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We consider a two-dimensional Maxwell system defined on the Rindler space with metric ds2 ¼
expð2a�Þ � ðd�2 � d�2Þ with the goal to study the dynamics of the ghosts. We find an extra contribution to

the vacuum energy in comparison with Minkowski space-time with metric ds2 ¼ dt2 � dx2. This extra

contribution can be traced to the unphysical degrees of freedom (in Minkowski space). The technical

reason for this effect to occur is the property of Bogolubov’s coefficients which mix the positive- and

negative-frequency modes. The corresponding mixture cannot be avoided because the projections to

positive-frequency modes with respect to Minkowski time t and positive-frequency modes with respect to

the Rindler observer’s proper time � are not equivalent. The exact cancellation of unphysical degrees of

freedom which is maintained in Minkowski space cannot hold in the Rindler space. In the Becchi-Rouet-

Stora-Tyutin (BRST) approach this effect manifests itself as the presence of BRST charge density in L and

R parts. An inertial observer in Minkowski vacuum j0i observes a universe with no net BRST charge only

as a result of cancellation between the two. However, the Rindler observers who do not ever have access to

the entire space-time would see a net BRST charge. In this respect the effect resembles the Unruh effect.

The effect is infrared (IR) in nature, and sensitive to the horizon and/or boundaries. We interpret the extra

energy as the formation of the ‘‘ghost condensate’’ when the ghost degrees of freedom cannot propagate,

but nevertheless do contribute to the vacuum energy. Exact computations in this simple two-dimensional

model support the claim made in a previous paper [F. R. Urban and A. R. Zhitnitsky, Nucl. Phys. B835,

135 (2010).] that the ghost contribution might be responsible for the observed dark energy in a four-

dimensional Friedmann-Lemaitre-Robertson-Walker universe.
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I. INTRODUCTION: MOTIVATION

The main motivation for the present studies is the
observation made in [1] that the dark energy observed in
our Universe might be a result of mismatch between the
vacuum energy computed in a slowly expanding universe
with the expansion rate H (Hubble constant) and the one
which is computed in flat Minkowski space. If true, the
difference between two metrics would lead to an estimate
�Evac �H�3

QCD � ð10�3 eVÞ4 which is amazingly close

to the observed value today.
The main idea behind the claim made in [1] can be

formulated as follows. It is well-known that, in general,
in a curved space-time it would not be possible to separate
positive-frequency modes from negative-frequency ones in
the entire space-time, in contrast with what happens in
Minkowski space, where the vector @=@t is a constant
Killing vector, orthogonal to the t ¼ const hypersurface.
The Minkowski separation is maintained throughout the
whole space as a consequence of Poincaré invariance.
It is in a drastic contrast with a curved space-time when
there are no privileged coordinates. This means that a
transition from a complete orthonormal set of modes to a
different one (the so-called Bogolubov’s transformations)
will always mix positive-frequency modes with negative-
frequency ones. As a result of this mixture, the vacuum
state defined by a particular choice of the annihilation
operators will be filled with particles once we switch

back to the original basis. Precisely this feature leads to
the mismatch �H mentioned above between the vacuum
energy computed in a slowly expanding universe and
Minkowski space-time.
Such drastic, profound consequences arising in going

from Minkowski to curved space should not be a surprise
to anyone who is familiar with the problem of cosmologi-
cal particle creation in a gravitational background, or the
problem of photon emission by a neutral body which is
accelerating. The generic picture is amazingly simple:
the transition from one coordinate system to another leads
in general to nonvanishing Bogolubov’s coefficients
which mix positive- and negative-frequency modes.
Eventually, it signals a physical production of particles
stemming from the interaction with the gravitating
background.
The spectrum of the produced particles as well as the

rate of production have been discussed in the literature in
great detail [2]. The most important outcome is that the
typical magnitude of the Bogolubov’s coefficients is pro-
portional to the rate at which the background is changing
(the Hubble parameter H in the case of an expanding
universe, or the acceleration rate if we are studying
photon emission by a neutral body). The characteristic
frequencies of the gravitationally emitted particles in this
setup are of the order of the Hubble parameter !k ’ H,
whereas higher frequency modes are exponentially sup-
pressed � expð� k

HÞ. Exactly this feature of the spectrum
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was a crucial point to identify the mismatch energy
�Evac �H�3

QCD � ð10�3 eVÞ4 with observed dark energy
as this type of energy is drastically different from any
conventional type of matter. Indeed, it does not clump
because the typical wavelengths �k of the relevant excita-
tions contributing to �Evac are of the order of the entire
size of the Universe, �k � k�1 �H�1 � 10 Gyr.

Precise computations of this sort in a general curved
background are difficult to perform. However, as is known,
some nontrivial geometrical effects can be explored and
understood by analyzing the system that accelerates
uniformly with acceleration a through the Minkowski
vacuum state, which is the Rindler system. In this case,
the Bogolubov’s coefficients are known to mix the posi-
tive- and negative-frequency modes. More than that, the
Bogolubov’s coefficients exhibit the desired exponential
suppression � expð� k

aÞ of high frequencies modes.

Therefore, we consider the Rindler space as a theoretical
laboratory which allows us to understand the dynamics of
gauge theories in a physically relevant case of an expand-
ing universe when the acceleration parameter a in the flat
Rindler space effectively replaces the expansion rate H
in a nonstatic Friedmann-Lemaitre-Robertson-Walker
(FLRW) universe, while suppressed Bogolubov’s coeffi-
cients � expð� k

aÞ replace � expð� k
HÞ.

The crucial question we want to address in this work can
be formulated as follows. It is known that fixing a gauge in
the Lorentz covariant way always leads to emergence of
unphysical degrees of freedom which always accompany
the gauge system. The standard way to cure this problem
goes back to Gupta and Bleuler formulation [3,4], when the
unphysical degrees of freedom (e.g. temporal and longitu-
dinal photons in QED) drop out of every gauge-invariant
matrix element, leaving the theory well defined, i.e., unitary
and without negative normed physical states. In particular,
the contribution of unphysical degrees of freedom to the
energy-momentum tensor vanishes identically in
Minkowski space as a result of exact cancellation when
appropriate auxiliary Gupta-Bleuler [3,4] conditions are
imposed.

We want to see what happens with those unphysical
degrees of freedom in an accelerating system.
Essentially, we want to answer the following question:
what does a Rindler observer have to say about the afore-
mentioned exact cancellation of the unphysical degrees of
freedom? We shall see that the accelerating Rindler
observer perceives an extra energy if one compares with
the conventional Minkowski vacuum state. More than that,
this extra energy can be traced to those unphysical (in
Minkowski space) degrees of freedom mentioned above.
For conventional massless physical scalar field this effect is
well known as the ‘‘Unruh effect’’ [5,6], and the corre-
sponding physics is well understood. We shall see that the
basic reason for the emergence of this extra energy is
precisely the same as for the Unruh effect to occur, and

results from restriction of Minkowski vacuum j0i to the
Rindler wedge region, where it becomes a thermal state
with temperature T ¼ a

2� . In our case the interpretation is

somewhat different as we interpret the extra contribution to
the energy observed by the Rindler observer as a result of
formation of a specific configuration, the ‘‘ghost conden-
sate’’ rather than a presence of ‘‘free particles’’ prepared in
a specific mixed state.
One should emphasize that all these effects happen to

the modes k � a when the entire notion of ‘‘particle ‘‘ is
not even defined. In cosmological context when a�H and
we take k� 1K � 10�4 eV the suppression is of the order
� expð� k

HÞ � expð�1027Þ and can be completely ignored

for any local, related physical phenomena. The deviations
from the Minkowski picture start to occur only for modes
with very large wavelengths of the order of the size of the
Universe, ��H�1 � 10 Gyr. In different words, the ef-
fect is infrared (IR) in nature, and sensitive to the horizon
and/or boundaries. The phenomenon does not affect any
local physics.

II. GHOSTS DYNAMICS IN MINKOWSKI
AND IN CURVED SPACES

In this paper we will be mostly interested in dynamics
described by the following Lagrangian:

L ¼ L0 þ 1

2
@��2@

��2 � 1

2
@��1@

��1; (2.1)

where L0 describes some physical massive/massless de-
grees of freedom which are decoupled and irrelevant for
our present study. This Lagrangian emerges in a number of
places, such as two-dimensional QED in the chiral limit
mq ¼ 0 (Schwinger model) as it was formulated by Kogut

and Susskind [7].1 The Lagrangian (2.1) also describes
photodynamics (when no matter fields are present in the
system), where�1 and�2 are identified with temporal and
longitudinal photon’s polarizations in any number of
dimensions.2 Finally, the same Lagrangian describes the

1One should remark that if mq � 0 these fields are actually
coupled to the physical massive field �̂ as follows: mqh �qqi�
cos½2 ffiffiffiffi

�
p ð�̂þ�2 ��1Þ�. However, to simplify things we

ignore this interaction in the present discussions.
2Indeed, the Lagrangian � 1

4F
2
�� for the Maxwell field is

reduced to the form (2.1) in the Feynman gauge when the gauge
fixing term takes the form � 1

2 ð@�A�Þ2 such that the Lagrangian
describing the nonphysical degrees of freedom takes the form
1
2 ð@�A1Þ2 � 1

2 ð@�A0Þ2. In this formula A0 describes the polariza-
tion �ð0Þ� and is identified with the ghost �1 in Eq. (2.1), while A1
describes the longitudinal polarization �ðkÞ� it can be identified
with �2. The physical, transverse polarizations �ð?Þ

� enter the
expression forL0 and are decoupled from�1 and�2. We should
note, however, that the decomposition of the A� field in the two-
dimensional Schwinger model (when only unphysical polariza-
tions are present in the system) as adopted in [7] differs from
such an identification.
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so-called Veneziano ghost3 �1 and its partner �2 in four-
dimensional QCD as discussed in [1].

One should emphasize: the Kogut-Susskind (KS) ghost
in two dimensions (as well as the Veneziano ghost in four
dimensions) we will be dealing with in this paper are very
different from all other ghosts, including the conventional
Fadeev-Popov ghosts. The unique features of KS and the
Veneziano ghosts are due to their close connections to
the topological properties of the theory. In particular, the
topological density operator e

2�E in two-dimensional QED

is explicitly expressed in terms of the KS ghost �1 as

follows: e
2�E ¼ ð e

2�Þ
ffiffiffi
�

p
e ðh�̂�h�1Þ [7]. One should

also note that the appearance of the ghost degree of free-
dom in the formalism can be traced from the conventional
Maxwell term E2 �h2, which containsh2 operator. As is
known theh2 operator can be always rewritten in terms of
a degree of freedom with a negative kinetic term. This is a
simplified explanation of how the KS ghost emerges in the
system; see [7] for the details. Similar formulas demon-
strating the topological features of the Veneziano ghost
also exist in four-dimensional QCD [1]. A number of
very nontrivial properties of these ghosts which will be
discussed in this paper are intimately related to their topo-
logical nature.

