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We study primordial fluctuations generated during inflation in a class of models motivated by the DBI

Galileons, which are extensions of the DBI action that yield second-order field equations. This class of

models generalizes the DBI Galileons in a similar way with K inflation. We calculate the primordial non-

Gaussianity from the bispectrum of the curvature perturbations at leading order in the slow-varying

approximations. We show that the estimator for the equilateral-type non-Gaussianity, f
equil
NL , can be applied

to measure the amplitude of the primordial bispectrum even in the presence of the Galileon-like term

although it gives a slightly different momentum dependence from K-inflation models. For the DBI

Galileons, we find�0:32=c2s < f
equil
NL <�0:16=c2s and large primordial non-Gaussianities can be obtained

when cs is much smaller than 1 as in the usual DBI inflation. In G-inflation models, where a de Sitter

solution is obtained without any potentials, the nonlinear parameter is given by f
equil
NL ¼ 4:62r�2=3, where

r is the tensor to scalar ratio, giving a stringent constraint on the model.
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I. INTRODUCTION

The DBI inflation model [1] is one of the most interest-
ing possibilities to realize large non-Gaussianity of the
cosmic microwave background (CMB) temperature fluc-
tuations. Non-Gaussianity of the curvature perturbation in
DBI inflation has been studied extensively [2–22] (see also
[23,24] for reviews).

Recently, a very interesting extension of the DBI infla-
tion model, the so-called ‘‘DBI Galileons’’ was proposed
by de Rham and Tolley [25] (see also [26]). This is based
on the relativistic extension of the Galileon model [27–29]
(for studies of cosmology based on the Galileon field, see
Refs. [30–40]). The simplest example is a single field
model that arises from a probe brane action in the five-
dimensional spacetime. Let us consider the following four-
dimensional induced action on the probe brane:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ð��M3
5KÞ; (1)

where � is a tension of the brane, M5 is the five-
dimensional Planck constant, g�� is the induced metric

on the brane,

g�� ¼ ��� þ @��@��; (2)

and K is a trace of the extrinsic curvature K��,

K�� ¼ � @�@��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð@�Þ2p : (3)

Here � is a modulus describing the position of the brane.
Using the fact that the inverse metric is given by

g�� ¼ ��� � �2@��@��, where � is the Lorentz factor

� ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð@�Þ2p

, the brane action is written as

S ¼ ��
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð@�Þ2

q
þM3

5

�
Z

d4xðh�� �2@�@��@
��@��Þ: (4)

By integrating by part and discarding the total derivative
terms, this action can be rewritten as

S ¼ ��
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð@�Þ2

q
þM3

5

2

Z
d4xð�2ð@�Þ2h�

þ @�ð�2Þð@��Þð@�Þ2Þ: (5)

The first term is the usual DBI action. The higher order
terms look to contain the higher derivatives but the equation
of motion is at most second order in derivatives. In the
nonrelativistic limit � ! 1, this reduces the Galileon model
where the action is invariant under the Galileon symmetry
@�� ! @��þ c�. It is also possible to include two more

higher order terms in the action, but in this paper we focus
our attention on the leading order cubic order terms.
Recently, Refs. [41,42] considered a generalization of

this model. This generalization is based on the extension of
DBI inflation to K inflation. The generalized action is
given by

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ðPðX;�Þ �GðX;�Þh�Þ; (6)

where � is the same degree of freedom as �, but it is
defined so that � has a dimension of mass and X ¼
�ð1=2Þð@�Þ2. In Eq. (6), Pð�;XÞ andGð�;XÞ are arbitrary
functions of � and X. Precisely speaking, this general-
ization does not include the action (5). However, in the DBI
inflation, the Lorentz factor, �, varies very slowly and at
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leading order in the slow-varying parameters, which is
usually used to calculate the leading order contribution to
non-Gaussianity, the last term in (5) does not play a role.
Thus the action (6) is general enough to include the case of
the DBI Galileons. Again the equation of motion is at most
second order in derivatives.

