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Methods are developed for constructing spectral representations of cold (barotropic) neutron-star

equations of state. These representations are faithful in the sense that every physical equation of state

has a representation of this type and conversely every such representation satisfies the minimal

thermodynamic stability criteria required of any physical equation of state. These spectral representations

are also efficient, in the sense that only a few spectral coefficients are generally required to represent

neutron-star equations of state quiet accurately. This accuracy and efficiency is illustrated by constructing

spectral fits to a large collection of ‘‘realistic’’ neutron-star equations of state.
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I. INTRODUCTION

The gravitational field of a neutron star compresses the
material in its core to densities that exceed those inside
normal atomic nuclei. The resulting matter is a mixture of
free baryons (neutrons and protons), leptons (electrons and
muons), and likely also smaller fractions of hyperons,
mesons, or perhaps even free quarks. The basic thermody-
namic relationship between the total energy density � and
the pressure p of this material is called its equation of state,
� ¼ �ðpÞ, and is determined by the complicated micro-
physical interactions between the various particle species
present in the mixture [1].

In addition to its dependence on the pressure, the energy
density of a mixture also depends typically on the tem-
perature and other quantities like the relative abundances
of the different particle species. Thus there is no guarantee
that a simple barotropic form, � ¼ �ðpÞ, applies to any, let
alone universally to all, neutron-star matter. Yet there is
reason to expect that a universal barotropic form might be
an excellent approximation. Neutron stars are born when
the cores of massive stars (and perhaps white dwarfs)
become unstable and undergo gravitational collapse.
Compression heats the material as it collapses, to tempera-
tures that exceed the binding energies of all atomic nuclei.
Neutron-star matter always begins therefore as a very hot
plasma of free baryons and leptons, etc. This material is
expected to evolve quickly to the lowest available energy
state as it cools by neutrino and photon emission, and this
fixes the relative abundances of the various particle spe-
cies. The thermal energies of the particles fall rapidly
below their Fermi levels, so the thermal contribution to
the energy rapidly becomes negligible. The matter there-
fore is expected to evolve on a very short time scale to a
state that is well described by a temperature independent
barotropic equation of state. This paper develops more
efficient ways to represent equations of state of this type.

The matter densities in the cores of neutron stars are well
beyond the reach of current laboratory experiments.
Heavy-ion scattering (including most recently those con-

ducted at RHIC and LHC) provides a wealth of information
about the interactions among the various particles expected
to make up neutron-star matter. Unfortunately those ex-
periments bear only indirectly on the properties of the
equilibrium ground state, because the effective tempera-
ture of the nuclear matter in the experiments is quite high.
Little insight is provided therefore into effects, like com-
plicated many-body interactions, that might play a role
only in states with low temperature and high density and
pressure.
There has also been a significant effort over the past

several decades to understand this material from a theo-
retical perspective: hundreds of papers devoted to model-
ing neutron-star matter have appeared in the literature. But
the properties of this material are far outside the realm
where the usual arsenal of theoretical tools was designed to
work reliably, so it is not surprising that there is no con-
sensus among theoreticians yet on the neutron-star equa-
tion of state. For example, the current models’ predictions
of the pressure at a given density still vary by about an
order of magnitude [2].
Direct observations of neutron stars may be the most

promising approach to understanding the properties of
high-density nuclear matter. It is well known that the
equation of state along with the gravitational field equa-
tions determine the observable macroscopic properties of
neutron stars [3], and conversely that a complete knowl-
edge of an appropriate set of macroscopic properties (e.g.
masses and radii) determines the equation of state [4].
Studies of neutron-star models show that their macroscopic
properties, like their masses and radii, vary widely even
within the current ‘‘realistic’’ class of equations of state
[2,5]. So it has long been recognized that accurate obser-
vations of the macroscopic properties of neutron stars will
provide significant constraints on the nuclear equation of
state. Unfortunately the needed observations are quite
difficult to make. Masses of several dozen neutron stars
have now been measured fairly accurately (see e.g.
Ref. [6]), and these observations have ruled out large
classes of very ‘‘soft’’ equation-of-state models. Only a
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few radius measurements have been made however [7], and
these are not reliable and accurate enough yet to make solid
quantitative measurements of the equation of state itself
possible.

There is reason to hope that more abundant and accurate
measurements of both neutron-star masses and radii will
become available, however. When the first accurate mea-
surements are made, they are not likely to be numerous and
accurate enough to determine the entire high-density por-
tion of the neutron-star equation of state. Various attempts
have been made, therefore, to find representations of equa-
tions of state that make their essential features depend on
just a few parameters. One approach is to use the parame-
ters that characterize the nuclear interaction models as a
way to parametrize the equations of state constructed from
them. These might include a number of microphysical
parameters like the bulk nucleon incompressibility and
symmetry energy parameters in models of the nucleon
interaction potential [8], or the coupling constants and
mixing angles in effective mean field theory descriptions
[9]. Comparing the masses and radii of neutron stars based
on these model equations of state should fix the values of
the unknown nuclear interaction model parameters. This
approach would clearly be ideal if a reliable and accurate
microphysical model of neutron-star matter were known.
Unfortunately there is no consensus that any of the existing
nuclear-matter models are good enough yet to describe
neutron-star matter accurately and reliably.

