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Up to now there has been no search for gravitational waves from the r-modes of neutron stars in spite

of the theoretical interest in the subject. Several oddities of r-modes must be addressed to obtain an

observational result: The gravitational radiation field is dominated by the mass current (gravitomagnetic)

quadrupole rather than the usual mass quadrupole, and the consequent difference in polarization affects

detection statistics and parameter estimation. To astrophysically interpret a detection or upper limit it is

necessary to convert the gravitational-wave amplitude to an r-mode amplitude. Also, it is helpful to know

indirect limits on gravitational-wave emission to gauge the interest of various searches. Here I address

these issues, thereby providing the ingredients to adapt broad-band searches for continuous gravitational

waves to obtain r-mode results. I also show that searches of existing data can already have interesting

sensitivities to r-modes.
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I. INTRODUCTION

In recent years the LIGO Scientific Collaboration and
Virgo Collaboration have performed numerous searches
for continuous gravitational-wave (GW) emission from
rapidly rotating neutron stars. These include narrow-band
searches for known pulsars [1–5] (i.e. on or near a timing
solution), broad-band searches for the (nonpulsing) accret-
ing neutron star in the low-mass x-ray binary Sco X-1
[6,7], and all-sky broad-band surveys for previously un-
known neutron stars [6,8–12]. Also, a broad-band search
for the nonpulsing central compact object in supernova
remnant Cas A is underway [13]. (After this paper was
submitted, the Cas A search was presented in Ref. [14].)

Cas A is the youngest object targeted by a continuous
GW search so far, and at 300 years old it may still be
subject to the r-mode GW emission mechanism. The
r-modes [15] are rotation-dominated oscillations which
are driven unstable by GW emission [16,17] (the
‘‘Chandrasekhar-Friedman-Schutz’’ version of the two-
stream instability [18,19]) even in the presence of
nuclear-matter viscosity [20–22]. This makes r-modes
observationally a very interesting possibility for GW
emission in newborn neutron stars [23] and accreting neu-
tron stars in low-mass x-ray binaries [24,25]. Nonlinear
hydrodynamic saturation of the r-mode instability is now
thought (under most conditions) to occur at amplitudes
several orders of magnitude below those originally guessed
[26], making unlikely the most optimistic scenario of
extragalactically detectable highly chirping signals from
young neutron stars [23]. However a low saturation ampli-
tude would also keep r-modes active in neutron stars up to
thousands of years old under the right conditions [26].
Therefore, it is interesting to search for continuous nearly
periodic r-mode GW emission from Cas A and other very
young pulsing or nonpulsing neutron stars.

However up to now the continuous GW observational
literature has assumed that GW emission is from ‘‘elliptic-
ity,’’ i.e. an ‘ ¼ m ¼ 2 mass quadrupole which rotates
with the star. By contrast r-modes are dominated by ‘ ¼
m ¼ 2 current quadrupole emission [20]. The multipole
structure of the radiation field affects the wave polarization
and detector response to a signal. These in turn affect
detection statistics and parameter estimation, most notably
the procedure used to convert the detector response hðtÞ
into an intrinsic GW strain amplitude h0 (or an observa-
tional upper limit on it). Also for an r-mode the astrophys-
ical interpretation of a measured h0 or upper limit must
lead to a mode amplitude rather than an ellipticity. (If the
mode amplitude evolves in a complicated way, as predicted
under some conditions [27], an observational upper limit
would apply to a time-rms amplitude.) Finally, indirect
limits on GW emission used as milestones for search
sensitivities and to evaluate potential searches are different
for r-modes than for ellipticity.
In this paper I address these amplitude- and polarization-

related issues for r-mode GW emission. This is sufficient
for broad-band searches, i.e., those not targeting a known
pulsar. I do not address two important issues related to
frequency and phase: The r-mode frequency as a function
of neutron-star spin frequency depends on the equation
of state and relativistic effects (e.g. [28]). Frequency esti-
mates are needed for GW searches targeted at known
pulsars and will be addressed elsewhere [29]. Also, in
some scenarios [27] the r-modes may not maintain phase
coherence over likely observing times. This also will be
addressed elsewhere [30].
The rest of this paper goes as follows: In Sec. II, I briefly

review the basics of r-modes and the multipole formalism
of GW generation. In Sec. III, I show how these issues
relate to GW observations, translating the theory-oriented
quantities in Sec. II to those used in the observational
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literature. I present indirect limits on r-mode GWemission
in Sec. IV. I summarize in Sec. V. Unless otherwise noted I
use geometrized units, where Newton’s gravitational con-
stant and the speed of light are unity, and 1M� ¼ 4:92�
10�6 s. I also use ‘‘neutron star’’ in a broad sense which
includes the possibility of quark matter, meson conden-
sates, and other exotica.