In this paper, we study primordial fluctuations generated
during inflation described by the action (6). We calculate
the power spectrum of the curvature perturbation as well as
the bispectrum of the curvature perturbations. Two ex-
amples of the model are considered: one is the DBI
Galileons described by the action (5). The other is
G-inflation models proposed by Ref. [42]. This model is
based on a specific choice of the functions PðXÞ and GðXÞ
that realizes a de Sitter solution without any potentials.

This paper is organized as follows. In Sec. II, we in-
troduce a model studied in this paper. The power spectrum
is calculated in Sec. II and the bispectrum is discussed in
Sec. III. In Sec. IV, we consider two examples, the DBI
Galileons and G inflation. Section V is devoted to
conclusions.

II. MODEL

Assuming that � described by the action (6) is mini-
mally coupled to gravity, we consider a class of models
described by the following action:

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffi�g
p ½M2

plRþ 2Pð�;XÞ � 2Gð�;XÞh��;
(7)

where Mpl is the Planck mass. In the background, we are

interested in flat, homogeneous, and isotropic Friedmann-
Robertson-Walker universes described by the line element

ds2 ¼ �dt2 þ a2ðtÞ�ijdx
idxj; (8)

where aðtÞ is the scale factor. It can be shown that the
energy density and pressure of the field are given by

	 ¼ 2P;XX � Pþ 6G;XH _�X � 2G;�X; (9)

p ¼ P� 2ðG;� þG;X
€�ÞX; (10)

where H ¼ _a=a is the Hubble parameter, the dot repre-
sents a derivative with respect to cosmic time t, and the
subscripts ; X and ; � denote derivatives with respect to X
and �, respectively. The Friedmann equation and the field
equation are given by

3M2
plH

2 ¼ 	; (11)

P;Xð €�þ 3H _�Þ þ 2P;XXX €�þ 2P;X�X � P;�

� 2G;�ð €�þ 3H _�Þ � 2G;X�Xð €�� 3H _�Þ
þ 6G;X½ðHXÞ� þ 3H2X� � 2G;�� þ 6G;XXHX _X ¼ 0:

(12)

It is useful to define a slow-varying parameter


 � � _H

H2
¼ XP;X þ 3G;XH _�X

M2
plH

2
; (13)

where for the second equality, we have assumed the quan-

tities j €�=ðH _�Þj and jG;�
_�=ðGHÞj are much smaller than

1. Since we are interested in fluctuations generated during
inflation, we will consider the background that satisfies the
slow-varying conditions which are given by j
j � 1, to-

gether with j €�=ðH _�Þj � 1 and jG;�
_�=ðGHÞj � 1.

III. POWER SPECTRUM

We are interested in the primordial curvature perturba-
tion on uniform density hypersurfaces, � , on large scales,
which is directly related to temperature anisotropies in the
CMB. In order to calculate the statistical quantities of � at
leading order in the slow-varying approximations, we first
calculate the bispectrum of the fluctuations of inflaton� in
the flat gauge where the three-dimensional metric takes the
form hij ¼ a2�ij, and then relate it to that of � using the

relation obtained from the delta-N formalism [43,44]

� ¼ �H
_�
Q: (14)

In Eq. (14), � is the background value and Q is the
perturbation in the flat gauge. In this gauge, at leading
order in the slow-varying approximations, the second-
order action is expressed as

S2 ¼
Z

dtd3xa3
�
P;X�X

ð2Þ þ 1

2
P;XXð�Xð1ÞÞ2

�G;X�X
ð2Þh�ð0Þ �G;X�X

ð1Þh�ð1Þ

� 1

2
G;XXð�Xð1ÞÞ2h�ð0Þ

�
; (15)

with

�Xð1Þ ¼ _� _Q; �Xð2Þ ¼ 1

2
_Q2 � 1

2a2
@iQ@iQ;

h�ð0Þ ¼ �3H _�; �ð1Þ ¼ � €Q� 3H _Qþ 1

a2
@i@iQ:

(16)

Introducing the sound speed for the scalar perturbations

c2s ¼ P;X þ 4 _�HG;X

P;X þ 2XP;XX þ 6H _�ðG;X þ XG;XXÞ
; (17)

and integrating by parts, we can write the second-order
action as
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S2 ¼
Z

dtd3x
a3

2c2s
ðP;X þ 4 _�HG;XÞ

�
_Q2 � c2s

a2
@iQ@iQ

�
:

(18)

The perturbations in the interaction picture are promoted
to the quantum operators as

Qð�;xÞ ¼ 1

ð2�Þ3
Z

d3kQð�;kÞeik�x;
Qð�;kÞ ¼ uð�;kÞaðkÞ þ u�ð�;�kÞayð�kÞ;

(19)

where aðkÞ and ayð�kÞ are the annihilation and creation
operators, respectively. They satisfy the usual commuta-
tion relations

½aðk1Þ; ayðk2Þ� ¼ ð2�Þ3�ð3Þðk1 � k2Þ; ½aðk1Þ; aðk2Þ�
¼ ½ayðk1Þ; ayðk2Þ� ¼ 0: (20)

From the second-order action (18), the solution for the
mode functions is given by

uð�;kÞ ¼ Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2csðP;X þ 4 _�HG;XÞ

q 1

k3=2
ð1þ ikcs�Þe�ikcs�:

(21)

It is convenient to introduce the following parameters:

� � G;X
_�X

M2
plH

; ~
 � 
þ �; (22)

where ~
 coincides with 
 when there is no Galileon-like
term. ~
 is also much smaller than 1 for � � 1. Then, the
power spectra of Q and � are given by

hQðk1ÞQðk2Þi ¼ ð2�Þ3�ð3Þðk1 þ k2ÞPQ

2�2

k31
;

PQ ¼ X

4�2M2
plcs~


;
(23)

h�ðk1Þ�ðk2Þi ¼ ð2�Þ3�ð3Þðk1 þ k2ÞP �

2�2

k31
;

P � ¼ 1

8�2M2
pl

H2

cs~

;

(24)

which are evaluated at the time of the sound horizon exit,
csk ¼ aH. It is worth noting that it is ~
 and not 
 which
appears in Eq. (24), which gives the behavior of the power
spectrum that is different from the usual K-inflation model
as we will see below. Defining additional slow-varying
parameters

~� �
_~


~
H
; s � _cs

csH
; (25)

the spectral index of the primordial power spectrum is
given by

ns � 1 ¼ d lnP � ðkÞ
d lnk

¼ �2
� ~�� s: (26)

We need to require 
, ~�, and s to be very small in order to
realize the almost scale invariant power spectrum. We have
confirmed that this result is consistent with the one ob-

tained in Ref. [42] when the conditions j €�=ðH _�Þj � 1 and

jG;�
_�=ðGHÞj � 1 are satisfied. Notice that ~� is different

from the usual � defined by � � _
=ð
HÞ.
The power spectrum and spectral index of tensor per-

turbations are given by the usual expression

P T ¼ 2H2

�2M2
pl

; nT ¼ �2
: (27)

In the usual K inflation, nT and the tensor to scalar ratio
r � P T=P � are not independent, and there is a so-called

‘‘consistency relation’’ r ¼ �8csnT [45]. However, it is
clear that this relation does not hold in the presence of the
Galileon-like term. Instead, we have

r ¼ �8csðnT � 2�Þ; (28)

where � is given by Eq. (22).

