like
to mention here, as shown in Appendix A, the expansion
(28) is exactly the one obtained in the DL [cf. Ref. [26],
Eq. (4.34)]. The coefficient�n;0;n can be easily computed in

the DL, and it has been shown in [26] that this series
diverges for any z, providing only an asymptotic expansion
of the solution. One can even go further: using the exact
values of the coefficients�n;0;n obtained in the DL, one can

show that the subseries of (27) given by

X1
n¼0

�nþ1e�ðnþ1Þz �n;0;n

z3þ5n
; (29)

diverges for any z, despite the presence of the exponential

damping e�ðnþ1Þz. Of course, the fact that this subseries of
(27) diverges does not lead to any conclusion by itself
besides the fact that the expansion (27) cannot be absolutely
convergent (if it were the case, any subseries would con-
verge and one could rearrange at will the order of summa-
tion). In our case, there is no clear prescription for the order
of summation, and the divergence of the subseries (29) does
not mean that the full series diverges. Still, we see this
divergence as a clue that the convergence of the full series is
far from guaranteed, and that any conclusion based on these
expansions should be taken with great care. For instance,
one may question the approach followed in [20], Sec. IV.B,
which consists of building the solution of massive gravity
far from the source and arguing on its uniqueness, starting
from an expansion of the form (27), which is implicitly
assumed to be convergent. Moreover, as also happens in
the DL, even if the series expansion (27) turns out to be
uniquely defined (once the constants we mentioned have

3The presence of logarithms in this expansion is also related to
those zero modes.
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been fixed e.g. by the procedure outlined above), this does
not mean that it defines a unique vacuum solution because it
could be, if the series is not convergent, that a family of
solutions all have the same asymptotic series expansion.
We will in fact come back later to this important issue.

Though, let us state that from a numerical point of view
expansions (27) and (28) are very useful. Indeed, if one
keeps only the relevant first orders, these expansions ap-
pear to be excellent approximations of the solutions and
can be used to set properly boundary or initial conditions in
the numerical integration.

Moreover, by comparing two successive orders in �, it is
easily seen that for R � m�1, the expansion (27) ceases to
be valid when R becomes smaller than the Vainshtein
radius (i.e. whenever �z�5 becomes of order 1).

2. Large distance expansion

In a similar way as above, an asymptotic expansion at
large z can be found at each order n in the � expansion. It is
derived in Appendix A, and reads

�n ¼ �nþ1e�ðnþ1Þz Xi¼0

i¼�1
�n;iz

i;

�n ¼ �nþ1e�ðnþ1Þz Xi¼0

i¼�1
�n;iz

i;

�n ¼ �nþ1e�ðnþ1Þz Xi¼0

i¼�1
�n;iz

i:

(30)

One can verify easily that the zeroth order exact solutions
(24) can be expressed as above. In contrast to the expansion
(27), there is here no need for logarithms nor to fix ‘‘con-
stants of integration.’’ As such, this could indicate in a
clearer way than in the previous case that, as stated in
Ref. [20], perturbation theory defines a unique solution.
This is however again not obvious because this relies cru-
cially on the fact that the above series converges. In fact, we
have computed numerically the first coefficients of the first
nontrivial order n ¼ 1 and check that the corresponding
series seems to have a vanishing radius of convergence.4

In the next section we try to address the issue of the unique-
ness of the solution at infinity in a different way. This
analysis again indicates, in agreement with our numerical
investigations, that the solution at infinity is not unique.

B. Investigations of the number of solutions at infinity

As underlined in the previous section, it is hard to
conclude anything on the uniqueness of the solution at
infinity from the existence of series expansions, which

can be divergent. Here we would like to provide arguments
showing that there are in fact infinitely many asymptoti-
cally flat solutions at infinity which have the same
dominant behavior at large distance once a constant, cor-
responding to the ‘‘mass’’ of the source in the dominant
terms has been chosen. This nonuniqueness appears in the
form of a nonperturbative correction that can be added at
will to the unique solution of the perturbation theory.5 This
is in striking contrast to the general relativity case. Indeed,
in GR, once the asymptotic behavior has been chosen
through6 � ¼ �RS=R and � ¼ RS=R, there is a unique
solution which follows this asymptotic behavior at infinity:
the Schwarzschild solution which reads � ¼ �GR �
lnð1� RS=RÞ and � ¼ �GR � ��GR. In NLPF gravity—
at least for potentials of the type (3)—we shall see that the
asymptotic behavior is not enough to uniquely determine
the solution.
To prove the existence of these infinitely many solutions,

let us first assume that there exists a solution of the full
nonlinear system of equations (8), �� � f ��; ��; ��g, such that

�� ! �0 for z ! 1;

where �0 � f�0; �0; �0g as defined in Eq. (24), and we
imply we have fixed all the necessary integration constants
such that �� and �0 are fully specified. We then want to
show there is an infinite number of solutions in vacuum
having the same asymptotic at the infinity. We will look for
these solutions � as small perturbations of the known
solution ��:

� ¼ ��þ ��;

where �� � f��; ��; ��g and we will further assume that

j��j � j ��j; j��0j � j ��0j; j��00j � j ��00j: (31)

Taking into account (31), we linearize the system of equa-
tions (8), for z ! 1, around the solution �� to obtain the
following system of equations on ��, ��, and ��:

4One finds numerically that j�1;i=�1;iþ1j / jij indicating a
vanishing radius of absolute convergence.

5Note that we found a similar result in the DL case [26], as
recalled in Sec. II D. Indeed, in the DL case, these infinitely
many solutions allowed to accommodate several types of solu-
tions at small distances: the Vainshtein solution (17) and the
Q-scaling solutions (19) which depend on a free constant AQ.
These solutions also appear as nonperturbative. It is interesting
to note that we can arrive at the same conclusion (that there is an
infinite number of solutions at the infinity with the same asymp-
totic behavior) if we consider the weak-field equation approxi-
mation (see Sec. IV) as a starting point for this proof. The
general structure of the additional solutions remains the same
as for NLPF [see (40)], with, however, different exponent and
preexponent factors. This difference is due to the fact that when
getting an analog of (32) from the weak-field equations (58),
some terms will be missing compared to (32).

6We recall that in GR, the vacuum solution depends on
one integration constant, which can be identified with the
Schwarzschild radius RS.
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��0

z
þ ��

z2
þ 1

2
ð��þ 3��þ z��0Þ ¼ be�z

3z
��; (32a)

��0

z
� ��

z2
� 1

2
ð��þ 2��Þ ¼ 0; (32b)

��0

2z
� ��

z2
¼ be�z

3z2

�
��00 � ��0 � 2��þ ��0

z
þ 2��

�
: (32c)

Note that we substituted�0 instead of �� in (32), since �� !
�0 at z ! 1 and we are interested in solutions at infinity.

Until now, we have not made any assumptions about the
form of ��, except (31). If in addition one assumes that the
rhs of (32) can be neglected, then the solution for �� will
be given by (24) provided that the integration constant b is
replaced by �b, such that j�bj � jbj. However in this case
one should impose �b ¼ 0 since we require � ! �0 at
z ! 1; thus we do not obtain any new solution (this is,
mutatis mutandis, what happens in GR).

Instead, let us try to find another solution such that
(some) terms containing e�z are not negligible in (32). In
particular, we would like to keep the term containing ��00.
Introducing a new variable � as follows:

� � ez;

the system of equations (32) can be rewritten as

� _��

log�
þ ��

ðlog�Þ2 þ
1

2
ð��þ 3��þ � log� _��Þ ¼ b��

3� log�
; (33a)

� _��

log�
� ��

ðlog�Þ2 �
1

2
ð��þ 2��Þ ¼ 0; (33b)

� _��

2 log�
� ��

log2�
¼ b

3� log2�

�
�2 €��� 2��þ � _��

log�
þ 2��

�
; (33c)

where the dot denotes the derivative with respect to � . In
order to simplify the system of equations (33), let us make
further assumptions about the functions ��, ��, and �� at
� ! 1:

j��j � j��j � �j _��j � �2j €��j � �3j��::: j;
log�j��j � �j _��j � �j��j:

(34)

Equations (33) then take the simpler form

_��þ 1
2ðlog�Þ2 _�� ¼ 0; (35a)

_��� ��

� log�
� log�

�
�� ¼ 0; (35b)

€��þ 3

2b�
ð2��� � log� _��Þ ¼ 0: (35c)

These equations can be combined to give one differential
equation on �:

���
::: þ €��� 9

4b
ðlog�Þ2 _��� 3 log�

b�
�� ¼ 0;

which—applying the assumptions (34)—can be rewritten
as

��
::: � 9

4b�
ðlog�Þ2 _�� ¼ 0: (36)

The asymptotic form of the decaying solution of Eq. (36)
can be easily guessed:

�� ¼ F1ð�Þ exp
�
�3

ffiffiffi
�

b

s
log�

�
; for � ! 1; (37)

where F1ð�Þ is a slowly varying function compared to
expð� 3ffiffi

b
p zez=2Þ that cannot be fixed through this leading

behavior analysis (cf. Appendix C for a more detailed
approach based on series expansions). Note that a com-
panion growing mode can also be considered

�� ¼ FðgrowÞ
1 ð�Þ exp

�
3

ffiffiffi
�

b

s
log�

�
; for � ! 1; (38)

which is fixed to zero by the conditions (31); this growing
mode can play an important role while integrating the
equations of motion à la Runge-Kutta, since it can blow
up very rapidly (as exponent of exponent) if sourced by
numerical errors. This explains the difficulty one encoun-
ters while trying to integrate the equations of motion for
distances beyond RV for the potential (3). In the following,
we will discard such a term since it contradicts the bound-
ary conditions at infinity, but one should keep in mind its
possible existence when solving the equations numerically.
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From (35) one can find the other functions at � ! 1,

�� ¼ �F1ð�Þ ðlog�Þ
2

2
exp

�
�3

ffiffiffi
�

b

s
log�

�
; (39a)

�� ¼ �F1ð�Þ
ffiffiffi
b

p
3

1ffiffiffi
�

p exp

�
�3

ffiffiffi
�

b

s
log�

�
: (39b)

Finally, one can check that the assumptions (31) and (34)
are satisfied for the solutions (37) and (39) as � ! 1
(z ! 1). In terms of the variable z, Eqs. (37) and (39) read

�� ¼ F1ðzÞ exp
�
� 3ffiffiffi

b
p zez=2

�
; (40a)

�� ¼ �F1ðzÞ z
2

2
exp

�
� 3ffiffiffi

b
p zez=2

�
; (40b)

�� ¼ �F1ðzÞ
ffiffiffi
b

p
3

exp

�
� z

2
� 3ffiffiffi

b
p zez=2

�
: (40c)

Note that it is possible to complete this leading behavior
analysis through a series expansion of the solution; we
refer the reader to Appendix C for more details.

