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Formation of caustics in Dirac-Born-Infeld type scalar field systems
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We investigate the formation of caustics in the Dirac-Born-Infeld type scalar field systems for generic
classes of potentials, viz., massive rolling scalar with potential, V(¢) = Vye*(1/2M *$* and inverse power-
law potentials with V() = V,/¢", 0 < n < 2. It is found that in the case of exponentially decreasing
rolling massive scalar field potential, there are multivalued regions and regions of likely to be caustics in
the field configuration. However there are no caustics in the case of exponentially increasing potential. We
show that the formation of caustics is inevitable for the inverse power-law potentials under consideration
in Minkowski space time whereas caustics do not form in this case in the Friedmann-Robertson-Walker

Universe.

DOI: 10.1103/PhysRevD.82.103530

L. INTRODUCTION

The discovery of the late time accelerated expansion of
the Universe is one of the most surprising findings in
modern cosmology [1] and poses a serious challenge to
fundamental theories of physics. The resolution of the
cosmic acceleration riddle similar to the phenomenon of
blackbody radiation might unveil new secrets of nature.

It is now widely believed that the late time acceleration
of the Universe is due to an exotic form of energy with
large negative pressure known as dark energy which is the
dominant fraction of the energy content of the present
Universe [2-4]. The simplest dark energy model based
upon cosmological constant is faced with a fine-tuning
problem of an acceptable level. As an alternative to the
cosmological constant, a variety of scalar field models is
proposed in recent years to provide a viable explanation for
the phenomenon of late time cosmic acceleration [5-9].
Though the scalar field models have limited predictive
power, they can nevertheless be of interest if they can
exhibit some generic features allowing one to alleviate
the fine-tuning and coincidence problems or be motivated
from a fundamental theory of high energy physics. The
Dirac-Born-Infeld (DBI) scalar field model is string in-
spired and certainly invites attention [10]. Unlike generic
quintessence models with tracker solutions, there exists
no solution which can mimic scaling matter/radiation re-
gime in the case of the tachyon field [11-19]. These models
necessarily belong to the class of thawing models: At early
times, the expansion dynamics is governed by the back-
ground fluid, whereas the tachyon field remains sub-
dominant and frozen. However, as the background energy
density redshifts and becomes comparable to the field
energy density, the field begins to evolve and subsequently
overtakes the background to become the dominant compo-
nent of the Universe.

Tachyon models do admit a scaling solution in the
presence of a hypothetical barotropic fluid with negative
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equation of state. Tachyon fields can be classified by the
asymptotic behavior of their potentials for large values of
the field: (i) V(¢) — O faster than 1/¢? for ¢ — oo. In this
case a dark matter-like solution is a late time attractor.
Dark energy may arise in this case as a transient phenome-
non. (ii) V(¢) — 0 slower than 1/¢? for ¢ — oo; these
models give rise to dark energy as a late time attractor. The
two classes are separated by V(¢) ~ 1/¢> which is a
scaling potential with w(¢) = const. The present state of
observations does not allow one to distinguish among
various scalar field models and leaves the dark energy
metamorphosis as a future challenge for observational
cosmology.

The formation of caustics in the field profile in the mass
free space is an undesirable consequence in the field theo-
retical models in cosmology as it indicates the failure of
physical theories to explain the evolution of the field in that
particular region. Thus the study of the formation of caus-
tics in the field configuration is one of the best techniques
to investigate the fundamental shortcoming of the field
theory for a specific potential.

In spite of the exiting features of cosmological dynamics
based upon DBI scalars, it might happen that these models
lead to the formation of caustics, where the second- and the
higher-order derivatives of the field become singular. As
demonstrated in Ref. [15], caustics inevitably form in the
tachyon system with potentials decaying faster than ¢ 2 at
infinity. We do not know whether caustics are a generic
prediction of string theory or appear as a result of the
derivative truncation leading to the DBI action. It remains
to extend the analysis of Ref. [15] to the case of inverse
power-law potentials V ~ ¢ " with 0 < n < 2 analyzed in
Ref. [20]. Caustics normally form in systems with pressur-
eless dust which is mimicked by a tachyon field with
runaway potentials. It is therefore quite likely that caustics
may not develop in Born-Infeld systems with a ground
state at a finite value of the field. The rolling massive scalar
potential V(¢p) = Vyel/2M*®* pelongs to this category.
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In this paper, we address the issue of caustic formation
for DBI scalar field systems for inverse power potentials
giving rise to dark energy as a late time attractor and the
massive rolling scalar. In Sec. II, we present the DBI type
general scalar field equation for the 1 + 1 flat space time
and review the formalism of field dynamics related to
caustic formation based upon Ref. [15]. We also extend
the analysis to the case of the isotopic and homogeneous
expanding universe to see the formation of caustics in the
field in a more real situation. In Sec. III, we discuss our
numerical results. To have a comprehensive view of the
scalar field pattern, the general field equations are solved
numerically as well as analytically in the homogeneous
and inhomogeneous situations for the two different classes
of field potentials mentioned above. For the inhomogene-
ous case, we solve the evolution equations analytically
using the method of characteristics [15] to check the
formation of caustics in the field profile using the geomet-
rical interpretation of the solution. The main results of our
analysis are summarized in the last section.