A. Conventional picture in Minkowski space

The most important element for this work is the presence
of the field �1, which enters Eq. (2.1) with the negative
sign. This negative sign leads to the following equal-time
commutation relations which need to be imposed on fields:

½�1ðt; ~xÞ; @t�1ðt; ~yÞ� ¼ �i	ð ~x� ~yÞ;
½�2ðt; ~xÞ; @t�2ðt; ~yÞ� ¼ i	ð ~x� ~yÞ: (2.2)

The negative sign in Eq. (2.1) however does not lead to any
problems when auxiliary (similar to Gupta-Bleuler [3,4])
conditions on the physical Hilbert space are imposed by
demanding [7] that the positive frequency part of the free

massless combination ð�2 ��1ÞðþÞ annihilates the physi-
cal Hilbert space4:

ð�2 ��1ÞðþÞjH physi ¼ 0: (2.3)

The subsidiary condition (2.3) which defines the physical
subspace can be recast as

ðak � bkÞjH physi ¼ 0; hH physjðayk � byk Þ ¼ 0;

(2.4)

where we expanded �1 and �2 on a complete orthonormal
basis ukðt; ~xÞ and vkðt; ~xÞ as

�1ðt; ~xÞ ¼
X
k

½akukðt; ~xÞ þ ayk u
�
kðt; ~xÞ�;

�2ðt; ~xÞ ¼
X
k

½bkvkðt; ~xÞ þ byk v
�
kðt; ~xÞ�:

(2.5)

A few comments are in order. Our system is formulated in
terms of scalar fields �1 and �2. But, in fact, this system
describes a gauge dynamics, and it is related to the gauge
invariance in terms of the original gauge fields as one can
see from the construction [7] for two-dimensional QED,
construction [1] for four-dimensional QCD, and from foot-
notes 2 and 3 for Maxwell photodynamics in two dimen-
sions and four dimensions. Therefore, we treat system (2.1)
as a system which actually describes the gauge dynamics
when scalar fields �1 and �2 are treated as auxiliary fields
which decouple from physical degrees of freedom as a
result of subsidiary condition (2.3). A related comment is
as follows: the physical states which satisfy (2.3) and (2.4)
are gauge-invariant under positive-frequency gauge trans-
formations only. This remark will play a crucial role in our
following discussions devoted to analysis of the Rindler
states. As we shall see, the Rindler states will be invariant
under a different set of gauge transformations. In what
follows we shall distinguish the so-called ‘‘proper’’ from
‘‘improper’’ gauge transformations when local gauge in-
variance is maintained, while globally it cannot hold. For
our specific case presented above, only positive-frequency
gauge transformations that preserve (2.3) are proper gauge
transformations; if the gauge transformations include a
component with a negative-frequency mode, it should be
treated as an improper gauge transformation.
The equal-time commutation relations (2.2) are equiva-

lent to

½bk; bk0 � ¼ 0; ½byk ; byk0 � ¼ 0; ½bk; byk0 � ¼ 	kk0 ;

(2.6)

for the �2 field, whereas for the ghost modes they satisfy

½ak; ak0 � ¼ 0; ½ayk ; ayk0 � ¼ 0; ½ak; ayk0 � ¼ �	kk0 ;

(2.7)

where again the sign minus appears in these commutation
relations. The ground state j0i is defined as usual:

akj0i ¼ 0; bkj0i ¼ 0; 8 k: (2.8)

The sign minus in the commutators (2.7) is known to be the
carrier of disastrous consequences for the theory if �1 is
not accompanied by another field �2 with properties that
mirror and neutralize it. As thoroughly explained in [7], the
condition (2.3) or what is the same (2.4) are similar to the

3Not to be confused with conventional Fadeev-Popov ghosts.
4The original Gupta-Bleuler subsidiary condition for

four-dimensional QED is formulated as follows:
ð@�A�ÞðþÞjH physi ¼ 0. In terms of modes this condition takes
the form ðað0Þk � aðkÞk ÞjH physi ¼ 0 after the condition �ð�Þ� k� ¼ 0
is imposed. It is precisely identical to Eq. (2.4) after one makes
the identification of A0 with �1 and A1 with �2 as discussed in
footnote 2.
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Gupta-Bleuler [3,4] condition in QED which ensures that,
defined in this way, the theory is self-consistent and uni-
tarity (together with other important properties) and is not
violated due to the appearance of the ghost.

To see this, one can check that the number operatorN for
�1 and �2 takes the form

N ¼ X
k

ðbyk bk � ayk akÞ; (2.9)

while the Hamiltonian H reads

H ¼ X
k

!kðbyk bk � ayk akÞ: (2.10)

With this form for the Hamiltonian it may seem that the

term �ayk ak with sign minus implies instability as an

arbitrary, large number of the corresponding particles can
carry an arbitrarily large amount of negative energy.
However, one can check that the expectation value for
any physical state in fact vanishes as a result of the sub-
sidiary condition (2.4):

hH physjHjH physi ¼ 0: (2.11)

In different words, all these ‘‘dangerous’’ states which can
produce arbitrary negative energy do not belong to the
physical subspace defined by Eq. (2.4). The same argument
applies to the operator N with identical result

hH physjNjH physi ¼ 0; (2.12)

where we can see explicitly the pairing and canceling
mechanism at work.

B. Time-dependent background

It is well known that there are inherent subtleties and
obstacles when one attempts to formulate a quantum field
theory (QFT) on a curved space with a conventional inter-
pretation of ‘‘particles.’’ As it is known, the particles are
not a well-defined notion in a general curved background;
see e.g. [2]. In this case there is no natural choice for the set
of modes on which the fields are expanded, these sets being
closely related to a more or less ‘‘natural’’ coordinate
system. Indeed, the Poincaré group is no longer a symme-
try of the space-time and, in general, it would be not
possible to separate positive-frequency modes from
negative-frequency ones in the entire space-time, in con-
trast with what happens in Minkowski space, where the
vector @=@t is a constant a Killing vector, orthogonal to the
t ¼ const hypersurface, and conventional eigenmodes are
eigenfunctions of this Killing vector. The Minkowski sepa-
ration is maintained throughout the whole space as a con-
sequence of Poincaré invariance.

Our goal here is to compute the contribution of the
unphysical modes into the expectation value (2.11) in a
curved background. As we mentioned above, the interpre-
tation in terms of particles with specific quantum numbers
(which would be the canonical way to interpret the results

in Minkowski space) cannot be given in this case.
However, the computation of the expectation value (2.11)
is a well -posed problem and the answer can be explicitly
given in terms of the so-called Bogolubov’s coefficients;
see below.
Therefore, following the standard technique for the

computation of particle production in a curved space-
time we consider, along with the expansion (2.5), a second
complete set of barred modes

�1ðt; ~xÞ ¼
X
k

½ �ak �ukðt; ~xÞ þ �ayk �u
�
kðt; ~xÞ�;

�2ðt; ~xÞ ¼
X
k

½ �bk �vkðt; ~xÞ þ �byk �v
�
kðt; ~xÞ�:

(2.13)

The new vacuum state is defined as

�a kj�0i ¼ 0; �bkj�0i ¼ 0; 8 k: (2.14)

Now, in order to find the contribution of fields �1 and �2

into the energy of the ground state, we should expand the
new modes �uk and �vk in terms of the old ones. Following
the notation of the textbook [2], we obtain

�u k ¼
X
l

ð
klul þ �klu
�
l Þ; �vk ¼

X
l

ð
0
klvl þ �0

klv
�
l Þ:

(2.15)

These matrices are called Bogolubov’s coefficients, and
they can be evaluated as


kl ¼ ð �uk; ulÞ; �kl ¼ �ð �uk; u�l Þ;

0
kl ¼ ð �vk; vlÞ; �0

kl ¼ �ð �vk; v
�
l Þ;

(2.16)

where the brackets define the generalization of the conven-
tional scalar product for a curved space

ðc 1; c 2Þ ¼ �i
Z
�
c 1ðxÞ@$�c

�
2

ffiffiffiffiffiffiffiffiffiffi�g�
p

d��; (2.17)

where d�� ¼ n�d� with n� a future-directed unit vector
orthogonal to the spacelike hypersurface �, and d� is the
volume element in �. Any complete set of modes which
are orthonormal in the product (2.17) satisfies

ðuk;ulÞ ¼	kl; ðu�k;u�l Þ ¼�	kl; ðuk;u�l Þ ¼ 0;

ðvk;vlÞ ¼	kl; ðv�
k;v

�
l Þ ¼�	kl; ðvk;v

�
l Þ ¼ 0:

(2.18)

Similar relations, of course, are also valid for the �uk and �vk

modes which appear in the alternative expansion (2.13).
Equating the two expansions (2.5) and (2.13) and making
use of the orthonormality of the modes (2.18), one obtains
for the annihilation operators

ak ¼
X
l

ð
lk �al þ ��
lk �a

y
l Þ;

bk ¼
X
l

ð
0
lk
�bl þ �0�

lk
�byl Þ:

(2.19)

The Bogolubov’s coefficients possess the set of
properties
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X
l

ð
lk

�
mk � �lk�

�
mkÞ ¼ 	lm;

X
l

ð
lk�mk � �lk
mkÞ ¼ 0;

X
l

ð
0
lk


0�
mk � �0

lk�
0�
mkÞ ¼ 	lm;

X
l

ð
0
lk�

0
mk � �0

lk

0
mkÞ ¼ 0:

(2.20)

As one can immediately see from (2.19), the two Hilbert
subspaces based on two possible choices of modes uk and
vk, which appear in (2.5), and �uk and �vk, which instead
enter in (2.13), are different as long as �kl � 0, �0

kl � 0. In
particular, the expectation value of the Hamiltonian (2.10)
of the k-th state in the barred vacuum h�0jHkj�0i is

h�0j!kðbyk bk � ayk akÞj�0i ¼ !k

X
l

ðj�klj2 þ j�0
klj2Þ � 0;

(2.21)

which is in sharp contrast with Eq. (2.11), derived in
Minkowski space. A few remarks are in order.

(i) While ayk ak partakes in the expression for the

Hamiltonian with sign minus, it nevertheless gives
a positive sign contribution to the expectation value
as a result of an additional minus sign in the com-
mutation relation for the ghost field (2.7). Hence, no
cancellation between the ghost�1 and its partner�2

could occur in the expectation value (2.21), in net
contrast with Eq. (2.11). The effect is proportional to
the Bogolubov’s coefficients which mix positive-
and negative-frequency modes. It obviously vanishes
when such a mixing does not occur. The effect,
however, does not vanish when it is not possible to
separate positive-frequency modes from negative-
frequency ones in the entire space-time.

(ii) The deviation of the expectation value from zero
(2.21) due to the unphysical (in Minkowski space)
modes should not be interpreted in terms of particles
as the entire notion of ‘‘particle’’ is not well-defined
for k � H, where the effect is pronounced. This is a
common problem of interpretation in terms of par-
ticles in a curved background, and we shall not
comment on this problem, referring to the textbook
[2]. We interpret the result (2.21) as an emergence of
an additional contribution to the vacuum energy in
time-dependent background in comparison with
Minkowski space-time. Any details about the par-
ticles’s quantum numbers cannot be specified as this
would require a detector with a size of the entire
Universe L� k�1 �H�1 � 10 Gyr. For the same
reason, a number of other related questions (such as
negative norm states, unitarity, etc.) cannot even be
properly posed because the notion of particle is not
well defined for such long wavelengths.