Thus we have shown that apart from the solution ��, ��,
and ��, there is at least one family of asymptotic solutions
at z ! 1, parametrized by the function F1, and given by

� ¼ ��þ ��; � ¼ ��þ ��; � ¼ ��þ ��:

Note that the difference between solutions decays ex-
tremely fast—as a double exponent—as z ! 1.

C. Expansion inside the Vainshtein radius
and outside the source

Let us now discuss what happens inside the Vainshtein
radius, but outside the star. This will prove useful for
different reasons. We will indeed recall how one can obtain
an expansion around the GR solution, and hence compute
the corrections to GR first found by Vainshtein. This will
later be compared in Sec. VB to the numerical solution.
We will also comment on the role of the integration con-
stants appearing in the expansion procedure.

Let us first rely on our investigation of the DL, which
provides interesting insights into the different types of solu-
tions in the region R� � R � RV . It has been shown in
[26] (as also recalled in Sec. IID) that, in the DL, two types
of solutions exist in the regionR� � R � RV : the so-called
Vainshtein solution of Eq. (17) and the Q-scaling solutions
(19). We are interested in obtaining, in the full theory, a
solution which will be close to one of these DL solutions, for
a range of distances as broad as possible. It has been recalled
in Sec. IID that the Q-scaling solutions stop being relevant

for the full nonlinear theory at the radius R� ¼ RVðmRSÞ1=5.
Below this distance, the DL is no longer useful for under-
standing the theory: new nonlinear terms enter into the game
and one has to rely on numerics to investigate the existence
of solutions. We will come back to numerics in Sec. V, but

we can already announce that our investigation has been
negative in this direction: it has not been possible to us to
find a regular solution of the full systemwhich would exhibit

a Q-scaling behavior in the range R� ¼ RVðmRSÞ1=5 �
R � RV : all our numerical Q-scaling solutions were devel-
oping strong instabilities around the problematic radius R�,
and integration was not possible for smaller distances. For
this reason, we will mostly focus in the rest of this article on
the Vainshtein solution, and try to generalize the DL version
of this solution to the full system, under the form of series
expansions. A first resolution method consists of looking for
an expansion whose zeroth order is just the DL. A conve-
nient parameter for such an expansion is the parameter
a ¼ RVm introduced in Eq. (23). Indeed, one can show
[26] that after a rescaling of the functions and equations,
the limit a ! 0 in the system (8) leads to the DL equations
(12). The full solution expansion reads

� ¼ a2
X1
n¼0

�ðaÞ
n ðR=RVÞa2n;

� ¼ a4
X1
n¼0

�ðaÞ
n ðR=RVÞa2n;

� ¼ a4
X1
n¼0

�ðaÞ
n ðR=RVÞa2n;

(41)

where the zeroth order functions a2�ðaÞ
0 ðR=RVÞ,

a2�ðaÞ
0 ðR=RVÞ, and a2�ðaÞ

0 ðR=RVÞ are the solutions of the

DL system, whose expansions are given in Eq. (17). Even if
the expansion (41) has the advantage to link explicitly the
solution of the full system to the DL, it does not allow for an
easy comparison with the GR solution. For this purpose,
another expansion is possible as was originally proposed by
Vainshtein [4].
Indeed, it is possible to look for a solution as an expan-

sion in powers of the (square of the) graviton mass m2

dealing with the mass term as a perturbation around mass-
less GR. Let us define this expansion as

� ¼ X1
k¼0

�ðmÞ
k ðR=RSÞm2k;

� ¼ X1
k¼0

�ðmÞ
k ðR=RSÞm2k;

� ¼ X1
k¼0

�ðmÞ
k ðR=RSÞm2k:

(42)

By definition, it is such that the lowest order is equal to the
Schwarzschild solution

�ðmÞ
0 ¼��ðmÞ

0 ¼�ln

�
1�RS

R

�
¼RS

R
þ1

2

�
RS

R

�
2þ��� : (43)

Following Vainshtein, let us now briefly sketch how to
obtain the first other nontrivial terms of the expansion.

The function �ðmÞ
0 can be found using the Bianchi
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identity (8c), where � and � have been replaced by their

GR expression �ðmÞ
0 , �ðmÞ

0 :

� 1

R
fg½�ðmÞ

0 ;�ðmÞ0
0 ;�ðmÞ

0 ;�ðmÞ0
0 ;�ðmÞ

0 ;�ðmÞ0
0 ;�ðmÞ00

0 � ¼ 0: (44)

One can look for a solution for �ðmÞ
0 as an expansion

in powers of ðRS=RÞ, valid far from the source, where

R � RS. In this regime, the functions �ðmÞ
0 , �ðmÞ

0 go to

zero, meaning that it makes sense to linearize the Bianchi

equation in �ðmÞ
0 and �ðmÞ

0 in order to find the dominant

behavior of�ðmÞ
0 . In addition, if�ðmÞ

0 is assumed to also tend

toward zero, it is consistent to only keep the terms of lowest

order in this function. Since there is no linear term in �ðmÞ
0

in the Bianchi equation, this lowest order is nothing else
than the quadratic term Q defined in Eq. (13). The Bianchi
equation (44) then reads, at dominant order

�0

R2
¼ �0

0

2R
þQð�0Þ:

Using the asymptotic behavior far from the source of the
Schwarzschild solution (43), i.e. the Newtonian regime,
one gets the equation

Qð�0Þ ¼ RS

2R3
;

which is identical to the DL equation (16). If one assumes

that the function �ðmÞ
0 can be expanded as a power series in

R, one finds

�ðmÞ
0 �

ffiffiffiffiffiffiffiffiffi
8RS

9R

s
: (45)

The higher powers in R can then be found order by order in
R [20]. Let us now compute the first order terms. The

functions �ðmÞ
1 and �ðmÞ

1 are computed through Einstein’s

equations (8a) and (8b). In the limit RS � R � m�1, these
equations read

�ðmÞ0
1

R
þ �ðmÞ

1

R2
¼ �m2

2
ð3�ðmÞ

0 þ R�ðmÞ0
0 Þ;

�ðmÞ0
1

R
� �ðmÞ

1

R2
¼ m2�ðmÞ

0 :

Using the behavior (45), the leading behavior of the first
order functions can be found to be

�ðmÞ
1 ¼ ðmRÞ2

�
2

ffiffiffi
2

p
9

ffiffiffiffiffiffi
RS

R

s
þO

�
RS

R

��
;

�ðmÞ
1 ¼ ðmRÞ2

�
�

ffiffiffi
2

p
3

ffiffiffiffiffiffi
RS

R

s
þO

�
RS

R

��
;

(46)

while the function �ðmÞ
1 is obtained using the Bianchi

identity and reads

�ðmÞ
1 ¼ ðmRÞ2

�
6

31
þO

� ffiffiffiffiffiffi
RS

R

s ��
: (47)

Comparing the zeroth order terms, given by Eqs. (43) and
(45), and the first order ones, given by Eqs. (46) and (47),
we reach the conclusion that the expansion in powers of

m2 is only valid for R & RV � ðm�4RSÞ1=5. Hence, the
functions (46) give the first nontrivial corrections to the
Schwarzschild solution for distances below the Vainshtein
radius. In Sec. V, it will be seen that they agree very well
with the numerical results. Notice also that those correc-
tions are nonanalytic in the expansion parameter � of the
perturbation theory of Sec. III A. It is also interesting to
notice that the expansion presented above and the small
distance perturbative expansion of Sec. III A 1 both yield
the same ‘‘Vainshtein radius’’ RV as a limiting distance of
their respective domain of validity.
One may wonder which of the expansions (41) and (42)

is the most appropriate for describing the solution of the
full NLPF theory. There is no simple answer to this
question since, eventually, all the orders are needed to
fully recover the solution. Still, a simple but instructive

calculation can be done: one can check that for R &

ðRVmÞ8=7RV , the correction to the Newtonian potential
�N ��RS=R due to the GR nonlinearities (i.e. the first

correction to �N in �ðmÞ
0 ) dominates over the correction due

to the DL nonlinearities (i.e. the first correction to �N in

a4�ðaÞ
0 ). In mathematical terms, this reads ðRS=RÞ2 *

ðmRÞ2 ffiffiffiffiffiffiffiffiffiffiffiffi
RS=R

p
. In particular, this means that for sources of

radius R� � ðRVmÞ8=7RV (which is usually the case for
sources we considered in our numerical investigations), the
GR solution is a better approximation inside the source
than the DL solution. We were able to confirm this simple
analysis numerically (cf. Fig. 3).
Note that here, for the sake of simplicity, we have

followed [20] and discarded any integration constant ap-
pearing in the process of obtaining the successive terms
[beyond the GR part (43)] in the expansion (42). Such
constants appear, in particular, at each order via a double
integration of the Bianchi identity. If there is however a
solution with such an expansion that can extend from
R ¼ 0 to R ¼ 1, there is no reason for such constants to
vanish, and they should be kept explicit until one does the
matching with the source.

D. Expansion inside the source

Let us now turn to the interior of the source that we
assume to be of constant density 
 and of radius R�. In
order to gain some understanding of the solution near the
origin, it is possible to expand the solution as

� ¼ X1
n¼0

�ðxÞ
n x2n; � ¼ X1

n¼1

�ðxÞ
k x2n;

� ¼ X1
n¼0

�ðxÞ
n x2n; P ¼ X1

n¼0

PðxÞ
n x2n;

(48)

where we have defined the rescaled variable

x � R

RS

:
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Note that the expansion of the function � starts at n ¼ 1 [in
agreement with condition (11)]. These series depend on 3

integration constants that can be chosen to be �ðxÞ
0 �

�ðR ¼ 0Þ, �ðxÞ
0 � �ðR ¼ 0Þ, and PðxÞ

0 � PðR ¼ 0Þ. The

other coefficients �ðxÞ
n>0, �

ðxÞ
n>0, and �ðxÞ

n>0 are then functions

of these integration constants�ðxÞ
0 , �ðxÞ

0 ,PðxÞ
0 and the massm

of the graviton. These coefficients can be found solving
order by order in x2; a few of them are given for the AGS
potential in Appendix B.