II. THE DIRAC-BORN-INFELD TYPE
SCALAR FIELD SYSTEM

The DBI type action for a scalar field ¢, referred to as
the tachyon field hereafter, is given by [3,10,15]

S=— /d4x¢——gV(¢),/1 T pord (D)

where V(¢) is the potential of the field ¢. The field
equation derived from the action (1) is

V,V,¢
1+V,pVed

V()
V(e)
where the covariant derivative of the field ¢ with respect to

the metric g, is denoted by V.

V, Vi — VeV — =0, (2)

A. Minkowski 1 + 1-dimensional analysis

In what follows, we shall first consider the field equa-
tions in 1 + I-dimensional Minkowski space. Caustics
formation can easily be analyzed in this case. If caustics
do not form in Minkowski space time, we would expect the
result to hold in the expanding Universe as expansion
should work against the formation of caustics. However,
in the opposite case, it is essential to incorporate expansion
to reach the final conclusion.

In this case, Eq. (2) takes the form,

seiorf=s e afy )

£20/6d — 979" | )

Here the time and space derivatives of the field ¢ are
indicated by the dot and prime over ¢, respectively.
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In order to understand the time and space evolution
of the field ¢ in 1 + 1 dimension under a specific field
potential, let us first consider some general aspects related
to Eq. (3) for the homogeneous and inhomogeneous fields.

If the scalar field is homogeneous, then ¢’ = 0, and
hence Eq. (3) for such a field simplifies to

¢ Veld) _
1—¢> V(o)

For a particular potential, the time evolution of the homo-
geneous field can be obtained from Eq. (4). In the case of
an inhomogeneous scalar field, ¢’, ¢” > 0; however they
should be sufficiently less than unity for a realistic scalar
field in cosmology [15]. Under this condition, Eq. (3) can
be written as

0. “)

é=a-&+¢%@“ﬁﬁzﬁ=ﬂwa@wa
where
Pg) =1 ¢+ ¢, m@=¢tﬁﬁgxm>

The equation of P(¢) contains both the time and space
derivatives of the field and therefore this parameter can
be used as an indicator of the pattern of evolution of the
field governed by the particular field potential. For ex-
ample, if the field ¢(x, r) rapidly approaches the configu-
ration P(¢) = 0, it then indicates that the time and space
evolution of the field is such that it rapidly approaches
¢? — ¢> = 1. Alternatively, we may say that, under this
situation the field ¢(x, t) is almost similar to some subsid-
iary field 6(x, r) whose time and space evolution is con-
strained by the equation [15],

62— 6”7 =1. (7)

The field may approach the configuration P(¢) = 0 from
both directions, viz. from above or below zero, depending
upon the initial state of the field. If the initial state of the
field is such that initially P(¢) > 0, then P(¢) will asymp-
totically approach to zero from above, otherwise it will
tend to be zero from below [15]. Similarly, if P(¢) = 1,
it implies that, > =~ ¢2, i.e., the type of evolution of the
field ¢ (x, r) with respect to space and time is nearly equal.
In this case also, we may consider that the ¢ (x, ) is almost
similar to some subsidiary field w(x, ) whose time and
space variations are related by the equation,

w?—w?=0. (8)

The extensive numerical solutions of Eq. (5) for the scalar
field with the two different classes of field potentials of our
interest clearly showed the above behavior of P(¢). Thus
Eq. (5) has two attractors, one for P(¢) = 0 and the other
for P(¢) = 1, depending on the field potential and hence
P(¢) can be used to define the following relation:
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b =41+ ¢”? — P(¢). )

If we consider that the scalar field @ (x, 1) itself satisfies the
subsidiary field equations (7) and (8) under different con-
ditions, then analytic solutions of these two equations
correspond to free relativistic massive wave propagation
along the characteristics of the field ¢(x, ). From the
particle point of view, Egs. (7) and (8) can be viewed as
the dynamical descriptions of the motion of free massive
particle under different situations. From this point of view,
the trajectories x(z, ¢) [where ¢ is the initial spatial coor-
dinate of the field, i.e., x(0, ¢) = ¢] of individual particles
and the corresponding evolution of the field configuration
can be obtain from the parametrized solutions of the char-
acteristic equations of two variables, viz., ¢ and the affine
parameter s along each curve, which are given by [15]

%(q, s) =P, ¢'=2¢"; x(q,0) = q. (10)

g5y =P d=—2¢ g0 =0. (1)
ds
d Lo .
W g9 = P ¢+ P G =297~ 24,
X ¢(q,0) = ¢(q). (12)
Solving these equations and using Eq. (9) we may write
x(q,s) = q + 2s¢;,, (13)
(g, s) = —2s,/1 + d)%q — P(¢), (14)
b(q.s) = ¢i(q), for P(¢) =1 and

(15)
d(q,5) = ¢i(q) — 2s,

where ¢; , = ¢'(q, s). Eliminating the affine parameter s

from the above equations, we obtain the parametric solu-
tion for the field ¢(x, 1) as

for P(¢p) = 0,

x(q, 1) =¢q — Pig . (16)
1+ ¢;, — P(¢)
d(q, 1) = ¢i(q), for P(¢p) =1 and
d(q 1) = dilq) + ———, for P(¢)=0. (17
1+ ¢§q

Equation (16) will provide us the trajectories of the free
massive particles in the field and Eq. (17) will give us the
pattern of evolution of the field with respect to time [15].
Hence these two equations will give us the geometrical
form to see the formation of caustics in the field profile and
the evolution of the field configuration with any presumed
initial field profile under a specific field potential. In what
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follows, we shall consider the potentials of our interest for
the specific solutions of Egs. (4) and (5). Although our
main interest is the solution of Eq. (5), for the complete-
ness of the picture we present the solution of Eq. (4) also.
From the solutions of Eq. (5) for the following three differ-
ent field potentials, we shall obtain the characteristics
curves from Eq. (16) which will show clearly whether
there are caustics in the field configuration.