(iii) If we had started with a conventional scalar field�2

with a positive sign for the kinetic term in Eq. (2.1),
without mentioning that the field from Eq. (2.1) is
actually related to the gauge dynamics describing
an unphysical degree of freedom (in Minkowski
space), we would unambiguously predict the exis-
tence of extra energy given by Eq. (2.21). Such an
interpretation would be absolutely conventional
and commonly accepted by the community [2].
Some doubts only occur when one recalls that the
field �2 was actually an unphysical degree of free-
dom in Minkowski space [it did not belong to the
physical Hilbert space as discussed in the text; see
Eqs. (2.3) and (2.4)], and therefore, a deeper under-
standing of what is really happening is needed in
this case.

To clarify all these (and related) questions, we consider
an exactly solvable model (two-dimensional Maxwell sys-
tem) using two drastically different metrics to discuss the
dynamics of the gauge fields: (1) conventional Minkowski
metric ds2 ¼ dt2 � dx2 and (2) the Rindler metric ds2 ¼
expð2a�Þ � ðd�2 � d�2Þ. To understand the gauge dynam-
ics in these circumstances and to get a complementary
picture we quantize our system using two approaches.
First we use a conventional Gupta-Bleuler condition (2.3)
to select the physical Hilbert space. Second, we use a
BRST operator approach such that we can interpret the
emergence of the extra energy (2.21) from a different
perspective in terms of behavior of the BRST operator.

III. GAUGE DYNAMICS IN RINDLER SPACE

Our goal here is to understand the extra energy discussed
above (2.21) by considering the Rindler observer. We
shall explicitly compute the Bogolubov’s coefficients in
Eq. (2.21) and demonstrate that the effect is present even
for this flat (but still nontrivial) metric. One can explicitly
see why the cancellation between �1 and �2 fields which
was in effect in Minkowski space does not hold for the
Rindler observer any more. The crucial difference between
the two cases is: the physical states which are selected
by Eq. (2.3) are gauge-invariant states under positive-
frequency gauge transformations while the Rindler states
are the gauge-invariant states under a different set of gauge
transformations. Furthermore, the Rindler observers do
not ever have access to the entire space-time because
they accelerate to never enter the forward (backward)
lightcones of some events. This is precisely the reason
why the cancellation (2.11) which is maintained in
Minkowski space cannot hold for the Rindler observer.
We follow notations in [2] in our analysis and separate

the space-time into four quadrants F, P, L, and R. We will
choose the origin such that these regions are defined by t >
jxj, t <�jxj, x <�jtj, and x > jtj, respectively. While no
single region contains a Cauchy surface, the union of the
left and right regions L and R plus the origin does contain
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many Cauchy surfaces, for example t ¼ 0. We will write
the Minkowski metric with the sign convention

ds2 ¼ dt2 � dx2; (3.1)

and the wave equation which follows from (2.1) possesses
standard orthonormal mode solutions

uk ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
4�!

p e�i!tþikx: (3.2)

In the quadrant R, called the right Rindler wedge, one may
define the coordinates ð�R; �RÞ via the transformations

t ¼ ea�
R

a
sinha�R; x ¼ ea�

R

a
cosha�R; (3.3)

where a is a dimensional constant. We may define coor-
dinates ð�L; �LÞ in the left Rindler wedge L in a similar
way with the signs of both t and x reversed [2]. In these
new coordinates the metric is conformal to the Minkowski
metric

ds2 ¼ e2a�ðd�2 � d�2Þ (3.4)

and so the positive-frequency plane waves will be of the
form

Ruk ¼
1ffiffiffiffiffiffiffiffiffiffiffi
4�!

p eik�
R�i!�R

in R; Ruk ¼ 0 in L; (3.5)

Luk ¼
1ffiffiffiffiffiffiffiffiffiffiffi
4�!

p eik�
Lþi!�L

in L; Luk ¼ 0 in R: (3.6)

The set (3.5) is complete in region R, while (3.6) is com-
plete in L, but neither is complete in all of Minkowski
space. However, both sets together are complete. The sign
difference corresponds to the fact that a right-moving wave
in R moves toward increasing value of �, while in L it
moves toward decreasing value of �. In any case, these
modes are positive-frequency modes with respect to the
timelike Killing vector þ@� in R and �@� in L. No linear

combination of these two plane waves is holomorphic
at the origin, however, the sum of the plane wave on one

side and e��!=a times the conjugate plane wave with
negative wave number on the other side is everywhere
holomorphic [5].

Therefore, for the second complete set of barred modes
(2.13) one can use modes (3.5) and (3.6) as follows:

�1 ¼
X
k

1ffiffiffiffiffiffiffiffiffiffiffi
4�!

p ðaLk eik�Lþi!�L þ aLyk e�ik�L�i!�L

þ aRk e
ik�R�i!�R þ aRyk e�ik�Rþi!�RÞ

�2 ¼
X
k

1ffiffiffiffiffiffiffiffiffiffiffi
4�!

p ðbLk eik�Lþi!�L þ bLyk e�ik�L�i!�L

þ bRk e
ik�R�i!�R þ bRyk e�ik�Rþi!�RÞ: (3.7)

The Rindler vacuum state is defined as

aLk j0Ri ¼ 0; aRk j0Ri ¼ 0;

bLk j0Ri ¼ 0; bRk j0Ri ¼ 0; 8 k: (3.8)

The simplest way to compute the corresponding
Bogolubov’s coefficients is to note that although Ruk and
Luk are not analytic, the two combinations

exp

�
�!

2a

�
Ruk þ exp

�
��!

2a

�
Lu��k

exp

�
��!

2a

�
Ru��k þ exp

�
�!

2a

�
Luk

(3.9)

are analytic and bounded [5]. These modes share the
positivity frequency analyticity properties of the
Minkowski modes (3.2), then they must also share a com-
mon vacuum state; see precise definition below. Therefore,
instead of expansion (2.5) with modes (3.2) we can expand
�1 in terms of (3.9) as

�1 ¼
X
k

1ffiffiffiffiffiffiffiffiffiffiffi
4�!

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe�!=a � e��!=aÞ

q
� ½a1kðeð�!=2aÞþik�R�i!�R þ eð��!=2aÞþik�L�i!�LÞ
þ a2kðeð�!=2aÞþik�Lþi!�L þ eð��!=2aÞþik�Rþi!�RÞ
þ a1yk ðeð�!=2aÞ�ik�Rþi!�R þ eð��!=2aÞ�ik�Lþi!�LÞ
þ a2yk ðeð�!=2aÞ�ik�L�i!�L þ eð��!=2aÞ�ik�R�i!�RÞ�:

(3.10)

The same can be done for the �2 field:

�2 ¼
X
k

1ffiffiffiffiffiffiffiffiffiffiffi
4�!

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe�!=a � e��!=aÞ

q
� ½b1kðeð�!=2aÞþik�R�i!�R þ eð��!=2aÞþik�L�i!�LÞ
þ b2kðeð�!=2aÞþik�Lþi!�L þ eð��!=2aÞþik�Rþi!�RÞ
þ b1yk ðeð�!=2aÞ�ik�Rþi!�R þ eð��!=2aÞ�ik�Lþi!�LÞ
þ b2yk ðeð�!=2aÞ�ik�L�i!�L þ eð��!=2aÞ�ik�R�i!�RÞ�;

(3.11)

where b1k, b
2
k satisfy the following commutation relations:

½bð1;2Þk ; bð1;2Þ
k0 � ¼ 0; ½bð1;2Þyk ; bð1;2Þy

k0 � ¼ 0;

½bð1;2Þk ; bð1;2Þy
k0 � ¼ 	kk0 ;

(3.12)

whereas a1k, a
2
k for the ghost field �1 satisfy

½að1;2Þk ; að1;2Þ
k0 � ¼ 0; ½að1;2Þyk ; að1;2Þy

k0 � ¼ 0;

½að1;2Þk ; að1;2Þy
k0 � ¼ �	kk0 ;

(3.13)

where again the minus sign appears in these commutation
relations. The Minkowski vacuum state is determined
as usual,
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a1kj0i ¼ 0; a2kj0i ¼ 0; b1kj0i ¼ 0;

b2kj0i ¼ 0; 8 k:
(3.14)

This equation replaces Eq. (2.8). Matching coefficients in
(3.7) with (3.10) and (3.11) one finds the Bogoliubov’s
coefficients [2,5],

aLk ¼ e��!=2aa1y�k þ e�!=2aa2kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�!=a � e��!=a

p

aRk ¼ e��!=2aa2y�k þ e�!=2aa1kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�!=a � e��!=a

p

bLk ¼ e��!=2ab1y�k þ e�!=2ab2kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�!=a � e��!=a

p

bRk ¼ e��!=2ab2y�k þ e�!=2ab1kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�!=a � e��!=a

p :

(3.15)

Now consider an accelerating Rindler observer at � ¼
const. As is known, such an observer’s proper time is
proportional to �. The vacuum for this observer is deter-
mined by (3.8) as this is the state associated with the
positive-frequency modes with respect to �. A Rindler
observer in ðR; LÞ will measure the energy using the

Hamiltonian HðR;LÞ which is given by

H ðR;LÞ ¼ X
k

!kðbðR;LÞyk bðR;LÞk � aðR;LÞyk aðR;LÞk Þ: (3.16)

The subsidiary condition (2.3) defines the physical sub-
space for an accelerating Rindler observer

ðaðR;LÞk � bðR;LÞk ÞjH ðR;LÞ
phys i ¼ 0; (3.17)

such that the exact cancellation between �1 and �2 fields
holds for any physical state defined by Eq. (3.17), i.e.

hH ðR;LÞ
phys jHðR;LÞjH ðR;LÞ

phys i ¼ 0; (3.18)

as it should. However, if the system is in the Minkowski
vacuum state j0i defined by (3.14) a Rindler observer using
the same Hamiltonian (3.16) will observe the following
amount of energy in mode k:

h0j!kðbðR;LÞyk bðR;LÞk � aðR;LÞyk aðR;LÞk Þj0i

¼ 2!e��!=a

ðe�!=a � e��!=aÞ ¼
2!

ðe2�!=a � 1Þ : (3.19)

This is the central result of this section and is a direct
analog of Eq. (2.21) discussed previously. In the present,
exactly solvable model, one can explicitly see the nature of
this noncancellation between two unphysical fields as the
Bogolubov’s coefficients can be exactly computed in this
case. In fact, one can construct the Minkowski vacuum
state j0i in terms of the Rindler’s states, the so-called
‘‘squeezed state’’; see Appendix A for the details. A few
remarks are in order:

(i) As we mentioned earlier, if we had started with a
conventional scalar field �2 with a positive sign for
the kinetic term the result (3.19) would represent a
well-known effect on the Plank spectrum for radia-
tion at T ¼ a=ð2�Þ (see [2,5]) with the only differ-
ence that we have extra degeneracy factor 2 as a
result of two fields �2 and �1 instead of one field.
Our fields, however, are related to unphysical (in
Minkowski space) degrees of freedom. Therefore,
the result (3.19) is quite unexpected.