IV. WEAK-FIELD APPROXIMATION

As we have just seen, different expansion schemes can
be used in order to get an understanding of the putative
solution. However, those schemes all fail to describe cor-
rectly all the key features of the solution. More specifically,
the DL scheme (Sec. II D) describes well the Vainshtein
crossover, but misses the Yukawa decay. The perturbation
theory approach (Sec. III A) catches the Yukawa decay, but
misses the Vainshtein crossover, while the expansion
around GR misses both the Yukawa decay and the
Vainshtein crossover (Sec. III C). The purpose of this sec-
tion is to introduce an expansion scheme, called here weak-
field approximation, that will retain both the Yukawa decay
and the Vainshtein crossover.

We expand the full system of Einstein equations together
with Bianchi identity in powers of �, �, �, and assume the
smallness of each function �, �, and � as well as of their
derivatives:

f�;�;�g�1; fR�0;R�0;R�0g�1; R2�00 �1: (49)

Expanding (8) and using our assumptions (49) we obtain

�0

R
þ �

R2
¼ �m2

2
ð�þ 3�þ R�0 þOð�2ÞÞ þ 


M2
P

; (50a)

�0

R
� �

R2
¼ m2

2
ð�þ 2�þOð�2Þ þOðR2�02ÞÞ; (50b)

�� R�0

2
¼ �R2

�
�02

4
þ 2��0

R
þ��00

2

�
þOð�2Þ

þOð�02R2Þ þOð��0RÞ
þOðf�; �0g 	 f�;�0R;�00R2gÞ: (50c)

Note that P on the rhs of (50b) disappears as a consequence
of the conservation equation (9) and the assumption of the
weak-field regime, similar to the DL case. One can recog-
nize, on the rhs of Eq. (50c), the nonlinear DL part respon-
sible for the Vainshtein mechanism. Note that so far we did
not make any assumptions about the relation between �, �,
and � or between functions and their derivatives, and this
is the reason why we kept the quadratic terms in � on the
rhs of (50c).

To further simplify the system of equations (50) we
assume that the quadratic terms��2 are small in compari-
son to the linear terms on the rhs of (50a), i.e.,

�2 � maxf�;�g;
and similarly that the term ��2 on the rhs of (50b) is
negligible compared with �. We also assume that the
quadratic terms containing � and its derivatives are negli-
gible compared to the linear terms containing �. It is
important to note that the last assumptions eliminate the
quadratic terms in Eqs. (50a) and (50b), while we have to
keep the quadratic terms in� in (50c), since the linear term
in � is absent in this equation. Note that if we assumed at
this step that �� �� �, then the quadratic terms in
f�;�0; �00g on the rhs of (50c) would be dropped. It is
important, however, that we do not assume any relations
between f�;�0; �00g and f�; �; �0; �0g, and thus we keep
these terms. This will be the key feature of the expansion
scheme introduced here. As a result we obtain the system

�0

R
þ �

R2
¼ �m2

2
ð�þ 3�þ R�0Þ þ 8�GN
; (51a)

�0

R
� �

R2
¼ m2

2
ð�þ 2�Þ; (51b)

�0

2R
� �

R2
¼ �Qð�;�0; �00Þ; (51c)

with Q given by (13). It is then convenient to use once
again the rescaled radial coordinate z ¼ Rm introduced in
Sec. III A, such that we obtain from (51),

�0

z
þ �

z2
¼ � 1

2
ð�þ 3�þ z�0Þ þ �
; (52a)

�0

z
� �

z2
¼ 1

2
ð�þ 2�Þ; (52b)

�

z2
� �0

2z
¼ Qð�;�0; �00Þ; (52c)

where

Qð�;�0; �00Þ ¼ �
�
�02

4
þ��00

2
þ 2��0

z

�
; (53)

and we introduced �
 � 8�GN
=m
2. This system of equa-

tion corresponds to the one left over in the limit considered
here. As will be seen, it has the required properties.
First, note that it is possible to rewrite this system as a

single ODE on� and two algebraic relations between �, �,
and � and its derivatives. Indeed, expressing � from (52b)
in terms of �, �0, and� and substituting it to Eqs. (52a) and
(52c) we find two equations containing only � and � (and
their derivatives):

�00 þ 2�0

z
� 1

4
ðz2 þ 6Þ�� 1

2
z�0 � 1

2
ðz2 þ 3Þ�¼ �
; (54a)

� �0

2z
þ�

2
þ�þQ¼ 0: (54b)

Taking the derivative of (54b) with respect to z and sub-
stituting the resolved �00 into (54a) we obtain a system of
two equations:
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z2 þ 3

z
�0 � 1

4
ðz2 þ 6Þ�� 1

2
ðz2 þ 3Þ�þ z

2
ð4Q0 þ 3�0Þ ¼ �
; (55a)

� �0

2z
þ 1

2
�þ�þQ ¼ 0: (55b)

From the above system of equations (55) we can find �0 in
terms of � and its derivatives and � in terms of � and its
derivatives,

�ðzÞ ¼ F ; �0ðzÞ ¼ zF þ 2zðQþ�Þ: (56)

where we denoted

F � � 2

3ðz2 þ 2Þ ½zð4Q
0 þ 3�0Þ

þ ðz2 þ 3Þð4Qþ 3�Þ � 2 �
�: (57)

Thus we arrive at the following single ODE on �:

dF
dz

¼ zF þ 2zðQþ�Þ:

The above equation can be rewritten in a closed form,

ð2þ z2Þð4Q00 þ 3�00Þ þ 2

z
ð4þ z2Þð4Q0 þ 3�0Þ

� ðz2 þ 4Þð4Qþ 3�Þ �Qðz2 þ 2Þ2

¼ ð2þ z2Þ 2 �

0

z
� 2ð4þ z2Þ �
: (58)

Note that Eq. (58) is of the fourth order, meaning that the
number of boundary conditions needed to solve the equa-
tion is four. This is in agreement with the number of
boundary conditions needed to specify for Eqs. (51).
Equation (58) can further be simplified under appropriate
assumptions. First of all, let us recover the solution (24) for
the linearized equations. To do so, we drop in (58) all
nonlinear terms, i.e. all the terms containing Q and its
derivatives, as well as the source terms (containing �
 and
�
0) to get

ð2þ z2Þ�00 þ 2

z
ð4þ z2Þ�0 � ðz2 þ 4Þ� ¼ 0:

The nongrowing at the infinity solution of the above equa-
tion reads

� ¼ Ce�zðz2 þ zþ 1Þ
z3

;

which coincides with Eq. (24) and catches the Yukawa
decay.

Another limit can be obtained assuming in (58) as
follows. We assume Qz � Q0 and �z � �0 together
with z � 1. Neglecting subleading terms in (58), one
obtains

ð4Q00 þ 3�00Þ þ 4

z
ð4Q0 þ 3�0Þ ¼ 2 �
0

z
� 4 �
:

The above equation can be integrated twice to give

2Qþ 3

2
� ¼ 1

z3

�
C0 þ

Z z

0
z2 �
dz

�
þ C1; (59)

where in the last expression we also assumedZ z

0
z2
�Z z

0
�
 ~z d~z

�
dz �

Z z

0
z2 �
dz:

The constant of integrationC1 in (59) must be set to 0 to get
correct behavior of � at infinity (otherwise the solution is
nonflat at large distances). Similarly, C0 ¼ 0, by matching
� inside the Vainshtein radius and outside the source.
Restoring physical units, R ¼ z=m, one can see that we
arrived at the previously found DL equation (14) catching
the Vainshtein crossover. Furthermore, the analytic solu-
tion of the weak-field system (52) will be seen to reproduce
very well the numerical integration (in the expected range)
in the following section.

V. INTEGRATION OF THE FULL SYSTEM:
NUMERICAL RESULTS

We have integrated the equations of motion (8) and (9)
using two different approaches. The first one is based on a
resolution by relaxation, which turns out to be very well
adapted to the problem. This method and the related results
are presented, respectively, in the Secs. VA and VB. The
second approach, which is described in Sec. VC, consists
of a shooting method à la Runge-Kutta. Both methods
perfectly agree, demonstrating the robustness of our
numerical investigations. A reader mainly interested in
the numerical results can read only Sec. VB which is
self-contained.

A. Relaxation approach: Method
and boundary conditions

The basic idea of the relaxation method consists of
choosing an initial configuration for the solution, and
then deforming it until the equation we want to solve is
satisfied with a good enough precision. The initial guess is
of prime importance, since it will determine whether the
iteration converges or not. In the case of the NLPF equa-
tions of motion (8) and (9), a clever guess is needed:
indeed, starting from a naive guess (e.g. all the functions
to zero) does not lead to a converging iteration. Here is
where the DL plays a crucial role in finding a solution of
the full system: we can use the DL solution as a guess for
the full solution. Note that the DL being simpler than the
full system, the DL solution itself is not too hard to find (no
specific guess is needed).
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The advantage of the relaxation approach is that bound-
ary conditions can be easily enforced. In particular, this
method allows one to fix boundary conditions at different
points, for example, at the two ends of the interval on which
we want to solve the equations. This flexibility in the
boundary conditions fixing makes this method very well
fitted for static solution studies in which we want to impose
conditions both in the center and very far from the source.

In our case, we worked with the dimensionless variable

 � R=RV;

as well as with the rescaled functions w, u, and v
defined by

w ¼ a�2�; v ¼ a�4�; u ¼ a�4�:

We fixed the boundary condition at  � R=RV ¼ 0 and at
some distance 1 which is chosen to be much larger than
the Vainshtein radius (typically 1 � 100). The boundary
conditions in the DL case are given by the DL linear regime
(15) and read

_wð ¼ 0Þ ¼ 0;

uð ¼ 0Þ ¼ 0;

_wð ¼ 1Þ ¼ � 2

31
;

vð ¼ 1Þ ¼ � 4

31
;

Pð ¼ 1Þ ¼ 0:

One may notice that the condition on w at infinity is
imposed on _w rather than on w. This is not necessary, but
we found it easier to proceed that way in practice. Once the
DL solution has been found, we can turn to the fully
nonlinear system. In that case, the boundary conditions
are given by the linear solution (24) and read

_wð ¼ 0Þ ¼ 0;

uð ¼ 0Þ ¼ 0;

wð ¼ 1Þ ¼ C	 2a2

31

�
1þ 1

a1
þ 1

ða1Þ2
�
e�a1 ;

vð ¼ 1Þ ¼ �C	 4

3

e�a1

1
;

Pð ¼ 1Þ ¼ 0:

We have explicitly kept in these boundaries conditions the
integration constant C defined in Eq. (24) [while a is
defined as in Eq. (23)]. This procedure allows one to check
numerically that the choice we made C ¼ 1 in Eq. (25) is in
agreement with numerics.

