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A static and axisymmetric solution of the Einstein vacuum equations with a finite number of relativistic

multipole moments (RMM) is written in multipole symmetry adapted (MSA) coordinates up to certain

order of approximation, and the structure of its metric components is explicitly shown. From the equation

of equatorial geodesics, we obtain the Binet equation for the orbits and it allows us to determine the

gravitational potential that leads to the equivalent classical orbital equations of the perturbed Kepler

problem. The relativistic corrections to Keplerian motion are provided by the different contributions of the

RMM of the source starting from the monopole (Schwarzschild correction). In particular, the perihelion

precession of the orbit is calculated in terms of the quadrupole and 24-pole moments. Since the MSA

coordinates generalize the Schwarzschild coordinates, the result obtained allows measurement of the

relevance of the quadrupole moment in the first order correction to the perihelion frequency-shift.

DOI: 10.1103/PhysRevD.82.104001 PACS numbers: 04.20.�q, 04.80.Cc, 95.10.Eg, 96.30.Dz

I. INTRODUCTION

In a previous work [1], we proved that the static and
axisymmetric solutions of the Einstein vacuum equations
with a finite number or relativistic multipole moments
(RMM) [2] can be described by means of a function u
which resembles exactly the Newtonian multipole poten-
tial if we write the metric in a so-called MSA (multipole
symmetry adapted) system of coordinates. In fact, this is
properly the definition of these coordinates, which are
constructed iteratively in terms of the Weyl coordinates.

The goodness of these coordinates arises from the fact
that they allow us to generalize some theorems hold in
Newtonian gravity (NG) that establish the existence of
certain symmetry groups of the equations satisfied by the
classical potential whose group-invariant solutions repre-
sent the solutions with a finite number of RMM in NG [3].
The existence of these systems of coordinates is proved to
be related with the fact that the relativistic equations
analogously admit those symmetry groups that lead to
the pure multipole solutions in general relativity (GR)
(those with a finite number of RMM). In addition, the
symmetry group for the case of spherical symmetry allows
us to determine univocally the specific MSA system of
coordinates by means of a Cauchy problem, whose solu-
tion provides the standard Schwarzschild radial coordinate.

These characteristics make the MSA system of coordi-
nates become a very relevant reference to describe the
gravity of stellar compact bodies whose multipole structure

is known, or suitably estimated a priori, and differs slightly
from the spherical symmetry. Moreover, a new feature of
these coordinates reveals more relevance for the descrip-
tion of the pure multipole solutions because they provide
us with a procedure to establish measurements of high
physical and astronomical interest about the behavior of
test particles orbiting into this kind of space-time.
Until now, only the spherical symmetry solution of

Einstein vacuum equations has been written in MSA coor-
dinates: this is the Schwarzschild metric in standard coor-
dinates. But, we do not have a nonspherical axisymmetric
solution written in these systems of coordinates, and it
would be a very relevant success for the description of
gravitational effects derived from deviations of the spheri-
cal symmetry. We are able to write explicitly all the metric
components of a static solution characterized by any finite
number of RMM, in particular, the monopole, quadrupole
and 24-pole moments, in a system of coordinates such that
the metric recovers the Schwarzschild limit when all RMM
higher than monopole vanish. Hence, we are introducing a
system of coordinates that generalizes the Schwarzschild
standard coordinates and it can be used to study, in analogy
with the spherical case, the physics of test particles in
space-time slightly different from the monopole solution.
A very useful tool for the study of orbital motions in a

classical gravitational problem is a second order differen-
tial equation called the Binet equation, from which the
Kepler laws, for instance, can be deduced. From the geo-
desics of a space-time we can obtain a relativistic Binet
equation whose resolution allows to determine relativistic
corrections to Keplerian motion like the correction to
perihelion and node line precession. The calculation of
the Binet equation in an MSA system of coordinates is
specially suitable to describe the influence and relevance of
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the different RMM in such corrections. It provides the
gravitational effects due to deviation from sphericity
when comparison with the Schwarzschild corrections is
made.

As is known, (see [4] and references therein) the GR
theory predicts a correction of the Newtonian movement
which can be interpreted by means of a classical potential
type r�3. The Schwarzschild spherically symmetric solu-
tion of Einstein vacuum equations corresponds with a
perturbed Hamiltonian in the Kepler problem. In fact, the
Binet equation shows directly this relation between the
orbital equation for geodesics in a relativistic space-time
and the orbits obtained for a classical Hamiltonian dynami-
cal system.

The question that promptly arises is whether any other
solution of the static and axisymmetric Einstein vacuum
equations can be identified with certain classical system by
means of a suitable perturbative potential to obtain equiva-
lent equations for the orbits. This is one of the purposes of
this work which has been accomplished through the deter-
mination of the equivalent potential associated to a per-
turbed Kepler problem that leads to the same orbital
equation as the one for certain geodesic of any static and
axisymmetric space-time. In this scenario, the study of
geodesics of a test particle for a pure multipole solution
is particularly relevant because the multipole character-
istics of that solution allow identification of the contribu-
tions of its RMM within a classical description of the
problem. And here is where MSA coordinates become
absolutely prescriptive.

Standard techniques for the study of the equivalent
classical problem can be performed. In particular, the first
order perturbation theory throw interesting results about
relativistic corrections to the perihelion in Keplerian mo-
tion. As we will see, expectations arise from this study
when the role of the quadrupole, and the magnitude of its
contribution, are considered, because certain discrepancies
are obtained with respect to other similar calculations
[5,6]. In fact, experiments for the measurement of the
quadrupole moment can be outlined from the contribution
of the monopole and quadrupole moments to the perihelion
shift at first order.

This work is organized as follows. In Section II, a
procedure to write any pure multipole solution in MSA
coordinates is shown and, in particular, all of the metric
components of a static and axisymmetric solution with a
finite number (M0, M2, and M4) of RMM are explicitly
obtained. In order to do that, the MSA system of coordi-
nates adapted to this kind of solution is previously calcu-
lated. The good behavior of the metric and the structure of
it, for a general case, is discussed.

In Section III, we calculate the geodesics of such a
metric. We show that the restriction to the constant equa-
torial hyper-surface leads to a geodesic equation which can
be written as a 1-dimensional equivalent problem for an
effective potential.