(ii) No cancellation between the ghost �1 and its part-
ner �2 could occur in the expectation value (3.19),
in net contrast with Eq. (2.11) as a result of an
opposite sign in commutator (3.13) along with a
negative sign in the Hamiltonian (3.16).

(iii) The contributions of higher frequency modes are
exponentially suppressed � expð�!=aÞ as ex-
pected. The interpretation of Eq. (3.19) in terms
of particles is very problematic (as usual for this
kind of problem) because typical frequencies, when
the effect (3.19) is not exponentially small, are of
the order !� a, and notion of particle for such !
is not well defined. In addition, in order to properly
interpret this extra contribution (3.19) one should
consider the particle detector moving along the
world line; see Sec. VB and Appendix B for
details.

(iv) Let us define a subspace of physical states jH physi �k
where all modes have momenta k > �k � a such
that the notion of particles becomes well defined
for this subspace. For these states the deviation
from the standard local physics will be astonish-
ingly small due to the strong exponential sup-

pression �k
hH physjHjH physi �k � expð� 2� �k

a Þ. In

cosmological context when a ¼ H and we take
�k� 1K � 10�4 eV the suppression is of the

order � expð� �k
HÞ � expð�1027Þ such that

�k
hH physjHjH physi �k ¼ 0þOðexpð�1027ÞÞ, which
is indistinguishable from the Minkowski space-
time result (2.11). The deviations from Minkowski
picture start to occur only for modes with very large
wavelengths �� a�1 for small a. In different
words, the effect is infrared (IR) in nature, and
sensitive to the horizon and/or boundaries. The
conventional local physics with k > �k � a is not
affected by unphysical (in Minkowski space) de-
grees of freedom with very high degree of accuracy.
Such a sensitivity to IR physics is obviously related
to the topological nature of the KS ghost, and will
be discussed in detail in Sec. VA.

(v) One can explicitly see why the cancellation (2.11) of
unphysical degrees of freedom in Minkowski space
fails to hold for the accelerating Rindler observer
(3.19). The selection of the physical Hilbert sub-
space (2.4) is based on the properties of the operator
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which selects positive-frequency modes with re-
spect to Minkowski time t. At the same time the
Rindler observer selects the physical Hilbert space
(3.17) by using positive-frequency modes with re-
spect to observer’s proper time �. These two sets
are obviously not equivalent, as e.g. they represent
a mixture of positive- and negative-frequency
modes defined in R and L Rindler wedges. At the
same time, the Rindler observers do not ever have
access to the entire space-time. Therefore, from the
Rindler’s view point the cancellation in Minkowski
space can be only achieved if one uses both
sets (L and R). Of course, using the both sets
would contradict the basic principles as the
R-Rindler observer does not have access to the L
wedge, even for an arbitrary, small acceleration
parameter a.

(vi) One should also recall that our system is actually
originated from a gauge-invariant QFT. More than
that, the selection of gauge invariant sector of
the theory is formulated in terms of the positive-

frequency operator ð@�A�ÞðþÞjH physi ¼ 0, which

reduces to (2.3); see footnote 4. The selection of
gauge-invariant sectors is obviously different
whether one uses Minkowski time t or the Rindler
observer’s proper time � for selecting the positive-
frequency operator. As we mentioned above this
difference does not affect any local physics when
one deals with physical subspace jH physi �k, but it
does change the IR physics at very large distances
�a�1 which plays the role of the inverse Hubble
constant H�1 � 10 Gyr for a FLRW universe.

Finally, to simplify things, we formulated our problem in
terms of the scalar unphysical degrees of freedom �1

and �2 in two dimensions as well as in four-dimensional
QCD [1]. However, the same problem can be treated
directly in four dimensions by using conventional
4-vectors instead of their scalar components expressed
by �1 and �2 fields. The corresponding computations [8]
confirm our findings.

To elaborate on these important points we shall study in
the next section the same system using BRST quantization
for selection of the physical Hilbert space (instead of the
Gupta-Bleuler formulation exploited in this section). We
shall see how the effect discussed in this section manifests
itself in terms of the global properties of the BRST
operator.

IV. BRST IN RINDLER SPACE

The BRST quantization5 in the Rindler space has been
discussed previously in the literature [10]. While we agree

with technical details of Ref. [10], our interpretation of the
obtained results is quite different.
We start with the Lagrangian � 1

4F
2
�� for the Maxwell

field. In the Feynman gauge we add the gauge fixing term
� 1

2 ð@�A�Þ2 such that the Lagrangian describing the non-

physical degrees of freedom takes the form 1
2 ð@�A1Þ2 �

1
2 ð@�A0Þ2. In this formula A0 describes the polarization �

ð0Þ
�

and is identified with the ghost �1 in Eq. (2.1), while A1

describes the longitudinal polarization �ðkÞ� in two-
dimensional QED and is identified with �2. In the BRST
approach we must also add the c-ghost field which is an
anticommuting scalar field such that the final Lagrangian
to be studied in this section takes the form

L ¼ 1

2
ð@�A1Þ2 � 1

2
ð@�A0Þ2 � @� �c@�c

¼ 1

2
@��2@

��2 � 1

2
@��1@

��1 � @� �c@�c; (4.1)

which is our original Lagrangian (2.1) supplemented by the
c-ghost term. Selection of the physical Hilbert space is
accomplished by considering the BRST closed states, i.e.
the states which are annihilated by QBRST operator. This
requirement replaces the Gupta-Bleuler condition (2.3) we
used in the previous sections.
We proceed with the construction as follows. In

addition to our expansion for �1, �2 fields, we also
expand the c-ghost field in Minkowski space in the same
way,

cðt; xÞ ¼ X
k

½ckukðt; xÞ þ cyk u
�
kðt; xÞ�;

ukðt; xÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
4�!

p e�i!tþikx;

�cðt; xÞ ¼ X
k

½ �cyk u�kðt; xÞ þ �ckukðt; xÞ�;

fcyk ; �ck0 g ¼ 	kk0 ; f �cyk ; ck0 g ¼ 	kk0 :

(4.2)

One can construct the Minkowski space BRST operator as
follows:6

QM ¼ X
k

½cyk bk þ cyk ak þ ayk ck þ byk ck�: (4.3)

This operator obviously annihilates all physical states
including the vacuum state,

5For a general introduction into the BRST technique,
see e.g. [9].

6Our notations are different from Ref. [10]. Namely, we keep
our notations ak, bk representing �1, �2 fields (2.5). These
operators enter the expansion for A0 and A1 fields in notations
(4.1). At the same time, in Ref. [10] bk describe the temporal
photon field B ¼ A0 while ak describe the combination
A0 þ A1.
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QMjH physi ¼ 0; QMj0i ¼ 0: (4.4)

The operator QM can be written as an integral over a
Cauchy surface of a local charge density �M

QM ¼
Z

dx�Mðx; tÞ;

�M ¼ i½�1ðx; tÞ þ�2ðx; tÞ� @@t cðx; tÞ

� icðx; tÞ @
@t

½�1ðx; tÞ þ�2ðx; tÞ�: (4.5)

Our next step is to construct the BRST charges for the
Rindler observers which can be done in a similar way for R
wedge,

QR ¼ X
k

½cRyk bRk þ cRyk aRk þ aRyk cRk þ bRyk cRk �; (4.6)

and for L wedge,

QL ¼ �X
k

½cLyk bLk þ cLyk aLk þ aLyk cLk þ bLyk cLk �; (4.7)

where sign ð�Þ is due to the fact that the timelike
Killing vector isþ@� in R and�@� in L; see Eq. (3.5) and

(3.6). In this expression the c-ghost fields in the Rindler
space are defined in the same way as �1 and �2 fields
[see Eq. (3.7)],

c ¼ X
k

1ffiffiffiffiffiffiffiffiffiffiffi
4�!

p ðcLk eik�Lþi!�L þ cLyk e�ik�L�i!�L

þ cRk e
ik�R�i!�R þ cRyk e�ik�Rþi!�RÞ

�c ¼ X
k

1ffiffiffiffiffiffiffiffiffiffiffi
4�!

p ð �cLk eik�Lþi!�L þ �cLyk e�ik�L�i!�L

þ �cRk e
ik�R�i!�R þ �cRyk e�ik�Rþi!�RÞ: (4.8)

These operators QðR;LÞ annihilate their physical states in-
cluding their corresponding vacuum states,

QðR;LÞjH ðR;LÞ
phys i ¼ 0; QðR;LÞj0ðR;LÞi ¼ 0: (4.9)

Our next task is to compute QRj0i. This calculation will
tell us how the Rindler observer moving with acceleration
over Minkowski vacuum state j0i makes the selection of
the physical states. To perform the computations we have
to express the BRST operator for the Rindler observer in
terms of the combinations (3.9) as we have done before in
our previous computations for energy; see Eq. (3.19). As
we mentioned above, the combinations (3.9) are analytic,
share the positivity frequency analyticity properties of
the Minkowski modes (4.2), and therefore share a common

vacuum state j0i. Therefore, we expand the cðx; tÞ field
in the same way as we did for �1, �2 fields [see Eq. (3.10)
and (3.11)]

cðx; tÞ ¼ X
k

1ffiffiffiffiffiffiffiffiffiffiffi
4�!

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe�!=a � e��!=aÞ

q
� ½c1kðeð�!=2aÞþik�R�i!�R þ eð��!=2aÞþik�L�i!�LÞ
þ c2kðeð�!=2aÞþik�Lþi!�L þ eð��!=2aÞþik�Rþi!�RÞ
þ c1yk ðeð�!=2aÞ�ik�Rþi!�R þ eð��!=2aÞ�ik�Lþi!�LÞ
þ c2yk ðeð�!=2aÞ�ik�L�i!�L þ eð��!=2aÞ�ik�R�i!�RÞ�;

(4.10)

where in addition to (3.14) the Minkowski vacuum state
satisfies the following conditions formulated in terms of
the basis (3.10), (3.11), and (4.10):

a1kj0i ¼ 0; a2kj0i ¼ 0; b1kj0i ¼ 0;

b2kj0i ¼ 0; c1kj0i ¼ 0; c2kj0i ¼ 0 8 k:
(4.11)

The Bogolubov’s coefficients can be computed in the same
way as before (3.15). The result reads

cLk ¼ e��!=2ac1y�k þ e�!=2ac2kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�!=a � e��!=a

p ;

cRk ¼ e��!=2ac2y�k þ e�!=2ac1kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�!=a � e��!=a

p :

(4.12)

Using the Bogolubov’s coefficients (3.15) and (4.12)
one can express the BRST operator (4.6) for the
R-Rindler observer in terms of basis (3.10), (3.11), and
(4.10). The corresponding expression is quite long, and we
do not really need it. What we actually need in order to
demonstrate our main point, is the part of the BRST
operator �QR which contains exclusively creation opera-
tors. The corresponding part �QR can be represented as
follows:

�QR ¼ X
k

1

ðe�!=a � e��!=aÞ ½c
1y
k b2y�k þ b1yk c2y�k

þ c1yk a2y�k þ a1yk c2y�k�: (4.13)

It is obvious that the BRST operator as defined by the
Rindler observer does not annihilate the Minkowski vac-
uum asQR has the terms (4.13) which do not annihilate the
Minkowski vacuum,

QRj0i ¼ �QRj0i � 0: (4.14)

This conclusion is in accord with our previous result (3.19)
on computation of the energy h0jHRj0i � 0 observed by
the Rindler observer moving over Minkowski vacuum. The
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results (3.19) and (4.14) are obviously consistent with each
other,7 and show that extra energy (3.19) results from the
states which carry nonvanishing BRST charge (4.14).