In our study of NLPF, we have implemented the relaxa-
tion method described in [28], using the C++ language. We
typically used a grid of N � 5	 104 points and aimed at a
precision of 10�6. We always checked that our numerical

solutions were stable under the change of the step size of
the grid and the precision.
The density of the star is assumed to be given by


 ¼ M=ð4�R3�Þ inside the star, and null outside.

B. Numerical results

To summarize here shortly our main results, we were
able to show that one can obtain a nonsingular solution
showing the recovery of GR à laVainshtein. The relaxation
method allowed us to solve the equations of motion (8) and
(9) on a wide range of the parameter a ¼ RVm (a 2
½10�3; 0:6�) and for very large intervals (typically for R
between 0 and �100RV). In the following we first discuss
the behavior of the functions � and � which appear in the
‘‘physical’’ metric g�� (Sec. VB 1), comparing their be-

havior in NLPF and GR, and showing, in particular, how
our numerical integration agrees with the corrections to
GR as predicted by Vainshtein. Then (Sec. VB 2) we turn
to discuss the obtained behavior of the pressure inside the
star, comparing again the numerical solution with the one
obtained in GR (recall that the star’s density is assumed to
be constant). Last we discuss our numerical result for the

λ
−ν,

−ν

λ,
DL

DL

R/RV

FIG. 1 (color online). Plot of the metric functions�� and � vs
R=RV , in the full nonlinear system and the decoupling limit
(DL), with a star of radius R� ¼ 10�2RV and m	 RV ¼ 10�2.
For R � RV , the numerical solution is close to the GR solution
(where in particular ������RS=R for R> R�). For R �
RV , the solution enters a linear regime. Between RV and m�1,
where the DL is still a good approximation, one has ���2��
�4=3	 RS=R. At distances larger thanm

�1 the metric functions
decay à la Yukawa as appearing more clearly in the inset. The
latter shows the same solution but for larger values of R=RV , and
in the range of distance plotted there, the numerical solutions are
indistinguishable from the analytic solutions of the linearized
field equations (24). This plot was already presented as Fig. 1 of
Ref. [26].
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function� appearing in the ‘‘nonphysical’’ metric with our
gauge choice (9).

1. Behavior of the functions � and �

Figure 1 summarizes our main results and illustrates the
following points:

(i) at short distances (R � RV), the solution is
very close to the GR solution, and in particular
������RS=R in the neighborhood of the
source,
at large distances (R � RV), the solution is in the
linear regime (24). Between RV and m�1, the solu-
tion is very close to the DL solution (Table I), and in
particular ���2���4=3	 RS=R. Beyond m�1,
the solution is exponentially decreasing,

(ii) the behavior at infinity allows one to check that the
choice of integration constant we made in Eq. (25) is
consistent with numerics. More precisely, we tried
to solve numerically the equations of motion with
an integration constant C slightly different from 1,
and we noted that the relaxation method was not
converging, unless jC� 1j � 1.

We have seen in Sec. III C that the leading behavior of
the difference between the functions � and � and their GR

equivalent, �GR and �GR is given by the expressions (46). It
is possible to check that this theoretical prediction is very
well satisfied by our numerical solution, as can be seen in
Fig. 2. In this figure, we plotted the difference between the
function � obtained from our numerical integration and the
one of GR, and compared this with the first correction to
GR as computed using the Vainshtein mechanism. As
expected, the two agree very well for distances smaller
than the Vainshtein radius.
Besides, we have shown at the end of Sec. III C that deep

inside the Vainshtein radius, the NLPF solution should be
closer to the GR solution than to the DL solution, illustrat-
ing the fact that the GR nonlinearities are starting to play
an important role. This is seen in Fig. 3, where we com-
pared the function � (after an appropriately chosen rescal-
ing) for various values of the parameters. It appears on this
figure that the numerical solutions well agree with the GR
behavior, while slightly differing from the DL expression
for large a. This illustrate the fact that inside the source, the
nonlinearities coming from the GR terms of Eq. (8), and
which are not taken into account in the DL, are important.

R/RV

λ −λ
∆λ

FIG. 2 (color online). Plot of the difference between the nu-
merical solution for �, �NUM and the one of GR, �GR. This is
compared to the computation of the same quantity using the first

term in the expansion in m2 proposed by Vainshtein, j��V j ¼
ð ffiffiffi

2
p

=3ÞðmRÞ2 ffiffiffiffiffiffiffiffiffiffiffiffi
RS=R

p
. Both functions are plotted vs R=RV , for a

source of radius R� ¼ 10�3RV and a choice of parameters such
that a � m	 RV ¼ 10�2. It can be seen that the numerical
solution agrees very well with Vainshtein’s expression given
by Eq. (46) for R � RV . For R� RV , the expansion in m2 is,
as expected, no longer a good approximation of the solution.

R/RV

FIG. 3 (color online). Plot of ��	 a�4 vs R=RV (the a�4

factor is included for convenience such that, in the DL, all
plotted theories would exactly coincide) inside the source of
radius R� ¼ 10�3RV , for three different values of a � m	 RV .
Along with the numerical solution, the GR analytical solution for
� is plotted for each value of a. It can be seen that the numerical
solutions perfectly agree with the GR behavior, while slightly
differing from the DL expression for large a. This illustrates the
fact that inside the source, the nonlinearities coming from the
GR terms of Eq. (8), and which are not taken into account in the
DL, are important. For small a, both the GR and the numerical
solutions agree with the DL solution, which encodes for most of
the physics, in agreement with the fact that the DL corresponds
to the limit a ! 0.
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2. Behavior of the pressure P

In GR, the pressure inside a static spherically symmetric
source of constant density can be computed analytically
to be

PGR ¼ 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� RS

R3
�
R2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� RS

R�

q
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� RS

R�

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� RS

R3
�
R2

q : (60)

This is compared to Fig. 4 with our numerical solution,
confirming once again the validity of Vainshtein’s
conjecture.

3. The function �

For the range of parameters investigated here, the nu-
merical behavior of the function � between R ¼ 0 and
R ¼ m�1 is very close to the Vainshtein solution (Table I)
of the DL. Beyond m�1, the Yukawa decay seen in the
linear solution (24) is found to occur. These various re-
gimes are shown in Fig. 5 which plots the (rescaled)
function � for three different values of the parameters.

Figure 6 shows the same, zoomed inside the star. We
notice there that the solution of the full theory goes toward
the DL solution as the parameter a � RV 	m tends to-
ward 0 and we recover the fact that the corrections to the
DL due to the nonlinearities which are not taken into
account in the DL are of order Oða2Þ and goes to zero as
a ! 0. This plot also shows that our numerical integration
reproduces nonlinearities not present in the DL.

C. Shooting method

In addition to the relaxation approach that we presented
in the previous sections, we developed a shooting approach
to solve the system of equations (8) and (9). This shooting
approach, which is based on a direct Runge-Kutta integra-
tion, appears to be quite difficult to implement for the
theory (3). Indeed, there appear numerical instabilities
for distances beyond the Vainshtein radius and probably
related to the growing mode (38). As a consequence of
these instabilities, the initial conditions need to be ex-
tremely finely tuned.7 Nevertheless, we have been able to
integrate the system of equations outward from a point

×

×

×

×

×

×

R/R

GR

V

P    /

P/
ρ
ρ

FIG. 4 (color online). Plot of the functions P=
 and PGR=
 vs
R=RV , for a source of radius R� ¼ 10�2RV , of pressure P, and
of constant density 
, and for a parameter choice such that
a � m	 RV ¼ 10�2. The function P=
 is found numerically,
while PGR=
 is the pressure computed in GR and is given by the
analytical expression (60). The two curves are indistinguishable
from each other, illustrating the fact that Vainshtein’s conjecture
is valid inside the star.

R/RV

FIG. 5 (color online). Plot of a�2� vs R=RV (the a�2 factor is
included for convenience such that, in the DL, all plotted
theories would exactly coincide) for a source of radius R� ¼
10�3RV for three different values of a � m	 RV ¼ 0:005, 0.05,
and 0.1 as well as in the DL case (which corresponds to a ! 0).
The three DL regimes of Table I are clearly distinguishable: for

R< R�, �� const; for R� < R � RV , �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið8RVÞ=ð9RÞ
p

; for
RV � R � m�1, �� 2R3

V=ð3R3Þ. For R � m�1, we observe

the Yukawa decay of the linear solution (24). At the resolution of
the picture, the thee numerical solutions are hard to distinguish
for distances R smaller than m�1. The next figure shows a zoom
of this figure at small distances (namely inside the source) where
the differences between the three solutions are easily seen.

7Note however that the shooting integration appears more
stable for some NLPF theories which have a different interaction
term from (3). This is the case, for example, for the BD theory
(using the terminology of Ref. [26]). In this theory, there is no
admissible Vainshtein scaling, but only Q scalings in the DL.
However, in the DL and in the full nonlinear case, the shooting
method appears much more stable than in the model considered
here, even though the Q-scaling solution does not seem to
continue into a nonsingular solution in the beyond DL regime.
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deep inside the star up to a point farther than the Vainshtein
radius (typically R� 3RV). We have also been able to
integrate inward starting from a point far from the source
(e.g. R� 3RV) up to the core of the source. In all the
integrations, we have made an extensive use of series
expansions of the solution in order to fix the initial
conditions as well as possible.

While integrating inward from large distances (i.e.
R� 3RV), the solution adopts almost systematically a
Q-scaling behavior, similar to the one of Eq. (19), except
if the initial conditions are extremely fine-tuned to get the
Vainshtein solution. In the cases in which the Q scaling is
found, our numerical solutions always encountered a sin-
gularity around the radius we identified in Eq. (21) and
which corresponds to the scale at which nonlinearities
nontaken into account by the DL start to play a role. Of
course, this does not mean that aQ-scaling solution cannot
be found but we were not able to find any and it convinced
us to focus on the Vainshtein solution.