B. Generalization to the case of the expanding Universe

So far, for simplicity we have considered the fieldin 1 +
I-dimensional Minkowski space time. However, for the
real cosmological applications, it is necessary to
consider the field in 3 + 1 dimensions in the expanding
Universe. It should be noted that the extension of the field
from 1 + 1 dimension to the 3 + 1 dimensions is a matter
of analogical enhancement of the one-dimensional spatial
coordinate to the three-dimensional spatial coordinates.
Hence the basic form of all equations discussed above
will remain the same in 3 + 1 dimensions, except that
the space derivative has to be replaced by the V operator,
and the spatial coordinates x and ¢ by the vectors r and q,
respectively, in the relevant equations. Similarly if we
take a spatially flat Friedmann-Robertson-Walker (FRW)
metric with a scale factor a(z), then the equation for the
scalar field ¢ in an expanding Universe can be obtained
from Eq. (2) as

é L Ve(d) _
71_4,32 +3H¢ + V()

where H = a/a is the Hubble rate and can be expressed in
the scalar field dominated expanding Universe as

_87G_Vi9)

3\/@‘

Equation (18) is equivalent to Eq. (4) of 1 + 1 dimension.
If some small inhomogeneous perturbations arise in the
scalar field of the expanding Universe, then these pertur-
bations will generate the small perturbations in the FRW
metric which can be expressed by the Newtonian gravita-
tional potential ®(z, r) as [15,21]

ds? = —(1 + 2Dg)d + (1 — 2Dg)a(Ddr,  (20)

0, (18)

H? (19)

where we have used the metric convention as (—, +, +, +).
If for a particular potential of the scalar field of the ex-
panding Universe with small inhomogeneous field pertur-
bations leads to the state of the field as in the cases of
Egs. (7) and (8) of the 1 + 1 dimension, then the corre-
sponding equations for the field ¢ itself of the expanding
Universe represented by the metric equation (20) are given
by [15]

$2 = 5 (V) =1+ 20, @1
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% - %(Wﬁ)z = 0. (22)

If we solve these two equations by the method of character-
istics as in the case of 1 + 1 dimension the corresponding
equations of (16) and (17) would be

1 (Vqo)t

r(qt)=q—— , for P(¢p)=0
@1+ 5V $)? + 20
mddqﬂ=q—§ for P(¢) = 1, (23)
_ (1 +2P)t _
#(q, 1) = ¢i(q) + \/1 P 2(I>G’ for P(¢) =0
and ¢(q,7) = ¢;(q), for P(¢) = 1. (24)

The scale factor a(r) assumes different forms at different
stages of the evolution of the Universe. For example, in the
radiation dominated stage, a(f) = ayt'/? and in the scalar
field dominated stage a(r) = aqr?/? [15,21] if the tachyon
potential vanishes at infinity faster than 1/¢?2. In the case
of a rolling massive scalar or the inverse power-law poten-
tials V() ~ 1/¢" with 0 < n <2, dark energy is a late
time attractor and the scale factor takes the form a(r) =
aor?/CU) with suitable negative values of w. The fluc-
tuations in the tachyon field grow lineally with time while
the metric fluctuations remain constant for potentials de-
creasing faster than 1/¢? at infinity [15,21]. However, in
the case of the rolling massive scalar and inverse power-
law potentials with 0 < n <2 that would be of interest to
us, both the fluctuations do not grow [9,21].

III. CAUSTIC FORMATION

In this section we apply the above formalism to inves-
tigate the possibility of caustic formation in the DBI
tachyon system with two generic classes of potentials
and present the results of numerical simulation.

A. Exponentially decreasing rolling massive potential

The exponentially decreasing rolling massive scalar
field potential is given by [20]

V(g) = Voe 1121267 (25)

where V\, and M are constants. For this potential the
homogeneous scalar field equation (4) becomes

¢ g —

=& M=¢ = 0. (26)
The numerical solution of this equation is shown in Fig. 1
for different values of the arbitrary constant M and initial
values of field ¢(. The values of M chosen in this figure
are 0.1, 0.5, and 1. On the other hand, two values of ¢, are
considered for this figure, which are 0.001 and 0.1. If the
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FIG. 1 (color online). The numerical solution of Eq. (26) [gray
(red online) line] and the analytic solution of Eq. (27) (black
line) for different values of M and ¢,. The solid line is for the
initial value of field ¢y = 0.001 and the dotted line is for ¢, =
0.1. Three different sets are due to three different values of M =
1, 0.5, and 0.1 along the increasing values of ¢. The discrepancy
between these two solutions is obvious after some initial period
depending upon the values of M and ¢,,.

time variation of the scalar field is very slow, then we may
consider that ¢ < 1. In this case, Eq. (26) further simpli-
fies to

¢ — M*¢p =0. (27)
The solution of this equation is trivial and can be written as
¢ = ¢y cosh(Mr), (28)

where ¢, is the constant initial field value. The plots of this
equation are also shown in Fig. 1 for the same values of M
and ¢, as for the above case to compare with the numerical
solution. The gray (red online) line indicates the numerical
solution and the black line indicates the analytic one. The
solid line is for the initial field ¢y = 0.001 and the dotted
line is for ¢y = 0.1. Three different sets are due to three
different values of M = 1, 0.5, and 0.1 along the increasing
values of ¢. It is observed from Fig. 1 that the assumption of
a very slow variation of the field with respect to time is
correct only for some initial period that depends upon the
values of M and ¢. For low values M and ¢, this period is
longer than their higher values. As the time increases
beyond this period, the discrepancy between the solutions
of Egs. (26) and (27) increases rapidly. The overall trend of
time variation of the field with different possible initial
conditions is almost same; the only difference is that this
variation is slower for some initial period if the field is
started with smaller values of M and ¢, than their higher
values.