Section IV is devoted to introduce the Binet equation
from its classical derivation, and we show the relativistic
Binet equation for the pure multipole solution. We derive
the perturbative potential that identifies the calculation of
geodesics for any pure multipole solution with the resolu-
tion of a classical Hamiltonian perturbation of the Kepler-
problem.
In Section V, we show the relevance of the quadrupole

moment on the relativistic correction to the perihelion for a
test particle in a perturbed Keplerian orbit. We put our
attention on the effect of the quadrupole moment at the
same order as the monopole correction introduced by the
Schwarzschild solution. This result suggests the possibility
of measurement of the quadrupole moment through this
contribution.
Finally, we discuss on the results obtained in a conclu-

sion section.

II. THE PURE MULTIPOLE SOLUTIONS IN THE
MSA SYSTEM OF COORDINATES

The static and axisymmetric solutions of the Einstein
vacuum equations with a finite number of relativistic multi-
pole moments (RMM) will be referred to as the pure
multipole solutions from now on. Some authors have de-
voted works on researching about those solutions [7,8].
The MSA (multipole symmetry adapted) systems of

coordinates were defined [1] as those that allow writing
the metric component in terms of a function u resembling
the Newtonian gravitational potential; or, equivalently, we
can say that the expansion of that metric component (g00 ¼
�1þ 2u) in power series of the inverse radial MSA-
coordinate provides a multipole Thorne structure with
vanishing Thorne’s rests [9]. The MSA system of coordi-
nates belongs to a class of Asymptotically Cartesian and
Mass Centered (ACMC) coordinates introduced by Thorne
[9], with a suitable choice of asymptotical behavior for the
case of equatorial symmetry (the odd order RMM are null).

The system of MSA coordinates fx̂�g ¼ ft; r; y � cos�̂; ’g
(� ¼ 0 . . . 3) can be constructed iteratively in terms of the
Weyl coordinates fx�g ¼ ft; R;! � cos�;’g as follows
[1]:

r ¼ R

�
1þ X1

n¼1

fnð!Þ 1

Rn

�
y ¼ wþ X1

n¼1

gnð!Þ 1

Rn : (1)

For the purposes of this work we consider the gauge (1) up
to certain order of approximation Oð1=RÞ, and we proceed
to calculate the system of coordinates associated to a pure
multipole solution with the set of RMM desired. In par-
ticular, the constructive method showed in [1] is followed
here to calculate the MSA coordinates associated to a
solution only possessing the three first multipole moments
of mass:M0 � M,M2 � Q, andM4 � D. In the Appendix
we show explicitly the expressions of the functions fnð!Þ
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and gnð!Þ up to order Oð1=R9Þ in the power of the inverse
radial Weyl-coordinate R (A1) and (A2). The solution
managed can be considered an exact pure multipole solu-
tion in the sense that it only poses those RMM, but never-
theless the components of the metric are written in terms of
a power series of the inverse radial coordinate r up to the
order of approximation of the gauge (1), except for the g00
whose analytic expression is as follows:

g00 ¼ �1þ 2

c2

�XN
n¼0

M2n

r2nþ1
P2nðyÞ

�
; (2)

where N þ 1 is the number of RMM of the pure multipole
solution selected (N ¼ 2 for our case) and P2nðyÞ stand for
the Legendre polynomials depending on the MSA angular

variable y ¼ cos�̂.
We first need to perform the inverse change of coordi-

nates (1) to write the metric in the MSA coordinates from
the general Weyl line element of a static and axisymmetric
vacuum space-time:

ds2 ¼ �e2�dt2 þ e�2�þ2�ðdR2 þ R2d�2Þ
þ e�2�R2sin2�d’2: (3)

The case of spherical symmetry is especially relevant
because we know explicitly the sum of the series appearing
in the gauge (1) and the standard radial coordinate of
Schwarzschild is recovered (see [1] for details). The
MSA ðfr; ygÞM system of coordinates for the spherical
symmetry is the following:

r ¼ Mþ R

2
ðrþ þ r�Þ ¼ Mðxþ 1Þ

y ¼ R

2M
ðrþ � r�Þ ¼ yp;

(4)

where r� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2!�þ �2

p
, � � M=R, and fx; ypg are

the prolate spheroidal coordinates [10,11]. The inverse
relations between these coordinates are given by the fol-
lowing expressions:

R ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2�̂2 � 2�̂

q
! ¼ yð1� �̂Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2�̂2 � 2�̂
q ; (5)

where �̂ � M=r. By performing the change of coordinates
in the line element (3) we obviously obtain the known
Schwarzschild metric in standard Schwarzschild coordi-
nates:

ds2 ¼ �
�
1� 2M

r

�
dt2 þ

�
1� 2M

r

��1
dr2

þ r2ðd�̂2 þ sin2�̂d’2Þ: (6)

The explicit expressions (4) and (5) are shown because we
are able to recover these results from the general case of a
pure multipole solution by taking all RMM equal to zero
except for the monopole, as we will see in what follows.
The inversion of the series in the gauge (1) to obtain

relations of the type R ¼ Rðr; yÞ, ! ¼ !ðr; yÞ, for a gen-
eral case, is a straightforward but cumbersome calculation.
In the Appendix we show the inverse relations1 (A3) and
(A4) corresponding to the previously calculated MSA
coordinates associated to a pure multipole solution only
possessing the RMM M0, M2, and M4.
The transformation of coordinates leads to the following

components of the metric:

grrðx̂Þ ¼ Fðx̂Þ
�
R2
r þ R2

1�!2
!2

r

�
x¼xðx̂Þ

gryðx̂Þ ¼ Fðx̂Þ
�
RrRy þ R2

1�!2
!r!y

�
x¼xðx̂Þ

gyyðx̂Þ ¼ Fðx̂Þ
�
R2
y þ R2

1�!2
!2

y

�
x¼xðx̂Þ

gttðx̂Þ ¼ �e�2�ðx̂Þ;

g’’ðx̂Þ ¼ e�2�ðx̂Þ½R2ð1�!2Þ�x¼xðx̂Þ;

(7)

where Fðx̂Þ � e�2�ðx̂Þþ2�ðx̂Þ, and the subindices denote the
derivative with respect to that coordinate.
By using the expression (A2) into (7) we obtain the

following metric components, up to order Oð�̂7Þ (although
we only show here the first terms because the expressions
are too large) in powers of the inverse MSA radial coor-

dinate r (�̂ � M=r):

grr ¼ 1þ 2�̂þ 4�̂2 þ ½8þ qð1� 3y2Þ��̂3 � 8

7
½�14� 3Mqð1� 3y2Þ��̂4

þ� 1

28
½�896þ dð2695y4 � 2310y2 þ 231Þ þ qð�240þ 720y2Þ þ q2ð�2688y4 þ 2016y2 � 224Þ��̂5