II. MULTIPOLE STRUCTURE

Here I describe ellipticity and r-mode GW emission in
the context of the multipole formalism for GW generation,
particularly the canonical review by Thorne [31].

The LIGO and Virgo continuous-wave observational
literature characterizes the mass quadrupole moment of a
neutron star in terms of an equatorial ellipticity

� ¼ ðIxx � IyyÞ=Izz; (1)

where the z axis is the rotation axis of the star and Iab is the
moment of inertia tensor. The latter is identical to the mass
quadrupole tensor up to a trace, which is not important
here. The x and y axes are chosen to corotate with the star
so that � does not oscillate. It is convenient to relate � to the
scalar mass multipoles I‘;m, which are given in a nonrotat-
ing frame and the Newtonian limit by [31]

I‘;m ¼ 16�

ð2‘þ 1Þ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þ 1Þð‘þ 2Þ
2‘ð‘� 1Þ

s Z
d3r�r‘Y‘;m�; (2)

with � representing the mass density, r the radial coordi-
nate, and Y‘;m the standard spherical harmonic. For a real-
valued density perturbation fixed with respect to a star
rotating with angular velocity �, the time dependence of
these is I‘;m ¼ I‘;�m� / e�im�t. From, e.g., Eq. (4.7a) of
Ref. [31] we obtain the relation

jI2;2j ¼
ffiffiffiffiffiffiffi
8�

5

s
Izz�: (3)

This can be checked by examining the GW luminosity:
Inserting Eq. (3) into Eq. (4.16) of Ref. [31] obtains, e.g.,
Eq. (20) of Ref. [6]:

dE

dt
¼ !6

16�
jI2;2j2 ¼ !6

10
I2zz�

2; (4)

where! is the angular frequency of the wave, equal tom�
for a perturbation rotating with the star. (The above ex-
pressions assume a negligible contribution from all mass
multipoles except I2;2 ¼ I2;�2�, but there are arguments
that I2;1 also can be significant in some stars—see Jones
[32] for a new one and a summary of older ones.)

In Newtonian gravity and the slow-rotation approxima-
tion, an r-mode is an Eulerian velocity perturbation [33]

�vj ¼ ��Rðr=RÞ‘YB;‘;‘
j ei!t; (5)

where � is a dimensionless amplitude, R is the stellar
radius, and the magnetic-parity vector spherical harmonic
is defined in terms of scalar spherical harmonics Y‘;m

as [31]

YB;‘;m
j ¼ ½‘ð‘þ 1Þ��1=2�jkprN

krpY‘;m; (6)

where Nk is the unit vector pointing from the center of
the star. The GW frequency f ¼ !=ð2�Þ is identical to
the mode frequency, which is related to the spin frequency
by [15]

! ¼ �ð‘þ 2Þð‘� 1Þ
‘þ 1

� (7)

(using ‘ ¼ m for the proper r-modes).
The GW strain tensor can be expanded as [31]

hjk ¼ 1

r

X1

‘¼2

Xþ‘

m¼�‘

�
d

dt

�
‘ðI‘;mTE2;‘;m

jk þ S‘;mTB2;‘;m
jk Þ; (8)

where the spin-2 tensor spherical harmonics of electric ðEÞ
and magnetic ðBÞ parity are defined [31]

TE2;‘;m
jk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð‘� 2Þ!
ð‘þ 2Þ!

s
r2rjrkY

‘;m � trace; (9)

TB2;‘;m
jk ¼ NpT

E2;‘;m
qðj �kÞpq: (10)

As well as the mass multipoles I‘;m we encounter the
gravitomagnetic or current multipoles