The inhomogeneous scalar field equation (5) for this
potential can be written as
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b =(1—-¢>+ ¢?)(¢" + M*¢). 29)

The numerical solutions of Eq. (29) for the same values of
M as in the previous cases, but for ¢, = 0 and 0.1, are
shown in Fig. 2. In the figure the black line is for M = 0.1,
the gray (red online) line is for M = 0.5, and the shaded
(green online) line is for M = 1. The solid line represents
¢o = 0 and the dotted line ¢, = 0.1. Since the solution of
the inhomogeneous equation (29) depends upon the values
of ¢’ and ¢”, for these plots in this figure we consider
¢’ = 0.01 and ¢"” = 0.02. Moreover, to check the depen-
dency of the solution on ¢’ and ¢", we consider another
set of values of these two parameters as 0.002 and 0.001,
respectively, together with M = 0.5 and ¢, = 0.1. The
result of this solution is shown in this figure by the dark
shaded (blue online) line. We observe that for all cases the
variation or the evolution of the field with time is very slow
in the initial period based on the values of M and ¢, and
then it develops rapidly as time passes. For low values of M
and ¢, this initial period enhances slightly and the time
variation is also relatively slower for such values. The
value of M has a significant effect over the variation of
the field with time than ¢, which is also noticed for the
homogeneous case. Since this is an arbitrary parameter, we
can assume any value of it for a solution; however its actual
value cannot be substantially small because for such a
small value the time evolution of the field will halt for a
considerable period of time. The ¢’ and ¢ does not have
any effect on the time evolution of the field, whereas they
only effect to shift the magnitude of field in the same
direction of their magnitude variations (i.e. along the

10
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t

FIG. 2 (color online). The numerical solutions of Eq. (29) for
different values of M and ¢,. Black, gray (red online), and
shaded (green online) lines are for M = 0.1, 0.5, and 1, respec-
tively. The solid line represents ¢, = 0 and the dotted line ¢, =
0.1. For all these plots we consider ¢’ = 0.01 and ¢” = 0.02.
The dark shaded (blue online) line represents the solution with
¢o =0, M =0.5, ¢ =0.002, and ¢" = 0.001. For all cases
time variation of the field is very slow initially and then it
increases rapidly as time passes.
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increasing or decreasing order). Thus for our remaining
discussion, related to this field potential, we will not con-
sider again the effects ¢’ and ¢' over the field.

The variations of P(¢) and Q(¢) with respect to time
that are obtained from the numerical solutions for ¢(x, r)
are plotted in Fig. 3. In this figure, the falling lines are for
P(¢) and the rising ones are for Q(¢). The color and style
of the line represent the corresponding values of M and ¢,
as in the case of Fig. 2. As mentioned earlier the state of
the field with respect to time and space is indicated by the
behavior of the P(¢) at the corresponding time. So, here
we are mainly interested in P(¢) only.

From the pattern of variation of P(¢) with time we
observed that during some initial period, which depends
upon the value of M and ¢, the value of P(¢) is = 1 and
beyond this period its value falls rapidly to zero. The length
of this initial period is more for lower values of M and ¢,
(the effect is prominent for the parameter M as mentioned
earlier), otherwise the behavior of the time variation of
P(¢) is similar for all initial conditions. To be more
specific, we consider the solution of P(¢) with M =1
and ¢, = 0, and the initial field configuration as ¢;(g) =
exp(—g?) [15], then we obtain the characteristic curves
from Eq. (16) which are shown in the left panel of Fig. 4.
From these characteristic curves it is interesting to note
that there are likely to be caustics as well as multivalued
regions in the field profile. Apart from these, there are
regions of twisting of the characteristic curves. The regions
of caustics and multivalued start at the points x = *=3. As
the behavior of the P(¢) is similar for all initial conditions
mentioned above, therefore we will get similar character-
istic curves with caustics and multivalued regions at differ-
ent locations corresponding to the values of M and ¢,.
Obviously for smaller values of M and ¢, these locations
will shift to the higher value of 7. But it is sure that there is
no way to avoid these unphysical regions for any value of

14
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FIG. 3 (color online). The variation patterns of P(¢) and Q(¢)
with respect to time for the potential (25) corresponding to the
initial conditions of Fig. 2. The falling lines are for P(¢) and the
rising lines are for Q(¢). The overall patterns are the same for all
initial conditions.
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FIG. 4. The particle trajectories in 1 + 1 Minkowski space obtain from Eq. (16) (left panel) and in the FRW expanding Universe
obtain from Eq. (23) (right panel) with potential (25) and initial field profile ¢,(q) = exp(—q?). Both panels of the figure are obtained

with the initial conditions M = 1 and ¢, = 0.

initial field parameters. Thus we may infer that the for-
mation of caustics and multivalued regions is independent
of the initial conditions of the field.

