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In Lyman-� forest measurements it is generally assumed that quasars are mere background light

sources which are uncorrelated with the forest. Gravitational lensing of the quasars violates this

assumption. This effect leads to a measurement bias, but more interestingly it provides a valuable signal.

The lensing signal can be extracted by correlating quasar magnitudes with the flux-power spectrum and

with the flux decrement. These correlations will be challenging to measure but their detection provides a

direct measure of how features in the Lyman-� forest trace the underlying mass density field. Observing

them will test the fundamental hypothesis that fluctuations in the forest are predominantly driven by

fluctuations in mass, rather than in the ionizing background, helium reionization, or winds. We discuss

ways to disentangle the lensing signal from other sources of such correlations, including dust, continuum,

and background residuals. The lensing-induced measurement bias arises from sample selection: one

preferentially collects spectra of magnified quasars which are behind overdense regions. This measure-

ment bias is �0:1–1% for the flux-power spectrum, optical depth, and the flux probability distribution.

Since the effect is systematic, quantities such as the amplitude of the flux-power spectrum averaged across

scales should be interpreted with care.
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I. INTRODUCTION

Light from distant galaxies and quasars is gravitationally
lensed by mass along the line of sight. For a flux-limited
survey of quasars, lensing magnification biases the ob-
served number density [1–3]. For example, a positive
mass fluctuation along the line of sight can increase the
apparent sky area and the observed flux. The geometrical
area increase decreases the quasar number density, while
the flux increase promotes intrinsically faint objects above
the magnitude threshold increasing the source density.
Together these effects introduce a correction to the quasar
number density called magnification bias. Detections of
the magnification of distant quasars by low-redshift gal-
axies confirm the presence of this effect (e.g. [4–6]).

Many authors have studied the effect of lensing magni-
fication on observations of the galaxy correlation function
and power spectrum. Another way of inferring the large-
scale mass distribution is through measurements of the
neutral Hydrogen density. As light from distant quasars
passes through clouds of neutral Hydrogen, photons with
rest-frame frequency at the Lyman-� transition (1216 Å)
are absorbed. The observed quasar spectrum contains

troughs corresponding to absorption by neutral Hydrogen
at redshift z ¼ ��=ð�obsð1þ vpecÞÞ � 1, where �obs is the

observed frequency of the trough, vpec is the peculiar

velocity at z (speed of light is set to unity), and �� is the
Lyman-� frequency.1 This Lyman-� forest (of absorption
features in the quasar spectrum) is a cosmological tool that
can be used to probe the neutral Hydrogen along the line of
sight (see for example [7] and references therein). Here we
ask two questions: what is the effect of gravitational lensing
on measurements of the Lyman-� forest? And how can we
extract the gravitational signal from such measurements?
Let us first discuss qualitatively what we expect to

happen. Consider a single line of sight towards a quasar
at comoving distance �Q. Lensing magnification changes

the observed quasar flux f, but in a frequency (�) indepen-
dent way

fð�Þ ! fð�Þ ��ð�QÞ; (1)

where �ð�QÞ is the magnification which depends on the

density fluctuations along the line of sight. Since all fre-
quencies are treated in the same way, fluctuations in the
flux as a function of frequency are unaffected—just as if we
were looking at an intrinsically brighter or dimmer quasar.
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1Here, the redshift z refers to the intrinsic or cosmological
redshift, i.e. the redshift if the absorbing materials were comov-
ing. The observed redshift and the intrinsic redshift are related
by 1þ zobs ¼ ð1þ zÞð1þ vpecÞ.
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Measurements of, for example, the flux-power spectrum,
from an individual line of sight are unchanged by magni-
fication. On the other hand, magnification does change
which lines of sight are observed. More precisely, a selec-
tion bias is introduced: more (fewer) quasars are observed
along lines of sight that lead to a positive (negative)
magnification correction to quasar number counts. Let
nð�;�Þ be the number density of quasars at comoving
distance � in direction �. Under the effect of lensing
magnification,

nð�;�Þ ! nð�;�Þ�ð�Þ2:5s�1;

s ¼ 1

ln10

R
dm�ðmÞðdn0=dmÞR
dm�ðmÞn0ðmÞ :

(2)

Here, n0ðmÞ is the luminosity function of quasars at mag-
nitude m (i.e. dmn0ðmÞ is the number density of quasars at
magnitude m� dm=2), and �ðmÞ quantifies the sample
definition—the simplest example is a step function which
cuts off all quasars fainter than some limiting magnitude
mlim, in which case s reduces to the more familiar expres-
sion s ¼ dlog10Nð<mlimÞ=dmlim, where Nð<mlimÞ is the
total number of quasars brighter than mlim. This is a
well-known result, but a derivation is summarized in
Appendix A. With lensing magnification, the lines of sight
we observe do not constitute a fair sample of the density
field. Therefore, while lensing magnification has no effect
on measurements of the flux fluctuation from a single
quasar line of sight, measurements dependent upon the
density field averaged over multiple quasars will be biased.
This occurs since the observable (e.g. the neutral hydrogen
density) is correlated with the magnification which depends
on the gravitational potential along the line of sight.

What is perhaps the more interesting question is how we
could extract the lensing signal from observations of the
forest. The discussions above make clear gravitational
lensing affects both the observed brightness and number
density of quasars. One could imagine cross correlating
these quantities with the Lyman-� forest observables. We
will consider several possibilities and identify the ones
with an interesting signal to noise.

The rest of the paper is organized as follows. In Sec. II A
we develop a simple description of the effect of lensing
magnification on measurements of the Lyman-� forest, the
key result is Eq. (8). In Sec. II B, II C, II D, and II E we
present the effect of lensing bias on the flux-power spec-
trum, the effective optical depth and the flux probability
distribution (PDF) determined by applying a biased
weighting scheme to mock absorption spectra from simu-
lations and compare these results with analytical estimates
in terms of the flux-mass polyspectra. In Sec. III we discuss
the exciting possibility of observing the lensing-induced
correlation between quasar magnitudes and the flux fluc-
tuations, the flux-power spectrum or the mean flux. While
this work is dedicated to discussing magnification bias,
dust along the line of sight would have a similar (though

generally opposite signed) effect, this is discussed in
Sec. III E. We present concluding remarks and discuss
the implications of this work for existing and future
Lyman-� measurements in Sec. IV. Appendix A contains
a unified derivation of the magnitude-forest correlations
and the lensing bias discussed in the paper. In Appendix B
we discuss some issues regarding large-scale flux-mass
correlations measured from our simulations and the accu-
racy of an analytic description. Appendix C derives an
estimator for the flux-magnitude correlation and its asso-
ciated error.
Before proceeding we should mention some related

literature. The magnification bias to the statistics of metal
absorption lines in quasar spectra was investigated in [8],
and a method for detecting statistical lensing by absorbers
was proposed in [9]. Lensing effects on the statistics of
damped Lyman-� systems and the inferred density of
neutral Hydrogen were considered in [10]. More recently,
[11] studied magnification bias due to intervening absorb-
ers in the 2dF quasar survey and [12] in the Sloan Digital
Sky Survey (SDSS). Recent work by [13,14] proposed
correlating lensing in the cosmic microwave background
with fluctuations in the forest to extract the flux-mass
correlation.

II. LENSING AS NOISE/BIAS

A. Formalism

We are interested in some Lyman-� forest observableO,
which can represent the flux-power spectrum, the flux
transmission/decrement, the flux fluctuation (around its
mean), and so on. Let us use OI to denote the observable
measured from a quasar labeled by I. We typically form an
estimator by averaging over quasars:

O obs ¼
P

I wIOIP
I wI

; (3)

where wI denotes weights, the simplest example of which
is wI ¼ 1.
Two important points. First OI, the observable on a

quasar by quasar basis, is generally not affected by gravi-
tational lensing. This is because gravitational lensing af-
fects all wavelengths equally. For instance, OI could
represent the flux transmission which is f=fC (where f
and fC are the flux and continuum, respectively, as a
function of frequency), or the flux fluctuation �f ¼ ðf�
�fÞ= �f (where �f is the flux averaged for the particular line of
sight in question). Since gravitational lensing brightens or
dims f, �f, and fC all equally independent of wavelength,
there is no effect on OI.
The other important point is that Oobs is generally

affected by lensing. The crucial observation is that wI in
Eq. (3) reveals only part of the weighting that is going on;
in any given data set, we inevitably give zero weights to
quasars which are too faint to observe. This means that
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even if one chooses wI ¼ 1, one is merely performing a
straight average over one’s sample, as opposed to an aver-
age over all possible quasars. To account for this fact, it is
helpful to pixelize the sky, and rewrite Oobs as

O obs ¼
P

i winiOiP
i wini

; (4)

where i is the pixel label. One could conceptually think of
each pixel as sufficiently small that the number of quasars
in it ni is either 1 or 0; we will more generally think of ni as
simply the number density of quasars in pixel i. This way
of rewriting is useful because it makes explicit the fact that
Oobs is a weighted average—it is weighted by the number
density of quasars, on top of whatever additional weighting
wi one might wish to apply. In other words, since our
Lyman-� forest observable can be measured only if there
exists a background quasar in the sky location of interest,
the observable is always implicitly weighted by the abun-
dance of quasars.