In the BRST approach one can explicitly see how the
cancellation for the Minkowski BRST operator actually
works. To see this we need the expression for the BRST
operator QL for the L-Rindler observer along with QR.
More precisely, we need its �QL part containing the
creation operators only. It is given by

�QL ¼ �X
k

1

ðe�!=a � e��!=aÞ ½c
2y
k b1y�k þ b2yk c1y�k

þ c2yk a1y�k þ a2yk c1y�k�; (4.15)

where sign ð�Þ is due to the fact that timelike Killing
vector is þ@� in R and �@� in L [see Eq. (4.7)]. The

crucial observation is that the appropriate Minkowski
BRST charge expressed in basis (3.10), (3.11), and (4.10)
is the combination of two operators QM ¼ QR þQL (see
[10]), such that the dangerous terms �QL and �QR are
exactly cancelled �QL þ �QR ¼ 0. The cancellation (be-
tween positive k from �QR and negative k from �QL) can
be explicitly seen from (4.13) and (4.15) where summation
over entire k interval is assumed, k 2 ð�1;þ1Þ.

The most important lesson from this cancellation can be
formulated as follows. The BRST operator as constructed
by the Rindler observer does not annihilate the Minkowski
vacuum state because QR and QL are integrals of BRST
charge density over half of space and both contain terms of

the form c2yk b1y�k which do not annihilate Minkowski j0i. At
the same time an inertial observer in j0i observes a uni-
verse with no net BRST charge as a result of cancellation
between QL and QR while a BRST charge density (4.5)
does not vanish separately in L and R parts. The result of

such cancellation as seen by a Minkowski observer is in
drastic contrast with measurements performed by the
Rindler observers who do not ever have access to the entire
space-time. Therefore, from the Rindler’s view point the
cancellation in Minkowski space can only be achieved if
one uses both sets (L and R). Of course, using the both sets
would contradict to the basic principles as the R-Rindler
observer does not have access to the L wedge even for
arbitrary, small acceleration parameter a. Therefore, a
Rindler observer with access to only part of the universe
will see a net BRST charge as Eq. (4.14) states.
One should emphasize that this effect manifests itself

only globally, not locally. Indeed, if we define a subspace
of physical states jH physi �k where all modes have momenta

k > �k � a such that the notion of particles becomes well
defined for this subspace, then the deviation from the
standard local physics will be strongly suppressed as

one can see from Eq. (4.13) where QRjH physi �k �
expð� � �k

a Þ. In the cosmological context when a is identified

with H as we already mentioned this suppression is

astonishingly small � expð� �k
HÞ � expð�1027Þ. With this

accuracy QRjH physi �k ¼ 0þOðexpð�1027ÞÞ which is in-

distinguishable from Minkowski space result (4.4). The
only modes which will be affected are those with the
wavelengths of the order �� k�1 � a�1 when the entire
notion of particle is not even defined.

V. INTERPRETATION, SPECULATIONS,
AND CONCLUDING REMARKS

First, we conclude with the main results of our studies.
We follow with interpretation of these results by presenting
some analogies from condensed matter physics. Finally,
we comment on observational consequences of the ob-
tained results.

A. Basic results

(i) The exactly solvable model considered in this work
(two-dimensional Maxwell system defined on the
Rindler space) supports the picture advocated in
[1] that there will be an extra contribution to the
vacuum energy in a nontrivial background in com-
parison with Minkowski space-time. This extra con-
tribution can be traced to the massless degrees of
freedom which belonged to unphysical Hilbert space
(in Minkowski space).

(ii) The technical reason for this effect to occur is the
property of Bogolubov’s coefficients which mix the
positive- and negative-frequency modes. The corre-
sponding mixture cannot be avoided because the
projections to positive-frequency modes with re-
spect to Minkowski time t and positive-frequency
modes with respect to the Rindler observer’s proper
time � are not equivalent. The exact cancellation of

7One can compute an additional term �HR
c to the Hamiltonian

due to c-ghost field. For R-Rindler observer it takes the form
�HR

c ¼ P
k!kð �cRyk cRk � cRyk �cRk Þ in addition to Eq. (3.16), where

sign ð�Þ results from anticommutator (4.2) when a normal
ordering operation for �HR

c is performed. Using the
Bogolubov’s coefficients (4.12) for c-fields one can explicitly
check that two terms cancel each other in the vacuum expecta-
tion value h0j�HR

c j0i ¼ 0 such that there is no net contribution to
energy from the c-field, as expected. While the structure of the
Hamiltonians for �1, �2 fields (3.16) and �HR

c along with the
corresponding Bogolubov’s coefficients are similar, the contri-
butions to the energy are different. Technically, it is due to the
fact that the commutation relations for ak and bk operators have
opposite signs [see Eqs. (3.12) and (3.13)], while for ck, �ck
operators the signs are the same [see Eq. (4.2)]. A nontechnical,
intuitive explanation for this effect will be given in the discus-
sion in Sec. VA, and essentially related to the fact that �1 is
sensitive to the topological sectors of the theory as the topologi-
cal density operator ���F

�� is expressed in terms of �1 ghost
field, while the Fadeev-Popov ghosts are designed to cancel the
unphysical polarizations of the gauge fields in the bulk of
the space-time, and not sensitive to the boundary/horizon
effects, and therefore, cannot be sensitive to the acceleration
parameter a.
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unphysical degrees of freedom which is maintained
in Minkowski space cannot hold in the Rindler
space.

(iii) In the BRST approach this effect manifests itself as
the presence of BRST charge density in L and R
parts. An inertial observer in j0i observes a uni-
verse with no net BRST charge only as a result
of cancellation between the two. However, the
Rindler observers who do not ever have access to
the entire space-time would see a net BRST charge.
Therefore, they operate with the states which do not
belong to the physical subspace of the inertial ob-
server in Minkowski space j0i.

(iv) We emphasize once again: the effect under study
is exclusively due to the nontrivial topological
sectors of gauge theory. The effect may only occur
in theories like two-dimensional QED or four-
dimensional QCDwith nontrivial topological struc-
ture of the ground state.8 There are not any extra
propagating degrees of freedom in our framework
as explained in Sec. VB below. In particular, the
Kogut-Susskind ghost represented by the �1 field
saturates the contact term in the topological suscep-
tibility, and therefore it effectively accounts for the
summation over all topological sectors of the the-
ory; see Appendix C for details. All other types of
ghosts, including the conventional Fadeev-Popov
ghosts, are not related to topologically nontrivial
sectors of the theory. They are designed to cancel
the contributions of unphysical polarizations of the
gauge fields in the bulk of the space-time. This
conventional cancellation is expected to hold in
all cases, including the accelerating frame and
arbitrary curved background. In this respect, the
Veneziano ghost in four dimensions (Kogut-
Susskind ghost in two dimensions) are unique:
due to their topological nature and their direct
connection to the topological density operator
(���F

�� in two dimensions and Fa
��

~Fa�� in four

dimensions are explicitly expressible in terms of the
�1-ghost field) they describe physics at the bounda-
ries/horizons, and therefore they are very sensitive
to the global characteristics of the entire space-
time.

B. Interpretation

As explained in length in the text the nature of the effect
(extra amount of the vacuum energy observed by the
Rindler observer in comparison with the Minkowski
observer) is the same as the conventional Unruh effect
[5] when the Minkowski vacuum j0i is restricted to the
Rindler wedge with no access to the entire space-time.
Precisely the same restrictions lead to a nonvanishing
BRST charge density in L and R parts taken separately
while it vanishes for the entire Minkowski space. This
result, by definition, implies that the states which were
unphysical (in Minkowski space) lead to physically ob-
servable phenomena, though it cannot be interpreted in
terms of pure states of individual particles; see below.
The effect is obviously sensitive to the presence of the
horizon and/or the boundaries and therefore is infrared in
nature. An appropriate description in this case, as is known,
should be formulated (for the R observer) in terms of the
density matrix by ‘‘tracing out’’ over the degrees of free-
dom associated with the L region. This procedure leads, as
is known, to some correlations between causally discon-
nected regions of space-time, though those correlations
cannot be used to send signals [5,6]; see Appendix A for
the details.
Is it a real physical effect? One should remind the reader

that a concern of the ‘‘reality’’ of the Unruh radiation was
unsettled until the paper [6] appeared; see also [2]. The
paper was specifically devoted to the reality issue. To be
more specific, the authors of Ref. [6] consider a simple
particle detector model to demonstrate that the radiation is
a real physical phenomenon resolving a number of para-
doxes related to causality and energy conservation. An
important result of Ref. [6] for the present work is as
follows: the absorption of a Rindler particle corresponds
to emission of a Minkowski particle without violation
causality and energy conservation. Now we want to repeat
a similar analysis to see if any physical radiation really
occurs in our case when the system is described by two
fields �1, �2 with opposite commutation relations (2.1),
(2.6), and (2.7) instead of a single physical massless field in
Ref. [6]. The crucial observation for future analysis is as
follows: the fields �1, �2 which are originated from un-
physical (in Minkowski space) degrees of freedom
can couple to other fields only through a combination
(�1 ��2) as a consequence of the original gauge invari-
ance. In particular, it has been explicitly demonstrated
in two-dimensional QED [7] and in four-dimensional
QCD [1] where the corresponding interaction to the physi-

cal degree of freedom �̂ takes the form � cos½�̂þ�2 �
�1�. Precisely this property along with Gupta-Bleuler
auxiliary condition (2.3) and (2.4) provides the decoupling
of physical degrees of freedom from unphysical combina-
tion (�2 ��1) as discussed in great detail in [7].
Now, in order to repeat the analysis of Ref. [6] we have

to replace a single physical field � from Ref. [6] by

8One should remark here that the topological structure also
emerges for accelerating four-dimensional QED, as there are
only two nontrivial coordinates in this system: time t and the
direction of acceleration x, while the yz plane is decoupled from
the accelerating system and can be ignored for the present
studies. Therefore, at very large distances (very low energies)
the model becomes effectively a two-dimensional theory when a
nontrivial topological structure of the theory emerges.
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specific combination (�2 ��1) fields for our system (2.1).
It leads to some drastic consequences as, instead of con-

ventional expectation values such as <0jak . . . ayk0 j0> � 0

from Ref. [6], we would get <0jðak � bkÞ . . . ðayk0 �
by
k0 Þj0> ¼ 0. The corresponding matrix elements vanish

as a result of the commutation relation ½ðay
k0 � by

k0 Þ; ðak �
bkÞ� ¼ 0, which follows from (2.6) and (2.7). Furthermore,
as ½H; ðak � bkÞ� ¼ ðak � bkÞ the structure (ak � bk) is
preserved such that ak and bk never appear separately.
Based on this observation, one can argue that the same
property holds for any other operators which constructed
from the combination (�2 ��1). In different words, no
actual radiation of real particle occurs in our case in con-
trast with real Unruh radiation given by formula (3.29)
from Ref. [6]. The same conclusion also follows from
analysis of the Wightman-Green function describing the
dynamics of the field; see Appendix B for details.
Therefore, there is an extra energy in the system observed
by a Rindler observer (3.19) without radiation of any real
particles. In many respects, this feature is similar to the
Casimir energy though spectral density distribution (3.19)
describing the fluctuations of the vacuum energy has a
nontrivial ! dependence in contrast with what happens
in the Casimir effect.