S‘;m ¼ �32�

ð2‘þ 1Þ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘þ 2

2ð‘� 1Þ

s Z
d3r�r‘vjY

B;‘;m�
j : (11)

The time derivatives in Eq. (8) suppress GWemission from
higher-‘ multipoles by powers of a characteristic velocity,
and thus the ‘ ¼ 2 multipoles tend to be dominant. For
r-modes, the ‘ ¼ 2 mode is also the most unstable and the
least damped by viscosity [20].
It is also useful to write the full GW luminosity includ-

ing all multipoles [31]

dE

dt
¼ 1

32�

� X1

‘¼2

Xþ‘

m¼�‘

���������
�
d

dt

�
‘þ1

I‘;m
��������

2þ
��������
�
d

dt

�
‘þ1

S‘;m
��������

2
�
;

(12)

where the angle brackets denote a time average.
By using Eq. (11) and orthonormality relations from

Thorne [31], we see that an ‘ ¼ 2 r-mode produces a
current quadrupole [23]

S2;2 ¼ � 32
ffiffiffi
2

p
�

15
�M�R3 ~Jei!t; (13)

where ~J is a dimensionless functional of the neutron-star
equation of state and M and R are the mass and radius of
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the (unperturbed) star. Neglecting the r-mode density per-
turbation, all multipoles other than S2;2 vanish—including
I2;2 and I2;�2.

The r-mode amplitude � which I use here is related to
others as follows: The results of Arras et al. [26] are

expressed in terms of A1 ¼ �
ffiffiffiffiffiffiffiffi
~J=2

p
, sometimes called c�

in other papers, which is about 0:1� for fiducial neutron-
star parameters (see below). Bondarescu et al. [27] express
most of their results in terms of �C�, which removes the
adiabatic change of amplitude as the star spins down.
For the example mode triplet they use, the zero-viscosity

parametric instability threshold is normalized to jC�j0 ¼
0:011 s�1=2. This makes their �C� amplitudes about 1:1�
103�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=8:4� 103 s�1

p
or about 200� at a spin frequency

of 100 Hz.
In Eqs. (5) and (7) and the others derived from them, I

have neglected corrections of relative order �2=ð� ��Þ
where �� is the mean density of the nonrotating star.
These include the density perturbation associated with an
r-mode, which contributes to the GW tensor and mass
quadrupole also at relative order �2=ð� ��Þ. These correc-
tions rise to the 10% level only for stars rotating faster than
the fastest known pulsars [22]. In view of the uncertain
factors of 2 or more in quantities such as the moment of
inertia (see below), these and the somewhat larger correc-
tions due to relativistic gravity (e.g., [34]) are not impor-
tant. The exception is the correction to Eq. (7), which
affects narrow-band searches for known pulsars and will
be addressed elsewhere [29].

III. DIRECT OBSERVATIONS

Here I discuss the effects of the r-mode multipole
structure on aspects of direct GW observations, including
polarizations, detection statistics, waveform parameter
estimation (especially amplitude), and upper-limit
procedures.

Equation (8) implies that GWs from r-modes will
have different polarizations than GWs from ellipticity. To
see this compare two GWs with equal luminosity (12), one
dominated by a mass multipole I‘;m and one dominated
by the corresponding current multipole S‘;m. The linear þ
and � polarizations are projected out of the GW strain
tensor as

hþ ¼ hjkðpjpk � qjqkÞ=2 ¼ hjke
jk
þ ;

h� ¼ hjkðpjqk þ qjpkÞ=2 ¼ hjke
jk
� ;

(14)

where the unit vectors pj and qj are orthogonal to each
other and to Nj, and the basis tensors ejk are not important
here. Using the identity qj ¼ �jabNapb with Eq. (10), we

find that

TB2;‘;m
jk ejkþ ¼ �TE2;‘;m

jk ejk� ;

TB2;‘;m
jk ejk� ¼ TE2;‘;m

jk ejkþ :
(15)

For a fixed luminosity, the GW tensor hjk of the

current-dominated GW is obtained from that of the mass-

dominated signal by taking TE2;‘;m
jk ! TB2;‘;m

jk . Substituting

Eq. (8) into Eq. (14) and combining with Eq. (15), we see
that this takes

ðhþ; h�Þ ! ð�h�; hþÞ: (16)