IV. BISPECTRUM

The third order action can be obtained in the same
way as

S3 ¼
Z

dtd3x
a3

_�

�
C1

_Q3 þ C2

a2
_Q@iQ@iQ

þ C3

a4H
@iQ@iQ@j@jQþ C4

a2H
_Q@i _Q@iQ

�
; (29)

where

C1 ¼ 2
3X

2P;XXX þ XP;XX þ 2H _�X2G;XXX

þ 5H _�XG;XX þH _�G;X;

C2 ¼ �ðXP;XX þ 3H _�XG;XX þH _�G;XÞ;
C3 ¼ 1

2H
_�G;X; C4 ¼ 2H _�G;X þ 2H _�XG;XX: (30)

The vacuum expectation value of the three point opera-
tor in the interaction picture is written as [43,46]

hQðt;k1ÞQðt;k2ÞQðt;k3Þi
¼ �i

Z t

t0

d~th½Qðt;k1ÞQðt;k2ÞQðt;k3Þ; HIð~tÞ�i; (31)

where t0 is some early time during inflation when the
field’s vacuum fluctuation are deep inside the sound hori-
zon and t is some time after the sound horizon exit. If one
uses a conformal time, it is a good approximation to
perform the integration from �1 to 0 because � �
�ðaHÞ�1. HI denotes the interaction Hamiltonian and it
is given by HI ¼ �L3, where L3 is the Lagrangian ob-
tained from the action (29). Using the solution for the mode
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function and the commutation relations for the creation and
annihilation operators, we get

hQðk1ÞQðk2ÞQðk3Þi ¼ ð2�Þ3�ð3Þðk1 þ k2 þ k3Þ

� H5

ðP;X þ 4 _�HG;XÞ3 _�

� 1

�3
i¼1k

3
i

A�; (32)

where

A � ¼ 3

�
C1 � C4

c2s

�
A1 þ C2

2c2s
A2 þ C3

c4s
A3; (33)

and C1, C2, C3, C4, and C5 are given by Eq. (30). In
Eq. (33), we have introduced the shape functions A1,
A2, and A3 as

A 1 ¼ k21k
2
2k

2
3

K3
; (34)

A 2¼k21k2 �k3

K

�
1þk2þk3

K
þ2

k2k3
K2

�
þ2 perms; (35)

A3 ¼ k23k1 � k2

K

�
1þ k1k2 þ k2k3 þ k3k1

K2
þ 3

k1k2k3
K3

�

þ 2 perms; (36)

where K ¼ k1 þ k2 þ k3. The shapes A1 and A2 appear
in the usual K-inflation models [7] and their amplitudes
can be measured by the estimator for the equilateral-type

non-Gaussianity, fequilNL [47]. On the other hand, the shape
A3 is completely new that arises from the Galileon-like
term.

For the bispectrum of � , making use of Eqs. (14) and
(24), we obtain the following expression:

h�ðk1Þ�ðk2Þ�ðk3Þi ¼ ð2�Þ3�ð3Þðk1 þ k2 þ k3Þ
� ðP � Þ2Fðk1; k2; k3Þ; (37)

where

Fðk1; k2; k3Þ ¼ ð2�Þ4
�3

i¼1k
3
i

X3
j¼1

fðjÞAj; (38)

fð1Þ ¼ �3ðC1c
2
s � C4Þ

ðP;X þ 4 _�HG;XÞ
;

fð2Þ ¼ � C2

2ðP;X þ 4 _�HG;XÞ
;

fð3Þ ¼ � C3

ðP;X þ 4 _�HG;XÞc2s
:

(39)

In the following, we will study the momentum depen-
dence of the bispectrum. Especially, we will check the

validity of using the estimator for equilateral-type non-

Gaussianity, f
equil
NL , for the bispectrum even in the presence

of the new shape A3. The estimator is defined by

Fequilðk1; k2; k3Þ ¼ ð2�Þ4
�
9

10
f
equil
NL

�

�
�
� 1

k31k
3
2

� 1

k31k
3
3

� 1

k32k
3
3

� 2

k21k
2
2k

2
3

þ 1

k1k
2
2k

3
3

þ ð5 permsÞ
�
; (40)

where the permutations act only on the last term in paren-
theses. This shape is factorizable and it is possible to
construct a fast optimal estimator that can be applied to
the CMB map. For this purpose, it is useful to define shape

functions FðiÞðk1; k2; k3Þ, i ¼ 1, 2, 3 corresponding to the
shapes Ai in Eq. (38). As mentioned before, the shape of
the bispectrum inK inflation is characterized by the sum of