Another approach is to construct purely empirical fits
rather than microphysics based models of the equation of
state. The first attempts to do this [4,10] approximated the
high-density part of the equation of state as a simple
polytrope, i.e., an equation of state in which the pressure
is proportional to a power of the density.1 These first simple
fits were shown to reproduce the central pressures and
densities of neutron-star models based on realistic equa-
tions of state with about 15% accuracy [4]. This type of
approximation can be improved by dividing the relevant
range of pressures into a number of intervals, p0 <p1 <
� � �< pmax, and fitting a different polytrope to the equation
of state in each interval. Any level of accuracy can then be
achieved by using a sufficiently large number of intervals.
A number of authors have proposed using piecewise poly-
tropes to approximate the high-density part of the neutron-
star equation of state [2,10,11], and these approximations
turn out to be quite efficient. Fits of the high-density parts
of realistic neutron-star equations of state have been shown
to achieve accuracies of a few percent for piecewise poly-
tropes with only a small number of free parameters

[2,10,11]. The most extensive study to date uses fits with
four free parameters that give average errors of only a few
percent for 34 realistic equations of state [2]. Other types of
empirical fits to neutron-star equations of state have also
been reported in the literature [12–15]. These provide high
accuracy approximations of particular realistic equations
of state (generally using 15 to 20 parameters to do this),
and do not appear to have been intended as efficient ways
to model large classes of equations of state.
This paper continues the effort to construct efficient

empirical representations of realistic neutron-star equa-
tions of state. New methods are described here for con-
structing parametric representations based on spectral fits.
Spectral representations are generalizations of the Fourier
series used to represent periodic functions. It is shown in
Sec. II that spectral representations can be constructed that
are faithful, in the sense that every physical equation of
state has such a representation and conversely that every
such representation satisfies the basic thermodynamic
stability conditions required of any equation of state. It is
also shown in Sec. III that these spectral representations do
a good job of representing the currently available realistic
neutron-star equations of state. A suitably constructed two-
parameter spectral representation is shown to be about as
accurate as the most carefully studied four-parameter poly-
trope fits [2]. For smooth equations of state, the errors in
the spectral fits decrease exponentially as the number of
parameters is increased, while piecewise-polytrope fits
generally decrease only quadratically. These spectral fits
make it possible therefore to provide very accurate repre-
sentations of the neutron-star equation of state using only a
small number parameters. They should provide an impor-
tant new tool for extracting the high-density equation of
state from neutron-star observations.

II. SPECTRAL REPRESENTATIONS OF
THE EQUATION OF STATE

Any equation of state, � ¼ �ðpÞ, can be represented in a
‘‘spectral’’ expansion, as linear combinations of basis
functions �kðpÞ:

�ðpÞ ¼ X
k

�k�kðpÞ: (1)

Any complete set of functions, such as the Fourier basis
functions or the Chebyshev polynomials, could be used as
the �k in these expansions. Equations of state are deter-
mined in such representations by their spectral coefficients,
�k. Truncated versions of these expansions, in which only a
finite number of terms are kept, provide approximate para-
metric representations of arbitrary equations of state: � ¼
�ðp; �kÞ.
Physical equations of state must be non-negative,

�ðpÞ � 0, and monotonically increasing functions,
d�ðpÞ=dp � 0, to insure thermodynamic stability. Since
almost all functions fail to satisfy these conditions, it

1The term relativistic polytrope is most commonly used for
equations of state that satisfy p / ��, where � is the conserved
rest-mass density and � is the (constant) adiabatic index. It is
also used (less commonly) for those satisfying p / �� where � is
the total energy density and � is a constant. The two definitions
agree in the Newtonian limit.
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follows that almost all choices of spectral coefficients, �k,
in an expansion such as Eq. (1) represent functions that
cannot be equations of state. Thus the spectral coefficients
�k obtained by fitting to a physical equations of state are
likely to produce a representation that violates basic ther-
modynamic stability. So unfortunately, representing an
equation of state with a straightforward spectral expansion
is not particularly useful.

Instead, faithful representations are needed, ones that
ensure the positivity and monotonicity conditions for every
choice of spectral coefficients. Methods of constructing
faithful representations of the equation of state are pre-
sented in the following sections. Spectral representations
of the standard form of the equation of state, in which the
energy density is expressed as a function of the pressure
� ¼ �ðpÞ, are presented in Sec. II A. For some applications
it is more convenient to express the equation of state in
terms of the relativistic enthalpy � ¼ �ðhÞ. Spectral repre-
sentations of these enthalpy-based forms are given in
Sec. II B.

A. Pressure-based forms

An equation of state �ðpÞ determines, and is determined
by (up to an integration constant), the adiabatic index �ðpÞ,
defined by

�ðpÞ ¼ �þ p

p

dp

d�
: (2)

Given �ðpÞ, the equation of state �ðpÞ is determined simply
by integrating the first-order ordinary differential equation,

d�ðpÞ
dp

¼ �ðpÞ þ p

p�ðpÞ : (3)

The adiabatic index must be positive �ðpÞ> 0 to ensure
thermodynamic stability, but it need not be monotonic.
Thus a larger class of functions represent possible physical
adiabatic indices, and this makes it easier to represent
equations of state through spectral expansions of �ðpÞ. In
particular, every physical equation of state can be repre-
sented by the following spectral expansion of the adiabatic
index �ðpÞ:

�ðpÞ ¼ exp

�X
k

�k�kðpÞ
�
: (4)

Conversely, every choice of �k (for which the series in this
expansion converges) results in a positive adiabatic index,
and thus an equation of state from Eq. (3), that satisfies the
positivity and thermodynamic stability conditions. So this
representation is faithful in the sense defined in Sec. II.