Since the þ and � polarizations are positive and negative
parity eigenstates, and the difference between mass and
current multipoles is parity, this was to be expected. Note
that the GW power radiated at a given angle from the star’s
rotation axis is proportional to h2þ þ h2�—e.g., Eqs. (4.12)
and (4.13) of Thorne [31]—and thus is not affected.
The strain response of a detector is the contraction of the

GW tensor hjk with a tensor describing the detector’s beam

pattern. It can be written by combining Eqs. (10)–(11) and
(20)–(22) of Ref. [35] as (making the time dependence
explicit)

hðtÞ ¼ ½aðtÞ cos2c þ bðtÞ sin2c �hþðtÞ
þ ½bðtÞ cos2c � aðtÞ sin2c �h�ðtÞ; (17)

where c is the polarization angle, explained simply in
footnote 4 of Ref. [1], whose definition is equivalent to
fixing pj and qj in Eq. (14). (The precise forms of the
modulation functions a and b arising from the rotation of
the Earth-based detector are not needed here.) From this
we see that Eq. (16) is equivalent to taking

c ! c þ �=4: (18)

The transformation (18) lets us quickly examine the suit-
ability for r-modes of data analysis methods developed
for ellipticity.
Many GW search methods assume a uniform Bayesian

prior on c and thus are not affected by the transformation
(18). TheF -statistic of Jaranowski et al. [35] is one, as can
be seen by the lack of c in their Eq. (55) and its derivation.
The F -statistic was derived as a frequentist maximization
over c (and other angles); but when deriving a Bayesian
alternative B-statistic, Prix and Krishnan [36] explicitly
showed that F has an implicit uniform prior on c . The
B-statistic itself has an explicit uniform prior on c . The
multi-interferometer F -statistic [37] performs a weighted
sum of F over detectors and thus also has an implicit
uniform prior in c . The heterodyning method used in
most known-pulsar GW searches is Bayesian and usually
uses an explicit uniform prior in c , as in Eq. (15) of
Dupuis and Woan [38]. Semicoherent searches for un-
known pulsars based on combining the raw power
[8,9,11] or F -statistics [10,12] of short stretches of
data also effectively use implicit uniform priors on c
(see Abbott et al. [9], especially the Appendices, for details
of the former). The radiometer search for Sco X-1 [7] was
adapted from a stochastic background search and explicitly
assumes no preferred polarization angle.
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Some recent known-pulsar searches [4,5] use values of
c from measurements of pulsar wind nebulae. The mea-
surement and error estimates can be folded into a Bayesian
method [38] as nonuniform priors on c , or the best c
value can be inserted into the F -statistic to obtain the
G-statistic [39]. In order to cover the possibility of
r-modes, such known-pulsar searches will need to target
not only different GW frequencies from the ellipticity case
but also c ! c þ �=4.

Parameter estimation of candidate signals is also af-
fected by Eq. (18). The observational literature character-
izes the continuous GW amplitude with an intrinsic strain
amplitude defined in terms of ellipticity as

h0 ¼ r�1!2Izz� ¼ r�1!2

ffiffiffiffiffiffiffi
5

8�

s
jI2;2j; (19)

where the second equality uses Eq. (3). This h0 is the
amplitude of the response of a hypothetical detector at
either of the Earth’s poles to a signal originating from a
star over either pole whose rotation axis is parallel to that
of the Earth. It is also simply related to the GW luminosity.
The full parameter estimation problem is lengthy and I do
not address it here, but I note the following simple and
useful approximation. A detected signal will be integrated
for much more than one day, since even semi–coherent-
search candidates will be followed up coherently. In this
limit Jaranowski and Krolak [40] performed detailed
simulations confirming that the beam-pattern modulation
averages out and the signal is effectively replaced by an
unmodulated sine wave with amplitude

heff ¼ h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ B cosð4c Þ

q
; (20)

where the lengthy expressions for the functions A and B are
given in their Eqs. (36) et seq. Thus, c ! c þ �=4 simply
flips the sign of B, which for most source parameters is a
few percent correction to heff . (It may seem strange that h0
is affected; this is because we are no longer transforming c
at fixed luminosity but rather for fixed detector response.)