þ
�
64þ q

56

3
ð1� 3y2Þ þ q2

�
76425

154
y4 � 28935

77
y2 þ 6161

154

�
þ d

�
� 5075

11
y4 þ 4350

11
y2 � 435

11

��
�̂6 þOð�̂7Þ (8)

1It can be seen that the expansion of the expressions (5) in power series of �̂ reproduces this results for the monopole case.
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gyy ¼ M2

1� y2

�
1

�̂2
� 2y2q�̂� 3

14
qð5þ 7y2Þ�̂2 þ 1

35
½dð1715y4 � 1785y2 þ 210Þ þ qð�42y2 � 94Þ

þ q2ð�1848y4 þ 1890y2 � 182Þ��̂3 þ 1

462
½dð89915y4 � 91560y2 þ 10605Þ þ qð�484y2 � 2508Þ

þ q2ð�99294y4 þ 98616y2 � 9864Þ��̂4

�
þOð�̂5Þ (9)

g’’ ¼ ð1� y2ÞM2

�
1

�̂2
þ 2qð2y2 � 1Þ�̂þ q

1

14
ð87y2 � 51Þ�̂2

þ
��

366

35
y2 � 46

7

�
qþ

�
� 24

5
y4 � 2þ 54

5
y2
�
q2 þ dð14y4 � 21y2 þ 3Þ

�
�̂3

þ
�
1

21
ð386y2 � 250Þqþ 1

77
ð�45y4 � 362þ 2164y2Þq2 þ d

�
1645

66
y4 � 580

11
y2 þ 185

22

��
�̂4

�
þOð�̂5Þ; (10)

where q � Q=M3, d � D=M5 are dimensionless parame-
ters representing the quadrupole and 24-pole moments,
respectively.

Let us briefly analyze these results:
(i) First, we can see that the cross term of the metric g12

vanishes up to this order of approximation, and, in fact, the
preservation of the diagonal aspect of the metric is a
characteristic of the system of MSA coordinates.
Supposing that the Jacobian of the coordinate transforma-
tion is regular and the inversion of coordinates is able, i.e.,
det� jrRy! � r!yRj � 0; it can be seen that the metric
component gry vanishes since we can write the following

expression

gryðx̂Þ ¼ � Fðx̂Þ
½ð1�!2Þdet2�x¼xðx̂Þ

cLB1ðr; yÞx¼xðx̂Þ; (11)

where cLB1ðr; yÞ � �ijriðÞrjðÞ ¼ R2@RðÞ@RðÞ þ ð1�
!2Þ@!ðÞ@!ðÞ represents the Laplace-Beltrami operator
with respect to a 3-dimensional Euclidean metric (with
axial symmetry) written in Weyl spherical coordinates
(see [1] for details), and it was seen in [1] that the MSA

system of coordinates fulfills the condition L̂B1ðr; yÞ ¼ 0.
(ii) Second, we can see from the expressions (8)–(10)

that the metric written in the MSA system of coordinates
leads to the Schwarzschild limit by considering equal to
zero all RMM higher than the monopole, as well as that the
MSA system, given by expressions (A1) and (A2), recovers
the standard Schwarzschild coordinates.

(iii) And finally, the g00½x ¼ xðx̂Þ� metric component
results to be equal to (2) as claimed by that system of
coordinates.

A general expression for the metric components of the
pure multipole solution with a finite number of RMM (M,
Q, D) in MSA coordinates is the following:

gttðx̂Þ ¼ �1þ 2

�
�̂þ Q

M3
�̂3P2ðyÞ þ D

M5
P4ðyÞ

�

grrðx̂Þ ¼ 1

1� 2�̂

�
1þ ð1� 2�̂ÞX1

i¼3

�̂iUiðy;Q;DÞ
�

gyyðx̂Þ ¼ 1

1� y2
M2

�̂2

�
1þX1

i¼3

�̂iDiðy;Q;DÞ
�

g’’ðx̂Þ ¼ ð1� y2ÞM
2

�̂2

�
1þX1

i¼3

�̂iTiðy;Q;DÞ
�
; (12)

where PnðyÞ stands for the Legendre polynomials, and the
Ui, Di and Ti denote polynomials in the angular variable y
of even order depending on the higher RMM (Q and D for
this case).

III. THE GEODESICS OF THE PURE MULTIPOLE
SOLUTIONS

We proceed now to calculate the geodesics of the metric
associated to a pure multipole solution with mass, quadru-
pole and 24-pole moments (M, Q, D, respectively) in the
corresponding MSA system of coordinates. The set of
equations for the geodesics is the following

d2t

ds2
g00 þ dt

ds

dr

ds
@rg00 þ dt

ds

d�̂

ds
@�̂g00 ¼ 0 (13)

2
d2r

ds2
g11 þ

�
dr

ds

�
2
@rg11 þ 2

dr

ds

d�̂

ds
@�̂g11 �

�
dt

ds

�
2
@rg00

þ�
�
d�̂

ds

�
2
@rg22 �

�
d’

ds

�
2
@rg33 ¼ 0 (14)

2
d2�̂

ds2
g22 þ

�
d�̂

ds

�
2
@�̂g22 þ 2

dr

ds

d�̂

ds
@rg22 �

�
dt

ds

�
2
@�̂g00

þ�
�
d�̂

ds

�
2
@�̂g22 �

�
d’

ds

�
2
@�̂g33 ¼ 0 (15)
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d2’

ds2
g33 þ d’

ds

dr

ds
@rg33 þ d’

ds

d�̂

ds
@�̂g33 ¼ 0; (16)

where s denotes the affine parameter along the geodesic.
Since the metric is static and axisymmetric, both Killing
vectors, � and �, representing the corresponding isome-
tries, remain constant along the geodesics, i.e., ��z� ¼ h,
��z� ¼ l, z� being the tangent vector to the geodesic, h, l
are constants, and therefore the Eqs. (13) and (16) become

g00
dt
ds ¼ h and g33

d’
ds ¼ l, respectively. The norm of the

tangent vector z�z� � � can be written as follows:

g11

�
dr

ds

�
2 þ g22

�
d�̂

ds

�
2 ¼ k; (17)

with k � �� h2

g00
� l2

g33
, and hence, the geodesic Eqs. (14)

and (15) can be written as follows:

d2r

ds2
þ

�
dr

ds

�
2
@r ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g22g11

p þ
�
dr

ds

��
d�̂

ds

�
@�̂ lng11

¼ 1

2g11
½@rkþ k@r lng22� (18)

d2�̂

ds2
þ

�
d�

ds

�
2
@�̂ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g22g11

p þ
�
dr

ds

��
d�̂

ds

�
@r lng22

¼ 1

2g22
½@�̂kþ k@�̂ lng11� (19)