Fð1Þðk1; k2; k3Þ and Fð2Þðk1; k2; k3Þ with fð1Þ and fð2Þ de-
pending on PðXÞ. For example, in DBI inflation, the rela-

tion fð2Þ=fð1Þ ¼ �2=3 holds. However, since functions

Fð1Þðk1; k2; k3Þ and Fð2Þðk1; k2; k3Þ are not factorizable,
Fequilðk1; k2; k3Þ is usually used to approximate the shape

functions Fð1Þðk1; k2; k3Þ and Fð2Þðk1; k2; k3Þ.
In Fig. 1, we compare Fequilðk1; k2; k3Þ with

Fð1Þðk1; k2; k3Þ, Fð2Þðk1; k2; k3Þ, and Fð3Þðk1; k2; k3Þ with
appropriate normalizations. From this, we see that not

only Fð1Þðk1; k2; k3Þ and Fð2Þðk1; k2; k3Þ, but also the

function Fð3Þðk1; k2; k3Þ has a very similar shape with

Fequilðk1; k2; k3Þ and it can be expected that f
equil
NL provides

a good measure of the bispectrum even in the presence of

the new shape function Fð3Þ. We can prove this quantita-
tively by the following shape correlator C for two different
shapes characterized by F and F0 introduced by Ref. [48]
(see also [49,50]),

C ðF; F0Þ ¼ F ðF; F0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðF; FÞF ðF0; F0Þp ; (41)

where the overlap function F is given by

F ðF; F0Þ ¼
Z

dV kFðk1; k2; k3ÞF0ðk1; k2; k3Þ
��4

i¼1k
4
i wBðk1; k2; k3Þ: (42)

In Eq. (42) the integration is performed for the region
where the triangle condition for ðk1; k2; k3Þ holds and
weight function wB is given by

wB ¼ 1

k1 þ k2 þ k3
: (43)

Table I shows that the shapes Fequilðk1; k2; k3Þ and

Fð3Þðk1; k2; k3Þ are almost completely anticorrelated, which

means that it is very reasonable to adopt the estimator fequilNL
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to measure the amplitude of the bispectrum even in the

presence of the shape Fð3Þðk1; k2; k3Þ.
Now that the validity of using the estimator for the

equilateral-type non-Gaussianity, f
equil
NL for the bispectrum

corresponding to the new shape A3 is confirmed, we will

obtain fequilNL for the bispectrum given by Eq. (38). We
match the two different shapes (38) and (40) so that these
two shapes have the same amplitudes at the equilateral
configuration k1 ¼ k2 ¼ k3. This gives

f
equil
NL ¼ 10

243
fð1Þ � 85

81
fð2Þ � 65

81
fð3Þ: (44)

V. EXAMPLES

A. The DBI Galileons

For the first example, we consider the DBI Galileons
[25] described by the action (5). Here we extended the
original DBI Galileon model by introducing Vð�Þ, fð�Þ,

TABLE I. Shape correlations between the factorizable equilateral shape Fequilðk1; k2; k3Þ and
the shapes of primordial bispectra characterized by functions Fð1Þðk1; k2; k3Þ, Fð2Þðk1; k2; k3Þ, and
Fð3Þðk1; k2; k3Þ. For comparison, we have also shown the correlation between the equilateral
shape and that obtained in DBI inflation which is given by Fð1Þðk1; k2; k3Þ þ Fð2Þðk1; k2; k3Þ
satisfying fð2Þ=fð1Þ ¼ �2=3.