Equation (2) tells us that

ni ¼ nintrinsici ð1þ ��
i Þ; (5)

where nintrinsici is the intrinsic pre-lensed quasar number
density, and ��

i is the lensing modification given by

��
i � ð5s� 2Þ�i;

�i ¼
Z �Q

0
d�0 �Q � �0

�Q

�0r2
?�ð�0; iÞ;

(6)

assuming fluctuations are small. The expression for the
convergence �i assumes spatial flatness, but can be easily
generalized to nonflat universes (�Q is the comoving dis-

tance to quasar). Here, 1þ 2� is the weak lensing approxi-
mation to the lensing magnification � of Eqs. (1) and (2)
[the full nonlinear expression is given in footnote 7]. Using
wi ¼ 1 in Eq. (4), assuming there is no correlation between
the forest observable and the intrinsic quasar number fluc-
tuation, and ignoring corrections of the integral constraint
type (see Appendix A and, for example, [15]), we obtain
the following ensemble average, to the lowest order in
fluctuations:

hOobsi ¼ Otrue þ hOi�
�
i i; (7)

where hOi�
�
i i is the correlation between the observable

and the magnification fluctuation at the same i (i.e. zero
lag). Dropping the i label, the lensing-induced measure-
ment bias on an observable O is therefore

hOobsi �Otrue ¼ hO��i ¼ ð5s� 2ÞhO�i: (8)

This is a fundamental expression that we will use repeat-
edly below. The meaning of each of these symbols is
as follows: O is the fluctuation which we attempt to
measure with the estimator Oobs, which upon ensemble
averaging generally differs from the true underlying value
Otrue ¼ hOi.

It is important to emphasize the actual measurement bias
could be different. The above estimate assumes that all
quasars within one’s sample are weighted equally (i.e.
wi ¼ 1). In practice, one might want to weigh brighter
quasars within one’s sample more strongly. For instance,
one could weigh by the net flux of the quasar, which
corresponds to inverse variance weighting in the noise
dominated regime. This would result in a lensing-induced
measurement bias of (see Appendix A for derivation)

hOobsi �Otrue ¼ ð5s0 � 2ÞhO�i; (9)

where s0 is defined as

s0 ¼ 1

ln10

R
dm�ðmÞðdn0=dmÞ10�m=2:5R
dm�ðmÞn0ðmÞ10�m=2:5

; (10)

which can be contrasted with s defined in Eq. (2).
For a step function sample definition �, s0 reduces

to dlog10N
0ð<mlimÞ=dmlim þ 0:4, where N0 ¼Rmlim�1 dmn010�m=2:5. This is generally larger than s.

The precise value of s or s0 is sample dependent. The
relatively low redshift (1< z < 2:2) SDSS quasars that
were used to measure the magnification-galaxy cross
correlation have a slope that spans �1 & 5s� 2 & 1:9,
depending on the magnitude cut [5]. For this paper, the
higher redshift quasars for which the Lyman-� forest falls
within the SDSS spectral range are more relevant. In Fig. 8
(in Appendix A) we show the cumulated number counts
and rough estimates of s and s0 from SDSS data release 6.
In the rest of this paper, we will adopt s ¼ 1 (or s0 ¼ 1),

so our results for the lensing biases can be scaled up and
down by ð5s� 2Þ=3 or ð5s0 � 2Þ=3.
We will also adopt the following set of cosmological

parameters in presenting numerical estimates. We assume
a flat �CDM cosmology with cosmological parameter
values �m ¼ 0:3, �� ¼ 0:7, �b ¼ 0:04 for the fractional
densities in matter, vacuum and baryons; scalar
spectral index ns ¼ 1; Hubble parameter today H0 ¼
100h km=s=Mpc with h ¼ 0:7 and fluctuation amplitude
	8 ¼ 0:9. The speed of light is set to unity. In a few places
we use analytic calculations of the matter and baryon
power spectra. The 3Dmatter power spectrum is calculated
using the transfer function of [16] with a modified shape

parameter � ¼ �mh exp½��bð1þ
ffiffiffiffiffiffi
2h

p
=�mÞ� [17], and

the nonlinear evolution is modeled according to [18]. To
relate baryons to mass we assume the 3D Fourier space
fluctuations are related by �bðkÞ ¼ exp½�k2=k2s��ðkÞ,
where ks ¼ kJ

ffiffiffiffiffiffiffiffiffiffiffi
10=3

p
and kJ is the Jeans scale (see

Appendix B for more details).

B. Lensing bias from simulations

Lensing magnification biases measurements of the for-
est so long as the forest observable is correlated with the
lensing convergence [Eq. (8)]. Since features in the
Lyman-� forest are caused by absorption by gas which
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itself traces gravitational potentials, there ought to be a
correlation between absorption features and the lensing
convergence. However, the mapping between absorption-
induced fluctuations in the flux and the gravitational po-
tential is nonlinear and dependent on potentially uncertain
physics, such as fluctuations in the ionizing background.
For this reason we need to appeal to simulations to quantify
the correlation between forest observables (e.g. �f and

Pff) and the lensing convergence.

In this section we use hydrodynamic simulations to
study the effect of magnification bias on the Lyman-�
forest. Specifically, we study the ‘‘D5’’ simulation of
[19]. This simulation was run using an entropy-conserving
[20] version of the smoothed particle hydrodynamics code
GADGET [21]. It tracks 3243 dark matter particles and 3243

gas particles in a simulation volume of comoving side
length L ¼ 33:75 Mpc=h, and includes a subresolution
model for star formation [22] and heating by a uniform
background radiation field [23]. Further details regarding
the simulation can be found in [19]. We generate mock
Lyman-� forest spectra along random lines of sight
through the simulation volume in the usual way, integrating
through the smoothed particle hydrodynamics kernels of
the particles, and incorporating the effect of peculiar ve-
locities and thermal broadening (e.g. [24]). We generate
mock spectra from simulation snapshots at z ¼ 2, 3 ,and 4.
In each case, we adjust the amplitude of the photo-ionizing
background in the simulation to match the observed mean
transmitted flux from [25]. We also make use of the ‘‘G6’’
simulation (see [26]), which tracks 2� 4863 particles in a
L ¼ 100 Mpc=h box, in order to check the sensitivity of
our results to finite box-size effects in Appendix B. We
have checked that the flux-power spectra from these simu-
lations approximately match the existing measurements.

Magnification bias biases which lines of sight an ob-
server will see: sight lines with positive fluctuations in
magnification are more abundant and those with negative
less abundant. With simulations we can of course see every
line of sight (a mock spectrum is generated regardless of
whether there is a quasar behind it) so we mimic lensing
bias by weighting each line of sight � by 1þ ��ð�Þ. The
simulations are in boxes of size 33:75 Mpc=h, so we
cannot actually calculate the lensing convergence � along
the entire line of sight but instead for the weighting of
absorption measurements at redshift �z, we use2

w� ¼ 1þ ��ð�Þ � 1þ 3

2
H2

0�mð5s� 2Þ

� �Q � ��

�Q

��ð1þ �zÞ
Z ��þL

��
d�0�ð�0;�Þ; (11)

where L is the length of the box �� ¼ �ð�zÞ, �Q is the

distance to the quasar, � is the mass fluctuation, and
we have used the approximation r2

?� � r2� ¼
3
2H

2
0�mð1þ zÞ� which should be valid under the line-of-

sight integral. Since the bias only comes from the mass
fluctuations � which are correlated with flux fluctuations
�f at the redshift we are considering, and correlations drop

off rapidly with increased spatial separation, neglecting
contributions to � from mass fluctuations at lower redshifts
should not be a bad approximation. We will verify this
below by comparing the lensing bias thus obtained with
that obtained from another method.