The construction of an explicit spectral representation of
the equation of state requires a choice for the basis func-
tions�kðpÞ. To that end, it is useful to define a dimension-
less logarithmic pressure variable:

x ¼ logðp=p0Þ: (5)

The constant p0 is a scale factor, chosen here to be the
minimum value of the pressure, p0 � p, in the domain
where the spectral expansions are to be used. The follow-
ing expansion of the adiabatic index �ðxÞ is found to be
useful and effective:

�ðxÞ ¼ exp

�X
k

�kx
k

�
: (6)

One advantage of this simple power-law basis is that the
lowest order spectral coefficients �k have fairly simple
physical interpretations. For example the lowest order
coefficient, �0, is determined by the adiabatic index eval-
uated at the reference pressure �0 ¼ log �ðp0Þ. Similarly,
the next coefficient, �1, determines the behavior of the
adiabatic index, �ðpÞ � �ðp0Þðp=p0Þ�1 for pressures near
p0, i.e. for x ¼ logðp=p0Þ � 1.
The power-law basis, �kðxÞ ¼ xk, has the advantage of

simplicity. While it might be advantageous to choose an-
other basis like the Chebyshev polynomials for some pur-
poses, these advantages can only be fully exploited by
using a knowledge of the exact range, 0 � x � xmax, and
rescaling x in the optimal way. The additional information,
like xmax for example, needed to do that will not be
available a priori for the real neutron-star equation of state.
So here the simple power-law basis is used, and fortunately
this choice seems to work quite well.
Given an adiabatic index, �ðpÞ, it is straightforward to

determine the equation of state, �ðpÞ, by integrating the
ordinary differential equation, Eq. (3). The solutions and
hence the equation of state can be reduced to quadratures:

�ðpÞ ¼ �0
�ðpÞ þ

1

�ðpÞ
Z p

p0

�ðp0Þ
�ðp0Þ dp

0; (7)

where �ðpÞ is defined as

�ðpÞ ¼ exp

�
�

Z p

p0

dp0

p0�ðp0Þ
�
; (8)

and where �0 ¼ �ðp0Þ is the constant of integration needed
to fix the solution. This �0 is fixed in the fits performed in
Sec. III by matching to a low density equation of state at
the pressure, p0 (i.e. at x0 ¼ 0), chosen to be a point
somewhat below nuclear density.
The quadratures indicated in Eq. (7) cannot be done

analytically for the expansion given in Eq. (6), so an
explicit analytic expression for the equation of state is
not available in this case. However, the integrands in these
quadratures are analytic functions that can be integrated
numerically very accurately and efficiently. Using
Gaussian quadrature, for example, double precision accu-
racy can be achieved using about 10 points for each inte-
gral. So there is very little practical difference between
having an explicit analytic expression for the equation of
state, and the expression in Eq. (7) in terms of quadratures
of explicit analytic functions.
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It might be advantageous in some situations to construct
spectral expansions for the equation of state using thermo-
dynamic quantities other than �ðpÞ. For example, the
adiabatic sound speed, vðpÞ, defined by

v2ðpÞ ¼ c2
�
d�ðpÞ
dp

��1
; (9)

(where c is the speed of light) could be used to obtain the
equation of state by integrating the simple ordinary differ-
ential equation,

d�ðpÞ
dp

¼ c2

v2ðpÞ : (10)

The thermodynamic stability condition, 0 � v2, could be
enforced in this case by constructing the following spectral
expansion:

v2ðpÞ ¼ c2 exp

�X
k

vk�kðpÞ
�
: (11)

Alternatively, it might be desirable to enforce both the
thermodynamic stability condition and the ‘‘causality’’
conditions,2 0 � v2 � c2, by constructing the spectral
expansion in the following way:

v2ðpÞ ¼ c2
�
1þ exp

�
�X

k

vk�kðpÞ
���1

: (12)

For the remainder of this paper, spectral representations
of the equation of state will be based on the familiar
adiabatic index �ðpÞ. The discussion in Sec. III shows
that �ðpÞ is a reasonably slowly varying function for
realistic neutron-star equations of state, which can be
represented fairly accurately using expansions having
only a few terms. Using �ðpÞ for these expansions also
allows us to make straightforward comparisons with pub-
lished piecewise-polytrope approximations to the equation
of state [2]. The accuracy and efficiency of these expan-
sions in representing realistic neutron-star equations of
state is explored in Sec. III.