Let us consider now the case of geodesics with constant

�̂ and d’
ds � 0, i.e., they are not radial geodesics but those

constrained to a constant hypersurface (�̂ ¼ �̂0) with co-
ordinates ft; r; ’g. This restriction is compatible with the
Eq. (19) since it leads to

½@�̂kþ k@�̂ lng11��̂¼�̂0
¼ 0; (20)

which is fulfilled at the equatorial plane (�̂0 ¼ 	=2
or equivalently y ¼ 0) because the expressions (12)
allow us to hold2 that ð@yg00Þjy¼0 ¼ ð@yg11Þjy¼0 ¼
ð@yg33Þjy¼0 ¼ 0. Therefore, with respect to the relevant

geodesic (18), and by using the Eq. (17), we obtain on
the equatorial plane the following expression:

d2r

ds2
þ 1

2

k

g11
@r ln

�
g11
k

�
¼ 0: (21)

This equation can be written as follows:�
dr

ds

�
2 þ Veff ¼ C; (22)

Veff being a so-called effective potential which can be
obtained by integration as follows

Veff ¼
Z k

g11
@r ln

�
g11
k

�
dr ¼ � k

g11
: (23)

As can be seen, the Eqs. (22) and (23) reproduce the

Eq. (17) for constant �̂.

IV. THE BINET EQUATION

As is known, the classical problem of Kepler consists on
determining the movement of a test particle within a gravi-
tational field generated by a potential of the type VðrÞ �

=r. Since this potential is conservative and leads to a
gravitational force orientated towards the center of the
source, the conservation of the energy E for a particle

with mass m and orbital angular moment ~J is followed
(
 � GMm):

E ¼ 1

2
ðm _r2 þ r2m _�2 þmr2sin2� _’2Þ �GM

m

r
~J ¼ m~x ^ ~v ) ~x � ~J ¼ 0; (24)

and the particle moves on a constant plane � ¼ 	=2.
Hence, one may define an effective potential in the follow-
ing way

E ¼ 1

2
m _r2 þ�effðrÞ; �eff � J2

2mr2
�GM

m

r
; (25)

and the equations of motion are the following:

_r2 �
�
dr

dt

�
2 ¼ 2E

m
� J2

m2r2
þ 2GM

r
;

_’ �
�
d’

dt

�
¼ J

mr2
:

(26)

Consequently, the equation of the orbits is given by the
following expression in terms of a variable u � 1=r:�

du

d’

�
2 þ u2 ¼ 2m

J2
ðEþGMmuÞ; (27)

and from it we can easily obtain (by deriving with respect
to ’ the Eq. (27)) a second order differential equation for
the orbit of the test particle:

d2u

d’2
þ u ¼ GMm2

J2
: (28)

This is the Binet equation which can be solved to derive the
three laws of Kepler concerning the orbit of a test particle
describing a closed ellipse around the source, for the
attractive case E< 0.
Let us consider now a perturbation of the Newtonian

potential of the type��=r3. It is straightforward to see that
a generalization of the Binet equation is obtained for this
case as follows:

d2u

d’2
þ u ¼ GMm2

J2
þ 3

�m

J2
u2: (29)

2Let us note that we have considered equatorial symmetry and
hence g00 only contains even order Legendre polynomials, and
the polynomials U, and T depend on even powers of y.
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Since the corrected potential, i.e., VðrÞ ¼ � GMm
r � �

r3
,

does not depend on the angular variables hence, the gravi-
tational force is still central and conservative and we can go
on considering the conservation of the orbital angular mo-
ment of the particle moving along the orbit on a constant
surface.

If we calculate the geodesics of the Schwarzschild met-
ric in standard coordinates (6) we obtain, for a constant

angular variable �̂ ¼ 	=2, the following equation:�
dr

ds

�
2 þ

�
1� 2M

r

��
�þ l2

r2

�
¼ h2; (30)

where h and l are constants, derived from the isometries as
mentioned in previous section, that represent the energy
and the angular moment per unit mass, respectively. In fact,
this Eq. (30) is exactly the Eq. (22) with the effective
potential for the spherical symmetry case given by the
following expression:

VeffðrÞ ¼
�
1� 2M

r

��
�þ l2

r2

�
: (31)

From the Eq. (30) the orbit of the particle is described by
the following equation

d2u

d’2
þ u ¼ ��

M

l2
þ 3Mu2; (32)

u � 1=r being the inverse of the standard-Schwarzschild
radial coordinate. Since l is considered to be the angular
moment of the particle per unit mass (l ¼ J=m) we can
hold by comparing this equation with (29) the following
statement [4]:

The orbit on a constant surface �̂ ¼ 	=2 corresponding
to a timelike geodesic (� ¼ �1) of the Schwarzschild
space-time is given by the same equation as the Binet
equation corresponding to the Newtonian Kepler problem
with a perturbed potential of the type ��=r3 with � ¼
J2M=m.

As is known [5,6], the relativistic Binet Eq. (32) allow us
to calculate corrections to the Newtonian orbit even for the
motion around a spherical distribution of mass, which is no
longer closed. In particular, this relativistic effect has been
tested in our solar system and it amounts to a slow pre-
cession of the perihelion of the orbit of Mercury.
Predictions of the general relativity correcting the classical
gravity, as the precession of the perihelion or deflection of
light, arises from the resolution of Binet equation and
constitute the well known tests of GR.