The evolution of the field configuration ¢(x, t) with
¢.(q) = exp(—¢?) and for the same initial condition as
in the case of characteristic curves is shown in Fig. 5 at
different times. It should be pointed out that to draw the
field configuration at ¢t = 5 we consider that P(¢) = 0
(which is almost the case). Beyond this value of 7, P(¢)
is obviously zero. Within the period, when P(¢) falls from
almost 1 to zero, the field evolves very rapidly with time,
which is not significant to be visualized geometrically.
The same observation can be made for the evolution of
the field configuration with different initial conditions and
consequently with the different values of time after which
P(¢) falls to zero.

Heuristically speaking, expansion works against caus-
tics formation. It is therefore necessary to investigate the
corresponding situation in case of the expanding Universe
using Egs. (23) and (24). Without going into detail of the
scalar field dynamics in the expanding Universe under this
potential, we assume that the field behaves in a manner
equivalent to the 1 + 1-dimensional case [which is speci-
fied by the behavior of P(¢)]. Since the average matter
density of the Universe is quite low to obtain a substantial
value of the Newtonian gravitational potential ®;(z, r)
[22,23] of the Universe, we shall neglect ®@; in comparison
to unity. Secondly, as a dust-like solution is a late attractor
in the present case, we assume a(r) ~ 12>, Under these
considerations, we obtain the characteristic curves from
Eq. (23) where the initial field profile as mentioned
above is shown in the right panel of Fig. 4 for the one-
dimensional space. It is observed that the patterns of the

characteristics curves are different in this case from the
1 + 1-dimensional Minkowski space time and the caustics
are more distinctly formed in the field profile if the field
behaves in a similar manner as in the 1 + 1 dimension with
this exponentially decreasing rolling massive potential.
From the numerical calculations under the above consid-
erations we found that the evolution patterns of the
field obtained from Eq. (24) remain nearly the same as
its initial profile. We should note that the field rolls slowly
for a short while near the origin but quickly enters the fast
roll to mimic the dark matter-like regime described by
a(t) ~ t*3. Using Egs. (18) and (19), we have verified
that the situation depicted in Fig. 4 does not change if
the detailed field dynamics is taken into account.

B. Exponentially increasing rolling massive potential

Now we consider rolling massive scalar potential V()
given by [20,24]

V(p) = Vyell/2M*¢?, (30)

In this case, the homogeneous field equation (4) can be
written as

+M2p = 0. 31)

The numerical solutions of this equation are shown in
Fig. 6 by the dotted lines with three different colors
for three different values of M as in the case of the pre-
vious potential, viz., black for 0.1, gray (red online) for
0.5, and shaded (green online) for 1. The upper set
is for ¢ = 1 and the lower set is for ¢, = 0.5. The
field ¢ for this potential is oscillatory in nature. ¢ is
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FIG. 5. The evolution of the field configuration ¢(x, f) with potential (25) and ¢,(g) = exp(—¢?) at different times for the initial

condition M = 1 and ¢, = 0.

oscillatory just like a simple harmonic motion and its
obvious equation can be obtained by considering ¢ < 1,
which is in this case is

¢+ M*¢p =0, (32)
and the nature of ¢ is the solution of this equation,
¢ = o cos(M1), (33)

where ¢, is a constant, the field amplitude. The solution
(33) is presented in Fig. 6 for the same values of M and ¢,
as described above. It is seen that the solutions of Egs. (31)
and (32) are in good agreement; however there is a gradual
phase shift between them because the second solution is
due to the slow variation of ¢. The rate of this phase shift
depends upon the values of M and ¢, which is slower
for the smaller values of these two initial field parameters.

On the other hand, the time period of oscillation of the field
depends on these two parameters in the opposite way, i.e.
the time period increases with decreasing values of them.
As in the case of the previous potential, in this case also the
effect of M on the field is more prominent than ¢,. The
amplitude of oscillation solely depends on the value of ¢,
as is clear from the figure.

The inhomogeneous scalar field equation (5) in this case
can be written as

¢ = (1= ¢+ )" — M ). (34)

The numerical solutions of Eq. (34) with ¢’ = 0.01, ¢" =
0.02 and with three different values of M the same as
above, and ¢y = 0, 0.1 are shown in Fig. 7. The three
colors correspond to the respective values of M as men-
tioned above for the homogeneous case. Here the solid line
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FIG. 6 (color online). The numerical solutions of Eq. (31)
(dotted lines) and the solutions of Eq. (32) (solid lines) for three
different values of M = 0.1, 0.5, and 1, which are represented
by black, gray (red online), and shaded (green online) colors,
respectively. The upper set is for ¢, = 1 and the lower set is for
¢o = 0.5. There is good agreement between the numerical and
analytic solutions although there is a gradual phase shift between
them as time passes depending on the values of M and ¢,.

indicates the solution for ¢, = 0, whereas the dotted line
for the ¢ = 0.1. To understand the effect of ¢’ and ¢’ on
the inhomogeneous field for this potential we consider the
solution of Eq. (34) with the set of initial field values as
¢’ = 0.002, " = 0.001, M = 0.1, and ¢, = 0, which is
shown by the dark shaded (blue online) line in the figure.
We have seen that the inhomogeneous field is also oscil-
latory in nature, the time period of which depends upon the
values of M and ¢ in the same way as in the homogeneous

o(x, t)