To obtain the latter, we have found it particularly con-
venient to integrate from a point located inside the source
(typically Rmin ¼ 10�3R�). To do so, we needed initial
conditions at Rmin, i.e. �ðRminÞ, �0ðRminÞ, �ðRminÞ,
�ðRminÞ, and PðRminÞ. These initial conditions are
computed using the expansion (48) where the three inte-

gration constants �ðxÞ
0 � �ðR ¼ 0Þ, �ðxÞ

0 � �ðR ¼ 0Þ, and

PðxÞ
0 � PðR ¼ 0Þ have been fixed using the values obtained

through the relaxation method. In order to be able to obtain
a wide enough range of integration, the required relative

precision on the three integration constants �ðxÞ
0 , �ðxÞ

0 , and

PðxÞ
0 is very stringent. For example, if one wants to be able

to integrate from Rmin ¼ 10�3R� to Rmax ¼ 3RV , in the
case a ¼ RVm ¼ 10�2 and R� ¼ 10�2RV , the required

relative precision on the integration constant�ðxÞ
0 is smaller

than 10�8, in order to ensure that the numerical solution at
Rmax ¼ 3RV differs from the linear solution (24) (which is
supposed to be an excellent approximation of the solution
at that distance) by less than 5%. The result of such an
integration is given in Fig. 7. This figure also shows part of
the expansion (48) inside the star. It agrees very well with
the numerical solution.

D. Weak-field approximation

We have also been able to check numerically the weak-
field approximation introduced in Sec. IV. Namely, as
appears on Fig. 8, this approximation reproduces very
well the numerical solution on a range of distances much
larger than the decoupling limit, since this range extends at
distances larger than the graviton Compton length m�1. At
small distances, however, as also seen on Fig. 8, the weak-
field approximation deviates from the numerical solution.
This is expected since the weak-field approximation
reduces there to the DL and does not capture some
nonlinearities.

R/RV

FIG. 6 (color online). Plot of a�2� vs R=RV (the a�2 factor is
included for convenience such that, in the DL, all plotted
theories would exactly coincide) for a source of radius R� ¼
10�3RV for three different values of a � m	 RV ¼ 0:005, 0.05,
and 0.1 as well as in the DL case. The picture is a zoom of Fig. 5,
inside the star. One can check that even if the three curves for
a ¼ 0:005, 0.05, and 0.1 are close to each other and to the DL
solution, they differ inside the star due to nonlinearities not
captured by the DL. One notes that the full solution goes toward
the DL solution when a � RV 	m tends toward 0.

µ

R/RV

µ

N

s

µ

FIG. 7 (color online). Plot of the function � (�N as given by
the numerical integration) vs R=RV , for a source of radius R� ¼
10�2RV and of constant density 
, and for a choice of parameters
such that a � m	 RV ¼ 10�2. The plot has been obtained using
an direct integration à la Runge-Kutta. We also added the plot of

series �S ¼ �ðxÞ
0 þ�ðxÞ

1 x2 þ�ðxÞ
2 x4, which was introduced in

the main text as an expansion inside the star: the two curves
are indistinguishable from each other.
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VI. CONCLUSIONS

We have studied in detail the Vainshtein mechanism for
nonlinear Pauli-Fierz theory as defined in Sec. II. More
specifically, we have been able to show in the case of a
specific NLPF model [the one defined by the interaction
term (3)] that the recovery of the Schwarzschild solution
works as forecasted by Vainshtein. This proof was provided
via numerical integration of the field equation using two
different methods: a relaxation scheme and a shooting
method. It also heavily used series expansions (to fix bound-
ary/initial conditions) which were first presented in this
work. Our result, already presented in brief in [21] disagrees
with a previous work on the same issue [20], which con-
cluded that the Vainshtein mechanism was not working,
because it could not find numerically any nonsingular
asymptotically flat solution of the NLPF field equation.
We also presented arguments, based on various expansions,
showing that the solution at infinity is not uniquely defined
by standard perturbation theory, but has nonperturbative
hairs allowing one to match sources at smaller distances.
This, as well as the more sophisticated integration methods
we used, could explain the differences between our results
and the ones of Ref. [20]. Besides the model defined by the
interaction term (3), we also investigated other models, in

particular, those which were shown in Ref. [26] to possess
only a non-Vainshtein-like scaling (dubbed Q scaling in
Ref. [26]) in the DL. According to our numerical inves-
tigations, the DL solutions with Q scaling do not seem to
continue into nonsingular solutions of the full field equa-
tions. We have also introduced a new limit, the weak-field
approximation, which captures all the salient features of the
solution, including the Yukawa decay and the Vainshtein
crossover. Of course, the theory considered is believed to
suffer from various pathologies, like a Boulware-Deser type
of instabilities [5,29,30]. However, our investigations show
for the first time that the Vainshtein mechanism can actually
work in theories of massive gravity, some of which could be
safe from the pathologies of NLPF theory. Several questions
are however left unanswered. First, we have not been able to
solve numerically the equation for dense objects (or even
realistic stars). Indeed, when one increases the density of the
object, the numerics becomes unstable and singularities are
found to appear. It remains to understand if those singular-
ities are physical or just numerical artifacts. Along the same
line, it is not known if standard black holes can be recovered
via the Vainshtein mechanism. Second, it is not clear if the
solution we found is stable or not. The Boulware-Deser
type of instability could show up if one would try to let the

δµ

ζ

numerical solution

leading order approx

series expansion approx

FIG. 9 (color online). Plot of the numerical solution for ��ð�Þ
for the choice of parameters b ¼ 0:1 and ��ð� ¼ 10Þ ¼ 1.

We also plotted the leading behavior ��ð�Þ ¼ expð�3
ffiffi
�
b

q
log�Þ

of Eq. (37), and the first series expansion correction obtained
from Eqs. (C5) and (C13). In terms of the � variable, this
first order series expansion expression reads ��ð�Þ ¼

1
ðlog�Þ5=4ð1þlog�Þ1=4 expðlog�4 � 1ffiffi

b
p ð3 log� � 15

2 þ 9
8 log�Þ

ffiffiffi
�

p Þ. One can

see that while the leading behavior already encodes the main
behavior [exponentially decreasing ��ð�Þ], the first correction
coming from the series expansion improves greatly the agree-
ment with the numerical solution, confirming our analytical
analysis of the system (C2).

R/RV

FIG. 8 (color online). Plot of the function a�2� (the a�2 is
added to make the comparison between � and its DL behavior
easier), vs R=RV , for a source of radius R� ¼ 10�3RV , of
constant density 
 and a choice of parameters such that a �
m	 RV ¼ 10�1. The three curves correspond, respectively, to
the weak-field solution of Eq. (58), to the solution of the fully
nonlinear theory and to the DL solution. One can see that the
weak-field model allows one to recover the general behavior of
the full solution, except inside the star (as seen in the panel
showing a zoom of the plots for small R) where it is very close to
the DL, and thus misses some nonlinearities.

RECOVERY OF GENERAL RELATIVITY IN MASSIVE . . . PHYSICAL REVIEW D 82, 104008 (2010)

104008-19



solution be time dependent or to be reached by a dynamical
process such as spherical collapse. These and other issues
are left for future investigations.
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APPENDIX A: DETAILS ON
PERTURBATION THEORY

Here, we explain with some detail how one can obtain
the series expansions (27) and (30), and how the former is
related to the DL expansion (28). Our starting point is the
system (8) rewritten as in (26).

Looking for an expansion of the form (22), and assum-
ing such an expansion has been found up to order n� 1
(with n 
 1), the nth order system is of the form

�0
n

z
þ �n

z2
þ 1

2
ð�n þ 3�n þ z�0

nÞ ¼ ft;n �Gtt;n;

�0
n

z
� �n

z2
� 1

2
ð�n þ 2�nÞ ¼ fR;n �GRR;n;

�n

z2
� �0

n

2z
¼ 1

z
fg;n;

(A1)

where the functions ft;n, fR;n, fg;n, Gtt;n, and GRR;n corre-

spond, respectively, to the terms of order �nþ1 of ft, fR, fg,

Gtt, andGRR. It is possible to reorganize the system (A1) to
obtain the equivalent system

�0
n ¼ 2�n

z
� 2fg;n; (A2)

�n¼�z2�nþz3�0
n

2þz2
� 1

3ð2þz2Þ½�2z2ft;nþ2z3f0R;n

þ2z2Gtt;n�2z3G0
RR;n�2zð2þz2Þfg;nþ4z3f0g;n�;

(A3)

L½�n� ¼ �2zð4þ z2Þft;n þ 2ð2þ z2Þf0t;n
� ð16þ 6z2 þ z4Þf0R;n � ð4zþ 2z3Þf00R;n
þ 2zð4þ z2ÞGtt;n � ð4þ 2z2ÞG0

tt;n

þ ð16þ 6z2 þ z4ÞG0
RR;n þ ð4zþ 2z3ÞG00

RR;n

þ ð2þ z2Þ2ð4þ zÞ
z2

fg;n � 16

z
f0g;n

� ð8þ 4z2Þf00g;n; (A4)

where L stands for the linear differential operator

L½f� � �3zð4þ z2ÞfðzÞ þ 6ðz2 þ 4Þf0ðzÞ
þ 3zðz2 þ 2Þf00ðzÞ:

Let us first focus on Eq. (A4), which allows one to find�n.
This equation can be written in the schematic form

L½�n� ¼ F½f�m<n; �m<n; �m<ng�; (A5)

where F gathers the nonlinear terms of the equation
of order �nþ1, which only depend on the terms of order
m< n. Note that the above discussion holds both for the
large z and the small z expansions, since it is only based on
the matching between terms of the same order in the
parameter � on the left- and right-hand sides of
Eqs. (26). To go further, let us consider the action of the
linear operator L on one term of the series (27) for �n of
the form

Mn;i;k �
�
e�z

z5

�
nþ1

ziþ2ðz5 logzÞn�k;

¼ e�ðnþ1Þzzi�3�5kðlogzÞn�k;

such that, with those notations, one is looking for an
expansion of �n in the form

�n ¼ �nþ1
X1
i¼0

Xn
k¼0

�n;i;kMn;i;k: (A6)

Henceforth, we will denote by Sn;m the set of formal series

of the form

zm�nþ1

�
e�z

z5

�
nþ1 X1

i¼0

Xn
k¼0

sn;i;kz
iðz5 logzÞn�k;

where sn;i;k denotes real coefficients. With this notation, we

see that the expansion for �n given in Eqs. (27) and (A6)
belongs to the set Sn;2, while the expansions for �n and �n

belong to the set Sn;4. It is easy to check that those ex-

pansions hold for n ¼ 0, as can be seen from Eq. (24). One
finds easily that

zL½Mn;i;k� ¼ pn;i;kMn;i;k þ qn;i;kMn;iþ1;k þ rn;i;kMn;iþ2;k

þ sn;i;kMn;iþ3;k þ tn;i;kMn;iþ4;k þ ðk� nÞ
	 ½an;i;kMn;iþ5;kþ1 þ bn;i;kMn;iþ6;kþ1