(i) Based on the comments presented above, we inter-
pret the extra contribution to the energy observed by
the Rindler observer as a result of formation of a
specific configuration which can be coined as the
‘‘ghost condensate’’ (similar to the QCD gluon con-
densate which effectively accounts the physics in the
infrared, k � �QCD) rather than a presence of ‘‘free

particles’’ prepared in a specific mixed state.9 In
different words, we interpret the ghost contribution
to the energy as a convenient way to account for a
nontrivial infrared physics at the horizon and/or the
boundary. It is possible that the same physics, in
principle is describable without the ghosts (which
are typically introduced as auxiliary fields to resolve
constraints and avoid nonlocal expressions in a
Hamiltonian); see Appendix C for the details.
However it is quite likely that such a description
would be much more (technically) complicated in
comparison with the presented technique as it would
deal with singularities and regularization problems
which always accompany horizon/boundary regions.

Let us present an additional argument supporting this
interpretation. Let us assume that in the remote past and

future the space-time is a Minkowskian one while in the
middle we have a situation where the positive- and
negative-frequency modes mix which results in nonzero
contribution to the energy from unphysical (in Minkowski
space) modes. In this case in the remote past and future the
notion of particle is well defined. In fact, there is a simple
two-dimensional model with a specific profile for the
expansion function aðtÞ interpolating between two
Minkowski space-times which can be solved exactly. The
outcome (see Sec. 3.4 in [2]) is that, even in this plain
example �kl � 0, which can be understood as a production
of particles by the expanding background. In our case this
should not be interpreted as actual emission of ghost
modes, as the ghost modes are not the asymptotic states
in Minkowski space-time in the remote past and future, and
therefore they cannot propagate to infinity in contrast with
conventional analysis [2]. Rather, one should interpret
(2.21) in general and (3.19) in particular for the Rindler
space, as an additional time-dependent contribution to the
vacuum energy in time-dependent background in compari-
son with Minkowski space-time.
This extra energy is entirely ascribable to the presence of

the unphysical (in Minkowski space) degrees of freedom.
However, we cannot interpret them as being particles in the
intermediate region where the entire notion of particle is
not well defined [2], and also, we cannot detect them in the
remote past and future as they are not a part of physical
Hilbert space. Moreover, from Eq. (3.19) we cannot specify
the localization of this extra energy as the typical wave-
lengths of the fluctuations are of the order of the horizon
scale. Therefore, we interpret this contribution to the
energy in the intermediate region as a result of a time-
dependent ‘‘ghost condensation’’ of pairs with opposite
momenta, when creation operators from different causally
disconnected regions L and R enter the relevant expression
for the vacuum state; see Eq. (A1) in Appendix A for the
precise definition. While one cannot answer the question
about the localization of this energy, one can argue, using a
different approach, that the energy (as well as the entropy
associated with it) is actually localized exactly at the
horizon; see below. This extra energy interacts with the
gravity field as it can be measured by the Rindler particle
detector, and passes all tests to be identified with the dark
energy as argued in [1]; see also a few comments on this
below in Secs. VC and VD.
As we mentioned earlier, this is not the first time when

an unphysical (in Minkowski space) ghost contributes to
a physically observable quantity. The first example is
the famous resolution of the Uð1ÞA problem in QCD10

by Veneziano [12], when the Veneziano ghost being
9The corresponding spectral density distribution saturating this

ghost condensate in our simple two-dimensional model is de-
termined by Eq. (3.19); see also Appendix A on construction of
the density matrix. However the spectral density distribution
would be quite different in a more realistic case of FLRW
universe when a (which plays the role of a Hubble constant
H) effectively becomes a time-dependent parameter and the
interaction is not neglected.

10See also another approach due to Witten [11] where the ghost
does not even appear in the system. However, the corresponding
physics due to a nontrivial background does not go away in the
Witten’s formulation; see a few comments on Witten’s approach
in a curved background in Ref. [1].
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unphysical nevertheless provides a crucial contribution
into the gauge-invariant correlation function (topological
susceptibility).

C. A few more comments

The next comment we want to make can be formulated
as follows. Our starting point was Lagrangian (2.1) which
describes QED in the Lorentz covariant gauge. Instead, we
could choose a Lorentz noncovariant gauge, for example,
the Coulomb gauge, such that �1 and �2 fields would not
even appear in the system, as the introduction of these
auxiliary fields is essentially only a matter of convenience
(helping to resolve constraints and nonlocalities). Where
does the effect go in these gauges? The point is that the
description in the Coulomb and similar gauges (when
formally only the physical degrees of freedom remain in
the system) leads to an extra term in the Lagrangian which
is completely determined by the boundary conditions, and
which is normally ignored in description of local physics.
This term, in particular, is related to the classification of the
allowed large gauge transformations with nontrivial topo-
logical conditions at the boundary. These features of pure
gauge, but still topologically nontrivial configurations,
eventually lead to the construction of the so-called ji
vacuum state which represents an infinite series of degen-
erate, so-called ‘‘winding states’’; see e.g. [7]. We advocate
the ghost-based technique to account for this physics
because the corresponding description can be easily gen-
eralized into a curved background, while a similar general-
ization (without the ghost, but with explicit accounting for
the infrared behavior at the boundaries) is unknown and
likely to be much more technically complicated. In differ-
ent words, the description in terms of the ghost is a matter
of convenience which allows us to account for the bound-
ary effects in topologically nontrivial sectors of the theory.

The relation between the two approaches can be explic-
itly worked out in a simple two-dimensional model; see
Appendix C for the details. The example from Appendix C
shows, in particular, that even when there are no physical
photons in the system, still there is an extra term sensitive
to the boundaries and large distance physics. Therefore,
our claim [1] that there is a mismatch between the vacuum
energy computed in a slowly expanding universe and the
one which is computed in flat Minkowski space should not
be very surprising after all: in both cases there is a sensi-
tivity to the boundary conditions (which are very different
in these two cases).

From our discussions in Sec. III it should be quite
obvious that the corresponding term for the Rindler space
and for Minkowski space would be different because the
allowed large gauge transformations in Minkowski space
and in the Rindler space are not equivalent. However, an
explicit construction is still lacking as it would require an
infrared regularization (e.g. similar to the one used in
Appendix C for Minkowksi space) to classify the large

gauge transformations. Presently we do not know how to
do it consistently in Minkowski and Rindler spaces.
Another benefit of dealing with the extra ghost degrees
of freedom is the possibility to avoid all difficult questions
on imposing some nontrivial consistent boundary condi-
tions at the horizon and/or the boundaries when a singular
behavior is unavoidable.
Our next comment is as follows. The interpretation of

the effect in terms of BRST charge suggests an analogy
with some condensed matter systems. To be more precise,
consider the so-called charge fractionalization effect in a
system which admits solitons; see [13] for review. The
effect in a few lines can be explained as follows. In the
soliton sector of the theory due to the presence of a single
zero fermion mode the soliton requires a fermion charge
1=2 as a result of the double degeneracy in the soliton
sector of the theory. The charge is localized in the region
which is of the order of a soliton size l. The original
underlying theory was defined with integer charges only.
Therefore, the question is: where does another �1=2 go?
The answer is: it goes to the boundary of a sample with
arbitrary large size L such that an experimentalist-R with
no access to the scales of the order Lwould see charge 1=2.
At the same time, an experimentalist-M with access to the
entire sample including the boundaries would measure the
total charge 0. This picture resembles our system in a
number of aspects when experimentalist-R is analogous
to the Rindler observer while experimentalist-M plays the
role of Minkowski inertial observer. A fractional charge
observed by experimentalist-R is analogous to a non-
vanishing BRST charge measured by a Rindler observer
(4.14), while a vanishing total charge measured by a
Minkowski inertial observer is analogous to BRST charge
QM. The role of the boundary L of a sample is analogous to
the horizon scale. The charge fractionalization effect in
condensed matter physics obviously has infrared nature
though it is often derived by using a technique which
requires summing up arbitrary high frequency modes; see
[13] for details.
Our final comment is on the relation between two differ-

ent frameworks: first is based on the Hamiltonian approach
advocated in this work, while the second approach is based
on computation of the renormalized stress tensor hT��iren.
One could naively think that using the conventional trans-
formation law (by transforming T�� from Minkowski to

the Rindler space) one should always get the vanishing
result for the renormalized stress tensor T�� even for an

accelerating observer (moving over Minkowski space-
time) performing the measurements using his particle de-
tector. It is known why this argument in general is not
correct; see explicit computations in Refs. [14–16]. The
key point lies in a complicated subtraction procedure in
the corresponding Green’s function which itself is an ex-
tremely singular object at coinciding points and requires
special care in subtractions. In particular one can indeed
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demonstrate that hT��iren ¼ 0 in the bulk of the space-time

as a result of cancellation of two singular expressions [14].
However, the Rindler particle detector would measure a
nonvanishing hT��iren � 0 exactly on the horizon where

two singularities collapse [14]. One should also remark
here that the expression for the Planck spectrum (3.19)
does not specify the coordinate localization of the
energy and entropy as measured by the Rindler observer.
Computation of hT��iren � 0 on the horizon answers the

question regarding the localization. Therefore, one should
treat both approaches as complementary to each other. One
should also add that vanishing hT��iren ¼ 0 in the bulk is a

result of very nontrivial cancellations between emission
and absorption of the energy with involvement of an ex-
ternal accelerating agent. The accelerating agent is not a
part of the system studied in this paper as we do not
accelerate the system, but assume that a constant accelera-
tion is produced by some external forces. This is the source
of vanishing hT��iren ¼ 0 in the bulk of space-time as an

accelerating agent is not part of the system; see original
papers on the interpretation of the effect [5,6,14].

The relation between these two different frameworks
shows once again that all nontrivial effects considered in
this paper are due to the behavior of the system in far-
infrared, on the horizon separating two subsystems. The
Planck spectrum emerges as a result of the description in
terms of the density matrix in R region by ‘‘tracing out’’
over the degrees of freedom associated with inaccessible
states in L-region. In different words, the Bogolubov trans-
formations describe a construction when a total system is
divided into two subsystems with the horizon separating
them. This is the deep physics reason why the Planck
spectrum emerges for a subsystem. It is known that a
number of nontrivial physics effects (including the entan-
glement) are described by the common surface separating
such two subsystems. Therefore, the Bogolubov transfor-
mation is not a trivial change of basis (as one could naively
think), but in fact an appropriate tool to describe a very
deep property of entanglement. The corresponding physics
is described by the common surface separating such two
subsystems, i.e. by the horizon separating L and R Rindler
wedges. In different words, a nonvanishing hT��iren � 0

exactly on the horizon as measured by the Rindler particle
detector is in complete accordance with our interpretation
of the effect presented above.