B. Enthalpy-based forms

The spectral expansions of the standard representation
of equation of state, � ¼ �ðpÞ, should be quite useful for
many applications. For some applications, however, the

standard representation, � ¼ �ðpÞ, is not ideal. For ex-
ample, a useful form of the relativistic stellar structure
equations [4] requires the equation of state to be expressed
in terms of the relativistic enthalpy, h. For applications
such as this, � ¼ �ðpÞ must be rewritten as a pair of
equations � ¼ �ðhÞ and p ¼ pðhÞ, where h is defined as

hðpÞ ¼
Z p

0

dp0

�ðp0Þ þ p0 : (13)

The needed expressions, � ¼ �ðhÞ and p ¼ pðhÞ, are con-
structed by inverting h ¼ hðpÞ from Eq. (13) to obtain p ¼
pðhÞ, and composing the result with the standard equation
of state, � ¼ �ðpÞ, to obtain �ðhÞ ¼ �½pðhÞ�.
The transformations needed to construct � ¼ �ðhÞ and

p ¼ pðhÞ are difficult to perform numerically in an effi-
cient and accurate way. Therefore it may be preferable to
construct a spectral expansion of the equation of state
based directly on h. This can be done using the methods
described above for the standard � ¼ �ðpÞ representation.
To do this a spectral expansion of the adiabatic index,
considered now as a function of the enthalpy �ðhÞ, must
be defined. The scaled enthalpy variable x ¼ logðh=h0Þ, is
found to be useful, where h0 is the lower bound on the
enthalpy, h0 � h, in the domain where the spectral expan-
sions are constructed. The expression for �ðxÞ given in
Eq. (6) then provides a useful expansion for �ðhÞ:

�ðhÞ ¼ exp

�X
k

�k

�
log

�
h

h0

��
k
�
: (14)

Next, the functions pðhÞ and �ðhÞ are defined by the system
of ordinary differential equations,

dp

dh
¼ �þ p; (15)

d�

dh
¼ ð�þ pÞ2

p�ðhÞ ; (16)

that follow from the definitions of h, Eq. (13), and �,
Eq. (2). The general solution to these equations can be
reduced to quadrature:

pðhÞ ¼ p0 exp

�Z h

h0

eh
0
dh0

~�ðh0Þ
�
; (17)

�ðhÞ ¼ pðhÞ e
h � ~�ðhÞ
~�ðhÞ ; (18)

where ~�ðhÞ is defined as

~�ðhÞ ¼ p0e
h0

�0 þ p0

þ
Z h

h0

�ðh0Þ � 1

�ðh0Þ eh
0
dh0: (19)

The constants p0 and �0 are defined by p0 ¼ pðh0Þ and
�0 ¼ �ðh0Þ respectively. While these quadratures cannot be
done analytically for the spectral expansion defined in
Eqs. (14), they can be done numerically very efficiently

2The condition v2 � c2 only represents a true causality con-
dition if the equation of state �ðpÞ describes both the time
dependent and the equilibrium properties of the material. In
neutron-star matter, various strong and weak nuclear interactions
determine the relative abundances of the various particle species
in the equilibrium state. Thus v2 evaluated for the equilibrium
equation of state only describes the sound propagation speed for
low enough frequency waves that the material remains contin-
uously in equilibrium. The condition v2 � c2 may or may not
represent a causality constraint therefore on sound waves with
short enough wavelengths to be physically relevant in neutron
stars.
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and accurately using Gaussian quadrature, as in the stan-
dard equation of state case.

III. SPECTRAL FITS TO REALISTIC
EQUATIONS OF STATE

The discussion in Sec. II shows how any equation of
state can be represented by spectral expansions of the
adiabatic index, like the one given in Eq. (6). When these
expansions are truncated, keeping only a finite number of
terms, they produce fits to the equation of state, �fitðpÞ, that
are expected to converge to the exact �ðpÞ as the number of
terms in the expansion increases. In analogy with Fourier
series, the rate of convergence for these fits should be
exponential for smooth equations of state, and power law
for less than smooth cases. The smoothness of an equation
of state is determined by the details of the microphysics

that controls the properties of the material. The conver-
gence rate of an expansion will be reduced therefore, from
exponential to power law, when phase transitions or other
nonsmooth transitions are present. The number of terms
required to achieve a certain level of accuracy in �fitðpÞ,
therefore, will depend on the smoothness and variability of
the adiabatic index �ðpÞ, and the suitability of the chosen
spectral basis functions �kðpÞ.
The accuracy and practicality of spectral expansions for

two forms of the equation of state, � ¼ �ðpÞ and � ¼ �ðhÞ,
are evaluated in this section by constructing fits to 34
realistic neutron-star equations of state. These spectral
fits are based on finite spectral expansions of �ðpÞ and
�ðhÞ respectively. The equations of state used for these fits
are the same as those used by Read, Lackey, Owen, and
Friedman [2] in their study of piecewise-polytrope approx-
imations. These realistic equations of state are based on a

TABLE I. Spectral expansions of the standard � ¼ �ðpÞ form of realistic neutron-star equations of state.