An accurate measurement of c could yield information
on whether a signal is from ellipticity or an r-mode: For a
known pulsar the ratio of GW frequency to spin frequency
already distinguishes between mechanisms and thus c is
redundant. But if the GW signal comes from a pulsar wind
nebula without a timed pulsar, and the GW-measured c
(assuming ellipticity) is inconsistent with the orientation
of a jet or torus, this would indicate r-mode emission.
Also, a GW signal coming from Sco X-1 or another non-
pulsing accreting neutron star could be compared with
possible orientations from radio jets [41] or x-ray repro-
cessing [42] (since the difference between these estimates
is less than �=4).

The practicality of a GW-only measurement of c can be
roughly estimated as follows: A GW detection (or candi-
date) with a semi-coherent search (which is needed for the

objects described above) will be followed up with a coher-
ent search, producing a result of comparable sensitivity to a
known-pulsar search. From Fig. 2 of the latest known-
pulsar search [5], we see that c is measured for the loudest
hardware-injected signals to an accuracy of a few times
10�3 radians. Comparing Fig. 2 and Table 1 of Ref. [5], we
see that these loud injections had h0 � 10�23, a few hun-
dred times the upper limits on h0 (a few times 10�26) for
real pulsars at comparable frequencies. Therefore, since
measurement uncertainties scale roughly as 1=h0, the un-
certainty in c would be of order 1 rad near the sensitivity
threshold of the coherent follow-up. Since a coherent
search is typically a few times more sensitive than a semi-
coherent one, a signal found by a coherent follow-up is
likely to be a few times stronger than the coherent-search
threshold. Thus, the uncertainty in c should be somewhat
less than a radian and the �=4 difference in c between
ellipticity and r-modes should be borderline detectable.
Upper limits on h0 from the uniform-c searches are

obtained in terms of populations of software-injected sig-
nals uniformly distributed in c , and hence the upper-limit
procedures for ellipticity remain valid for r-modes. Upper
limits on h0 from searches with a given c determined,
e.g., by a pulsar wind nebula will need to use populations
of injections taking Eq. (18) into account to produce sepa-
rate limits for ellipticity and r-modes.
To convert an estimated or upper-limit h0 to an r-mode

amplitude, it is convenient to write the GW luminosity as

dE

dt
¼ 1

10
!2r2h20; (21)

and compare it to Eq. (12),

dE

dt
¼ !6

32�
jS2;2j2 (22)

if S2;2 is the only nonvanishing multipole. [Note that the
numerical coefficient is 1=2 that of Eq. (4) because the
r-mode is traditionally defined as a complex perturbation
while the ellipticity is defined as real, and ei!t contains
twice as much power as cosð!tÞ which lacks the imaginary
part.] Equating (21) and (22) obtains

h0 ¼
ffiffiffiffiffiffiffi
8�

5

s
r�1!3�MR3 ~J: (23)

This equation allows us to convert h0 to � for a fiducial
value of MR3 ~J, in the same way that h0 is converted to �
for a fiducial value of Izz ¼ 1045 g cm2. (In both cases what
is really measured is a quadrupole—and, if the star’s
rotation axis is known, the parity which determines if it
is a mass or current quadrupole.) Much of the theoretical
neutron-star literature uses a polytropic equation of state
with polytropic index n ¼ 1, which (for Newtonian grav-
ity) fixes ~J � 0:0164 [23]. Combined with the above
choice of Izz and the usual choice ofM ¼ 1:4M�, this fixes
R � 11:7 km rather than the common choices of 10 km
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and 12.53 km. Inverting Eq. (23) and substituting the
fiducial neutron-star values above, we obtain

� ¼ 0:028

�
h0

10�24

��
r

1 kpc

��
100 Hz

f

�
3
: (24)

Note that modern investigations of mode saturation [27]
indicate that � may vary substantially over a typical
observing time. Since detection statistics respond to inte-
grated signal power, the � inferred from them is really a
time-rms average.