D. Observational consequences

(i) The obtained results may have some profound con-
sequences for our understanding of physics at the
largest possible scales in our Universe. First of all,
the dark energy observed in our Universe might be a
result of mismatch between the vacuum energy com-
puted in a slowly expanding universe with the ex-
pansion rate H and the one which is computed in flat

Minkowski space [1]. If true, the difference between
two metrics would lead to an estimate �Evac �
H�3

QCD � ð10�3 eVÞ4 which is amazingly close to

the observed value today. The process of energy
pumping will continue as long as our space-time is
deviated from a flat Minkowski metric. This extra
energy interacts with the gravity field and passes all
tests to be identified with the dark energy as argued
in [1]; see also some comments below. The fate of
our Universe in this paradigm is determined (even-
tually) by the feedback reaction on the gravity field.
This subject is beyond the scope of the present work,
and has not been discussed here.
The most important feature of this mechanism is the
spectrum of the fluctuations: the typical wavelengths
�k of excitations associated with energy (3.19) are of
the order of the inverse Hubble parameter, �k �
1=k� 1=H � 10 Gyr. Therefore, these modes do
not clump on distances smaller thanH�1, in contrast
with all other types of matter and therefore this type
of energy passes the crucial test allowing it to be
identified with the observed dark energy.
At the same time, the localization pattern of
such energy in a FLRW expanding universe and in
our toy model (described by the Rindler metric)
differ. Indeed, in a FLRW expanding universe,
hT��iren � 0 everywhere, and the horizon (where

the effect is localized) changes its position/size
with time by slowly filling the bulk of entire space
with time-dependent fluctuations of wavelengths
�kðtÞ � 1=HðtÞ during the expansion of the universe.
Also, the source of the expansion is the part of the
system that pumps the energy into the formation of
these long wavelengths’ topological fluctuations.
At the same time, in our toy model with the
Rindler metric, the position of the horizon where
hT��iren � 0 as measured by the Rindler particle

detector is fixed once and forever. Moreover, the
accelerating agent which is the source of the energy
in our toy model is not a part of the system. In this
respect, the relation between our study in the Rindler
metric and FLRW expanding universe is analogous
to the Unruh effect (where hT��iren ¼ 0 in the bulk)

and the Hawking radiation from a black hole.
(ii) Furthermore, the same (unphysical in Minkowski

space) degrees of freedom which is the subject of
the present work may in fact lead to the Casimir
type effect as argued in [17] when no massless
physical degrees of freedom are present in
Minkowski space. This effect can be exactly com-
puted in a toy two-dimensional QED model [18]
which is known to be a system with a single massive
degree of freedom when massless unphysical de-
grees of freedom are decoupled in Minkowski
space. Still, the Casimir-like effect is present in
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this two-dimensional system [18]. The Casimir-type
effects in four-dimensional QCD also appear to be
present on the lattice where the powerlike behavior
ð1=LÞ
 as a function of the total lattice size L has
been observed in measurements of the topological
susceptibility [19]. Such a behavior is in huge con-
trast with exponential expð�LÞ decay law which
one normally expects for any theories with massive
degrees of freedom.11

(iii) Also, it has been argued in [20] that these effects at
very large scales could in principle be tested in
upcoming cosmic microwave background maps
(PLANCK experiment), including P-parity violat-
ing effects at very large scales.

(iv) Furthermore, the nature of the magnetic field
with characteristic intensity of around a few �G
correlated on very large scales and observed today
is still unknown.12 One can argue that the very
same (unphysical in Minkowski space) degrees of
freedom that are the subject of the present work
may in fact induce the large-scale magnetic field
as a result of anomalous interaction with photons
[21]. More than that, the corresponding induced
magnetic field would naturally have the intensity

B ’ 

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H�3

QCD

q
� nG, which by simple adiabatic

compression during the structure formation epoch,
could explain the field observed today at all scales,
from galaxies to superclusters [21].

(v) Finally, hadron production studies in a variety of
high-energy collision experiments have shown a
remarkably universal feature, indicating a universal
hadronization temperature T � ð150–200Þ MeV.
From eþe� annihilation to pp and p �p interactions
and further to collisions of heavy nuclei, with en-
ergies from a few GeV up to the TeV range, the
production pattern always shows striking thermal
aspects, connected to an apparently quite universal
temperature around T � ð150–200Þ MeV. Such a
thermal spectrum is observed even in cases when
conventional ‘‘kinetic thermal equilibrium’’ can
never be reached. We argue in [22] that this apparent
thermalization can be understood as a manifestation
of the Unruh effect through the event horizon, which

itself dynamically emerges as a result of the con-
finement in the strongly interacting gauge theory.
We also argue that the violation of local P and CP
invariance in QCD, as it is observed at RHIC,
Brookhaven, is the direct consequence of the ghost
fluctuations with 0þ� quantum numbers considered
in this paper. All these effects occur as a result of
restriction of the Minkowski vacuum j0i to the
Rindler wedge with no access to the entire space-
time (A1), which is the key element in all discus-
sions of the property of entanglement.

Finally, one should note that QED photons, including
unphysical polarizations, may also in principle contribute
to dark energy. This contribution however is very small, as
it is of the order of L�4 or H4 by dimensional reasons (see
however the mechanism proposed in [23,24]).
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APPENDIX A: SQUEEZED STATE

The main goal of this appendix is to construct the so-
called squeezed state. We also make a few comment on the
correlations between causally disconnected regions of
space-time which follow from this construction.
The explicit expression for the Bogolubov’s coefficients

(3.15) between Minkowski and Rindler spaces allows us to
construct explicitly the so-called squeezed state which
relates the Minkowski and the Rindler vacuum states.
The corresponding relation reads

j0i ¼ Y
k

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� e�2�!=aÞ

q exp½e��!=aðbRyk bLy�k

� aRy�ka
Ly
k Þ�j0Ri 	 j0Li; (A1)

where we take into account that the operators in the L, R
basis correspond to the decompositions with support in
only one wedge such that the right-hand side is represented
by the tensor product j0Ri 	 j0Li. This relation is almost
identical to the construction discussed in Refs. [5,6], when
the operators from different causally disconnected regions
L and R enter the same expression. The only difference
is that two different types of operators ak and bk enter

11I am thankful to Misha Polikarpov who brought the paper
[19] to my attention.
12Originally, large-scale magnetic fields were first discovered in
our Milky Way with �G intensity. Later on the magnetic fields
of very similar strengths were observed in clusters of galaxies,
where they appear to be correlated over larger distances reaching
the Mpc region. It is important to notice that such fields are not
associated with individual galaxies, as they are observed in the
intergalactic medium as well. Finally, the most recent observa-
tions hint toward a possible magnetization of gigantic superclus-
ter structures pushing the correlation lengths further away up to
fractions of Gpc.
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expression (A1) corresponding to the ghost and its partner.
The relative sign minus in Eq. (A1) is due to the different
signs in commutation relations (3.12) and (3.13) describing
�1 and �2 fields. As discussed in Refs. [5,6], one cannot
use the correlations explicitly present in Eq. (A1) in order
to send signals.

The expression (A1) (while formally similar) neverthe-
less is very different from analogous formula for the cor-
responding squeezed state for conventional cosmological

particle production. In our case the combination aRyk aLy�k

(with operators from different causally disconnected re-
gions L and R) enters the expression (A1) while in a case

of particle production one and the same operator ayk ap-

pears twice in combination �ayk a
y
�k entering the relevant

formula.
Finally, we should note that the Minkowski vacuum j0i

is a pure state, but it becomes the mixed state when
restricted to a single Rindler region. One can construct
the corresponding density matrix for R region by ‘‘tracing
out’’ over the degrees of freedom associated with L region
exactly as it has been done in Refs. [5,6]. We shall not
elaborate on this issue in the present paper. Rather, wewant
to emphasize once again that the basic reason for nonzero
contribution to the vacuum energy in our case (3.19) is
exactly the same as for the conventional Unruh effect.
Namely, it is due to the restriction of the Minkowski
vacuum j0i to the Rindler wedge with no access to the
entire space-time. The interpretations for the two cases
however differ: we interpret an additional energy as the

ghost condensate of pairs aRy�ka
Ly
k and bRyk bLy�k in different

causally disconnected regions L and R with opposite mo-
menta, rather than a presence of free particles prepared in a
specific mixed state defined by the temperature T ¼ a

2�

(which is the conventional interpretation for the Unruh
effect). The main reason for these differences in interpre-
tation is discussed in Sec. VB and Appendix B, and we
refer the reader to the corresponding subsections for
details.

APPENDIX B: PARTICLE DETECTOR
FOR THE GHOST

As is known the reality issue discussed in Sec. VB can
be formulated by considering the particle detector moving
along the world line described by some function x�ð�Þ
where � is the detector’s proper time. In the case for the
Rindler space the corresponding � is identified with �
defined by formula (3.3). As is known, the corresponding
analysis in the lowest order approximation is reduced to a
study of the positive-frequency Wightman-Green function
defined as

Dþðx; x0Þ ¼ h0j�ðxÞ;�ðx0Þj0i; (B1)

while the transition probability per unit proper time is
proportional to its Fourier transform,

�
Z þ1

�1
dð��Þe�i!��Dþð��Þ; (B2)

where we use notations from [2]. In case of inertial trajec-
tory for massless scalar field � the positive-frequency
Wightman-Green function is given by

Dþð��0Þ ¼ � 1

4�2

1

ð��� i�Þ2 (B3)

and the corresponding Fourier transform (B2) obviously
vanishes. No particles are detected as expected. In case the
detector accelerates uniformly with acceleration a, the
corresponding Green’s function is given by [2]

Dþð��0Þ ¼ � 1

4�2

X
k

1

ð��� i2�þ 2i� k
aÞ2

: (B4)

As there are an infinite number of poles in the lower-
half plane at �� ¼ �2i� k

a for positive k the corre-

sponding Fourier transform (B2) leads to the known result
�!½expð2�!=aÞ � 1��1.
In our case the detector-field interaction is described by

the combination (�1 ��2) rather than by a single field �
discussed above; see Sec. VB. Therefore, the relevant
response function in our case is described by the
positive-frequency Green’s function defined as

� h0jð�1ðxÞ ��2ðxÞÞ; ð�1ðx0Þ ��2ðx0ÞÞj0i; (B5)

which replaces Eq. (B1). One can easily see that this
Green’s function given by Eq. (B5) identically vanishes
as the consequence of the opposite signs in commutation
relations (3.12) and (3.13) describing �1 and �2 fields, in
complete agreement with the arguments presented in
Sec. VB. Therefore, the Rindler observer will see an extra
energy (3.19) without detecting any physical particles. This
picture is based, of course, on the standard treatment of
gravity as a background field. Such an approximation is
justified as long as the produced effect is much smaller than
the background field itself. Otherwise, the feedback reac-
tion must be considered. The corresponding analysis, how-
ever, is beyond the scope of this work, and shall not be
discussed here.