C. Bias to the flux-power spectrum

In panel (a) of Fig. 1 we show the 1D flux-power
spectrum

PffðkkÞ ¼ 1

L
j�ðkkÞj2 (12)

measured from simulations.3 In panels (b)–(d) we show the
fractional correction due to magnification, calculated by
weighting lines of sight by 1þ ��. Magnification weighs

lines of sight with large �more heavily than those with low
�. Measurements of �f at redshift �z can be taken from

quasars at redshift zQ for �z & zQ & ð1þ �zÞ�
=�� � 1.

The upper limit is set by where the Lyman-
 line (�
 ¼
1026 �A) can be confused with Lyman-�. The lensing
weight function is peaked at �� �Q=2, so for quasars at

higher redshift, �ð�zÞ is closer to the peak of the lensing
weight function making the lensing correction larger than
it is for quasars just beyond �z.
Magnification causes a & 1% change to Pff with larger

changes occurring at lower redshifts. The results shown in
Fig. 1 assume s ¼ 1 and that all quasars within one’s
sample are weighed equally. The actual lensing correction
in realistic surveys could differ by factor of a few. The
current statistical error on the amplitude of Pff, averaged

over scales, is�0:6% from SDSS [27], which is a bit larger
than the magnification correction shown in Fig. 1.
However, as precision improves, a systematic offset such
as that introduced by lensing could well be relevant.
It is instructive to get an analytic estimate for the bias to

the flux-power spectrum. Equation (8) tells us the lensing
bias for the flux-power spectrum is

hPffobsðkkÞi � PfftrueðkkÞ ¼ 1

��
h�fðkkÞ�	

fðkkÞ��i; (13)

where �� is the length of the quasar spectra from which
the power is measured. It is therefore clear that this lensing
bias depends on the three-point function or bispectrum.
Expressing �� as a line-of-sight integral of the mass fluc-
tuation [Eq. (11)], and judiciously applying the Limber’s
approximation [28,29], we obtain

2While it would be more accurate to leave the � terms inside
the integral, their amplitude is slowly varying across the length
of our simulations box so Eq. (11) should not be a bad
approximation. 3Our Fourier convention is �ðkÞ ¼ R

d3xe�ik�x�ðxÞ.

LOVERDE et al. PHYSICAL REVIEW D 82, 103507 (2010)

103507-4



hPffobsðkkÞi � PfftrueðkkÞ � 3

2
H2

0�mð5s� 2Þ�Q � ��

�Q

� ��ð1þ �zÞBffmðkjj;�kjj; 0Þ;
(14)

where �Q is the distance to quasar, �� is the average

distance to the forest, and �z is the corresponding redshift.
Here, Bffm is the (true) 1D flux-flux-mass bispectrum at

redshift �z. It should be emphasized that Bffmðkk;�kk; 0Þ
does not vanish despite having one of its arguments
(the one associated with mass) being zero. This is related
to the fact that it arises from a 1D projection of a 3D
distribution. For instance, it is well known that a 3D power
spectrum and its 1D projection are related by P1DðkkÞ ¼R1
kk ðkdk=2�ÞP3DðkÞ, and so P1D generally does not vanish

in the kk ! 0 limit.

(a) (b)

(c) (d)

FIG. 1 (color online). (a) The 1D flux-power spectrum measured from the simulations. Panels (b)–(d) show the fractional correction
from magnification ðhPffobsi � PfftrueÞ=Pfftrue for mean redshifts �z ¼ 2, 3, 4, respectively. The error bars are suppressed for clarity.

The amplitude of the correction depends on the redshift of the quasar zQ through � [Eq. (6)] and also on the slope of the quasar number

count function, here we assume 5s� 2 ¼ 3.
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We calculate the correction to Pff using Bffm measured

from simulations. Estimating Bffmðkk;�kk; 0Þ requires

an extrapolation from what we actually measure
Bffmðkk;�ðkk þ �kÞ;�kÞ, where the smallest �k is the

fundamental mode of the box. How this is done is de-
scribed in detail in Appendix B. In Fig. 2 we compare
the lensing correction to the flux-power spectrum as
determined via the bispectrum to that determined by
the weighting method described previously in Sec. II B.
The qualitative agreement between the two is reassuring.

D. Bias to the effective optical depth

The effective optical depth eff is estimated from data by
averaging over frequencies (and quasars) the ratio of the
observed flux f ¼ to the continuum fC, i.e. e

�eff is esti-
mated from f=fC. As emphasized in Sec. II A, lensing
magnification affects f and fC in the same manner, and
therefore leaves f=fC unchanged on a quasar by quasar
basis. Lensing’s impact enters through the sample selec-
tion, resulting in [see Eq. (8)]

he�eff
obs i � e�eff

true ¼ he�eff��i; (15)

where e�eff on the right is the mean transmission on a line-
of-sight by line-of-sight basis, and e�eff

true is the true mean
transmission if only we could dispense with the quasar
weighting and average over the whole sky equally.

The correction to the effective optical depth measured
from simulations is shown in Fig. 3 for quasars at several
redshifts. The net effect of lensing will depend on how

measurements from quasars at different redshifts are com-
bined. However, Fig. 3 indicates the effect should be
�10�3 � 10�4. Current measurements of eff have errors
of at least a few percent at each redshift so at present
lensing should not be an issue.4

An analytical estimate of the lensing bias on the effec-
tive optical depth can be inferred from Eq. (15), which
gives

he�eff
obsi

e�eff
true

� 1¼ h�f�
�i

� ð5s� 2Þ3
2
�mH

2
0

�Q � ��

�Q

��ð1þ �zÞ

�Pfmðkjj ¼ 0Þ; (16)

where we have used Limber’s approximation, PfmðkjjÞ is
the (true) 1D flux-mass power spectrum evaluated at the
mean redshift of absorption �z, �� is the corresponding
distance, and �Q is the quasar distance. The lensing bias

FIG. 2 (color online). A comparison of the predicted lensing
bias to the flux-power spectrum using the weighted calculation
presented in Sec. II B (solid lines) versus using Eq. (14) with the
flux-flux-mass bispectrum measured from simulations (points).
From bottom to top the quasar redshifts are 3.1, 3.2, 3.4, 3.6.

FIG. 3 (color online). The magnification correction to the
effective optical depth at three different mean redshifts �z. This
correction depends on the redshift zQ of the quasars. In practice,

measurements of eff involves combining source quasars at
multiple redshifts. In the above plot we assume 5s� 2 ¼ 3.

4The error bars for measurements of eff are dominated by
uncertainties in the continuum-fit. Typically, the continuum is
estimated either by extrapolating from the red side (e.g. [30]), or
by performing a smooth fit through portions of the spectra that
are deemed unabsorbed (e.g. [25]). We simulate the effect of the
latter by renormalizing the flux along each line of sight by fmax,
the maximum along that line of sight. At low redshifts, this
introduces a negligible bias to eff , but by z ¼ 4, eff is biased
low by �8%, in rough agreement with [25]. However, we have
checked that the fractional magnification correction is not sig-
nificantly changed whether we renormalize by fmax or not.
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of this one-point statistic is thus related to a two-point
correlation, just as the lensing bias of the power spectrum
is determined by the bispectrum. As before, to evaluate the
bias using this method, an extrapolation of the simulation
Pfm to kk ¼ 0 is necessary (see Appendix B). We find

results that are consistent with those obtained by the
weighting method (Fig. 3) to about 30%, with the latter
generally higher.

E. Bias to the flux probability distribution function

Another interesting statistic of the Lyman-� forest is the
flux PDF: P ðfÞdf describes the probability that the

observed flux lies between f� df=2 and fþ df=2. Here
f is the continuum-normalized flux (i.e. f=fc from the
previous section).
The flux PDF measured from simulations with bins of

df ¼ 0:01 is shown in panel (a) of Fig. 4.5 The fractional
correction from lensing magnification is shown in
panels (b)–(d) of the same figure. The effect of magnifica-
tion is to boost the low flux (high absorption) end of the

(a) (b)

(c) (d)

FIG. 4 (color online). (a) The flux probability distribution as measured from the simulations. Panels (b)–(d) show the fractional
correction from magnification for mean redshifts �z ¼ 2, 3, 4. The amplitude of the correction depends on the redshift of the quasar zQ
and the slope of the quasar number count function, here we assume 5s� 2 ¼ 3 [Eq. (6)].

5We use the same fake continuum fitting procedure described
in footnote 4, but again this appears to make little difference to
the size of the fractional lensing correction.
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PDF and decrease the PDF at the high flux end. The
correction is <1%, so unimportant at the current level of
precision (5–10% on the flux PDF in bins of df ¼ 0:05
[31] but see also [32–34]).