Here and below, when I give numerical values I assume
the fiducial neutron-star parameters above and I do not
write scalings withM, R, Izz, and ~J. That is because, even if
the equation of state (EOS) is not specified, as long as it is
barotropic only two of the quantities are independent. By
noting that Izz can be written as MR2 times a relatively
EOS-independent function (e.g. Lattimer and Prakash
[43]) except for very low-mass stars, and that ~J is less
EOS-dependent than MR3, I estimate that the EOS-related
uncertainty in these quantities is dominated by uncertain-
ties in M and R and is therefore usually a factor 2–3.

IV. INDIRECT LIMITS

Indirect limits on GW emission inferred from electro-
magnetic astronomical observables are useful to gauge
the astrophysical interest of existing and planned GW
searches. As in Ref. [44], where I summarize this and
related issues in more detail, I divide the sources into the
four categories of accreting neutron stars, known pulsars
and nonpulsing stars without accretion, and the large popu-
lation of unseen neutron stars sought by all-sky surveys.

For known pulsars the primary indirect limit is the
‘‘spin-down limit (sd),’’ obtained by assuming that all of
the observed change in spin frequency is due to GW
emission. Thus Eq. (21) is equated to the kinetic energy
loss

dE

dt
¼ Izz� _� � ð9=16ÞIzz! _! (25)

to obtain

hsd0 ¼ 1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
45Izz _P

8P

s
; (26)

where P ¼ 2�=� is the observed pulse period. For
r-modes this is 3=2 times the value for ellipticity-
dominated emission, given for instance by Eq. (2) of
Wette et al. [13]. Substituting Eq. (23) obtains

�sd ¼ 405

4096�7=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Izz _PP5

q
M�1R�3 ~J�1

¼ 1:4

�
P

10 ms

�
5=2

� _P

10�10

�
1=2

¼ 0:033

�
100 Hz

f

�
7=2

� j _fj
10�10 Hz s�1

�
1=2

; (27)

where the last equality uses f ¼ 4=3=P from Eq. (7) with
‘ ¼ 2. Again, these are time-rms � limits if � fluctuates
over the observation time as possible in many young
neutron-star scenarios [27]. Based on numbers from the
online version 1.40 of the Australian Telescope National
Facility catalog [45], the pulsars with dipole spin-down
ages P=ð2 _PÞ less than 104 yr generally have �sd of order
unity, except for J0537–6910 which has about 0.1.
Reisenegger and Bonacic [46] also pointed out that,
under the right conditions of cooling and viscosity,
r-modes could remain active in millisecond pulsars for
a long time (comparable to the spin-down age) after the
star stops accreting as a low-mass x-ray binary. The milli-
second pulsars typically have �sd of order 10

�6–10�4, with
a few as high as order 10�2.
A numerically stricter but more model-dependent indi-

rect limit was obtained by Palomba [47] for a few known
pulsars by incorporating additional information on the age
and braking index

n ¼ � €�= _�2: (28)

If _� is proportional to a power of �, the braking index
picks out that power. For radiative braking from a static
(electromagnetic or GW) multipole ‘, the power is n ¼
2‘þ 1, while for particle winds it can be lower. The high-
est value usually considered is n ¼ 7, which corresponds
to constant �. As first argued from adiabatic invariance
[48] and later seen explicitly in nonlinear hydrodynamic
saturation calculations [27], the long-term average of �

might scale as ��1=2, resulting in n ¼ 6. Palomba [47]

took _� to be a sum of two powers of�, one power 5 (GWs
from ellipticity) and one a free parameter; and performed
numerical spin-down evolutions of the pulsars over a wide
parameter space constrained to be consistent with their

known ages and present values of �, _�, and n. Because
all observed braking indices are less than 3, the �5 GW

component of _� is constrained to be less than the spin-
down limit by some factor—in the case of the Crab pulsar,
this limit on h0 is 2.5 times stricter than the spin-down
limit. Without performing such detailed simulations, it is

clear that since r-modes have _� proportional to higher
powers of �, this type of limit on the Crab would be
stricter than the spin-down limit by more than the factor
2.5 for ellipticity.
Compare �sd to the theory of r-mode nonlinear

hydrodynamical saturation: The lowest zero-viscosity
parametric instability threshold ( �C� ¼ 1 in the notation
of Bondarescu et al. [27]) corresponds to � a few times
10�3 for the frequencies of interest. The real threshold,
which tends to serve as an attractor for r-mode evolutions,
depends on temperature as well as frequency and can be an
order of magnitude higher (e.g. their Fig. 6). But it is still
below the values of �sd for young pulsars, which are
high enough to lie in the ‘‘run-away’’ regime of nonlinear
hydrodynamics which requires further study [27]. For
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millisecond pulsars, the appropriate comparison is to lower
values (see the discussion of accreting stars below).