APPENDIX C: TOPOLOGICAL SECTORS AND
THE GHOST IN TWO-DIMENSIONAL QED

The main goal of this appendix is to explain the con-
nection between the description in terms of the ghost
(advocated in the present work) and the alternative descrip-
tion in terms of subtraction constant (contact term). A short
historical detour is warranted here.
The description in terms of the ghost was advocated by

Veneziano [12] in the context of the Uð1ÞA problem, while
the alternative description in terms of subtraction constant
(contact term) was developed by Witten [11]. In Witten’s
approach the ghost field does not ever enter the system.
As long as we work in Minkowski space-time the two
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constructions are perfectly equivalent as the subsidiary
condition (2.3) or (2.4) ensures that the ghost degrees of
freedom are decoupled from the physical Hilbert subspace,
leaving both schemes with the identical physical spectrum.
In a curved space, on the other hand, we argued that the
‘‘would be’’ unphysical ghost can produce a positive physi-
cal contribution to the energy-momentum tensor (2.21).
The question arises naturally: where is the corresponding
physics hidden in the language of Witten? We refer to
Sec. 3.3 of paper [1] where this question has been elabo-
rated. Here we just want to mention that the corresponding
physics does not go away but, rather, it is hidden in the
boundary conditions.

This question can be precisely formulated and answered
in two-dimensional QED in Minkowski space when exact
computations, including summation over all topological
sectors, can be explicitly performed. As we shall see below
the summation over all topological sectors of the theory
exactly reproduces the contact term (conjectured by
Witten) which, on the other hand, is represented by the
ghost in the Veneziano approach. We advocate the ghost-
based technique because the corresponding description can
be easily generalized into curved background, while a
similar generalization of Witten’s approach is unknown,
and likely to be much more technically complicated; see
[1] for some comments on this issue. We should also note
that all formulas in this appendix are written in Euclidean
space where all computations of the path integral (includ-
ing summation over all topological sectors) are normally
performed.

Our starting point is the topological susceptibility �
defined as follows:

� 
 e2

4�2
lim
k!0

Z
d2xeikxhTEðxÞEð0Þi; (C1)

where e
2�E is the topological charge density and

e

2�

Z
d2xEðxÞ ¼ k (C2)

is the integer valued topological charge in the two-
dimensional Uð1Þ gauge theory and EðxÞ ¼ @1A2 � @2A1

is the field strength. The expression for the topological
susceptibility in the two-dimensional Schwinger model is
known exactly [25] and it is given by

� ¼ e2

4�2

Z
d2x

�
	2ðxÞ � e2

2�2
K0ð�jxjÞ

�
; (C3)

where�2 ¼ e2=� is the mass of the single physical state in
this model, andK0ð�jxjÞ is the modified Bessel function of
the order 0, which is the Green’s function of this massive
particle. One can explicitly check that topological suscep-
tibility � vanishes in the chiral limit m ! 0 in accordance
with Ward identities (WI). Indeed,

� ¼ e2

4�2

Z
d2x

�
	2ðxÞ � e2

2�2
K0ð�jxjÞ

�

¼ e2

4�2

�
1� e2

�

1

�2

�
¼ e2

4�2
½1� 1� ¼ 0: (C4)

An important lesson to be learned from these calculations
is as follows. Along with the conventional contribution
�K0ð�jxjÞ from the massive physical state in Eq. (C4),
there is also a contact term which contributes to the topo-
logical susceptibility �with the opposite sign. Without this
contribution it would be impossible to satisfy the WI
because the physical propagating degrees of freedom can
only contribute with sign ð�Þ to the correlation function
(C4). As demonstrated in Ref. [18] the contact term is
precisely saturated by the ghost �1 field.

13

The crucial point relevant for this paper is the existence
of the contact term in (C4) which is present in this corre-
lation function even if one considers pure photodynamics
in two dimensions without any propagating physical de-
grees of freedom. This term emerges as a result of the
summation over different topological classes in the
two-dimensional pure Uð1Þ gauge theory as we discuss
below. The same term can be computed using the
Kogut-Susskind ghost [7] as was shown in [18]. Both
descriptions are equivalent and describe the same physics.
One should also recall that the topological susceptibility
is related to the -dependent portion of the vacuum

energy �ð ¼ 0Þ ¼ � @2�vacðÞ
@2

j¼0 and, therefore, the sen-

sitivity of � to the boundary conditions automatically
implies that the vacuum energy �vac is also very sensitive
to the boundary conditions in spite of the fact that the
physical Hilbert subspace contains only massive propagat-
ing degrees of freedom.
We follow [25] and introduce the classical ‘‘instanton

potential’’ in order to describe the different topological
sectors of the theory which are classified by integer num-
ber k; see Eq. (C2). The corresponding configurations in
the Lorentz gauge on a two-dimensional Euclidean torus
with total area V can be described as follows [25]:

AðkÞ
� ¼ ��k

eV
���x�; eEðkÞ ¼ 2�k

V
; (C5)

such that the action of this classical configuration is

1

2

Z
d2xE2 ¼ 2�2k2

e2V
: (C6)

This configuration corresponds to the topological charge
k as defined by (C2). The next step is to compute the
topological susceptibility for the theory defined by the
following partition function:

13One should also remark here that if the quark’s mass does not
vanish m � 0, the corresponding WI are automatically satisfied
by the combination of ghost �1 field and massive physical field
such that the right-hand side becomes proportional to the quark’s
mass m as it should; see [18] for details.
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Z ¼ X
k2Z

Z
DAe�ð1=2Þ

R
d2xE2

: (C7)

All integrals in this partition function are Gaussian and can
be easily evaluated using the technique developed in [25].
The result is determined essentially by the classical con-
figurations (C5) and (C6) as real propagating degrees of
freedom are not present in the system of pure Uð1Þ gauge
field theory in two dimensions. We are interested in com-
puting � defined by Eq. (C1). In the path integral approach
it can be represented as follows:

� ¼ e2

4�2
Z�1

X
k2Z

Z
DA

Z
d2xEðxÞEð0Þe�ð1=2Þ

R
d2x0E2ðx0Þ:

(C8)

This Gaussian integral can be easily evaluated using the
technique developed in [25]. The result can be represented
as follows:

� ¼ e2

4�2
� V �

P
k2Z

4�2k2

e2V2 expð� 2�2k2

e2V
Þ

P
k2Z

expð� 2�2k2

e2V
Þ : (C9)

In the large volume limit V ! 1 one can evaluate the sums
entering (C9) by replacing

P
k2Z ! R

dk such that the
leading term in Eq. (C9) takes the form

� ¼ e2

4�2
� V � 4�

2

e2V2
� e

2V

4�2
¼ e2

4�2
: (C10)

A few comments are in order. First, the topological sectors

with large k�
ffiffiffiffiffiffiffiffiffi
e2V

p
saturate the series (C9). As one can

see from the computations presented above, the final result
(C10) is sensitive to the boundaries, infrared regulariza-
tion, and many other aspects which are normally ignored
when a theory from the very beginning is formulated in
infinite space with conventional assumption about trivial
behavior at infinity. Second, the obtained expression for the
topological susceptibility (C10) is finite in the limit V !
1 and coincides with the contact term from exact compu-
tations (C3) performed for the two-dimensional Schwinger
model in Ref. [25]. Third, the result (C10) precisely
coincides with Kogut-Susskind ghost contribution as dem-
onstrated in [18] and reviewed below (C11). Therefore, we
do observe the sensitivity of � (and the vacuum energy
�vac) to the far-infrared physics in spite of the fact that the
physical Hilbert subspace contains only massive propagat-
ing degrees of freedom.

We want to present one more argument supporting our
claim that in an accelerating frame the contact term (which
is determined in our framework by the ghost contribution)
deviates from its Minkowski value. The argument is based
on the Ward identities when massless fermions are in-
cluded in the system. As is known, the topological suscep-
tibility (C4) must vanish in the chiral limit m ¼ 0. As
discussed above, it indeed vanishes as a result of very
nontrivial cancellation between the physical contribution
with a negative sign and a positive contribution computed

above (subtraction constant) which results from the sum-
mation over different topological classes. This subtraction
constant in our framework is precisely represented by the
ghost contribution [18]. Indeed, the topological density

Q ¼ e
2�E in two-dimensional QED is given by e

2�E ¼
ð e
2�Þ

ffiffiffi
�

p
e ðh�̂�h�1Þ [7] where �̂ is the only physical

massive field of the model with mass �2 ¼ e2

� while �1

is the Kogut-Susskind ghost field. The relevant correlation
function in coordinate space which enters the expression
for the topological susceptibility (C1) can be explicitly
computed as follows:

�
T

e

2�
EðxÞ; e

2�
Eð0Þ

�

¼
�
e

2�

�
2 �

e2

Z d2p

ð2�Þ2 p
4e�ipx

�
� 1

p2 þ�2
þ 1

p2

�

¼
�
e

2�

�
2 Z d2p

ð2�Þ2 e
�ipx

�
p2

p2 þ�2

�

¼
�
e

2�

�
2 Z d2p

ð2�Þ2 e
�ipx

�
1� �2

p2 þ�2

�

¼
�
e

2�

�
2
�
	2ðxÞ � e2

2�2
K0ð�jxjÞ

�
; (C11)

where we used the known expressions for the Green’s

functions (the physical massive field �̂ as well as the ghost
�1 field). The obtained expression is precisely the result
(C4), as anticipated. Our additional argument supporting
the main claim (that in an accelerating frame the contact
term represented by 	2ðxÞ function in (C11) is different
from its Minkowski value) goes as follows. The contribu-
tion of the physical massive state represented by K0ð�jxjÞ
in (C11) obviously changes when we go from Minkowski
space to the accelerating frame such that the corresponding
massive Green’s function as well as the residue ð e

2�Þ2 would
generally depend on acceleration a. It obviously implies
that the ghost contribution represented by the 	2ðxÞ func-
tion in (C11) must also depend on acceleration a. This is
because the Ward identity

R
d2xhT e

2�EðxÞ; e
2�Eð0Þi ¼ 0

must be respected in the accelerating frame. The WI can
only be satisfied in accelerating frame if the corresponding
subtraction contribution (C10) does depend on accelera-
tion a. But in our framework this contribution is precisely
determined by the KS ghost (C11). This argument supports
our claim that the KS ghost contribution (and the vacuum
energy, correspondingly) should generically depend on
acceleration a.14

14In order to explicitly test this argument, one should repeat the
path integral calculation of Refs. [25] in accelerating frame,
including the infrared regularization. This subject is beyond the
scope of the present analysis. As we mentioned above, we do not
know presently how to proceed with computations similar to
(C10) in the accelerating frame.
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(i) The most important lesson to be learned from these
simple computations in this simple model is that the
dynamics of gauge systems is quite sensitive to the
boundary conditions. Therefore, when such a system
is promoted to a curved or time-dependent back-
ground, it is quite natural to expect that the vacuum
energy will be sensitive to the properties of this
background. We advocate the ghost-based technique
to account for this physics because the correspond-

ing description can be easily generalized into curved
background, while a similar generalization (without
the ghost, but with explicit accounting for the infra-
red behavior at the boundaries) is unknown and
likely to be much more technically complicated. In
different words, the description in terms of the ghost
is a matter of convenience to (effectively) account
for the far-infrared effects in topologically nontrivial
sectors of the theory.
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