FIG. 7 (color online). The numerical solutions of Eq. (34) for
different values of M, ¢, ¢', and ¢”. The line colors black,
gray (red online), and shaded (green online) are for M = 0.1,
0.5, and 1, respectively. The solid line refers to ¢, = 0 and the
dotted line to ¢y = 0.1. All these plots are drawn for solutions
with ¢’ = 0.01 and ¢” = 0.02. The dark shaded (blue online)
line indicates the solution with M = 0.1, ¢, = 0, ¢’ = 0.002,
and ¢ = 0.001.
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case; however the small value of M significantly affects
both the time period and the amplitude of oscillation. It
should be noted that the amplitude decreases for a higher
value of ¢, as M decreases and there is a phase shift
between oscillation patterns of fields for different values
of ¢, which decreases with decreasing values of M. The
effect of ¢’ and ¢" on the field is only on the amplitude of
its oscillation and we have seen that the amplitude de-
creases substantially for the lower value of space variation
of the field. So the role of the space variation factor is
significant for this potential to avoid the unwanted large
fluctuation or oscillation of the field for a lower value
of M. It also implies that in reality the space variation of
the field should be sufficiently less that unity as previously
mentioned.

The time variations of P(¢) and Q(¢) corresponding to
the above solutions of Eq. (34) are shown in Fig. 8. The
values of P(¢) oscillates with time near unity from below
with different amplitudes corresponding to the situations
described above for the solutions of Eq. (34). For the value
of M = 0.1 the amplitude of oscillation of values of P(¢)
is noticeably away from unity in comparison to other
higher values of M if we consider the value of ¢’ = 0.01
and ¢” = 0.02. So for further lower values of M the
amplitude of oscillation should move far away from unity.
On the other hand, if we consider the values ¢’ = 0.002
and ¢ = 0.001 for the same value of M (i.e. 0.1), the
oscillation of the values of P(¢) is negligible and its values
are almost unity for all times. But intuitively enough, we
may argue that the value of the space variation of the field
cannot be very small beyond some limit as that will nullify
the inhomogeneity condition of the field and similarly the
value M also cannot be very small because then the field

0.99
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FIG. 8 (color online). The time variation patterns of P(¢) and
QO(¢) for the potential (30) corresponding to the solutions of
Eq. (34) shown in Fig. 7.
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will not be a sustainable one for a very large amplitude
of oscillation. Hence for the real situation the value of M
and the space variation of the field should be such that
oscillation of the field must be negligible. Under such
considerations and for our present values of M we may
take on average the value of P(¢) as unity for all times. For
the initial field configuration ¢;(g) = exp(—g?) as in the
previous cases and P(¢) = 1, the characteristic curves for
Eq. (16) are shown in the left panel of Fig. 9. It is clear from
the panel of the figure that there are no caustics and
there are no multivalued regions in the field configuration.
This happens due to the almost steady nature of the field
(because the average value of the field with time is a
constant as clear from our argument together with Fig. 7)
and therefore the evolution pattern of the field for all times
in this case will be the same as in the previous case for
t = 0, i.e. the same as the initial configuration of the field.
As expansion works against caustics formation, we should
not encounter caustics if expansion of the Universe is
incorporated. Indeed, we have numerically checked that
there are no caustics in the field profile in the expanding
Universe in this case; see the right panel of Fig. 9.

C. Inverse power-law potentials

Finally we consider the inverse power-law potential of
the form, given by [20,24]

V(p) = Voo ™", 0<n<2. (35)

The late time accelerated expansion of the Universe cor-

responds to 0 = n = 2[20,25], and accordingly we restrict
the value of the exponent n within this range for our work.

-2 -1 0 1 2

PHYSICAL REVIEW D 82, 103530 (2010)

We shall first restrict our attention to 1 + 1-dimensional
Minkowski space time. In this case, the homogeneous field
equation (4) is given by

1—¢> ¢

The numerical solutions of this equation are shown in the
left panel of Fig. 10 for n = 0.5, 1.0, and 1.5 with ¢, = 1.
The difference of the solutions decreases for the higher
values of n as it is clear from the figure. The inhomoge-
neous scalar field equation (5) in this case will take the
form,

¢ "o (36)

b=(1-¢+ ¢'2>(¢" " g) (37)

The numerical solutions of Eq. (37) with ¢’ = 0.01, ¢" =
0.02 and for n = 0.5, 1.0, 1.5 with ¢, = 1 are shown in the
middle panel of Fig. 10. It should be noted that there is no
significant difference between the solutions of homogene-
ous and inhomogeneous field equations for this inverse
power-law potential, because the time variation of the field
is more prominent than the space variation we have con-
sidered, which indeed should be for a mass free space.
Moreover the field evolution pattern is almost independent
of the initial condition of the field. However, it has little
impact on the magnitude of the field as time passage in an
arbitrary manner as seen from the right panel of this figure.
So the value of ¢, would be immaterial for the testing of
the caustic formation in the field for the inverse power-law
potentials. However, we take care of the effect of ¢ on the
variation P(¢) to see the way of rolling of its values with

e

! ! 1 1

-4 -2 0 2 4
X

FIG. 9. The particle trajectories in 1 + 1 Minkowski space obtain from Eq. (16) (left panel) and in the FRW expanding Universe
obtain from Eq. (23) (right panel) with potential (30) and ¢;(g) = exp(—g?). The figure in the right panel is obtained from the
numerical solutions of Egs. (18) and (19) of the FRW expanding Universe with the given potential for one spatial dimension taking
constants k = 87G, V,, and M as unity and the initial field value ¢, = 0.1.
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FIG. 10 (color online).