þ cm;i;kMn;iþ7;kþ1 þ dn;i;kMn;iþ8;kþ1�
þ 3ðk� nÞðk� nþ 1Þð2Mn;iþ10;kþ2

þMn;iþ12;kþ2Þ; (A7)

where one has

pn;i;k ¼ 6ði� 5kÞði� 5k� 3Þ;
an;i;k ¼ 6ð3� 2iþ 10kÞ;

and qn;i;k, rn;i;k, sn;i;k, and tn;i;k are quadratic polynomials of

n, i, and k with integer coefficients, bn;i;k, cn;i;k, and dn;i;k
are linear polynomials of n, i, and k with integer coeffi-
cients. The exact expressions of these polynomials will not
be needed here (except for tn;i;n, see below). It is then easy

to see that the action of the linear operator L on any series
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of Sn;2 results in a new series element of Sn;1. At each order
n, a necessary condition to find a solution for �n in the
above form (A6) is then that F½f�m<n; �m<n; �m<ng� can
be written as an element of Sn;1. Let us show that this is

indeed the case. To do so, let us first consider the different
functions appearing on the right-hand side of Eq. (26).
Those functions have different dependencies on �, �, �,
and z that can be read from Eqs. (8a), (8b), and (10a)–(10c)
and are given as follows:

(i) The functions ft;
2 and fR;
2 come from the mass

term and, as a consequence, can only depend on �, �,
�, and z�0. This means that once expanded in terms
of powers of �, �, �, and z�0, the functions ft;
2

and fR;
2 are sums of terms of the form

�n1�n2�n3ðz�0Þn4 , with n1, n2, and n3 positive inte-
gers and n4 an integer verifying 0 � n4 � 2.

(ii) The functions Gtt;n and GRR;n come from the

Einstein’s tensor, in the gauge (7). Their expression
is given by the left-hand side of Eqs. (8a) and (8b);
one can then easily realize that the functions Gtt;n

and GRR;n can be written as an infinite sum of terms

of the form �n1�n2z�2, �n1�n2�0z�1 or �n1�n2�0z�1,
with n1 and n2 positive integers.

(iii) The function fg corresponds to the Bianchi identity

(8c), i.e. to the derivative of the mass term; it
is an infinite sum of terms of the form
z�1�n1�n2�n3ðz�0Þn4ðz�0Þn5ðz�0Þn6ðz2�00Þn7 , where
ni (i ¼ 1 � � � 7) are positive integers and
0 � n4 � 3, and 0 � ni � 1 for 5 � i � 7.

It is then clear that, if one assumes that the series
expansions hold at order �k, with k < n, the right-hand
side of Eq. (A4) can be written as a series of the form

�nþ1
X1

i¼imin

Xn
k¼kmin

mn;i;kMn;i;k ¼ ð�ezÞnþ1

	 X1
i¼imin

Xn
k¼kmin

mn;i;kz
i�3�5kðlogzÞn�k: (A8)

It remains to show that kmin ¼ 0 and imin ¼ �1 for the
above series to be in the Sn;1 set. It is clear that the first

relation holds because the highest power of logz that can
possibly appear on the right-hand side of (A4) is neces-
sarily strictly smaller than the power of �, i.e., nþ 1; this is
because it is so in each term of the series Sn;m. Let us now
compute imin. To do so, we need to look at the terms on the
right-hand side of (A4) which are the most singular power
of z when z goes to zero. Keeping in mind that the series
Sn;2 are more singular when z ! 0 than the series Sn;4,
looking at the above described decompositions of the
functions ft;
2, fR;
2, Gtt;n, GRR;n, and fg, and inspecting

Eq. (A4), one sees that the most singular power of z of the
right-hand sides of this equation comes from the terms
proportional to z�2fg;n, z�1f0g;n, and f00g;n; and more

specifically from products of �ni , ðz�0Þnj , and ðz2�00Þnl

appearing there (with ni, nj, and nl positive integers strictly

smaller than n). In those products, the piece containing the
most singular power of z will be given by terms of the
form8

z�3
Yj¼J

j¼1

ð�njþ1Mnj;0;kjÞNj

with Nj, nj, kj, and J positive integers verifying

kj � nj < n, J 
 2 and

Xj¼J

j¼1

ðnj þ 1ÞNj ¼ nþ 1; (A9)

where the above equality selects the order �nþ1. The above
expression (A10) can be rewritten as

ð�ezÞnþ1z
�3�Pj¼J

j¼1
ð3þ5kjÞNjðlogzÞnþ1�Pj¼J

j¼1
ð1þkjÞNj :

Defining then k and i as

k ¼ Xj¼J

j¼1

ð1þ kjÞNj � 1; i ¼ �5þ 2
Xj¼J

j¼1

Nj;

the above expression reads now

ð�ezÞnþ1zi�3�5kðlogzÞn�k: (A10)

With the above definition, i takes its minimal value equal to

�1 for
Pj¼J

j¼1 Nj ¼ 2, which is achieved for J ¼ 2 and

N1 ¼ N2 ¼ 1 [for which there is always a solution to
Eq. (A9)]. This proves that the right-hand side of
Eq. (A4) is in the Sn;1 set, as announced. Moreover, taking

now into account the logarithm, it is easy to see what are
the most singular terms in the right-hand side of Eq. (A4)
(as z goes to zero). Those are obtained by the terms (A10)
with i ¼ �1 and k ¼ n, which is achieved again under the

same conditions as above:
Pj¼J

j¼1 Nj ¼ 2, J ¼ 2, and N1 ¼
N2 ¼ 1 (with the additional condition that 8j, kj ¼ nj).

This shows in fact that those most singular terms are
simply given by the series expansion of the decoupling
limit. Indeed, taking this limit, the only terms which are
left on the right-hand side of Eq. (A4) are those in fg which

are quadratic in �. The same reasoning also shows that the
nonlinear pieces on the right-hand side of Eqs. (A2) and
(A3) are, respectively, in the Sn;3 and Sn;4 families and have

their most singular piece at small z given by the part of fg;n
which is quadratic in �.
This first shows that a (formal) solution of the system

(A2)–(A4) can a priori be searched in the form of the series
(27), but also that, provided such a solution can be found, a
subseries of it which corresponds to the most singular

8The factor of z�3 in front of the expression below comes from
a factor z�2 in front of fg;n and another factor of z�1 inside the
expression of fg;n.
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terms at small z will be given exactly by the series expan-
sion obtained in the decoupling limit [Eq. (15)].

Let us now show explicitly how to obtain the coefficients
�n;i;k, and solve Eq. (A4) for �n. It is first of interest to

look at the expression (A7) for k ¼ n which reads

zL½Mn;i;n� ¼ 6ði� 5nÞði� 5n� 3ÞMn;i;n þ qn;i;nMn;iþ1;n

þ rn;i;nMn;iþ2;n þ sn;i;nMn;iþ3;n

þ ð6nþ 3n2ÞMn;iþ4;n: (A11)

The necessity to incorporate logarithms in the series
expansion for �n clearly appears above. Indeed, imagine
we look for an expansion without logarithms, i.e. at each
order n, we look for an expansion for �n, �n, and �n of
the form

�n � �nþ1
X1
i¼0

mn;iMn;i;n

¼ �nþ1
X1
i¼0

mn;ie
�ðnþ1Þzzi�3�5n;

�n � �nþ1z2
X1
i¼0

nn;iMn;i;n;

�n � �nþ1z2
X1
i¼0

ln;iMn;i;n: (A12)

Note that this form is equivalent to the form (A6) for
n ¼ 0, and it is in agreement with the zero order solution
given in Eq. (24), and we have proven above that those
series must start from i ¼ 0. Then, at fixed n, assuming the
above form holds for terms of order �k with k � n, and
matching formally the terms proportional to z�1 	Mn;i;n

on the left-hand side and right-hand side of Eq. (A5), one
can try to solve for the values of the coefficients mn;i,

starting from i ¼ 0 to increasing values of i. This is pos-
sible only until one reaches i ¼ 5n where the coefficient in
front ofMn;i;n in (A11) vanishes. This vanishing means that

the coefficient in front of the term z�1 	Mn;5n;n on the

left-hand side of (A5) will not depend on �n;5n. On the

other hand, this coefficient will only depend on the coef-
ficients �n;i with i < 5n which are already determined by

matching the termsMn;i;n, with i < 5n, and one has thus no
freedom left to match the term proportional to Mn;5n;n on

the two sides of (A5). This means that it is not possible in
general to find for �n a series expansion of the above form
(A12). Note that the coefficient in front of Mn;i;n in (A11)

also vanishes for i ¼ 5nþ 3, and hence one has the
same problem for finding the coefficient �n;5nþ3.

Including logarithms however solves this problem and
allows one to get a formal series solution in the family
Sn;2 as we now show.

Indeed, let us fix n and see how one can compute
the coefficients �n;i;k. Let us first assume that all the

coefficients �n;i;k, with k < K (K some chosen positive

integer) and i < 5k are known, and see how to obtain the
coefficients�n;i;K, with i < 5K. This is immediate, indeed,

the terms proportional to z�1 	Mn;i;K (for some i < 5K)
on the left-hand side of Eq. (A5) depend only on the
coefficients �n;i;k, with k � K and i < 5k, as can be seen

from Eq. (A7). Hence, by matching formally those terms
on the left-hand side and right-hand side of Eq. (A5) one
obtains a system of 5K equations for the 5K unknown
coefficients �n;i;K, with i < 5K. This system is invertible

because, as follows from Eq. (A7) it is represented by a
triangular matrix with diagonal elements, given by the
pn;i;K, which are nonvanishing (this is because we assumed

i < 5K). Hence one can solve for the �n;i;K, and by recur-

sion one obtains all coefficients �n;i;k, with i < 5k. The
coefficients �n;5k;k can then be determined as follows:

�n;0;0 is determined uniquely by matching the term pro-

portional to z�1 	Mn;5;1 on the left-hand side and right-

hand side of Eq. (A5). Indeed,�n;5;1 does not appear in this

term, since pn;5;1 vanishes, but it is replaced there by �n;0;0

because an;0;0 does not vanish. By recursion, one can obtain
in a similar way all coefficients�n;5k;k, with k < n; indeed,
one can check that the coefficients an;i¼5k;k ¼ 18 and

hence do not vanish, which means that at fixed K,
�n;5ðK�1Þ;K is uniquely determined by looking at the term

z�1 	Mn;5K;K. The last coefficient �n;5n;n is left undeter-

mined and can be chosen at will being related to a zero
mode, as we will see below. The coefficients �n;i;k, with

5k < i < 5kþ 3 are then determined in a similar manner
as those with i < 5k. One then obtains the �n;i¼5kþ3;k in

way similar to the way one obtained the �n;5k;k (checking

again that an;i¼5kþ3;k ¼ �18 do not vanish). One is left

with one arbitrary choice of �n;5nþ3;n, and the remaining

coefficients �n;i;k, with i > 5kþ 3 are obtained inverting

an infinite triangular matrix (or a finite one, if one restricts
oneself to some maximum value of i). The two arbitrary
constants to be fixed each correspond to one of the two
independent zero modes of the operator L. One of these
zero modes is �0 given in Eq. (24), and another indepen-
dent zero mode is given by

�0;bis ¼ 1

z

�
1þ 1

z
þ 1

z2

�
e�z � 1

z

�
1� 1

z
þ 1

z2

�
ez:

One can check that both functions �0 and �0;bis can be

expanded as in (A6) with all coefficients �n;i;k vanishing

but those with k ¼ n, and i 
 5n for �0 and those with
k ¼ n, and i 
 5nþ 3 for �0;bis. Note, as discussed in

the main text, that the inclusions of such zero modes in
the series expansions might be necessary to enforce the
hierarchy �n � �n�1.
Having shown how one can obtain �n in the announced

form, it is easy to obtain the corresponding expansions for
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�n and �n from Eqs. (A2) and (A3). There, there is no free
constant left to be chosen.