The generalized Binet equation

We want to extend the above-mentioned statement to
any static and axisymmetric space-time corresponding to a
nonspherical mass distribution, by means of a generalized
relativistic Binet equation. Of course that RMM higher
than the mass will also contribute to the precession effect

and, in principle, these moments could be calculated by
measuring the precession of a certain number of test par-
ticles orbiting at conveniently different distances from the
gravitational source. We will devote last section of this
work to discuss this point.
Therefore, we need to compare the relativistic Binet

equation with a classical Binet equation corresponding to
certain gravitational potential. According to Eq. (22) we
can define an effective potential in such a way that the
orbital equations (on the equatorial plane) corresponding to
geodesics of any static an axisymmetric space-times are
exactly given by the classical Binet equation related to
some perturbed Kepler problem.
Hence, we have established a relationship between the

equation for geodesics in a relativistic space-time and the
orbital equations for an associated Newtonian potential.
But moreover, since we have constructed pure multipole
solutions with a meaningful physical interpretation in
terms of their finite number of RMM as successive correc-
tions to the spherical symmetry, the Binet equation for
these solutions will provide us with the contributions of
the different RMM to the relativistic effects correcting the
Newtonian orbits. In order to support this assertion, we
must remind that the MSA system of coordinates used to
write the metric and its geodesics are adapted to the set of
RMM of the solution, and these coordinates recover the
standard Schwarzschild coordinates in the limit M2n ¼ 0,
8n > 0.
In fact, from Eqs. (22) and (23) we have that�

du

d’

�
2 ¼ k

g11

g233
l2

u4; (33)

where the notation u � 1=r is used again. Finally, the
derivative of the above equation with respect to the azimu-
thal angle ’ leads to the following equation:

d2u

d’2
¼ 1

2

d

du

�
g33
g11

u4
��

�� h2

g00

�
g33
l2

� 1

��
: (34)

For the case of a pure multipole solution with a finite
number of RMM (M, Q and D) this equation provides
the generalized relativistic Binet equation, for the orbit on
the equatorial plane (y ¼ 0) of a test particle moving along
a timelike geodesic (� ¼ �1), as follows:

d2u

d’2
þ u ¼ M

l2
þ

�
3Mþ 3Q

2l2
ð5þ 6h2Þ

�
u2

þ 6

7l2
MQð�3þ 25h2Þu3

þ
�
� 30

Ml2
Q2ð1þ h2Þ

� 15

56l2
4Qð�7l2 þ 2M2ð3� 22h2ÞÞ

þDð133þ 140h2Þ
�
u4 þOðu5Þ; (35)
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where terms in powers of u higher than 5 have been
neglected. As can be seen, if we take all RMM higher
than monopole equal to zero the relativistic Binet Eq. (32)
is recovered.

Finally, we want to obtain explicitly which is the per-
turbed Kepler problem associated to this relativistic Binet
equation. As we already saw, a perturbative potential of the
type ��=r3 leads to a classical orbital Eq. (29), that
reproduces exactly the orbital equation corresponding to
a timelike geodesic of the Schwarzschild metric on the
equatorial plane. In analogy with this result, if we handle
with a pure multipole solution with a finite number of
RMM, a suitable perturbed potential to the Kepler problem
can be selected to obtain a generalized Binet equation that
equals the Eq. (35). Nevertheless, despite the spherical
symmetry case, we will see now that this potential is given
up to a suitable order of approximation in the power of the
variable u.

Accordingly to Eq. (25), let us consider now a general-
ized effective classical potential �effðrÞ given by this ex-
pression:

�eff � J2

2mr2
�GM

m

r
þ VpðrÞ;

VpðrÞ ¼ � �

r3
þ VRMM

p ðrÞ;
(36)

where VRMM
p ðrÞ denotes the new perturbation considered in

addition to the previously studied. The comparison of the
resulting Binet equation with the expression (35) will
supply us with the perturbed potential that provides differ-
ent contributions due to the RMM higher than monopole.
The conservation of energy E and the orbital angular
momentum of the particle J lead to the following equation
for the orbit3:

d’ ¼ J=r2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=mðE��effÞ

p dr; (37)

or equivalently, we can write the following generalization
of the Eq. (27):

�
du

d’

�
2 þ u2 ¼ 2m

J2
ðEþGMmuþ �u3 � VRMM

p ðrÞÞ;
(38)

and therefore, the generalized classical Binet equation is

d2u

d’2
þ u ¼ GMm2

J2
þ 3

�m

J2
u2 � m

J2
d

du
VRMM
p ðrÞ: (39)

By comparing this Eq. (39) with (35) we can hold the
following statement:

Proposition:

The classical Kepler problem for a mass distribution M,
with total energy E and orbital angular momentum J,
perturbed with a potential given by this expression:

VpðrÞ ¼ ��u3 �QmG

�
5

2
þ 3h2

�
u3

þQMmG

�
9

14
� 75

14
h2
�
u4

þ
�
� 3

2m
QJ2 � 6

m

M
Gð1þ h2ÞQ2

þ
�
57

8
þ 15

2
h2
�
mGDþ

�
9

7
� 66

7
h2
�
mM2GQ

�
u5

þOðu6Þ (40)

provides (up to the desired order in the power of the
variable u) the same orbital equation for a test particle of
mass m, as the corresponding orbital equation for the
timelike geodesic on the equatorial plane of the relativistic
pure multipole solution with a finite number of RMM if the
following values of the parameters are considered:

l ¼ J

mG1=2
; h2 ¼ � 2E

mG
� 1; � ¼ MJ2

m
: (41)

Let us note that the above expressed potential can be

written in terms of the dimensionless parameter �̂ �
Mu ¼ M=r, which controls the perturbational character
of it, as follows:

VRMM
p ðrÞ ¼ �mG

�
�̂3 q

2
ð5þ 6h2Þ þ 3

14
�̂4qð�3þ 25h2Þ

þ 3

14
�̂5

�
q

�
44h2 � 6þ 7

J2

M2m2G

�

þ 28q2ð1þ h2Þ � 7

4
dð19þ 20h2Þ

��
; (42)

where q � Q=M3 and d � D=M5 denote for dimension-
less parameters associated to the quadrupole Q and 24pole
moment D respectively.
Consequently, the Binet equation is given by the follow-

ing expression:

d2u

d’2
þu¼M

�
m

J

�
2
Gþ

��
15

2
þ9h2

��
m

J

�
2
GQþ3M

�
u2

þ
�
MQG

�
m

J

�
2
�
�18

7
þ150

7
h2
��

u3

þ
�
15

2
Qþ

�
m

J

�
2
G

�
30ð1þh2ÞQ

2

M

þM2Q
15

7
ð�3þ22h2Þþ15

8
Dð20h2þ19Þ

��
u4:

(43)
3Let us note that (37) can be obtained from Eqs. (26)
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V. MEASURING THE QUADRUPOLE MOMENT

The Eq. (40) shows that a quadrupole contribution arises
at order u3, the same order as the known Schwarzschild
correction due to the monopole. The role of the quadrupole
becomes relevant enough when the relativistic correction
to the perihelion of a test particle orbit is calculated. Hence,
let us consider the above potential (40) and let us develop
up to first order of perturbation theory the following per-
turbed kepler problem (for n ¼ 3):

V ¼ �GMm
1

r
� �

rn
; H ¼ H0 þ �H1;

H1 � � 1

rn
;

(44)

where � is a small parameter, and H1 is the perturbation of
the Hamiltonian H.