Fð1Þðk1; k2; k3Þ Fð2Þðk1; k2; k3Þ Fð3Þðk1; k2; k3Þ FDBIðk1; k2; k3Þ
Overlap 0.936 �0:995 �0:999 89 �0:993

FIG. 1 (color online). In this group of figures, we plot the shape functions Fð1; k2=k1; k3=k1Þðk2=k1Þ2ðk3=k1Þ2 as functions of
ðk2=k1; k3=k1Þ. The figures are normalized to have values of 1 for equilateral configurations k2=k1 ¼ k3=k1 ¼ 1 and set to zero outside
the region 1� k2=k1 	 k3=k1 	 k2=k1. We plot Fð1Þðk1; k2; k3Þ, Fð2Þðk1; k2; k3Þ, Fð3Þðk1; k2; k3Þ, and Fequilðk1; k2; k3Þ for upper left,
upper right, lower left, and lower right, respectively.
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and gð�Þ which depend on � weakly so that the slow-
varying parameters are sufficiently small.

Pð�;XÞ ¼ �fð�Þ�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Xfð�Þ

q
þ fð�Þ�1 � Vð�Þ;

Gð�;XÞ ¼ gð�ÞX
1� 2Xfð�Þ : (45)

It is worth mentioning that only particular choices of the
functions fð�Þ and gð�Þ come from genuine higher-
dimensional symmetries, although the equations of motion
are still kept to be second order.

In order to analyze this model, it is convenient to define
cD � 1=P;X which corresponds to the sound speed in the

DBI model in the absence of the Galileon-like term. Since

it is known that f
equil
NL / 1=c2D in DBI inflation and we are

interested in the case where the large non-Gaussianity is
generated, we consider only the case with cD � 1.

We assume that the inflation is driven by the potential

term, that is, V 
 X=cD, gH _�X in Eq. (11) as in usual
DBI inflation. During inflation, the field equation (12)
becomes

3

cD
H _�þ 18gH2X

c4D
þ V;� ¼ 0: (46)

The value of cD is specified from the background equations
once Vð�Þ and fð�Þ are given. We assume _cD=cDH � 1
so that, at leading order, cD is constant [it is also possible to
construct a model where cD is constant by choosing a
functional form of fð�Þ for a given Vð�Þ, see Ref. [51]

for the details]. We define a parameter bD � gH _�=c3D so
that the first two terms in Eq. (46) are comparable when bD
is of order 1. It is worth noting that bD can be also ex-
pressed as bD ¼ �=ð
� 3�Þ. Making use of the concrete
forms of PðX;�Þ and GðX;�Þ in Eq. (45) as well as the
definition of bD, the coefficients C1, C2, C3, and C4 in the
third order action (30) are given by

C1 ¼ 1

2c5D
ð1þ 24bDÞ; C2 ¼ � 1

2c3D
ð1þ 12bDÞ;

C3 ¼ � 1

2cD
bD; C4 ¼ 4

c3D
bD; (47)

where we have used XP;XX � 1=ð2c3DÞ, X2P;XXX �
3=ð4c5DÞ, G;X � g=c4D, XG;XX � 2g=c6D, X2G;XXX�
6g=c8D, and cD � 1.

Then, the parameters fðjÞ in Eq. (39) become

fð1Þ ¼ � 3

2c2D

ð1þ 20bDÞ
ð1þ 4bDÞð1þ 12bDÞ ;

fð2Þ ¼ ð1þ 12bDÞ
4ð1þ 4bDÞc2D

;

fð3Þ ¼ � ð1þ 12bDÞbD
2ð1þ 4bDÞ2c2D

:

(48)

From Eq. (44) we obtain

fequilNL ¼ � 5

324c2s

ð21þ 546bD þ 3776b2D þ 6048b3DÞ
ð1þ 4bDÞð1þ 12bDÞ2

;

(49)

which becomes �0:16=c2s for bD 
 1 and �0:32=c2s for
bD ! 0. To obtain Eq. (49), we have used that cD and cs
are related as

c2D ¼ ð1þ 12bDÞ
ð1þ 4bDÞ c

2
s : (50)

The nonlinear parameter fequilNL scales as / 1=c2s and can be
detectable by future experiments such as PLANCK for
sufficiently small cs.
Especially, in the case of ~� ¼ s ¼ 0, we find that the

following relation holds:

r ¼ 8cs
1þ 4bD
1þ 3bD

ð1� nsÞ: (51)

Combined with Eqs. (49) and (51), we can express fequilNL in
terms of ns and r as

fequilNL ’ �20
ð1� nsÞ2

r2
; (52)

where the coefficient is almost independent of bD for this
setup. This relation suggests that these Galileon-like terms
do not help embed the DBI inflation into string theory
[52,53].