Let us now turn to the asymptotic expansion (30) for
large z. Following a similar reasoning as previously, it is
first easy to see that, provided such an expansion holds up
to order �n, then the right-hand side of Eq. (A5) will be a
series of the form

�nþ1e�ðnþ1Þz Xi¼3

i¼�1
mn;iz

i:

But one also sees from Eq. (A11) that this form is also
the one resulting from the action of the linear operator L

on the series for �n given in (30). The expression (A11)
then shows that one can solve uniquely for all the
coefficients �n;i starting from the largest values of i, and
no free constants appear in this case because the coefficient
tn;i;n ¼ 6nþ 3n2 does not vanish. One can then easily

obtain the expressions for �n and �n in the form (30)
with no extra free constant.

APPENDIX B: SERIES INSIDE THE SOURCE

The coefficients of the series expansions (48) can
be found solving order by order in x2; the first orders
read

�ðxÞ¼�ðxÞ
0 þ 1

20ð2e�ðxÞ
0 þe�

ðxÞ
0 �3e�

ðxÞ
0
þ�ðxÞ

0 Þ
�
ð3þ4e��ðxÞ

0 �39e�
ðxÞ
0 �2e�

ðxÞ
0
�2�ðxÞ

0 þ18e�
ðxÞ
0
��ðxÞ

0 �2e��ðxÞ
0 �e�

ðxÞ
0 �5e�

ðxÞ
0
��ðxÞ

0

þ24e�
ðxÞ
0
þ�ðxÞ

0 Þm2þ2

�
3e�

ðxÞ
0
þ�ðxÞ

0

�
PðxÞ
0 � 5

x3�

�
�2e�

ðxÞ
0

�
PðxÞ
0 � 3

x3�

�
þe�

ðxÞ
0

�
PðxÞ
0 þ 7

x3�

���
x2þOðx4Þ;

�ðxÞ¼1

4

�
4

x3�
�e��ðxÞ

0
�2�ðxÞ

0 ð�1þe�
ðxÞ
0 Þð�e�

ðxÞ
0 þe�

ðxÞ
0 þ2e�

ðxÞ
0
þ�ðxÞ

0 Þm2

�
x2þOðx4Þ;

�ðxÞ¼�ðxÞ
0 þ1

4
e��ðxÞ

0
�2�ðxÞ

0

�
�e�

ðxÞ
0 m2þe�

ðxÞ
0 m2�2e2�

ðxÞ
0 m2þ2e�

ðxÞ
0
þ2�ðxÞ

0

�
m2þPðxÞ

0 þ 1

x3�

��
x2þOðx4Þ;

PðxÞ¼PðxÞ
0 �1

8

�
PðxÞ
0 þ 3

x3�

�
e��ðxÞ

0
�2�ðxÞ

0

�
�e�

ðxÞ
0 m2þe�

ðxÞ
0 m2�2e2�

ðxÞ
0 m2þ2e�

ðxÞ
0
þ2�ðxÞ

0

�
m2þPðxÞ

0 þ 1

x3�

��
x2þOðx4Þ:

APPENDIX C: INFINITELYMANY SOLUTIONS AT
INFINITY: A SERIES EXPANSION APPROACH

In this Appendix, we would like to complete the argu-
ment on the existence, at infinity, of infinitely many solu-
tions of the system (8) having the same asymptotic
behavior given by the linear solution (24). Our starting
point is Sec. III B, where we assumed that there exists a
solution �� � f ��; ��; ��g, such that

� ! �0 for z ! 1;

where �0 � f�0; �0; �0g; we looked for a solution � as
small perturbations of the known solution ��:

� ¼ ��þ ��;

where �� � f��; ��; ��g. We gave the leading behavior
of these solutions at Eq. (40). In the following, we would
like to go beyond this leading behavior analysis and find a
consistent way of looking for the solution �� through a
series expansion.

1. Equations for ��

The first step is to write down the equations for ��
that would generalize the leading order equations (32).

Schematically, taking into account (31), the system
of equations (8) can be linearized around the
solution ��,

@Ft

@�

�������� ��
��þ @Ft

@�0

�������� ��
��0 ¼ 0;

@FR

@�

�������� ��
��þ @FR

@�0

�������� ��
��0 ¼ 0;

@fg
@�

�������� ��
��þ @fg

@�0

�������� ��
��0 þ @fg

@�00

�������� ��
��00 ¼ 0:

(C1)

It is important to note that in the linearized Bianchi iden-
tity, the last equation of (C1), we do not assume that the
terms containing ��00 are negligible, so we keep them.
We are interested in asymptotic solutions at infinity; thus
we can substitute �0 instead of �� in (C1), since �� ! �0 at
z ! 1.
Further, since we are considering a range of distances

where the solution is deep in the linear regime, we can
safely keep only the lowest order in powers of �0, while
making an expansion of coefficients of Eqs. (C1). This
leads to the equations,
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��0

z
þ ��

z2
þ 1

2
ð��þ 3��þ z��0Þ ¼ be�z

��
1

3z3
� 1

z2
� 2

3z

�
��þ

�
2

z2
þ 2

3z

�
��0 þ 1

3z
��þ 1

z
��

þ
�
� 1

2z2
� 1

2z
þ 1

3
þ z

6

�
��0

�
;

��0

z
� ��

z2
� 1

2
ð��þ 2��Þ ¼ be�z

��
1

z3
þ 1

z2

�
��þ

�
2

3z3
þ 2

3z2
þ 4

3z
þ 1

3

�
��

þ
�
� 1

3z
þ 2

3

�
��þ

�
� 1

3z2
� 1

3z

�
��0

�
;

��0

2z
� ��

z2
¼ be�z

z2

��
1

z3
þ 1

z2
� 2

3z
þ 1

3

�
��þ

�
1

3z2
þ 1

3z

�
��0 þ

�
2

3z
þ 2

3

�
��þ

�
� 1

z2
� 1

z
� 2

3

�
��0

þ
�
� 2

3z
� 2

3

�
��þ

�
1

3z2
þ 1

3z
� 1

3

�
��0 þ

�
1

3z
þ 1

3

�
��00

�
: (C2)

One can of course check that keeping only the
leading behavior in the limit z ! 1 leads to the
equations (32).

2. Ansatz for ��

The next step is to adopt an appropriate ansatz, which
can be chosen of the form

�� ¼ F�ðzÞ exp
�
z

4
� fðzÞez=2

�
;

�� ¼ �F�ðzÞ z
2

2
exp

�
z

4
� fðzÞez=2

�
;

�� ¼ �F�ðzÞ
ffiffiffi
b

p
3

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

z

s
exp

�
� z

4
� fðzÞez=2

�
;

(C3)

where the function f is assumed to satisfy the equation

f0ðzÞ ¼ 3z3=2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð1þ zÞp � fðzÞ

2
: (C4)

The form of this ansatz will be justified later. The formal
solution of Eq. (C4) is given by

fðzÞ ¼ e�z=2
Z z

z0

3t3=2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð1þ tÞp et=2dt:

The exact choice of the lower integral bound z0 does not
matter so much, since it will just translate into an overall
constant factor in Eqs. (C3). An asymptotic expansion of
the solution can be easily found to be

fðzÞ ¼ 1ffiffiffi
b

p
�
3z� 15

2
þ 9

8z
þ � � �

�
: (C5)

Note that the leading behavior of the ansatz (C3) matches
the asymptotic behavior (40).

3. The equations for the Fi’s

Once the ansatz (C3) has been chosen, we can compute
the equations for the Fi’s. They read9

Et � Eð0Þ
t þ ð ffiffiffi

b
p

e�z=2ÞEð1Þ
t þ ðbe�zÞEð2Þ

t þ ðb3=2e�3z=2ÞEð3Þ
t þ ðb2e�2zÞEð4Þ

t ¼ 0;

ER � Eð0Þ
R þ ð ffiffiffi

b
p

e�z=2ÞEð1Þ
R þ ðbe�zÞEð2Þ

R þ ðb3=2e�3z=2ÞEð3Þ
R ¼ 0;

EB � Eð0Þ
B þ ð ffiffiffi

b
p

e�z=2ÞEð1Þ
B þ ðbe�zÞEð2Þ

B þ ðb3=2e�3z=2ÞEð3Þ
B ¼ 0;

(C6)

with

9Note that we have multiplied the tt equation by a factor
ffiffiffi
b

p
e�z=2 in order to have consistent form among the three equations.
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Eð0Þ
t ½Fi� � 3z5=2

4
ffiffiffiffiffiffiffiffiffiffiffiffi
zþ 1

p ½F�ðzÞ � F�ðzÞ�;

Eð1Þ
t ½Fi� � � 1

8
½2ðz2 þ zþ 12ÞF�ðzÞ þ 4zF0

�ðzÞ � ð12þ zÞF�ðzÞ � 4zF0
�ðzÞ�;

Eð2Þ
t ½Fi� � 1

4
ffiffiffi
z

p ffiffiffiffiffiffiffiffiffiffiffiffi
zþ 1

p ½�2z2ðzþ 3ÞF�ðzÞ þ ðz3 þ 2z2 � 3z� 3ÞF�ðzÞ�;