According to the standard theory of perturbations [4]
within angular-action variables, the averaged rate of secu-
lar precession due to the perturbation is given by the
following expression:

�_& ¼ 1

�

Z �

0

@H1

@J
dt ¼ @

@J
�H1; (45)

� being the average time interval considered, in particular,
the period of the nonperturbed orbit; & stands for the
angular position of the periastron on the orbit plane, and
�H1 is the time-averaged perturbed Hamiltonian which can
be calculated by using the conservation of the angular
moment (J ¼ mr2 _’=cte) as follows:

�H 1 ¼ � 1

�

Z �

0

1

rn
dt ¼ � 1

�

m

J

Z 2	

0

1

rn�2
d’; (46)

where r can be expressed in terms of ’ by means of the
nonperturbed orbit:

1

r
¼ 1

p
ð1þ e cos’Þ; (47)

e being the eccentricity and p � J2

m2MG
is the so-called

ellipse’s parameter.
Therefore, the averaged rate of precession is given (for

the n ¼ 3 case) by

�_& ¼ 6	

�
GM

m3

J4
�

¼ 6	

�

�
GM2 m

2

J2
þQG2M

m4

J4

�
5

2
þ 3h2

��
: (48)

The first term of (48) is the monopole contribution
already known, which is provided by the Schwarzschild
solution, whereas the second term is the correction to the

precession due to the quadrupole moment. If we take into
account the value of h (41) and consider J and E in terms of
the eccentricity e and the semimajor axis a of the orbital
ellipse, i.e., J2 ¼ að1� e2ÞGMm2, jEj ¼ GMm=ð2aÞ, we
have that

�_& ¼ 6	

�

�
� þ �2q

�
� 1

2
þ 3

M

a

��
; (49)

where � � M
að1�e2Þ is a dimensionless parameter4 less than

1, the quadrupole contribution is of order �2, and its sign
depends on the relative value between M and a:

�2q

�
� 1

2
þ 3

M

a

��
<0 $ M � a
� 0 , 6M> a:

(50)

In [5,6], the authors look for patterns of regularity in the
sign of the contributions for different RMM, ending up
with the conclusion that the linear quadrupole term is
negative for a positive quadrupole. This pattern is verified
by our calculation except for the case that 6M> a, i.e., a
test particle closely orbiting around a strong gravitational
source. The discrepancy arises because in [6] the authors
do not obtain,5up to this order in the parameter � , the
relativistic contribution 3M

a appearing in (49) and the con-

tribution of the quadrupole at order �2 is given only by the
Newtonian term �1=2.
Since the first contribution of the quadrupole moment to

the perihelion shift appears at the same order in �̂ as the
monopole contribution, this calculation provides a proce-
dure for measurement of the quadrupole moment. In prin-

ciple, a test particle conveniently far away (�̂ < 1) from the
source should be affected only by the monopole and quad-
rupole contributions which are the only effective correc-

tions at that distance (contributions higher than �̂3, in the
first order of perturbation theory, are considered negli-
gible). Dropping any other external effects, for a suitable
isolated source-particle system acting on the perihelion
precession of the orbit, the quadrupole contribution can
be estimated to obtain a tentative measurement of the
quadrupole moment since the monopole correction is
well known. In fact, the relative value between both cor-
rections at this order of perturbation theory is the follow-
ing:

� � Qterm

Mterm ¼ �2qð3M
a � 1

2Þ
�

¼ �q

�
3
M

a
� 1

2

�
: (51)

4Let us note that M must be considered in length units
(MV GM

c2
). For the case of the Sun, the value of this length is

about 1.476 km, and hence M � a for any planet of the solar
system.

5Let us note that our parameter � is exactly equal to the
parameter �2 used in [6] to develop the expansion series.
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Let us calculate an estimate of this relative value for the
orbit of Mercury. As is known, Einstein’s theory of gravity
leads to a relative correction of the Newtonian value for
Mercury’s secular perihelion drift of 42:9800=century [12].
The rate of precession for the relativistic monopole
(Schwarzschild correction) can be calculated from the first
term of our Eq. (49) to obtain38:0100=century.6

The quadrupole contribution can be calculated from the
second term of the Eq. (49), and hence, the key point of its
estimate, as well as that of the relative value (51), depends
on the dimensionless parameter q related with the quadru-
pole moment of the Sun. This is a matter of increasing
research,7because the quadrupole moment is a relevant
quantity for a lot of related measurements; in fact, the
evaluation of the solar quadrupole moment still faces
some controversy: on one side, the theoretical values
strongly depend on the solar model used, whereas accurate
measurements are very difficult to obtain from observa-
tions, in particular, the value of the quadrupole moment can
be inferred to be in agreement with the experiment obser-
vations of precisely the perihelion advance of Mercury (see
[14] and references therein).

Different estimates of the quadrupole moment of the Sun
[13,14], provide a range of values from a theoretical deter-
mination J2 ¼ ð2� 0:4Þ 	 10�7 to another bounds around
J2 ¼ ð1:4� 1:5Þ 	 10�6 [12]; nevertheless, the quadru-
pole moment of the Sun may not exceed the critical value
of J2 ¼ 3:0	 10�6 according to the argument given in
[15], based upon the accurate knowledge of the Moon’s
physical librations (these data reach accuracies at the
milliarcsecond level).

The factor M=a for Mercury’s orbit is about 2:257	
10�8, and the parameter � strongly depends on that value,
since 1=ð1� e2Þ is around 1.04415, and so � ’ 2:356	
10�8. Therefore, Eq. (51) for the relative value of the
quadrupole contribution with respect to the
Schwarzschild correction leads to the following estimate:

j�j ’ 1:18	 10�8q; (52)

or equivalently, the rate of precession due to the quadru-
pole contribution is estimated as follows:

�_& Q ¼ 6	

�

�
�2q

�
� 1

2
þ 3

M

a

��
’ 4:48	 10�7q00=century:

(53)

This result is perfectly in agreement with the current
predictions of measurements and values of the advance of
Mercury’s perihelion deduced from observational data: As
is known [14], once correcting for the perturbation due to
the general precession of the equinoxes and for the pertur-
bation due to other planets, the advance of the perihelion of
Mercury is a combination of a purely relativistic effect and
a contribution from the Sun’s quadrupole moment. One
may compute the corrective factor to the prediction due to
general relativity (42:9800=century, the Schwarzschild con-
tribution, which does not include the quadrupole correc-
tion): this factor, i.e., the relative value of the solar
quadrupole correction with respect to the Schwarzschild
contribution is