EOS �P4 �S2 �S3 �S4 �S5 �0 �1 �2 �3 p0 �0=c
2 xmax

PAL6 0.0076 0.0025 0.0014 0.0005 0.0001 0.8622 �0:0677 0.0181�0:0017 3:01� 1033 2:03� 1014 5.79

SLy 0.0208 0.0076 0.0028 0.0010 0.0002 0.9865 0.1110 �0:0301 0.0022 1:64� 1033 2:05� 1014 6.73

AP1 0.0831 0.0552 0.0199 0.0098 0.0029 0.4132 0.5594 �0:1270 0.0085 1:16� 1033 2:02� 1014 7.38

AP2 0.0411 0.0236 0.0091 0.0033 0.0017 0.7065 0.2866 �0:0659 0.0047 1:34� 1033 2:02� 1014 7.27

AP3 0.0352 0.0204 0.0026 0.0011 0.0009 0.9214 0.2097 �0:0383 0.0019 1:51� 1033 2:02� 1014 6.87

AP4 0.0273 0.0194 0.0016 0.0015 0.0013 0.8651 0.1548 �0:0151�0:0002 1:50� 1033 2:02� 1014 7.04

FPS 0.0120 0.0045 0.0037 0.0034 0.0021 1.1561 �0:0468 0.0081�0:0010 1:19� 1033 2:04� 1014 7.04

WFF1 0.0320 0.0387 0.0067 0.0066 0.0062 0.6785 0.2626 �0:0215�0:0008 1:14� 1033 2:04� 1014 7.48

WFF2 0.0342 0.0200 0.0077 0.0051 0.0041 0.8079 0.2680 �0:0558 0.0039 1:32� 1033 2:04� 1014 7.25

WFF3 0.0314 0.0081 0.0081 0.0060 0.0059 1.4126 �0:1797 0.0389�0:0035 0:81� 1033 2:03� 1014 7.32

BBB2 0.1016 0.0283 0.0238 0.0167 0.0042 0.7390 0.4555 �0:1406 0.0121 1:37� 1033 2:05� 1014 6.97

BPAL12 0.0739 0.0138 0.0086 0.0043 0.0018 1.1081 �0:3078 0.0891�0:0081 2:51� 1033 2:05� 1014 6.08

ENG 0.0527 0.0181 0.0168 0.0138 0.0118 0.9820 0.2716 �0:0862 0.0075 1:33� 1033 2:04� 1014 6.98

MPA1 0.0365 0.0223 0.0022 0.0022 0.0019 1.0215 0.1653 �0:0235�0:0004 1:51� 1033 2:04� 1014 6.63

MS1 0.0581 0.0256 0.0052 0.0039 0.0004 0.9189 0.1432 0.0122�0:0094 4:54� 1033 2:04� 1014 5.05

MS2 0.0155 0.0074 0.0013 0.0005 0.0001 0.9598 �0:0527 0.0091�0:0035 4:10� 1033 2:04� 1014 4.77

MS1b 0.0206 0.0179 0.0058 0.0032 0.0004 1.2132 �0:0648 0.0561�0:0111 3:18� 1033 2:03� 1014 5.40

PS 0.0568 0.0566 0.0294 0.0284 0.0182 1.3896 �0:8472 0.2636�0:0218 5:49� 1033 2:05� 1014 4.77

GS1 0.0536 0.0762 0.0385 0.0333 0.0265 1.8662 �1:4266 0.4450�0:0389 3:22� 1033 2:04� 1014 6.28

GS2 0.0416 0.0582 0.0427 0.0425 0.0294 1.4580 �0:7219 0.1828�0:0117 4:06� 1033 2:04� 1014 4.99

BGN1H1 0.0435 0.0792 0.0460 0.0439 0.0328 1.3450 �0:0996 �0:0833 0.0161 2:30� 1033 2:05� 1014 6.40

GNH3 0.0092 0.0130 0.0090 0.0081 0.0057 1.0366 �0:0044 �0:0440 0.0075 3:77� 1033 2:06� 1014 5.26

H1 0.0226 0.0200 0.0117 0.0089 0.0069 1.0653 0.0362 �0:1098 0.0179 3:17� 1033 2:04� 1014 5.04

H2 0.0300 0.0181 0.0133 0.0072 0.0069 1.0743 0.2250 �0:2029 0.0290 2:96� 1033 2:04� 1014 4.98

H3 0.0308 0.0130 0.0109 0.0086 0.0066 1.1340 0.0925 �0:1303 0.0190 3:12� 1033 2:04� 1014 4.91

H4 0.0098 0.0098 0.0097 0.0069 0.0063 1.0526 0.1695 �0:1200 0.0150 3:16� 1033 2:04� 1014 5.21

H5 0.0214 0.0150 0.0126 0.0054 0.0054 1.0106 0.2765 �0:2011 0.0270 2:97� 1033 2:04� 1014 5.09

H6 0.0185 0.0137 0.0133 0.0130 0.0100 1.0650 �0:0196 �0:0474 0.0077 3:35� 1033 2:04� 1014 4.80

H7 0.0139 0.0132 0.0103 0.0059 0.0056 0.9582 0.1619 �0:1294 0.0177 3:19� 1033 2:04� 1014 5.22

PCL2 0.0227 0.0252 0.0121 0.0090 0.0075 1.0410 0.0173 �0:0904 0.0150 2:90� 1033 2:04� 1014 5.44

ALF1 0.0947 0.0669 0.0453 0.0369 0.0305 1.0143 �0:3102 0.1809�0:0248 1:50� 1033 2:05� 1014 6.21

ALF2 0.0655 0.0629 0.0450 0.0256 0.0230 0.4613 1.5237 �0:5817 0.0571 1:50� 1033 2:05� 1014 5.79

ALF3 0.0371 0.0355 0.0139 0.0132 0.0131 0.8536 0.2405 �0:0743 0.0041 1:50� 1033 2:05� 1014 6.14

ALF4 0.0453 0.0652 0.0166 0.0089 0.0088 0.8806 0.0656 0.0765�0:0177 1:50� 1033 2:05� 1014 5.97

Average 0.0383 0.0287 0.0149 0.0114 0.0085
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variety of different models for the composition of neutron-
star matter, and a variety of different models for the inter-
actions between the particle species present in the model
material. Descriptions of these realistic equation of state
models, and references to the original publications on each
of these equations of state are given in Ref. [2], and are not
repeated here. The individual equations of state are re-
ferred to here using the abbreviations used in Ref. [2],
e.g. PAL6, APR1, BGN1H1, etc. The list of these equa-
tions of state are given in the first column of Table III of
Ref. [2], and the first columns of Tables I and II in this
paper.