For nonaccreting neutron stars without observed spins,
such as the central compact object in Cas A, age-based
indirect limits (age) are obtained by substituting the age of
the object into the spin-down limits under the assumption
that the object has spun down significantly and predomi-
nantly by GW emission [13]. In this case we have the
relation

P= _P ¼ ðn� 1Þa; (29)

where a is the age of the neutron star and the braking
index n is assumed to be constant or appropriately aver-
aged. In parallel to the derivation of the ellipticity version
of this limit [13], we substitute Eq. (29) into Eq. (26) to

obtain
ffiffiffiffiffiffiffiffi
3=2

p
the value for ellipticity, or

hage0 ¼ 1:5� 10�24

�
300 yr

a

�
1=2

�
3:4 kpc

r

��
6

n� 1

�
1=2

:

(30)

(The fiducial values are for Cas A and constant-� evolu-
tion.) Similarly for the age-based indirect limit on r-mode
amplitude we obtain

�age ¼ 15

8
ffiffiffiffi
�

p ~J�1I1=2M�1R�3!�3a�1=2ðn� 1Þ�1=2

¼ 0:14

�
300 yr

a

�
1=2

�
100 Hz

f

�
3
�

6

n� 1

�
1=2

; (31)

where again the limit is a time-rms value if � fluctuates
quickly compared to the spin-down timescale. For Cas A,
the youngest known neutron star, the values of �age

are 0.14–0.005 over the 100–300 Hz band considered by
Wette et al. [13] and searched by LIGO [14]. Several
similar objects, e.g., the nonpulsing ones listed by
Halpern and Gotthelf [49], have indirect limits of the
same order of magnitude. At a few hundred Hz these values
are comparable to the parametric instability thresholds in
several scenarios analyzed by Bondarescu et al. [27], with
zero-viscosity � thresholds a few times 10�3 and true
thresholds several times higher.

For accreting neutron stars the standard indirect limit is
derived from the argument that accretion torque (acc) and
GW torque are in equilibrium, originally made by
Papaloizou and Pringle [50], put on firm astrophysical
footing by Wagoner [51], and later tied to observations
of spins of accreting neutron stars [24,25]. From
dJ=dt ¼ ð2=!ÞdE=dt—as in Eq. (4.23) of Thorne [31]—
we have

h20 ¼ 5!�1r�2dJ=dt; (32)

equivalent to Eq. (4) of Watts et al. [52]. The indirect limit
on h0 is obtained by assuming accretion of Keplerian
angular momentum at the stellar surface and 100% con-
version of gravitational potential energy to x-ray flux Fx

measured at Earth to obtain

hacc0 ¼ ffiffiffiffiffiffiffiffiffi
20�

p
!�1=2F1=2

x M�1=4R3=4

¼ 3:3� 10�26

�
Fx

3:9� 10�7 erg cm�2

�
1=2

�
�
800 Hz

f

�
1=2

: (33)

Here the numerical value is scaled to the average bolomet-
ric flux of Sco X-1 (which does not pulse) and the highest
spin rate observed in an accreting millisecond pulsar,
both from Watts et al. [52]. For a given GW frequency
hacc0 is the same as the indirect limit for ellipticity GW

emission, but it is different for a fixed spin period.
Combining with Eq. (23) we obtain

�acc ¼ 135
ffiffiffi
3

p

2048�7=2
F1=2
x P7=2rM�5=4R�9=4 ~J�1

¼ 5:1� 10�6

�
Fx

3:9� 10�7 erg cm�2

�
1=2

�
�

r

2:8 kpc

��
800 Hz

f

�
7=2

: (34)