It has been suggested that to avoid systematic errors from
continuum fitting one should measure the PDF for fluctua-
tions in the flux �f ¼ f= �f� 1 rather than measuring the

PDF of f [35]. In this case the flux is normalized along each
line of sight, so the range of �f for one line of sight is�1 to

1= �f� 1 where �f is the mean flux along that line of sight.
The range of the entire PDF determined from many lines of
sight will be�1 to 1= �fmin � 1, where �fmin is the mean flux
along the line of sight with the lowest transmission.

The PDF for �f is shown in panel (a) of Fig. 5. Again

the fractional correction due to lensing is shown in
panels (b)–(d). In this case the correction due to lensing
appears rather large at high �f. The high �f bins are

dominated by lines of sight with the lowest mean flux,
which are also most highly magnified. However, these high
�f pixels are quite rare, i.e. the PDF at high �f is quite

small and therefore noisy from an observational point of
view.
For an analytical estimate we apply the fundamental

Eq. (8),

hP ðfÞobsi � P ðfÞtrue ¼ hP ðfÞ��i; (17)

(a) (b)

(c) (d)

FIG. 5 (color online). (a) The probability distribution function for �f as measured from the simulations. Panels (b)–(d) show the
fractional correction from magnification for mean redshifts �z ¼ 2, 3, 4.
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where P ðfÞdf is estimated from each line of sight in the
standard fashion: counting the fraction of pixels with a flux
that falls within df of f. The flux is a nonlinear function of
the gas density, but for simplicity, we will assume that gas
traces mass and that f is a local function of the mass
fluctuation �, i.e. f ¼ Fð�Þ, where the function F is to
be specified. Let us use the symbol p to denote the (aver-
age) location of interest, i.e. �p is the mass fluctuation at

point p. Thus, the flux PDF at p can be expressed in terms
of the mass PDF Pmð�pÞ:

P ðfÞ ¼
Z

d�pPmð�pÞ�Dðf� Fð�pÞÞ

¼
Z

d�pd�lPmð�p; �lÞ�Dðf� Fð�pÞÞ; (18)

where �D is the Dirac delta function. For the second
equality, we have introduced �l which is the mass fluctuation
at some other point (the subscript l is used in anticipation of
the fact that this will be where some lens is), andPmð�p; �lÞ
is the joint mass PDF at the two points, i.e. the one-point
PDF Pmð�pÞ is related to the two-point PDF by Pmð�pÞ ¼R
d�lPmð�p; �lÞ. The motivation for introducing the

two-point mass PDF is to ease the computation of
hP ðfÞ��i, where �� involves a line-of-sight integral over
locations that generally differ from p. We obtain:6

hP ðfÞ��i¼3

2
H2

0�mð5s�2Þ
Z �Q

0
d�l

�Q��l

�Q

�lð1þzlÞ

�
Z
d�pd�l�lPmð�p;�lÞ�Dðf�Fð�pÞÞ: (19)

We need a model for the two-point mass PDF. In linear
theory, that is completely specified by the two-point corre-
lation h�p�li. The relevant fluctuations in the forest are not

quite linear. Instead, we will adopt the log-normal model
(see for example [36,37]):

P mð�p; �lÞ ¼ 1

2�
ffiffiffiffiffiffiffiffiffiffiffi
detC

p ð1þ �pÞð1þ �lÞ
e�ð1=2Þ�TC�1�;

(20)

where � is a 2-component vector with �i ¼ lnð1þ �iÞ þ
1
2 lnð1þ h�2

i iÞ, and C is a 2� 2 matrix with components

Cij ¼ lnð1þ h�i�jiÞ. Here i and j stand for p or l. The

log-normal model is simply one in which � is a Gaussian
random field, and the observed � is related to it by
1þ � ¼ exp½�� h�2i=2�, such that h�2i ¼ lnð1þ h�2iÞ.
Substituting Eq. (20) into Eq. (19) and integrating over �p

and �l, we find

hP ðfÞobsi � P ðfÞtrue
P ðfÞtrue

¼ 3

2
�mð5s� 2ÞH2

0

Z �Q

0
d�l

�Q � �l

�Q

�lð1þ zlÞ

� ðeClp=Cpp lnð1þ�	Þþð1=2ÞðClp�C2
lp
=CppÞÞ � 1Þ; (21)

where �	 � F�1ðfÞ is the actual density such that the
observed flux equals the value of interest f. At this point,
we need to specify F: We use Fð�Þ ¼ exp½�Að1þ �Þ
�,
with 
 ¼ 1:58 and A ¼ 0:2010, 0.9578, 2.960 at zp ¼ 2,

3, 4, respectively. This approximates well what is in our
simulations, though the simulated spectra were computed
using the exact relation between the optical depth, baryon
density, temperature, and ionizing background.
To use Eq. (21), we need Clp and Cpp, which we

compute using the nonlinear mass power spectrum, with
suitable smoothing (for p) to account for the effective
Jeans smoothing of baryons. The cosmology and power
spectrum prescriptions are described at the end of Sec. II A.
Figure 6 compares the analytic calculation in Eq. (21) with
the results from simulations in Sec. II B. The two methods
agree remarkably well considering the simplicity of the
analytic method. If the linear mass PDF were used, the
calculated correction has a slightly different f dependence
and is typically smaller by about a factor of 5–6.
We should mention data that do not resolve the Jeans

scale (or roughly, the thermal broadening scale) have an
additional complication: even if the fundamental mass
density is log normal distributed (in both one-point and

FIG. 6 (color online). The correction to the flux PDF from the
analytic model described in Eq. (21) [solid lines] compared with
the results from simulations (points). The analytic description
with the log-normal model for the mass PDF works surprisingly
well.

6Here, we are abusing the notation a bit. On the left, P ðfÞ
strictly speaking denotes a stochastic quantity: it should be the
estimator that simply counts the fraction of relevant pixels,
whereas on the right, Pmð�; �0Þ denotes the true (nonstochastic)
two-point mass PDF.
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two-point sense), the flux field smoothed with a coarse
resolution might not be well described by our model. In
other words, smoothing and nonlinear transformation do
not commute. In any case, the lensing effect on the flux
PDF appears to be fairly small.

III. LENSING AS SIGNAL: A TEST OF HOW
NEUTRAL HYDROGEN TRACES MASS

In the previous section, we have been exploring lensing
as a source of measurement bias. Here, we explore the
converse: lensing as a useful signal. We are interested in
ways to extract signals of gravitational lensing from
Lyman-� forest observations and thereby constrain the
cross correlations between flux and mass [for example,
the flux-mass power spectrum and flux-flux-mass bispec-
trum present in Eqs. (14) and (16)].

One option is to correlate the magnitude of quasars with
Lyman-� forest observables (we will consider other
possible cross correlations at the end of this section).
Given some observableOI measured from a quasar labeled
I, and its magnitude mI, we can form an estimator E:

E ¼ 1

NQSO

X
I

mIOI � 1

N2
QSO

�X
I

mI

��X
I

OI

�
; (22)

whereNQSO is the number of quasars in one’s sample. As is

explained in Sec. II A, the Lyman-� forest observable is
always implicitly weighted by the number density of qua-
sars (determined by the sample selection). And the quasar
magnitude is of course modified by lensing, following from
Eq. (1):

�m ¼ �5�= ln10: (23)

It is shown in Appendix A that

hEi ¼ 5~sh��Oi; (24)

where �O represents fluctuations in O and ~s is defined as

~s � 1

ln10

R
dm�ðmÞðdn0=dmÞðm� �mÞR

dm�ðmÞn0ðmÞ ; (25)

where �m is the average magnitude in the sample i.e. �m ¼R
dmm�ðmÞn0ðmÞ=R dm�ðmÞn0ðmÞ, and n0ðmÞ and �ðmÞ

are the luminosity function and selection function, respec-
tively—the definition for ~s is chosen to resemble those for
s and s0 [Eqs. (2) and (10)]. The ~s defined here is related to
CS defined in [6] by CS ¼ � ln10~s. As first emphasized by
[6], CS ¼ 0 for a strictly power-law luminosity function in
the sense of n0ðmÞ / em. The realistic quasar luminosity
function is not of this form, and we will adopt CS � 1=3
from [6], or equivalently ~s��0:14, for our numerical
estimates below. The normalizing factor in Eq. (24) is
therefore 5~s��0:7. It is worth emphasizing that there is
no ‘‘�2’’ term here, unlike for instance 5s� 2 in Eq. (8).
The �2 there arises from the geometrical increase in area
by magnification. The statistic E under consideration is

immune to this effect. Further discussions can be found
in Appendix A.