The numerical solutions of the homogeneous field equation (36) (left panel) and the inhomogeneous field

equation (37) (middle panel) with ¢, = 1. The difference between the homogeneous and inhomogeneous solutions is insignificant.
The right panel shows the three different solutions of the inhomogeneous equation for three different values of ¢ and for n = 1. This
panel clearly verifies that the time evolution of the field is almost independent of the initial value of the field for the inverse power-law

potentials.

time which will be clear from the following discussion.
The time variations of P(¢) and Q(¢) corresponding to the
solutions of ¢(x, ¢) as shown in the middle and right panels
of Fig. 10 are shown in Fig. 11.

From Fig. 11 we observed that values P(¢) for all n
rapidly fall to zero from above if the initial value of the
field ¢ is not very small. It is interesting to note that, when
the value of ¢, is very small, P(¢) falls rapidly to zero
from below as indicated by the third panel of Fig. 11.
Notwithstanding, for all cases the value of P(¢) rolls to
zero very fast (the rate is more for the lower value of ¢) as
time passage and hence considering the initial field con-
figuration as in the previous cases, the plots of the charac-
teristic curves for Eq. (16) are shown in Fig. 12 for
n = 0.5, 1.0, and 1.5 with ¢5 = 1.

Figure 12 vividly shows the formation of caustics and
multivalued regions in this case. It should be noted that the
regions of caustics are not steady but slowly move with
time as the exponent n of the potential increases. Because
of the pattern of variation of P(¢), we get a similar pattern
of variation of the field configuration at different times as
in the case of exponentially decreasing rolling massive
potential as shown in Fig. 5.

As noted earlier, expansion works against caustic for-
mation. The effect might become dramatic in the case of
the inverse power-law potential under consideration with
dark energy as a late attractor. Thus the observed caustic
formation in the case of potential (35) may quite be the
artifact of Minkowski space time [26]. In order to reach the
final conclusion in this regard, it is essential to incorporate
the expansion of the Universe. The numerical solutions of
evolution equations (18) and (19) are depicted in Fig. 13

for all potentials, which are obtained by taking constants
k = 8mG, V\, M, n as unity and the initial field value ¢, =
0.1. The left panel provides us the evolution history of the
scale factor a(z) and the right panel shows the variation of

P(9)

1F T T T T ™H 6l T T T T 1]
= 0.001 5 3
0 = 0.100 B
0o = 0.500

0, = 0.001

I\

P(9)

FIG. 11 (color online). The time variation patterns of P(¢) and
0O(¢) corresponding to the solutions shown in the middle and the
right panels of Fig. 10.
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FIG. 12. The particle trajectories in 1 + 1 Minkowski space obtain from Eq. (16) with potential (35) and ¢,(q) = exp(—4¢?)
corresponding to the solutions of Eq. (37) with ¢, = 1 as shown in the middle panel of Fig. 10. Caustics and multivalued regions are

clearly formed in the space.

the equation of state parameter w of the field with time for
all three potentials. It is clearly observed that, the time
evolution of the scale factor is faster in the case of ex-
ponentially increasing massive potential than the inverse
power-law potential. On the other hand, in the case of the
exponentially decreasing massive potential the scale factor
becomes infinity after some initial period. The field is
rolling faster to attain steady values in the case of the
exponentially increasing and decreasing field potentials.
Whereas in the case of the inverse power-law potential
(0 < n <2, the plot is shown for n = 1) the field is evolv-
ing very slowly with time after some very brief initial
period during which it evolves relatively fast. Though
both the models (i.e. exponentially increasing and inverse

power-law) can account for late time acceleration, the
rolling massive scalar requires enormous fine-tuning in
order to be consistent with observation.

Since dark energy is the late time attractor in the pre-
sent case, we, first for simplicity and consistency with the
full solution of a(f) as mentioned above, assumed that
a ~ 230+ incorporating all time dark energy effects
in the scale factor. Now for the case of the scalar field in
the expanding Universe with the inverse power-law poten-
tials under the above mentioned assumptions and with this
value of the scale factor for w = —0.9, we obtain the
characteristic curves of the field given by Eq. (23) as shown
in the left panel of Fig. 14. It is interesting to note that there
are no caustics and multivalued regions in the field profile
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FIG. 13 (color online).
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Numerical solutions of Eq. (19) for the three different field potentials (left panel). The dotted line in the figure

indicates the infinite value. The time variations of the equation of state parameter w for all three potentials (right panel). These plots are
obtained by taking constants k = 87G, V, M, and n as unity and the initial field value ¢, = 0.1.

of the dark energy dominated Universe in contrast to the
situation of 1 + 1-dimensional Minkowski space. Finally
at this stage we intend to incorporate the dynamics exactly
by taking the numerical solutions of Egs. (18) and (19).
The numerical data of the scale factor a(r) (see Fig. 13) can
then be used to solve Eq. (23) to see the formation of
caustics in the field profile for the given potential. The
result of the solution of this equation (23), i.e. the charac-