For comparison, Bondarescu et al. [53] find that r-mode
evolutions of accreting neutron stars have � � 10�4 if
there is no runaway (here the viscosities and thus the
parametric instability thresholds differ from those of
young neutron stars). That nominally corresponds to P ¼
4 ms or f � 300 Hz for Sco X-1 at the indirect limit. Since
the r-mode amplitudes in these saturation studies are un-
certain by at least a factor of a few due to uncertainties
in stellar structure and damping rates, this is not a precise
prediction of the spin period but rather a statement that
Sco X-1 is consistent with having a short spin period
regulated by r-modes at or near equilibrium. (This was
independently found in a more detailed examination of
possible r-mode evolutions [54].) However nonlinear
mode evolutions may avoid accretion torque equilibrium
altogether, may spin up as well as down, and may go
through intermittent episodes of r-mode activity; and real-
istic accretion may be more complicated than what is
usually assumed. Therefore, indirect limits from accretion
equilibrium are much softer than the spin-down and age-
based limits, which are derived from energy conservation.
(This is a good thing, since the former are much more
pessimistic than the latter [44].)
All-sky surveys for continuous GWs are subject to sta-

tistically estimated indirect limits derived from assump-
tions about the galactic supernova rate and distribution
of neutron-star parameters at birth. A simple version
due originally to Blandford (unpublished) is described in
Abbott et al. [6] and is not changed much by r-modes since
it essentially relies on h

age
0 and a planar galactic geometry

to yield a population estimate (pop) of the brightest signal
hpop0 a few times 10�24 independent of frequency and the

poorly known ellipticity. Simulations by Knispel and Allen
[55] using realistic spatial distributions of neutron stars
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produce h
pop
0 values which do depend on ellipticity and

frequency. Investigating the effect of r-mode emission on
this type of indirect limit estimate is a substantial under-
taking which I do not attempt here. However r-mode
emission has a steeper frequency dependence than ellip-
ticity emission, resulting in r-modes dominating dE=dt for

�>
3

ffiffiffi
5

p
16�

Izz
M�R3 ~J

� ¼ 87�

�
P

10 ms

�
(35)

(obtained by equating I2;2 to S2;2). This condition is sat-
isfied even by the lowest parametric instability threshold
for the frequencies and ellipticities contributing to the main
result (Fig. 5) of Knispel and Allen [55]. Thus, the pres-
ence in a similar simulation of a significant population with
active r-modes should spin down stars more quickly into
the best frequencies for GW detection and produce a higher
hpop0 , even assuming the scenarios of [27] and not invoking

a low-viscosity runaway.
The last form of the indirect limit (27) for known pulsars

can also be used to interpret direct upper limits from all-

sky surveys by overlaying the contours of �sdðf; _fÞ on a
plot similar to Fig. 41 of Abbott et al. [9]. Following the
discussion around that figure we can say: The range of the
multi-interferometer Hough search from Abbott et al. [9]

was about 1 kpc at f ¼ 100 Hz and j _fj ¼ 10�8 Hz=s, if _f
for a star is GW dominated—and Eq. (27) tells us that
would require � � 0:3. A star at f ¼ 1 kHz with the same
_f would have been detectable up to 100 pc (comparable
to the closest known neutron stars) if GW dominated, and
this would require � � 1� 10�4, which is well within the
range of possibilities for nonlinear evolutions.

V. DISCUSSION

I have shown that current data analysis methods can
detect or set valid upper limits on continuous GWemission
from r-modes, in some cases with small modifications.
I have derived relations needed to interpret GW observa-
tional results in terms of r-mode emission. This allows
broad-band searches for continuous GWs to infer r-mode
amplitudes or upper limits. (After this paper was submit-
ted, the LIGO Cas A paper [14] showed the first such
limits.)
Searches for r-modes in known pulsars will also require

information on the ratio of GW frequency to spin fre-
quency [29], and will be more sensitive to the issue of
r-mode phase coherence time due to their long integration
times [30].
I have also rederived some commonly used indirect

limits on GW emission for the case of r-modes. Several
young pulsars and nonpulsing neutron stars are interesting
targets for searches for r-mode GW emission, and all-sky
surveys can have interesting ranges, even with presently
available LIGO and Virgo data. More young objects further
away will be interesting with advanced LIGO and Virgo.
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