A. Magnitude-flux correlation

Let us first consider cross correlations betweenO ¼ �f,

the intervening flux fluctuation, and the quasar magnitude
m, giving

hE�m�f
ð�Q;�Þi ¼ 5~sh��fi

� 3

2
H2

0�m5~s
�Q ��

�Q

�ð1þ zÞPfmðkk ¼ 0Þ;
(26)

where �Q is the distance to quasar, � is the distance to

absorption (i.e. where �f is located) and z is the corre-

sponding redshift. Here, Pfm is the (true) 1D flux-mass

power spectrum—the subscript m of Pfm stands for mass

rather than magnitude (just as in Sec. II D).
The nice thing about the estimator E�m�f

is that it is

expected to depend on the location of absorption � in a
predictable way, which allows this to be separated from
other possible systematic effects, an example of which is
large-scale power from the uncertain continuum (shape).
The fact that the amplitude of this cross correlation signal
scales with ~s can also be exploited to test for consistency,
for instance by isolating different subsamples of quasars
with different values of ~s.
In Fig. 7 we show the expected signal for this cross

correlation as a function of distance to the quasar �Q � �,
where � is the distance to the absorption. To estimate the
overall statistical significance, we can combine the mea-
surements at different separations into an estimate for a
single amplitude, namely Pfmðkk ¼ 0Þ. The appropriate

minimum variance estimator is described in Appendix C,
where we also derive its signal to noise:

S

N
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NQSO

h�m2i
Z dkk

2�

jE�m�f
ðkkÞj2

PffðkkÞ þ S:N :

vuut ; (27)

where E�m�f
ðkkÞ is the Fourier transform (over �) of

Eq. (26), NQSO is the number of quasars available, h�m2i
is the quasar magnitude variance, Pff is the 1D flux-power

spectrum, and S:N : is the associated shot-noise.
The S:N : term is important so we consider the signal to

noise per quasar for two survey configurations: ‘‘SDSS III
configuration’’ with resolution FWHM is 60 km=s, and the

shot-noise power is �0:44 Mpc=h ð3=ð1þ �zÞÞ3=2 [38] and
‘‘Keck configuration’’ with resolution FWHM is 10 km=s

and shot-noise power is �0:029 Mpc=h ð3=ð1þ �zÞÞ3=2.
For both we take the magnitude dispersion of the quasar
sample to be 0.5 [6]. The first set of numbers roughly
resemble the expectations of SDSS III [39] but keep in
mind the configuration we assume likely differs a bit from
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what will turn out in practice. The results for the S=N per
sight line are summarized in Table I. For the SDSS III
expectation of NQ ¼ 160 000 the S=N for this amplitude is

expected to be only�1 and even for a futuristic survey like
BigBOSS [40] that could measure 106 spectra with similar
resolution only S=N � 2–3 could be achieved. Comparison
with the ‘‘Keck configuration’’ shows that shot noise is
clearly a limitation for these observables. However, the
S=N estimates presented are for a single redshift bin of
width �z� 0:2, but measurements will be made at a range
of redshifts which could be combined to get a slightly
higher signal-to-noise estimate of, for example, the mean
Pfm across the redshift span of the survey.

It is worth noting a few points that reduce S=N of the
forest-magnitude correlations in comparison with galaxy-
magnitude correlations used [6]. (1) The cross correlation
between flux and mass is lower than the correlation
between galaxies and mass (the correlation coefficient is

�Pfm=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PffPmm

p
& 0:5). (2) Lensing peaks at a distance

halfway between the observer and the quasar, but to avoid
confusion with Lyman-
 we use only the part of the
Lyman-� forest near to the quasar where the lensing is
smaller. (3) The signal to noise of magnitude-forest corre-

lations is / ffiffiffiffiffiffiffi
NQ

p
where NQ is the number of quasars with

spectra, while for the galaxy-magnitude cross correlation
it is proportional to the number of galaxy-quasar pairs

/ ffiffiffiffiffiffiffiffiffiffiffiffiffi
NQNg

p
(however, in Sec. III D we briefly discuss corre-

lating the forest with quasars along different lines of sight).

B. Magnitude-power correlation

Another possibility is to set O ¼ PffðkkÞ in the estima-

tor Eq. (22), i.e. cross correlate quasar magnitude and the
flux-power spectrum. This estimator has the following
expectation value:

hE�mPff
ðkkÞi ¼ 5~s

��
h��fðkkÞ�	

fðkkÞi; (28)

FIG. 7 (color online). Left: The lensing-induced correlation between quasar magnitude and the flux-power spectrum given in
Eq. (28). The amplitude of the signal increases with increasing distance between �ð�zÞ and the background quasar but above we assume
the correlation is averaged over background quasars at redshifts between �zþ 0:1 and z
 ¼ �
=��ð1þ �zÞ � 1 (the maximum redshift

for the quasar before confusion between Lyman-� and Lyman-
 absorption sets in). Right: The magnitude-flux cross correlation
[Eq. (26)] as a function of line of sight comoving distance to the quasar.

TABLE I. The signal to noise per line-of-sight (l.o.s.) in redshift bins of �z� 0:2 for the proposed estimators in Eqs. (26), (29), and
(30) for the SDSS III and Keck survey configurations (see Sec. III A). Here, we assume the quasar sample has ~s ¼ �0:14 [see Eq. (25)]
and the quasar magnitude dispersion is 0.5. For hf=fC�mi we assume the same fractional errors of f=fC as [30] and that the errors are
statistics limited so they scale as 1=

ffiffiffiffiffiffiffiffiffiffiffi
NQSO

p
.

Observable: S=N per l.o.s. for SDSS III configuration S=N per l.o.s. for Keck configuration

h�f�mi at z ¼ 2, 3, 4 0.002, 0.0029, 0.0022 0.0041, 0.0036, 0.0024

h�Pff�mi at z ¼ 2, 3, 4 0.0016, 0.0028, 0.0025 0.008, 0.006, 0.0042

hf=fC�mi at z ¼ 2, 3, 4 0.0054, 0.0032, 0.000 95 -
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where �� is the length of the quasar spectra from which
the power is measured. This expression is similar to
Eq. (13), and indeed one can relate this to the bias in Pff

measurement we have calculated in Sec. II C [Eq. (14)]:

hE�mPff
ðkkÞi ¼ 5~s

5s� 2
ðhPffobsðkkÞi � PfftrueðkkÞÞ: (29)

This means that one could in principle use the magnitude-
power correlation to correct for the bias in Pff measure-

ment. The expected magnitude-power correlation is shown
in Fig. 7 and the signal to noise is given in Table I.

C. Magnitude-mean-transmission correlation

If the continuum can be accurately estimated, one could
also correlate the mean transmission from each line of sight
with the quasar magnitude behind it, i.e. choose O ¼
½f=fC� where f is the observed flux and fC is the contin-
uum, and the brackets [] denote an average along the line of
sight. One can see that the expected correlation should be
related to the bias in e�eff discussed in Sec. IV:

hE�m½f=fC�i ¼
5~s

5s� 2
ðhe�eff

obsi � e�eff
trueÞ: (30)

The signal to noise per sight line is listed in Table I. Note
that the number of quasars needed is realistic only if the
continuum is estimated by extrapolating from the red side
(such as in the analysis of [30]). The number of quasars
should be much smaller if the continuum were estimated
by performing a smooth fit through portions of the
Lyman-� forest that are deemed unabsorbed, a method
that typically requires high resolution data. Whichever
the continuum estimation method, care should be taken
in accounting for possible systematic biases (in the con-
tinuum estimate) when interpreting this cross correlation
measurement.