2:821	 10�4ð2:0� 0:4Þ; (54)

for a value of the quadrupole moment J2 ¼ 2:0	 10�7, or
equivalently, the correction to the perihelion precession
due to the quadrupole moment is about

2:425	 10�200=century: (55)

These calculations are done within the Parameterized Post-
Newtonian (P.P.N.) formalism describing a fully conserva-
tive relativistic theory of gravitation (see equation (1) in
[14]), and they are in accordance with our Eqs. (52) and
(53) respectively by taking into account the appropriated
relation between the parameter J2 in P.P.N. formalism and
the relativistic multipole momentQ defined by Geroch [2],
i.e., jQj � MR2
J2. Hence, from (52) we have that

j�j ’ 4:45	 103J2 ’ 8:9	 10�4; (56)

where a value of J2 ¼ 2:0	 10�7 has been used, or equiv-
alently, Eq. (53) leads to the predicted relations between
observational or theoretical quadrupole moment and the
quadrupole correction to the perihelion precession of
Mercury’s orbit:

�_&Q ’ 4:48	 10�7J2

�
R

M

�
2 ’ 1:12	 105J002=century

’ 2:24	 10�200=century: (57)

VI. CONCLUSION

In this work we have tried to show the relevance of the
MSA system of coordinates for the description of static and

6The quantity ð6	=�Þ� provides an estimate of the
Schwarzschild correction, with the following values of the
parameters: eccentricity of the orbit e ¼ 0:2056, the semimajor
axis of the orbit a ¼ 6:4529	 107 km, M being a half of the
radius of Schwarzschild for the Sun M � GM
=c2, and period
of the Mercury’s orbit � ¼ 7 600 428 s.

7The gravitational multipole moments describe deviations
from a purely spherical mass distribution. Thus, their precise
determination gives indications on the solar internal structure. It
is difficult to compute these parameters and the way to derive the
best values and how they will be determined in a near future by
means of space experiments is the aim of several works [13].

FROM GEODESICS OF THE MULTIPOLE SOLUTIONS TO . . . PHYSICAL REVIEW D 82, 104001 (2010)

104001-9



axisymmetric vacuum solutions with a finite number of
RMM, particularly for those which are slightly different
with respect to the spherically symmetric solution. In [16],
the authors study the behavior of different geodesics of
quasispherical space-time, for example, the case of self-
gravitating sources with the exterior gravitational field of

the M�Qð1Þ solution [8].
First, we have explicitly written a static and axisymmet-

ric vacuum solution with a finite number (M, Q, D) of
RMM in MSA coordinates. The expressions obtained for
the metric components are approximated because the MSA
system of coordinates are constructed iteratively by means
of a power series. But, these results allow us to handle with
the pure multipole solutions as generalizations of the
Schwarzschild solution in the sense that each one of the
metric components are written as a series whose first term
represents the monopole solution and the following terms
provide the successive corrections to the spherical symme-
try due to the other multipoles (12). Furthermore, the g00
metric component is calculated to any order and it resem-
bles, as it was desired, the formal expression of the clas-
sical multipole potential. Since these solutions are static,
we are actually giving the Ernst potential [17] of the
solution in such a way. Until now, no other solution has
been written in MSA coordinates except for the
Schwarzschild solution. The expressions obtained for the
metric are supported by the calculation of the MSA coor-
dinates in terms of the Weyl coordinates (as well as the
inverse relations). We are providing a system of coordi-
nates that generalizes the standard Schwarzschild coordi-
nates for the cases of pure multipole solutions.

Second, we have used this system of coordinates to
study the behavior of test particles orbiting in a space-
time described by a pure multipole solution. Two results
seems to be specially relevant: One of them is the possi-
bility of finding an equivalent classical problem; we are
able to write the orbital equation associated to geodesics in
the equatorial plane identically equivalent to the Binet
equation obtained from a classical perturbed Kepler prob-
lem. In other words, we can describe the orbital motion of a
test particle in the same way as it is studied the classical
field equations for a problem of a conservative potential
endowed with certain perturbation. We calculate explicitly
this perturbative potential in terms of the physical parame-
ters of the virtual Hamiltonian dynamical system (energy
E, particle mass m, orbital angular momentum J . . .) and
the RMM of the vacuum solution.

This relationship between the resolution of a classical
dynamical system and a geometrical description of the
problem by means of an associated Riemannian metric is
an analogous result to the prescription derived from the
Maupertuis-Jacobi principle [18]: the trajectories of a me-
chanical system, with a natural Lagrangian function L ¼
ð1=2Þgij _qi _qj � VðqÞ, are geodesics of the Jacobi metric

gJij ¼ 2ðE� VÞgij for a fixed total energy E of the system.

Possibly, some connection between those schemes can be
explored.
The other important result of this study of the geodesics

in MSA coordinates is the calculation of high order rela-
tivistic corrections to Keplerian motion. In particular, we
have calculated the perihelion shift due to the correction of
the quadrupole moment in addition to the Schwarzschild
contribution, and it is shown that both corrections arises at
the same order in the perturbed potential. Classical tech-
niques of perturbation theory can be used to make this
calculation since the description of the relativistic motion
is made from the equivalent Newtonian problem. In [5,6],
the authors develop a calculation of relativistic corrections
to Keplerian motion; the advantage of our work is that we
do not need to introduce a parameter ad hoc to perform the
expansion series, because the MSA system of coordinates
itself leads to geodesics of the solution written in such a
way that the corrections due to any RMM are clearly
distinguished.
The estimate of the quadrupole contribution leads to

the conclusion that it is small compared with the
Schwarzschild correction for the case of Mercury’s orbit,
but it is perfectly detectable by present experiments, since
one of the techniques used for measuring the quadrupole
moment of the Sun is just by means of the perihelion
precession of the orbit [13,14].
Comparison between both corrections (51) leads to the

conclusion that the quadrupole contribution to the perihe-
lion precession may be quantitatively significant with re-
spect to the Schwarzschild correction for scenarios with a
very massive source and test particles closely orbiting
around: Eq. (49) shows that it is important not only the
value of the quadrupole moment but also the factor M=a.
So, if we think about an experiment or astrophysical sys-
tem with a test particle closely orbiting around a strong
gravitational source we could handle with a value of the
factor M=a which may compensate the factor q whose
value is rather small for standard astrophysical systems
(except for compact binary systems).
A future generalization of our results to a stationary and