B. G inflation

The second example is the recently proposed G inflation
where an exact de Sitter solution is realized without in-
troducing a potential [42]. In this model the functions PðXÞ
and GðXÞ are chosen as

PðXÞ ¼ �Xþ X2

2M3�
; GðXÞ ¼ 1

M3
X: (53)

The de Sitter solution is obtained when P;Xþ3H _�=M3¼0
is satisfied in Eq. (11). The solutions are obtained as

X¼�M3x;

H2¼ M3

18�

ð1�xÞ2
x

; where
1�x

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x=2

p ¼ ffiffiffi
6

p �

Mpl

: (54)

Here as in Ref. [42], we only consider simple cases where

� � Mpl. In this situation, ð1� xÞ ’ ffiffiffi
3

p
�=Mpl � 1 and

� is related to Mpl, M, and H as � ¼ 6M2
plH

2=M3.

Then, making use of the concrete forms of PðX;�Þ and
GðX;�Þ in Eq. (53), the fine-tuning condition P;X þ
3H _�=M3 ¼ 0 and Eq. (54), the primordial power spec-
trum and tensor to scalar ratio are given by
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P � ¼
ffiffiffi
6

p
H2

16�2M2
pl

1

ð1� xÞ3=2 ;

r ¼ 16
ffiffiffi
6

p
3

ð1� xÞ3=2;
(55)

where we neglected the correction to the tensor to scalar
ratio, r ¼ 16cs~
, that arises if we allow a small deviation
from the pure de Sitter inflation. As was pointed out in
Ref. [42], r becomes nonzero even in the pure de Sitter
solution, i.e. for 
 ¼ 0. On the other hand, ns � 1 becomes
0 for the pure de Sitter inflation, but again if we allow a
small deviation for it parametrized by the slow-varying
parameters, ns is given by Eq. (26).

For the primordial bispectrum, the parameters fðjÞ in
Eq. (39) become

fð1Þ ¼ 9

2
;

fð2Þ ¼ 3

2ð1� xÞ ;

fð3Þ ¼ � 3

ð1� xÞ ;

(56)

where we have set x ¼ 1 unless it appears in the form of
1� x. Then from Eq. (44) we obtain

f
equil
NL ¼ 5

6ð1� xÞ : (57)

Especially, from Eq. (55) and assuming the pure de Sitter

inflation, 
 ¼ 0, fequilNL is related to r as

fequilNL ¼ 4:62
1

r2=3
; (58)

which gives a strong constraint on this model. For example,
if r ¼ 0:17, which can be detected by the PLANCK satel-

lite [54], fequilNL ¼ 15:1. Therefore, a detection or nondetec-
tion of the tensor mode and equilateral-type non-
Gaussianity by PLANCK will tightly constrain the model.

VI. CONCLUSION

The DBI inflation model [1] has been extensively
studied recently for both theoretical and phenomenological
reasons. Especially, it is well known that the DBI inflation
model can give large non-Gaussianity of the CMB tem-
perature fluctuations. Recently, de Rham and Tolley [25]
proposed a new model so-called the DBI Galileons based
on a probe brane action in the higher-dimensional space-
time. Interestingly, this model naturally provides a connec-
tion between the DBI model and the relativistic
generalization of the Galileon model [27], where the equa-
tion of motion is at most second order in derivatives due to
the Galileon symmetry @�� ! @��þ c�. Since the DBI