Approximate equations of state, �fitðpÞ, have been con-
structed for each of the realistic neutron-star equations of
state listed in Table I. These approximations are based on
Eq. (7) with �ðxÞ determined by the spectral expansion in

Eq. (6). The �fitðpÞ constructed in this way depend on the
pressure through the variable x ¼ logðp=p0Þ, as well as the
spectral coefficients �k: �fit ¼ �fitðx; �kÞ. The optimal
choice of spectral coefficients, �k, is made by minimizing
the differences between �fitðxi; �kÞ and the exact �i ¼ �ðxiÞ
for a set of pressures, xi, from the realistic neutron-star
equation of state tables. These differences are measured by
constructing the residual:

�2ð�kÞ ¼
XN
i¼1

1

N

�
log

�
�fitðxi; �kÞ

�i

��
2
; (20)

where the sum is over all the pressures in the tabulated
realistic equation of state in the range p0 � pi � pmax.
These are the pressures that may be present in the cores of

TABLE II. Spectral expansions of the � ¼ �ðhÞ form of realistic neutron-star equations of state.

EOS �S2 �S3 �S4 �S5 �0 �1 �2 �3 h0 xmax

PAL6 0.0032 0.0016 0.0005 0.0002 0.8608 �0:1509 0.0909 �0:0192 0.0405 2.62

SLy 0.0089 0.0035 0.0017 0.0006 1.0077 0.2084 �0:1266 0.0203 0.0314 3.22

AP1 0.0708 0.0331 0.0186 0.0081 0.5205 1.3288 �0:7804 0.1316 0.0276 3.31

AP2 0.0307 0.0139 0.0063 0.0034 0.7557 0.6423 �0:3586 0.0604 0.0287 3.34

AP3 0.0250 0.0054 0.0024 0.0015 0.9520 0.4691 �0:2109 0.0273 0.0298 3.40

AP4 0.0249 0.0030 0.0014 0.0014 0.8824 0.4064 �0:1405 0.0135 0.0297 3.41

FPS 0.0044 0.0041 0.0037 0.0018 1.1462 �0:1088 0.0432 �0:0106 0.0279 3.23

WFF1 0.0521 0.0105 0.0068 0.0064 0.7115 0.8263 �0:3258 0.0372 0.0273 3.53

WFF2 0.0267 0.0118 0.0070 0.0037 0.8527 0.6162 �0:3135 0.0512 0.0285 3.48

WFF3 0.0109 0.0101 0.0058 0.0054 1.3660 �0:4236 0.2293 �0:0469 0.0253 3.30

BBB2 0.0318 0.0277 0.0210 0.0089 0.8447 0.8101 �0:5808 0.1120 0.0297 3.24

BPAL12 0.0168 0.0097 0.0048 0.0022 1.0847 �0:6537 0.4289 �0:0874 0.0373 2.73

ENG 0.0195 0.0179 0.0142 0.0109 1.0426 0.4716 �0:3353 0.0632 0.0286 3.39

MPA1 0.0251 0.0032 0.0030 0.0022 1.0523 0.3546 �0:1356 0.0074 0.0297 3.33

MS1 0.0277 0.0055 0.0035 0.0003 0.9340 0.2231 0.0718 �0:0642 0.0485 2.73

MS2 0.0096 0.0021 0.0003 0.0001 0.9680 �0:1326 0.0786 �0:0360 0.0367 2.56

MS1b 0.0192 0.0062 0.0029 0.0003 1.2148 �0:1255 0.1959 �0:0700 0.0403 2.92

PS 0.0624 0.0298 0.0298 0.0166 1.3064 �1:2479 0.5534 �0:0186 0.0571 2.26

GS1 0.0889 0.0383 0.0377 0.0249 1.7649 �1:9609 0.8871 �0:0942 0.0265 3.22

GS2 0.0603 0.0437 0.0433 0.0314 1.2562 �0:4936 �0:1125 0.1051 0.0362 2.61

BGN1H1 0.0868 0.0495 0.0439 0.0403 1.1915 0.2463 �0:7222 0.2300 0.0356 2.97

GNH3 0.0135 0.0093 0.0081 0.0057 1.0236 0.0297 �0:2197 0.0742 0.0482 2.53

H1 0.0200 0.0122 0.0084 0.0071 1.0365 0.1735 �0:5519 0.1790 0.0406 2.39

H2 0.0173 0.0136 0.0067 0.0067 1.0666 0.4639 �0:8300 0.2393 0.0391 2.41

H3 0.0124 0.0109 0.0082 0.0068 1.1204 0.2084 �0:5285 0.1519 0.0402 2.42

H4 0.0103 0.0100 0.0066 0.0066 1.0070 0.4040 �0:3709 0.0696 0.0223 3.18

H5 0.0137 0.0134 0.0059 0.0049 0.9614 0.6257 �0:6459 0.1371 0.0233 2.96

H6 0.0137 0.0135 0.0129 0.0113 1.0182 0.1483 �0:2638 0.0628 0.0263 2.79

H7 0.0123 0.0112 0.0057 0.0057 0.9147 0.4331 �0:4779 0.1064 0.0254 2.94

PCL2 0.0265 0.0130 0.0086 0.0077 1.0127 0.1289 �0:4822 0.1616 0.0389 2.52

ALF1 0.0731 0.0475 0.0400 0.0283 0.9349 �0:3810 0.6697 �0:2305 0.0305 2.75

ALF2 0.0692 0.0490 0.0276 0.0178 0.7100 2.6577 �2:2438 0.4712 0.0305 2.83

ALF3 0.0386 0.0149 0.0140 0.0134 0.8987 0.4588 �0:3533 0.0489 0.0305 2.73

ALF4 0.0708 0.0135 0.0099 0.0094 0.8705 0.4469 0.0284 �0:0914 0.0305 2.83

Average 0.0323 0.0166 0.0124 0.0089
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neutron stars where the equation of state is not well known:
p0 is the pressure where the baryon density is �0 ¼ 2�
1014 g=cm3, and pmax is the central pressure of the
maximum-mass nonrotating neutron-star model for the
particular equation of state. The constants p0, xmax ¼
logðpmax=p0Þ, and the total energy density, �0 ¼ �ðp0Þ,
are given (in centimeter-gram-second units) in the last
three columns of Table I for each of the realistic equations
of state. This range of pressures coincides with the range
used by Read, Lackey, Owen, and Friedman [2] to con-
struct their piecewise-polytrope fits. Using the same range
of pressures here makes comparison with their work more
straightforward.

The spectral coefficients, �k, that determine the particu-
lar �fitðx; �kÞ are chosen to minimize the residual�ð�kÞ for
each realistic equation of state. The minimization process
was carried out with an algorithm based on the Levenberg-
Marquardt method [16], starting with initial estimates,
�0 ¼ 1 and �k ¼ 0 for k � 1. Approximate �fit were con-
structed in this way for expansions containing 2, 3, 4, and 5
spectral basis functions. The minimum values of the re-
siduals, �S2, �S3, �S4, and �S5, for these cases are listed
for each equation of state in Table I. The average values of
these minimum residuals decrease from about 2.9% for the
2-parameter fits, to about 0.9% for the 5-parameter fits. For
comparison the residuals �P4 for the 4-parameter
piecewise-polytrope fits of Reid, Lackey, Owen, and
Friedman [2] are also given in Table I for each equation

of state.3 The values of the residuals, �S2, �S3, �S4, �S5,
and �P4, are also shown graphically in Fig. 1. Points along
the horizontal axis in Fig. 1 represent the different realistic
equations of state in the order listed in Table I. These
results show that the spectral fits are convergent, and do
a fairly good job of approximating this collection of real-
istic equations of state. The 2-parameter spectral fits have
smaller residuals than the 4-parameter piecewise-polytrope
fits for most of these equations of state. Also listed in
Table I are the optimal values of the spectral coefficients,
�0, �1, �2, and �3, for the 4-parameter spectral approxi-
mation to each equation of state. These values, together
with the tabulated constants �0 and p0 can be used to
reconstruct the complete 4-parameter spectral fits for
�ðpÞ, using Eqs. (6) and (7).
Three equations of state have been chosen from the

complete set to illustrate in more detail the accuracy of
the fits. These three cases are equation of state PAL6
having the highest accuracy spectral fits, APR1 having
spectral fits with average accuracy, and BGN1H1 having
the lowest accuracy spectral fits. Figures 2–4 show the
adiabatic index �ðxÞ computed directly from the tabulated
equations of state, the 4-parameter spectral fit to the adia-
batic index, and the 4-parameter piecewise-polytrope fit for
each equation of state (EOS). From these figures it is clear
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∆
P4

∆
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∆
S3

∆
S4

∆
S5

FIG. 1 (color online). Residuals �Sk are illustrated for several
spectral fits and for the polynomial fit �P4 for each of the
realistic equation of state models, which are represented as
points along the horizontal axis in this figure. These residuals
are for standard pressure-based representations of the equation of
state, � ¼ �ðpÞ, which are also given in Table I.

0 1 2 3 4 5 6
2.1

2.2

2.3

2.4
PAL6 EOS data
4-param polytropic fit

4-param spectral fit

x = log( p / p
0

)

Γ

FIG. 2 (color online). Adiabatic index as a function of pres-
sure, �ðxÞ, for various fits to the PAL6 equation of state.