TT T T [T T T T [T T T T [T T T T[T T T T [T T T T[T TTT

I

T T

teristic curves obtained by using the numerical data of
the scale factor, is shown in the right panel of Fig. 14 by
considering the same initial profile of the field as in the
previous cases. Both of the panels of this figure are for
n = 1. It is apparent from Fig. 14 in the right panel that at
late times (> 4), the field profile based upon the exact
simulation is the same as the one (left panel of Fig. 14) that
is obtained by assuming dark energy domination at all
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FIG. 14. The particle trajectories in the FRW expanding Universe obtained from Eq. (23) assuming all time dark energy effects, i.e.
with the scale factor a ~ 230+ for w = —0.9 (left panel) and using the numerical data of solutions of Eqs. (18) and (19) (right
panel) for the inverse power-law field potential (35) and the profile ¢;(g) = exp(—g?). Other assumptions for the right panel of this
figure are the same as the right panel of Fig. 9. We put both left and right panels in this figure to focus on the late time evolution of the
field as well as to show that at late times the inverse power-law potentials have exactly same effect on the scalar field as the dark energy

has on it.
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times. This shows that at late times the inverse power-law
potentials have exactly same effect on the scalar field in
the expanding Universe as the dark energy has on it. Since
the dark energy is a late time effect, the disagreement of the
two panels of this figure during initial evolution is obvious
and does not have any significance for us.

In view of the aforesaid, we consider the models based
upon the inverse power-law potentials more viable than the
one with the rolling massive scalar field to explain the
present accelerated expansion of our Universe.

IV. CONCLUSION

In this paper, we have examined the phenomenon of
caustic formation in the tachyon system with two generic
classes of potentials. We presented analytical estimates
supported by detailed numerical simulation. We show
that the time variation of the scalar field with exponentially
decreasing potential, V(¢) = Ve 1/2M¢*  becomes
gradually important as the time elapses for both the homo-
geneous and the inhomogeneous field configurations.
There are multivalued regions and regions likely to be
caustic for this potential in Minkowski space time as well
as in the FRW expanding Universe which broadly agrees
with the analysis of Ref. [15]. However, in the case of the
expanding Universe, the caustic formations are more defi-
nite than the case of 1 + 1-dimensional Minkowski space.
It is clearly seen from Fig. 4 that the expansion works
against caustic formation: it dilutes the effect of caustics
but cannot render the situation caustic free in the present
case which is generally true for a tachyon potential that
decays faster than 1/¢? at infinity.

The field exhibits oscillatory behavior for an exponen-
tially increasing rolling massive scalar field potential,
V() = Vyel/2M*$ In the case of the inhomogeneous
field, the magnitude of time oscillations of the field is very
small and hence the field can be considered as almost
steady for sufficiently tuned values of initial parameters.
The field with exponentially increasing rolling massive
potential is free from caustic formation in both cases of
1 + 1-dimensional Minkowski space and the expanding
Universe; see Fig. 9. It is interesting to note that this
potential can give rise to late time acceleration provided
that we fine-tune the energy scale V|, in the potential
appropriately.

For inverse power-law potentials, V(¢) = V,/¢",
0 <n <2, dark energy is a late time attractor of dynamics
and in this case, we did expect the system to be free from
caustics. Our analysis shows that the time variations of
the homogeneous and inhomogeneous fields are almost
similar in this case, because the space variation of the
field is insignificant in comparison to time variation.
Figure 12 shows that caustics are formed with the multi-
valued regions beyond them in the field configuration in
the case of inverse power-law potentials in Minkowski
space time.

PHYSICAL REVIEW D 82, 103530 (2010)

Heuristically speaking, expansion generally works
against caustic formation and its effects become crucial
for inverse power-law potentials with 0 <n <2. If the
potential vanishes faster than 1/¢? at infinity, the dust-
like solution is a late time attractor; the exponentially
decreasing potential belongs to this category. In this case,
caustics form in Minkovski space very distinctly. The
cosmic expansion does dilute the effect of caustic forma-
tion but cannot irradicate them. It is really interesting that
for the inverse power-law potentials under consideration,
the effect of expansion can compete with the tendency of
caustic formation. Indeed, dark energy as a late time
attractor of the dynamics in this case gives rise to cosmic
repulsion allowing one to avoid caustics and multivalued
regions in the field profile.

From the behavior of the scalar field with exponentially
increasing and inverse power-law potentials, we infer
that the field first rolls fast and mimics dark matter
and subsequently gives rise to dark energy; see Fig. 13.
Our simulation shows that the particle trajectories
computed in the expanding Universe using the exact
evolution equations (18) and (19) broadly agree with
the result obtained assuming dark energy dominance at
all times.

The evolution of field configurations at different times is
similar for the cases of exponentially decreasing rolling
massive and inverse power-law potentials apart from the
initial and transition periods in Minkowski space and the
expanding Universe. It should be noted that in the case
of the expanding Universe, the pattern of the evolution
of the field remains almost the same as its initial profile
for the scalar field dominated Universe. Since the field is
almost steady for the exponentially increasing rolling mas-
sive scalar potential, the field configuration is the same as its
initial profile. Thus taking into account the results
of Ref. [15], we conclude that caustics generally form
for DBI systems in Minkowski space time with an exception
of the massive rolling scalar. On the other hand,
in the FRW expanding Universe, caustics form in DBI
systems with potentials decaying faster than 1/¢? at infin-
ity, in particular, the exponentially decreasing rolling mas-
sive scalar potential. As for the inverse power-law potentials
under consideration, they are free from caustics and may be
suitable to explain the late time cosmic acceleration.
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