inflation is supposed to be driven by the dynamics of the

brane in the higher-dimensional bulk, it is interesting to
study the effect of the Galileon-like terms in DBI inflation
In this paper, motivated by the DBI Galileons, we

studied primordial fluctuations generated during inflation
described by the action (6) which is obtained by general-
izing the action of the DBI Galileons. This generalization
is done in a similar way to the extension of the DBI
inflation to the K inflation. In order to calculate the statis-
tical quantities of � , the curvature perturbation on uniform
density hypersurfaces on large scales, at leading order in
the slow-varying approximations, we have adopted the
simple procedure [44] to first calculate the bispectrum of
the fluctuations of inflaton � in the flat gauge and then
relate it to that of � using the delta-N formalism (14).
For the linear perturbations, we have confirmed that,

owing to the Galileon-like term, the expression of the
sound speed cs for the scalar perturbations is modified
from the usual K-inflation model [Eq. (17)]. We also
provided general expressions for the power spectrum P � ,

spectral index ns, and tensor to scalar ratio r at leading
order in the slow-varying approximations. In these expres-
sions, ~
 defined by Eq. (22), not 
 � � _H=H2, plays an
important role [Eqs. (24), (26), and (28)]. Because of this,
the consistency relation between the tensor to scalar ratio
and the tensor spectrum index is broken if there exists the
Galileon-like term.
We calculated the bispectrum at the leading order in the

slow-varying variables. The Galileon-like term gives a new
shape A3 in addition to the shapes A1 and A2 which
arise in the usual K inflation [Eqs. (34)–(36)]. For the new
shape A3, we checked the validity of using the estimator

for the equilateral-type non-Gaussianity, f
equil
NL , based on

the shape correlator introduced by Ref. [48] and showed
that the overlap is at about 99.99% level, which justifies the
use of this estimator to measure the amplitude of the
bispectrum even in the presence of the Galileon-like
term. We obtained the general expression for the amplitude
of the bispectrum in Eq. (44).
For the concrete examples, we have considered two

models: one is the DBI Galileons described by the action
(5). The other is the G-inflation model proposed by
Ref. [42]. For the DBI Galileons, in the small sound speed

limit, f
equil
NL is given by Eq. (49) and written in terms of the

sound speed cs and bD that is related to the amplitude of the

Galileon-like term. Since it scales as f
equil
NL / 1=c2s , large

primordial non-Gaussianities can be obtained when cs is
much smaller than 1, similar to the usual DBI inflation. It is
worth mentioning that for a given cs, the bD dependence of

f
equil
NL is weak and we obtained �0:32=c2s < f

equil
NL <

�0:16=c2s . ForG inflation where an exact de Sitter solution

is obtained without any potential terms, we found fequilNL and

the tensor to scalar ratio was related as fequilNL ¼ 4:62r�2=3.

Although a small deviation from the de Sitter solution
could give a correction to the tensor to scalar ratio, this
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relation gives a stringent constraint on the model by a
detection or nondetection of the equilateral-type non-
Gaussianity and the tensor to scalar ratio.

In this paper, we considered the cubic order interaction
in the Galileon theory and its relativistic generalization. As
is shown in [25], it is possible to add two more higher order
interactions which again arise from the probe brane action
in a five-dimensional spacetime with the Gauss-Bonnet
term. It is also possible to generalize these terms in the
same way as generalizing Eq. (5) to Eq. (6). It would be
interesting to study phenomenology of this generalization.
The single field model arises from a probe brane action in
the five-dimensional spacetime. If the DBI Galileons have
some connections to string theory, the DBI Galileons

should be naturally a multifield model as in the DBI
inflation where the position of the brane in each compact
direction is described by a scalar field. The multifield
Galileon model has been extensively studied recently
[55–60] and the relativistic extension of the model has
been proposed [55]. We leave the study of multifield DBI
Galileons, the relativistic generalization of the multifield
Galileon, for a forthcoming paper.
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