D. Additional cross correlations

We have focused on cross correlations between the
quasar magnitude and a Lyman-� forest observable in
the same line of sight. There are two possible extensions
we should mention in passing. One is that the quasar
magnitude and the Lyman-� forest observable can come
from different lines of sight. In other words, the cross
correlations can be measured at a nonzero angular separa-
tion. On the one hand, the forest-magnitude correlation
should drop off rapidly with increasing angular separation
decreasing the signal, however the noise is reduced by the
number of quasar pairs at a given angular separation.
Roughly, the signal to noise for lines of sight at angular
separation � should scale as

�
S

N

�
at sep:�

�
�
S

N

�
same l:o:s:

10ð�Q � ��Þ
�Q

wfmð�Þ
wfmð� ¼ 0Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Npairsð�Þ

NQ

vuut ; (31)

where wfmð�Þ is the angular flux-mass correlation function,

Npairsð�Þ is the number of quasar pairs with angular separa-

tion � and the term with the ratio of the distances roughly
accounts for the fact that this correlation does not require
�z to be above the Lyman-
 confusion limit for the quasar
(previously we needed ��> �
 � 4=5�Q and had set

��� �
 þ ð�Q � �
Þ=2). It seems that the sparseness of

quasars (� 16=ðdegÞ2 for SDSS III) does not permit
Npairsð�Þ to be large enough that adding off-axis correlations
will drastically improve the signal to noise in the near term.
Another possibility is to cross correlate the quasar num-

ber density (which is affected by lensing through magnifi-
cation bias) with the Lyman-� forest observable. Such a
correlation makes sense only at a nonzero lag (or nonzero
smoothing), since the Lyman-� forest is observable only if
there is a quasar directly behind it. While we do not give
explicit estimates here of the signal to noise for these cross
correlations, they should be useful in disentangling the
lensing signal from certain systematic effects, as we will
discuss next.

E. Dust and other systematic effects

We discuss here three systematic effects that could
complicate the measurement of the various cross correla-
tions mentioned above.
The first is the continuum. The continuum presumably is

smooth and therefore has fluctuations only on large scales.
But since its precise shape is uncertain, a cross correlation
such as the magnitude-flux correlation is susceptible to
possible contamination from continuum power. A fortu-
nate feature of the cross correlation is that it has a definite
shape predicted by lensing, as well as an amplitude that
scales with ~s. Both can be exploited to check for such a
contamination.
The second systematic effect we loosely refer to as

‘‘background subtraction.’’ Realistic spectra of quasars
inevitably contain ‘‘background’’ which can come from
several sources, including the sky and scattered light within
the optical instrument. While attempts are generally made
to subtract these backgrounds as accurately as possible,
there are inevitably residuals. These residuals could corre-
late with the quasar magnitude, for instance they could be
more noticeable for fainter quasars. This would then pro-
duce spurious correlations when we correlate the quasar
magnitude with Lyman-� forest observables (deduced
from imperfect data that contain residual backgrounds).
In fact, existing flux-power spectrum measurements from
SDSS [27] are known to exhibit an otherwise puzzling
correlation: that Pff is systematically higher for fainter
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quasars, and this correlation is statistically significant (the
normalized correlation coefficient is �5–10% [41]). Such
a correlation can be explained by this background subtrac-
tion effect. It cannot be explained by lensing since it tends
to produce a correlation of an opposite sign unless ~s has a
sign opposite to what is known. (It can also be plausibly
produced by dust which we will discuss below). To disen-
tangle background subtraction issues from lensing, it
would be useful to examine magnitude-observable cross
correlations at nonzero lag—it would be quite surprising if
background residuals cause correlations between quasar
magnitude at one point with Lyman-� forest power at
another.

The third systematic effect is dust extinction. Dust
modifies flux by f ! fe�dust , where dust is the optical
depth due to dust. This modification is frequency depen-
dent (higher optical depth for bluer photons), but the
frequency (which translates into scale) dependence is
mild on the scales of interest, and therefore effectively
acts as a continuum. The net magnification plus dust
correction to the quasar number density is

n ! n�2:5s�1e�2:5sdust : (32)

Including dust extinction, the measurement bias associated
with a Lyman-� forest observable [Eq. (8)] is changed to

hOobsi �Otrue ¼ ð5s� 2ÞhO�i � 2:5shO�dusti; (33)

where �dust ¼ dust � hdusti, which is assumed to be
small, and we have ignored hO��dusti.

As far as the ‘‘signal’’ part of our discussion is con-
cerned, the magnitude-observable cross correlation
[Eq. (24)] is modified to

hEi ¼ 5~sh��Oi � 2:5~sh�dust�Oi: (34)

A full calculation of the effect of dust is beyond the
scope of this paper. But given a model for �dust the effect
can be calculated in a way very similar to lensing—dust
after all is another line of sight integral over the (dust)
density. Calculations comparing the amplitudes of magni-
fication and dust corrections to supernova flux have shown
h��dusti � h�dust�dusti to be �7–40% of h��i at
zsource ¼ 1:5 depending on the dust model [42]. At higher
redshifts the dust term is expected to be less important,
while the lensing effect should grow. On the other hand,
recent measurements suggest that at z ¼ 0:3 dust extinc-
tion can cause shifts in source magnitude comparable to
those caused by lensing magnification [6]. For the
Lyman-� forest, which is typically measured at redshifts
z * 2, the dust corrections are likely to be smaller than the
lensing corrections but should be included in a full
analysis.

IV. DISCUSSION

We have discussed the sampling bias introduced by
magnification and dust on measurements of the Lyman-�

forest. In calculating the effect of this bias [summarized in
Eq. (8)] we made the assumption that all quasar spectra are
weighted equally. If, on the other hand, forest measure-
ments were weighted by quasar flux, the effect of lensing
bias would be larger than what we have found [see, for
example, Eq. (9)].
If the quasars are weighted uniformly, we find that mag-

nification bias leads to corrections & 1% to the flux-power
spectrum (Fig. 1), & 0:1% to the effective optical depth
(Fig. 2),& 0:1% to the flux probability distribution function
P ðfÞ, and as large as a few % to the probability distribution
function for the flux fluctuation P ð�fÞ (see Figs. 4 and 5).

These estimates assume quasar number count slope s ¼ 1,
probably reasonable for the SDSS quasars used for
Lyman-� forest measurements. The lensing correction
varies strongly with redshift with larger corrections present
at lower redshift, largely due to nonlinear growth of mass
fluctuations. The biases induced by magnification to the
effective optical depth are significantly smaller than current
error bars. For the flux-power spectrum, the lensing bias is
just within the current error bars, and since it leads to a
systematic offset in each data point, may effect measure-
ments of the overall amplitude of the power spectrum. At
low redshift the lensing effect on the PDF of �f can be

rather large, reaching several percent at the high �f end of

the PDF at z ¼ 2, however this occurs only in regions where
the PDF itself is very small& 0:1. Lensing magnification is
probably unimportant for current measurements of the flux
PDF and the quantities derived from it.
One may wonder whether including nonlinear magnifi-

cation7—which is more important at the small angular
separations relevant for the Lyman-� forest—could
change our results. We have checked that including all �
terms contributing to� in Eqs. (2) and (11), rather than just
the linear term as in Eq. (6), changes the magnification bias
corrections by & 2%. The true nonlinear magnification of
course depends on the components of the shear as well as
the lensing convergence but it would be surprising if they
drastically changed our (all orders in �) estimate of their
importance.8

7To be precise, the true magnification � ¼ 1=ðð1� �Þ2 �
�2
1 � �2

2Þ where �1 and �2 are the shear. Throughout this paper
we assume �, �1, �2 are small quantities and so we keep only the
first order terms in the expression for�. Nonlinear magnification
refers to the higher-order (in � and �) terms contributing to �
[43].

8Actually, there is a further caveat here in that we did not
compute the true lensing convergence � because we have
ignored contributions from mass fluctuations at the lower red-
shifts outside the box. For the nonlinear terms, this should not be
a good approximation (e.g. h��i is poorly estimated) never-
theless it would be surprising if this made an orders-of-
magnitude difference in the effect of magnification bias. But
perhaps this plus the ignored � terms could increase the im-
portance of nonlinear magnification to the �20% reported
by [43].
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An additional caveat to our analysis is that the damped
Lyman-� (DLA) systems and their associated damping
wings are not accurately modeled by the simulations and
mock spectra. While DLAs are rare, magnification bias
could make them more abundant in survey samples. The
damping wings of DLAs are known to add spurious power
to PffðkjjÞ at the 10–20% level on large scales [44].

Magnification bias should increase the abundance of
DLAs making the power spectrum more biased than our
results suggest. Precisely how magnification affects the
DLA bias deserves further investigation.