axisymmetric case will provide us with a more realistic
scenarios, and the estimates will become very relevant if
the calculation is applied for instance to an axisymmetric
spinning star. For example, neutron stars are extremely
compact objects typically around 1M
 or 2M
 compressed
in a radius of a few kilometers, and hence, the correspond-
ing value ofM=a for a test particle orbiting closely around
a neutron star can be near to 10�1.
In addition, some works have studied the central role of

the innermost stable circular orbit (ISCO) in the relativistic
precession of orbits around neutron stars [19,20]. Strange
stars have also been considered as relevant sources (of
quasi-periodic oscillations (QPOs) for example [21])
Strange stars are objects with two main characteristics:
they are made of a mixture of quarks and they have no
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minimum mass. It has also been shown in [19,21] that
ISCO is located outside the strange star for relatively
high mass (ranged from 1.4 to 1.6 solar masses depending
on the different equations of state (EoS)) even at very high
rotation rates, this fact being the main difference with
respect to neutron stars. In [22], Shibata and Sasaki calcu-
lated analytically the ISCO of neutral test particles around
a massive, rotating and deformed source in vacuum, in-
cluding the first four gravitational multipole moments
(following the scheme given by Shibata, the authors in
[23] extend it to the electrovacuum case); it is possible to
study the role of the quadrupole moment of mass related to
the neutron stars, whose value is not constrained to be
small, and the factorM=a can be considered for hypotheti-
cal orbits nearby the ISCO (r � 6M).
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APPENDIX

The gauge (1) is defined in terms of series, up to order
Oð1=R9Þ, with the following functions fnð!Þ and gnð!Þ:

f1ð!Þ ¼ M;

f2ð!Þ ¼ 1

2
M2ð1�!2Þ;

f3ð!Þ ¼ 1

2
Qð1� 3!2Þ

f4ð!Þ ¼ MQ

�
� 5

4
!4 � 19

28
þ 39

14
!2

�
þM4

�
3

4
!2 � 5

8
!4 � 1

8

�

f5ð!Þ ¼ Q2

M
ð1þ 12!4 � 9!2Þ þM2Q!2ð2� 3!2Þ þD

�
45

4
!2 � 105

8
!4 � 9

8

�

f6ð!Þ ¼ QM3

�
73

168
þ 705

56
!4 � 361

56
!2 � 45

8
!6

�
þM6

�
35

16
!4 � 15

16
!2 � 21

16
!6 þ 1

16

�

þMD

�
191

88
� 1965

88
!2 � 21

8
!6 þ 2485

88
!4

�
þQ2

�
� 1247

616
þ 10347

616
!2 � 13089

616
!4 � 15

8
!6

�

f7ð!Þ ¼ Q2M

�
61

28
� 2711

140
!4 � 38

5
!2 þ 81

2
!6

�
þM4Q

�
�2!2 þ 17

2
!4 � 15

2
!6

�

þM2D

�
3

2
!2 þ 85

2
!4 � 3

2
� 105

2
!6

�
þQD

M
ð�3þ 154!6 � 195!4 þ 60!2Þ

þ Q3

M2

�
� 144

5
!2 þ 981

10
!4 � 414

5
!6 þ 3

2

�

f8ð!Þ ¼ Q3
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The following expressions show the relation of Weyl coordinates fR;!g in terms of the MSA coordinates fr; yg up to

order Oð�̂9Þ:
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R ¼ Rðr; yÞ ¼ r

�
1� �̂� 1

2
ð1� y2Þ�̂2 þ

�
� 1

2
ð1� y2Þ � q

1

2
ð1� 3y2Þ

�
�̂3

þ
��
� 5

8
þ 3

4
y2 � 1

8
y4
�
þ q

�
� 9

28
þ 3

14
y2 þ 5

4
y4
��
�̂4 þ

��
� 3

8
y4 � 7

8
þ 5

4
y2
�
þ q

�
2y4 � 5

14
y2 � 3

14

�

þ q2ð9y2 � 12y4 � 1Þ þ d

�
� 45

4
y2 þ 105

8
y4 þ 9

8

��
�̂5 þ

��
21

16
� 15

16
y4 þ 35

16
y2 þ 1

16
y6
�

þ q

�
� 1

168
þ 219

56
y4 � 11

8
y2 � 5

8
y6
�
þ q2

�
� 1525

616
� 21099

616
y4 þ 15525

616
y2 þ 15

8
y6
�

þ d

�
205

88
� 1995

88
y2 þ 21

8
y6 þ 2135

88
y4
��
�̂6 þ

��
� 33

16
þ 5

16
y6 � 35

16
y4 þ 63

16
y2
�

þ q

�
155

336
þ 4363

560
y4 � 1973

560
y2 � 33

16
y6
�
þ q2

�
� 1651

308
� 135637

1540
y4 þ 91493

1540
y2 þ 287

20
y6
�

þ d

�
829

176
þ 10735

176
y4 � 8631

176
y2 � 63

16
y6
�
þ qdð3þ 195y4 � 154y6 � 60y2Þ

þ q3
�
� 3

2
þ 414

5
y6 þ 144

5
y2 � 981

10
y4
��
�̂7 þ

��
� 429

128
� 5

128
y8 þ 35

32
y6 � 315

64
y4 þ 231

32
y2
�

þ qd

�
722587

64064
� 113533

176
y6 þ 675

64
y8 þ 25975585

32032
y4 � 360285

1456
y2
�

þ q2
�
� 661565

61152
� 120202913

560560
y4 � 55

32
y8 þ 45937

770
y6 þ 18225373

140140
y2
�

þ d

�
506395

3432
y4 þ 20849

2288
� 1897

66
y6 � 21

16
y8 � 14745

143
y2
�
þ q

�
1571

1056
� 159

28
y6 þ 15

32
y8 � 2689

330
y2 þ 26459

1680
y4
�

þ q3
�
� 149437

24024
þ 1206969

3080
y6 þ 71211

520
y2 � 18927009

40040
y4
��
�̂8

�
(A4)

[1] J. L. Hernández-Pastora, Classical Quantum Gravity 27,
045006 (2010).

[2] R. Geroch, J. Math. Phys. (N.Y.) 11, 2580 (1970).
[3] J. L. Hernández-Pastora, Classical Quantum Gravity 25,

165021 (2008).
[4] H. Goldstein,Mecánica Clásica, edited by Reverté (1987).
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