Eð3Þ
t ½Fi� � � 1

24z2
½ð6z3 � 10z2 � 52zÞF�ðzÞ � ð8z3 þ 24z2ÞF0

�ðzÞ þ ðz3 þ 2z2 þ 21z� 3ÞF�ðzÞ
þ ð4z3 þ 8z2 � 12z� 12ÞF0

�ðzÞ�;
Eð4Þ
t ½Fi� � 1

9z2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ z

p
F�ðzÞ;

Eð0Þ
R ½Fi� � 1

2
½F�ðzÞ þ F�ðzÞ � 2F�ðzÞ�;

Eð1Þ
R ½Fi� � 1

12z5=2
ffiffiffiffiffiffiffiffiffiffiffiffi
zþ 1

p ½ð2z3 þ 3z2 þ zþ 2ÞF�ðzÞ � 4ðz2 þ zÞF0
�ðzÞ � 6ðz3 þ z2ÞF�ðzÞ�;

Eð2Þ
R ½Fi� � 1

12z2
½6zð1þ zÞF�ðzÞ þ ð1þ 5z� 8z2ÞF�ðzÞ þ 4ð1þ zÞF0

�ðzÞ�;

Eð3Þ
R ½Fi� � 1

9z7=2
ffiffiffiffiffiffiffiffiffiffiffiffi
zþ 1

p ½ðz4 þ 5z3 þ 6z2 þ 4zþ 2ÞF�ðzÞ�;

Eð0Þ
B ½Fi� � 1

4
½2F�ðzÞ þ F�ðzÞ � 3F�ðzÞ�;

Eð1Þ
B ½Fi� � � 1

24
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z5ðzþ 1Þp ½�6ðz2 þ z2ÞF�ðzÞ þ ðz2 þ zþ 2ÞF�ðzÞ � 4ðzþ z2ÞF0

�ðzÞ þ ð36zþ 30ÞF�ðzÞ

þ 24ðzþ z2ÞF0
�ðzÞ�;

Eð2Þ
B ½Fi� � 1

48z4
½2zð4z3 � 7z2 þ 21zþ 20ÞF�ðzÞ þ ð8z3 þ 8z2ÞF0

�ðzÞ þ 8zð2z2 þ 3zþ 3ÞF�ðzÞ
þ ð35z2 þ 27z� 4ÞF�ðzÞ þ ð8z2 � 24z� 16ÞF0

�ðzÞ � 16ðz2 � 16zÞF00
�ðzÞ�;

Eð3Þ
B ½Fi� � 1

36z5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðzþ 1Þp ½ð10z4 þ 21z3 þ 18z2 þ 9zþ 6ÞF�ðzÞ � 4zð2z3 þ 5z2 þ 6zþ 3ÞF0

�ðzÞ�: (C7)

Note that we have used Eq. (C4) to eliminate f0 and f00;
surprisingly enough, Eqs. (C7) do not contain f either.

4. Expansion in powers of
ffiffiffi
b

p
e�z=2

The next step is to solve for the functions Fi. To do so,
let us assume they are of the form

FiðzÞ ¼
X1
n¼0

FðnÞ
i ðzÞð ffiffiffi

b
p

e�z=2Þn (C8)

with FðnÞ
i ðzÞ at most polynomial, i.e.

FðnÞ
i ðzÞ ¼ OðzpðnÞ

i Þ; (C9)

and solve Eqs. (C2) order by order in
ffiffiffi
b

p
e�z=2.

a. 0th order

A priori, out of the three equations (C6), one can get the

three 0th order equations for Fð0Þ
i

Eð0Þ
k ½Fð0Þ

i � ¼ 0;

where k ¼ ft; R; Bg and i ¼ f�; �;�g. However, only two
of them are independent. To see this more algebraically,
one can write the 0th order equations in a matrix form

M � Fð0Þ ¼ 0;

where

M ¼
3z5=2

4
ffiffiffiffiffiffiffi
zþ1

p 0 � 3z5=2

4
ffiffiffiffiffiffiffi
zþ1

p
1
2

1
2 �1

1
2

1
4 � 3

4

0
B@

1
CA and Fð0Þ ¼

Fð0Þ
�

Fð0Þ
�

Fð0Þ
�

0
B@

1
CA:

The vector
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V Ker ¼
2
z

3z3=2ffiffiffiffiffiffiffi
zþ1

p

� 6z3=2ffiffiffiffiffiffiffi
zþ1

p

0
BB@

1
CCA

belongs to the kernel of M>, while the vectors

V � ¼
4
ffiffiffiffiffiffiffi
zþ1

p
3z5=2

0
0

0
B@

1
CA; V� ¼

� 4
ffiffiffiffiffiffiffi
zþ1

p
3z5=2

2
0

0
B@

1
CA

can be used to get the equations

V >
� �M � Fð0Þ ¼ Fð0Þ

� ðzÞ � Fð0Þ
� ðzÞ ¼ 0;

V>
� �M � Fð0Þ ¼ Fð0Þ

� ðzÞ � Fð0Þ
� ðzÞ ¼ 0:

(C10)

The fact that M is of rank 2 is a direct consequence of the
ansatz (C3), and, in particular, of the differential equation
(C4) satisfied by f. More precisely, if one does not assume
anything on the function f, and then computes the 0th
order equations out of the ansatz (C3), they are still of

the homogeneous form N:Fð0Þ ¼ 0, but with the matrix N
given by

N ¼

ffiffi
b

p
4 zðfðzÞ þ 2f0ðzÞÞ 0 �

ffiffi
b

p
4 zðfðzÞ þ 2f0ðzÞÞ

1
2

ffiffi
b

p ffiffiffiffiffiffiffiffiffiffiffi
zðzþ1Þ

p
ðfðzÞþ2f0ðzÞÞ
6z2

�1

1
2

ffiffi
b

p ffiffiffiffiffiffiffiffiffiffiffi
zðzþ1Þ

p
ðfðzÞþ2f0ðzÞÞ

12z2
� bðzþ1ÞðfðzÞþ2f0ðzÞÞ2

12z3

0
BBBB@

1
CCCCA:

In order to have N of rank 2 (otherwise Fð0Þ is trivially 0),
it is necessary to impose that its determinant is 0. If
in addition we require f to be positive, the condition
detN ¼ 0 translates into the differential equation (C4).

To conclude, we have found that the 0th order equations

are not enough to fix the Fð0Þ
i ’s; however, they allow one to

understand the origin of the condition (C4) and enforce

Fð0Þ
� ðzÞ ¼ Fð0Þ

� ðzÞ ¼ Fð0Þ
� ðzÞ. We now have to go to next

order to solve for Fð0Þ
� ðzÞ.

b. First order

The first order equations read

Eð0Þ
k ½Fð1Þ

i � þ Eð1Þ
k ½Fð0Þ

i � ¼ 0: (C11)

Let us first project this set of equations onto the Kernel
vector VKer, since we know this procedure will cancel the

Eð0Þ
k ½Fð1Þ

i � contribution:

V>
Ker:E

ð1Þ½Fð0Þ
i � ¼ 3

ffiffiffi
b

p
2zðzþ 1Þ ½ð6zþ 5ÞFð0Þ

� ðzÞ

þ 4zðzþ 1ÞFð0Þ0
� ðzÞ� ¼ 0; (C12)

where we have used the relations (C10) to replace F�, F�

by F�. Equation (C12) can be straightforwardly solved,

leading to

Fð0Þ
� ðzÞ ¼ Fð0Þ

� ðzÞ ¼ Fð0Þ
� ðzÞ ¼ A

z5=4ð1þ zÞ1=4 ; (C13)

with A being an arbitrary integration constant. A few re-
marks can be made at this point. First, the arbitrariness of
the constant A explicitly shows that out of a solution �� of
the system of equations (8), it is possible to find a family of
infinite number of new solutions, with the same asymptotic

behavior at infinity. Second, we note that Fð0Þ
i ¼ Oðz�3=2Þ,

in agreement with the condition (C9).
Let us turn now to the two other first order equations.

Projecting Eq. (C11) onto V� and V� leads to

Fð1Þ
� ðzÞ � Fð1Þ

� ðzÞ � 1

3

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

z

s
Fð0Þ
� ðzÞ ¼ 0;

Fð1Þ
� ðzÞ � Fð1Þ

� ðzÞ þ �2z3 � z2 þ zþ 2

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z5ðzþ 1Þp Fð0Þ

� ðzÞ

� 4z2 þ 4z

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z5ðzþ 1Þp Fð0Þ0

� ðzÞ ¼ 0:

These equations allow one to replace Fð1Þ
� and Fð1Þ

� by Fð1Þ
�

in the equations of order 2. These order 2 equations will

lead to an equation for Fð1Þ
� , and two other equations

relating Fð2Þ
� and Fð2Þ

� to Fð2Þ
� , and so on and so forth.

c. nth order

The nth order equations read

Eð0Þ
k ½FðnÞ

i � þ Eð1Þ
k ½Fðn�1Þ

i � þ Eð2Þ
k ½Fðn�2Þ

i �
þ Eð3Þ

k ½Fðn�3Þ
i � þ Eð4Þ

k ½Fðn�4Þ
i � ¼ 0:

By iteration, it is possible to prove that

FðnÞ
� ðzÞ � FðnÞ

� ðzÞ � FðnÞ
� ðzÞ ¼ Oðz�3=2þnÞ: (C14)

We can sketch briefly how the demonstration goes: after

having solved the equation of order n, the functions Fðn�1Þ
i

are assumed to be known, and FðnÞ
� , FðnÞ

� can be expressed

as functions of fFðnÞ
� ; Fðn�1Þ

i g. Then, projecting the equa-

tions of order nþ 1 onto VKer allows one to find FðnÞ
� ,

leading to the scaling (C14). Projecting onto V� and V�
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relates Fðnþ1Þ
� and Fðnþ1Þ

� to Fðnþ1Þ
� , closing the iteration

process.
To summarize the findings of this section, we can say

that we have found a class of solutions for the system of
equations (C2). These solutions are of the form (C3),
where the functions Fi can be expanded into the series of
Eq. (C8). There are an infinite number of such solutions.
This shows that out of a solution �� of the system
of equations (8), it is possible to find an infinite family
of new solutions, with the same asymptotic behavior at

infinity. This freedom is crucial to match the vacuum
solution with the one with source.

5. Numerical validation

To conclude this study of the infinitely many solutions
satisfying the same boundary conditions at infinity, we
checked that our solution (C3) fits well the numerical
solution of the system of equations (C2). An example is
shown in Fig. 9.
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