Perhaps most interesting is that lensing magnification
induces a correlation between Lyman-� observables and
the magnitude of the quasars used to measure them
(Fig. 7). Unfortunately even with the large number of
quasar spectra the BOSS survey will obtain it will be a
challenge to detect correlations between the flux-power
spectrum, the flux decrement or the mean transmission
and quasar magnitude with high signal to noise (see
Table I). Additionally, it is possible that lines of sight
with high magnification also have more metal lines which
could further complicate the analysis. Nevertheless these
correlations provide a direct measure of how fluctuations in
the quasar flux trace the underlying density field, for
example, they could directly constrain the flux-mass power
spectrum and should therefore be targeted. A more thor-
ough analysis of how to detect the flux-magnitude and flux-
power correlations is necessary, we leave this to future

work. For a recent idea in a similar vein see [13,14] who
propose correlating lensing in the cosmic microwave back-
ground with fluctuations in the forest to extract flux-mass
information.
It is worth noting that, with a large quasar sample, it may

be possible to exploit the dependence on 5s� 2 and/or
�ðzQÞ to isolate the magnification correction and to mea-

sure the flux-magnitude correlations. The lensing correc-
tion depends linearly on 5s� 2, which ranges quite a bit
depending on magnitude limit (Fig. 8). In the weak lensing
limit the correction scales as H0ð�ðzQÞ � �ðzÞÞ�ðzÞ=�ðzQÞ
which varies from� 4

25H0�ðzQÞ to 0 as z goes from z
 and

zQ. Indeed measuring these distinctive dependencies

would help guard against possible instrumental system-
atics from being confused with the lensing signal.
Our estimates of the forest-magnitude correlations in
Secs. III A, III B, III C, and III D assumed z was halfway
between z
 and zQ. Also, there exist in public data �150

close quasar pairs [45], that one might wish to use for this
analysis, unfortunately their number is small compared to
the 105 expected from SDSS III and will not significantly
improve the signal to noise.
There is quite a bit of interest in using the Lyman-�

forest to map the 3D density field and use, for example, the
baryon features in the two-point correlation function or
power spectrum to constrain dark energy and the expansion
history of the universe [46]. While we have focused on the
power spectrum gotten from 1D measurements of the flux

(a) (b)

FIG. 8. (a) A histogram of the number of quasars as function of i-band magnitude measured from the Sloan Digital Sky Survey.
(b) The slopes s (solid) and s0 (dashed) defined in Eqs. (2) and (10) as a function of the limiting magnitude (i.e. assuming a step
function �). These measurements ignore possible incompleteness in the data, and are therefore likely underestimates, especially at the
faint end.
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fluctuation, the analysis could be extended to include
correlations between different quasar spectra (and there-
fore different sight lines). Additional corrections due to
correlations between flux and convergence across different
lines of sight (� h�fð��Þ�fð�0�0Þ�ð��Þi) would arise.

However, since lensing is strongest for lenses along the
same line of sight as the sources, the terms calculated in
this work should be dominant. One would therefore expect
the lensing bias to the correlation function around the
baryon scale to remain 0.1–1%.9
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APPENDIX A: DERIVATION OF MAGNITUDE,
NUMBER AND OBSERVABLE

CROSS CORRELATIONS

In this appendix, we derive the main results of this paper
in a unified manner. They include the lensing-induced
measurement bias (for both uniform and flux weighting)
and the general magnitude-observable cross correlation,
described, respectively, in Eqs. (2), (8), (9), and (24).
Most of these reduce to known results in the literature for
a step-function selection.

All quantities of interest take the following form:

Q ¼
P

I wIOIP
I uI

; (A1)

where I sums over quasars in one’s sample, wI and uI are
explicit weights one might apply to them (wI and uI might
or might not be equal), and OI is a Lyman-� forest
observable associated with quasar I.

It is helpful following Sec. II A to conceptually pixelize
the survey (with pixel label i), and rewrite this as

Q ¼
P

i

R
dmwðmÞ�ðmÞniðmÞOiP

i

R
dmuðmÞ�ðmÞniðmÞ ; (36)

where dmniðmÞ is the number density of quasars at pixel i
with magnitude m� dm=2, �ðmÞ is the selection function
(e.g. �ðmÞ could be 1 for all quasars brighter than some
limit mlim and 0 otherwise), and we assume the weights w
and u are functions of the observed quasar magnitude m.
Recall that lensing modifies the observe flux by f !

fþ �f ¼ f� ¼ fð1þ 2�Þ, where � is the (weak) lensing
convergence defined previously in Eq. (6). Flux and mag-
nitude are related by f ¼ exp½�m ln10=2:5�, and so m ¼
m0 þ �m ¼ m0 � 5

ln10�, where m
0 and m are the unlensed

and lensed magnitudes, respectively, [Eq. (23)]. The ob-
served number density of quasars niðmÞdm is related to the
pre-lensed number density n0i ðm0Þdm0 by

niðmÞdm ¼ n0i ðm0Þdm0 1

1þ 2�i

; (A3)

where 1=ð1þ 2�iÞ factor accounts for the geometrical
increase in area by magnification (and therefore reduction
in number density). Taylor expanding gives us

niðmÞ ¼ n0i ðmÞ þ
�
2:5

ln10

dn0i ðmÞ
dm

� n0i ðmÞ
�
2�i: (A4)

The denominator of Q is well approximated by

denominator of Q ¼ X
i

Z
dmuðmÞ�ðmÞn0ðmÞ; (A5)

where we have assumed that the survey is large enough that
under the summation over pixels i, n0i ðmÞ which could
fluctuate from pixel to pixel can be replaced by its average
n0ðmÞ (i.e. the true pre-lensed luminosity function), andP

i�i � 0. The summation
P

i then simply gives the num-
ber of pixels in the survey. This kind of approximation is
equivalent to ignoring corrections of the integral constraint
type [15].
The numerator ofQ can be computed by rewritingOi ¼

Otrue þ �Oi, where Otrue denotes the ensemble average
Otrue ¼ hOii (i.e. an average over ensemble of realizations
of the universe). Assuming there is neither correlation
between Oi and the pre-lensed number density n0i , nor
correlation between �i and n0i , we find

hnumerator of Qi ¼ X
i

Z
dmwðmÞ�ðmÞn0ðmÞOtrue

þX
i

Z
dmwðmÞ�ðmÞ

�
2:5

ln10

dn0ðmÞ
dm

� n0ðmÞ
�
2h��Oi; (A6)

where we have dropped the i label from h�i�Oii since this
is simply a cross correlation at zero lag. Just as for the
denominator, the summation

P
i reduces simply to the total

number of pixels.

9We have checked that unlike the case of the 3D galaxy
correlation function [47,48] nothing is remarkably different
about the lensing bias to the real space flux correlation function
as compared to Fourier space.
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In summary, we find

hQi ¼ Otrue

R
dmwðmÞ�ðmÞn0ðmÞR
dmuðmÞ�ðmÞn0ðmÞ þ 2h��Oi

�
R
dmwðmÞ�ðmÞð 2:5ln10

dn0ðmÞ
dm � n0ðmÞÞR

dmuðmÞ�ðmÞn0ðmÞ : (A7)

This is a fundamental result from which everything
follows. Let us first apply it to the case with wðmÞ ¼
uðmÞ ¼ 1 i.e. Q is what we have been calling Oobs, with
equal weights applied to all quasars within one’s sample.
Equation (A7) tells us

hOobsi ¼ Otrue þ ð5s� 2Þh��Oi;

s ¼ 1

ln10

R
dm�ðmÞðdn0=dmÞR
dm�ðmÞn0ðmÞ ;

(A8)

consistent with Eq. (8) and the definition of s in Eq. (2).
Note that h��Oi ¼ h�Oi since h�i ¼ 0. If the selection
function �ðmÞ were a step function, s reduces to the more
familiar slope of the quasar number count upon integration
by parts (see Sec. I).

Let us next try wðmÞ ¼ uðmÞ ¼ exp½�m ln10=2:5� in
Eq. (A7), i.e.Q is equivalent toOobs, with a flux weighting.
It is simple to see that

hOobsi ¼ Otrue þ ð5s0 � 2Þh��Oi;

s0 ¼ 1

ln10

R
dm�ðmÞðdn0=dmÞ10�m=2:5R
dm�ðmÞn0ðmÞ10�m=2:5

;
(A9)

which is consistent with Eqs. (9) and (10).
Lastly, let us use wðmÞ ¼ m� �m and uðmÞ ¼ 1 in

Eq. (A7), with �m ¼ R
dmm�ðmÞn0ðmÞ=Rdm�ðmÞn0ðmÞ.

Then, Q corresponds to the cross correlation estimator E
of Eq. (22), keeping in mind that �m (which is the average
sample magnitude defined by the true unlensed luminosity
function) should be well approximated by

P
ImI=

P
I for a

sufficiently large survey. We obtain

hEi ¼ 5~sh��Oi;

~s � 1

ln10

R
dm�ðmÞðdn0=dmÞðm� �mÞR

dm�ðmÞn0ðmÞ ;
(A10)

which is consistent with Eqs. (24) and (25). Note how the
�2 that is present in both Eqs. (A8) and (A9) is absent in
(A10). In the first two cases, this �2 originates from the
‘‘�n0ðmÞ’’ in the second term of Eq. (A10). This term
yields zero in Eq. (A10) by definition of wðmÞ ¼ m� �m.