3The residuals reported in Table III of Ref. [2] differ from the
�P4 residual listed in Table I in two ways. The first difference is
the residuals reported in Ref. [2] are evaluated using base-10
logarithms, rather than the natural logarithms used here. This
difference makes the Ref. [2] residuals smaller by the factor
log10e � 2:3. The second difference is that �P4 reported here
measures the accuracy of the piecewise-polytrope fits for �ðpÞ,
while the residuals reported in Ref. [2] measure the accuracy of
those fits for pð�Þ, where � is the baryon density of the material.
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that the smoother equations of state, like PAL6, have the
highest accuracy fits, while the equations of state with a
sharp phase transition, like BGN1H1, have the lowest
accuracy fits. Figures 5–7 illustrate the errors in the various
fits to the equation of state �ðxÞ for these three example
equations of state. These errors are illustrated as graphs of
logð�fit=�Þ � ð�fit � �Þ=�, as functions of the pressure
variable x ¼ logðp=p0Þ. These figures show that the spec-
tral fits are much more accurate than the 4-parameter
piecewise-polytrope fit for the smooth and average equa-
tions of state, PAL6 and APR1. The spectral fits have about
the same accuracy as the piecewise-polytrope fit for equa-
tion of state BGN1H1 which has a strong phase transition.
Figures 5–7 also illustrate in a visual way the convergence

of the spectral fits as the number of basis functions is
increased.
The enthalpy-based representation of the equation of

state, � ¼ �ðhÞ and p ¼ pðhÞ, is more useful for certain
purposes. It is helpful to understand, therefore, whether the
spectral fits for this representation, Eqs. (14)–(19), are as
accurate and effective as those for the standard � ¼ �ðpÞ
representation. So approximate equations of state, �fitðhÞ,
have been constructed for the same set of 34 realistic
neutron-star equations of state described in Ref. [2]. As
before these fits were made by adjusting the values of the
spectral coefficients �k defined in Eq. (14), to minimize the
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BGN1H1 EOS data
4-param polytropic fit

4-param spectral fit

x = log( p / p
0
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Γ

FIG. 4 (color online). Adiabatic index as a function of pres-
sure, �ðxÞ, for various fits to the BGN1H1 equation of state.
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5-param spectral fit

x = log( p / p
0
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g(

ε fi
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)

PAL6

FIG. 5 (color online). Ratios between various fits, �fitðxÞ, and
the exact PAL6 equation of state, �ðxÞ. Note that logð�fit=�Þ �
ð�fit � �Þ=� measures the fractional error of the fit.
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APR1

FIG. 6 (color online). Ratios between various fits, �fitðxÞ, and
the exact APR1 equation of state, �ðxÞ. Note that logð�fit=�Þ �
ð�fit � �Þ=� measures the fractional error of the fit.
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FIG. 3 (color online). Adiabatic index as a function of pres-
sure, �ðxÞ, for various fits to the APR1 equation of state.
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residual �ð�kÞ defined in (20). The only differences be-
tween this and the standard case are: The variable x ¼
logðh=h0Þ is chosen here to be an enthalpy variable, and the
functions �ðh; �kÞ and pðh; �kÞ are determined here with
Eqs. (17)–(19). Table II lists each equation of state, along
with the residuals, �S2, �S3, �S4, and �S5, for the spectral
fits having 2, 3, 4, and 5 nonzero spectral coefficients. The

values of the residuals, �S2, �S3, �S4, �S5, and �P4, are
also show graphically in Fig. 8 for these enthalpy-based
fits. Table II also lists the coefficients, �0, �1, �2, and �3

for the 4-parameter spectral fit. Finally, Table II contains
information about the enthalpy variables, h0 and xmax ¼
logðhmax=h0Þ, for each equation of state. The quantity h0 is
the enthalpy for which �0 ¼ �ðh0Þ and p0 ¼ pðh0Þ whose
values are listed in Table I, and hmax is the value for which
pmax ¼ pðhmaxÞ. These results show that the spectral
expansions of the enthalpy-based representation of the
equation of state are very comparable to the standard
expansions.

IV. DISCUSSION

The spectral fits constructed here were designed to ex-
plore how accurately the real neutron-star equation of state
might be determined once the first few accurate neutron-
star mass-radius measurements become available. These
fits could be improved for equations of state with phase
transitions by using separate spectral fits above and below
the phase-transition pressure. These piecewise spectral fits
could eliminate Gibbs phenomena errors, but would re-
quire significantly more (roughly double the number of)
parameters. Measuring this larger number of parameters
from neutron-star observations would therefore require a
much larger number of accurate mass-radius determina-
tions. A systematic study of the relative accuracy of single
versus piecewise spectral expansions (with the same total
number of free parameters) will therefore be delayed until
more neutron-star measurements become available.
The fits constructed here show that spectral representa-

tions of the various realistic neutron-star equations of state
are remarkably accurate, even when the number of basis
functions used in the spectral expansion is rather small.
Such expansions provide an attractive alternative to the
piecewise-polytrope approximations for a variety of cur-
rent realistic models of the equation of state. If the real
neutron-star equation of state is relatively smooth, then
these spectral expansions will provide an extremely effi-
cient way to represent it. And remarkably, even if the
neutron-star equation of state has a phase transition, these
spectral fits do about as well as the piecewise-polytrope fits
with the same number of free parameters.
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FIG. 8 (color online). Residuals �Sk are illustrated for several
spectral fits and for the polynomial fit �P4 for each of the
realistic equation of state models, which are represented as
points along the horizontal axis in this figure. These residuals
are for enthalpy-based representations of the equation of state,
� ¼ �ðhÞ, which are also given in Table II.
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FIG. 7 (color online). Ratios between various fits, �fitðxÞ, and
the exact BGN1H1 equation of state, �ðxÞ. Note that
logð�fit=�Þ � ð�fit � �Þ=� measures the fractional error of the fit.
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