The different symbols s, s0 and ~s can be seen as different
(normalized) moments of �ðmÞdn0=dm. In Fig. 8 we show
the cumulated number counts and rough estimates of s and
s0 from SDSS data release 6. It is worth emphasizing that
incompleteness is not taken into account in deducing these
estimates, and the true values of s and s0 could well be
higher, especially at the faint end. In other words, if
incompleteness is present, it should be properly taken

into account through the efficiency �ðmÞ. Blindly measur-
ing s by taking derivative of the observed (i.e. incomplete)
cumulated number count would result in an underestimate.

APPENDIX B: DETERMINING THE LOW-k
BISPECTRUM

In this appendix we discuss how we determine the flux-
flux-mass bispectrum at low kjj. The issue is that the

simulations have a finite box size, and we need to extrapo-
late Bffmðkjj;�ðkjj þ k0jjÞ; k0jjÞ from k0jj � 2�=L to k0jj � 0,

where L is the size of the box. At z ¼ 3 we have simula-
tions in a larger box and we find that doubling the box size
(from L ¼ 50 Mpc=h to L ¼ 100 Mpc=h) increases
Bffmðkjj;�kjj; 0Þ by a factor of about 4. To determine

Bffm for very low k we first use a hierarchical model for

Bffm,

Bffmðkjj;�ðkjj þ k0jjÞ; k0jjÞ
¼ QffmðPfmðkjjÞPfmðk0jjÞ þ PfmðkjjÞPfmðkjj þ k0jjÞ
þ Pfmðk0jjÞPfmðkjj þ k0jjÞÞ: (B1)

This hierarchical model with Qffm independent of kjj but
varying with z appears to be a pretty good fit to the
simulations-measured bispectrum for kjj, k0jj & 1 h=Mpc

with better agreement z ¼ 3 and z ¼ 4 than z ¼ 2. At
kjj * 1 h=Mpc the hierarchical bispectrum drops off

much more rapidly than the true bispectrum. Comparison
of the hierarchical and true bispectra is shown in Fig. 9.
Given the agreement between the hierarchical and the
measured bispectra (on large scales), we now assume
Eq. (B1) works at Bffmðkjj;�kjj; 0Þ and embark on the

somewhat easier task of determining Pfm at very low kjj.
The low kjj value of Pfm is determined using both the

simulations and analytics. Precisely, we set Pfmðk ¼ 0Þ ¼
Psims
fm ðkminÞ=Pcalc

bm ðkminÞ � Pcalc
bm ðk ¼ 0Þ. The calculated 1D

baryon-mass power spectrum at kjj ¼ 0 is given by

Pcalc
bm ¼

Z d2k?
ð2�Þ2 P3Dðk?Þe�k2?=k

2
s ; (B2)

where P3DðkÞ is the 3D mass power spectrum, ks ¼
ffiffiffiffi
10
3

q
kJ

with kJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�G�

p
=ðcsð1þ zÞÞ is the Jeans length for a

system with sounds speed cs [49] and proper mass density
�. Assuming the intergalactic medium can be treated as a

monatomic ideal gas cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5T=ð3mÞp

where m is the mean
particle mass. For a fully ionized gas composed of 75%
Hydrogen and 25% Helium by mass m ¼ 0:59mp where

mp is the proton mass. We assume T ¼ 20 000K is the gas

temperature constant over the redshift range we are inter-
ested in [50].
The reader might wonder whether analytic estimates of

the flux-mass power spectrum and flux-flux-mass bispec-
trum can be used to make accurate predictions without
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simulations. A naive guess, �f ¼ b�bðkÞ works fairly well
for Pfm but overestimates the magnitude of Bffm by a

factor of a few. The dominant reason for this discrepancy
appears to be the difference between Qffm and Qmmm,

where Qmmm is the equivalent parameter for the hierarch-
ical mass-mass-mass bispectrum. Hyper-extended pertur-
bation theory [51] suggests that on the scales we are
interested in, the hierarchical ansatz should fit the mass
bispectrum Bmmm with a factor Qmmm � 3 (and only
weakly dependent on redshift). Indeed our simulations
give a similar value for Qmmm, and the hierarchical ansatz
fits Bmmm rather well. However, for the flux-flux-mass
bispectrum we find thatQffm & 1 and varies more strongly

with redshift. So, because of this difference the assumption
Bffmðk; k0; k00Þ ¼ b2Bmmm fails even on large-scales where

Pff � b2Pmm. This is why we have to rely on simulations

to obtain an estimate of the flux-flux-mass bispectrum, but
making suitable corrections to get at the ðkk;�kk; 0Þ limit.

It is also worth emphasizing we have estimated the mea-
surement bias associated with the flux-power spectrum two
different ways, one using the flux-flux-mass bispectrum
and the other does not, and they agree reasonably well
(Fig. 2).

APPENDIX C: ESTIMATORAND ERROR FORTHE
MAGNITUDE-FLUX CORRELATION AMPLITUDE

Recall that the expected magnitude-flux correlation
from Eq. (26) takes the following form:

hE�m�f
ð�Þi ¼ gð�ÞA; (C1)

where gð�Þ is a function of � (distance to absorption), and
A represents the amplitude of this correlation, which one
can equate with Pfmðkk ¼ 0Þ if one wishes (the precise

choice will have no bearing on the final signal to noise of
interest). We have suppressed the dependence on �Q (dis-

tance to quasar).
Our goal is to come up with an estimator for this

amplitude A by combining the magnitude-flux correlations
at different scales (�’s), and show that its error bar is given
by Eq. (27). The estimator takes the form:

E A ¼ X
I;�

wIð�Þ�mI�I
fð�Þ; (C2)

where the I index labels the quasar, and the sum over �
ranges over the (binned) scales of Lyman-� forest obser-
vations. Here, �mI ¼ mI � �m, with �m being the mean
sample magnitude [see discussion around Eq. (A10)],
and wIð�Þ represents a weighting of the data over quasars
and absorption locations which remains to be specified. To
satisfy hEAi ¼ A, we would want wIð�Þ to satisfy

X
I;�

wIð�Þgð�Þ ¼ 1: (C3)

The variance of this estimator is given by

h�E2
Ai ¼

X
I;J;�;�0

wIð�ÞwJð�0Þ½h�mI�I
fð�Þ�mJ�J

fð�0Þi

� h�mI�I
fð�Þih�mJ�J

fð�0Þi�: (C4)

Assuming the terms in [] are dominated by �IJh�m2i�
h�fð�Þ�fð�0Þi (i.e. correlations between different quasars

are weak, and that cross correlations between magnitude
and �f are also weak compared with auto correlations),

we find

h�E2
Ai � h�m2i X

I;�;�0
wIð�Þ�ffð�; �0ÞwIð�0Þ; (C5)

where we have used �ffð�; �0Þ to represent

h�fð�Þ�fð�0Þi—it should be kept in mind that this should

include contributions from both the intrinsic forest fluctu-
ations and shot noise. The shot-noise contribution makes
�ff strictly speaking a function of the quasar index I, but

we will ignore it for our purpose of a crude S=N estimate.
Standard minimization technique applied to Eq. (C5)

subject to the constraint Eq. (C3) gives us the minimum
variance weighting:

wIð�Þ
¼
�X

�0
��1
ff ð�;�0Þgð�0Þ

��� X
J;�0;�00

gð�0Þ��1
ff ð�0;�00Þgð�00Þ

�
;

(C6)

where ��1
ff is defined to be the matrix inverse of �ff i.e.P

�0��1
ff ð�; �0Þ�ffð�0; �00Þ ¼ ��;�00 . With this optimal

weighting, the variance is given by

h�E2
Ai ¼

h�m2i
NQSO

� X
�0;�00

gð�0Þ��1
ff ð�0; �00Þgð�00Þ

��1
; (C7)

where NQSO is the number of quasars.

The signal to noise of interest is

S

N
¼ Affiffiffiffiffiffiffiffiffiffiffi

�E2
Ai

q ; (C8)

which after some Fourier manipulations is equivalent to
Eq. (27).
Let us close by noting that in the same spirit and nota-

tion, the magnitude-flux correlation (at a given �) has a
variance of

h�m2i
NQSO

�ffð�; �Þ: (C9)
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