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The dynamics of expansion and large scale structure formation in the multicomponent Universe with

dark energy modeled by the minimally coupled scalar field with generalized linear barotropic equation of

state are analyzed. It is shown that the past dynamics of expansion and future of the Universe—eternal

accelerated expansion or turnaround and collapse—are completely defined by the current energy density of

a scalar field and relation between its current and early equation of state parameters. The clustering

properties of such models of dark energy and their imprints in the power spectrum of matter density

perturbations depend on the same relation and, additionally, on the ‘‘effective sound speed’’ of a scalar

field, defined by its Lagrangian. It is concluded that such scalar fields with different values of these

parameters are distinguishable in principle. This gives the possibility to constrain them by confronting the

theoretical predictions with the corresponding observational data. For that we have used the 7-year

Wilkinson Microwave Anisotropy Probe data on cosmic microwave background anisotropies, the Union2

data set on Supernovae Ia and the seventh data release of the Sloan Digital Sky Survey data on luminous

red galaxies space distribution. Using the Markov Chain Monte Carlo technique the marginalized posterior

and mean likelihood distributions are computed for the scalar fields with two different Lagrangians: Klein-

Gordon and Dirac-Born-Infeld ones. The properties of such scalar field models of dark energy with best

fitting parameters and uncertainties of their determination are also analyzed in the paper.
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I. INTRODUCTION

The unknown nature of dark energy remains the most
intriguing problem of physics and cosmology of the last
decade. Theorists have proposed a dozen of models well
matching the observational data (see e. g. reviews [1] and
book [2]), but key tests for distinguishing of them still have to
be developed. This can be achieved by the detailed study of
their physical properties and confronting the theoretical pre-
dictions of each of them with observations. Physically moti-
vated and historically first after the cosmological constant
dark energy candidate is the scalar field violating the strong
energy condition. Here, we analyze two such fields—classi-
cal and tachyonic—in order to find out how they match the
current observational data assuming that one of these fields
dominates our Universe today. As in this paper we are inter-
ested mainly in the dark energy effects, we restrict ourselves
to models with zero curvature of 3-dimensional space.

Field and fluid approaches are used for inclusion of the
scalar field in the cosmological model, which describes the
dynamics of expansion of the Universe and formation of its
large-scale structure. They are equivalent if the intrinsic

entropy of dark energy is taken into account in the equa-
tions of perturbations. Here, we use the combined approach
in which the scalar field as dark energy is described by its
dimensionless density �de � 8�G�de=3H

2
0 , the equation

of state (EoS) parameter w � Pde=�de, and the effective
sound speed1 c2s � �PðdeÞ=��ðdeÞ, determined by its

Lagrangian. We assume also that a scalar field is minimally
coupled to other components, i. e. it interacts with them
only gravitationally. Therefore, these quantities completely
define its model. In general case, the last two values w and
c2s are arbitrary functions of time, which should be defined
by additional assumptions about the properties of dark
energy. The simplest case w ¼ const and c2s ¼ 1 (classical
scalar field) is well studied. The recent determination of
value of w for this case by [3], based on the seven-year
WMAP data (WMAP7), the distance measurements from
the baryon acoustic oscillations (BAO) in the space distri-
bution of galaxies from SDSS DR7 data [4], Hubble
constant measurements [5], and supernova data [6]
(WMAP7þ BAOþ SN), gives the value close to �1:
w ¼ �0:98� 0:053 (flat Universe, 68% CL). So, the cos-
mological model with such scalar field is rather similar to
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1The terms effective sound speed and adiabatic sound speed of
dark energy are used in the literature for designations of dark
energy intrinsic values which formally correspond to thermody-
namical ones.
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�CDM model and has the same problems, e. g. fine tuning
and cosmic coincidence.

Varying in time EoS parameter wðaÞ of the so-called
dynamical dark energy is the more complicated case, which
can in principle resolve those problems as well as promises
the interesting properties of dark energy and its effect on
the dynamics and structure formation of the Universe. The
dynamical classical scalar fields called ‘‘quintessence’’
with different potentials were investigated extensively for
over a decade (for some early works see [7]). Often the
dependence of EoS parameter w on the scale factor a is
assumed in ad hoc manner. The linear form of this depen-
dence wðaÞ ¼ w0 þ ð1� aÞwa was proposed in [8] and
widely used. Here, w0 and wa denote the present values
ofw and its first derivative, respectively. The determination
of them by [9] on the base of WMAP7þ BAOþ SN data
givesw0 ¼ �0:93� 0:12,wa ¼ �0:41� 0:72. Such dark
energy evolves from phantom field with w ¼ �1:34 at the
early epoch to the quintessential one at the current epoch
with w ¼ �0:93. The dark energy density increases from

zero to�1:25�ð0Þ
de at a � 0:83 and decreases asymptotically

to zero after that. The previous determination of these
parameters by [10] using similar but older data sets gave
w0 ¼ �1:09� 0:12, wa ¼ 0:52� 0:46. It means that in
this case the dark energy evolves from quintessential field
with w ¼ �0:57 in the early epoch to the phantom one at
current epoch with w ¼ �1:09. Its density decreases

at early epoch, achieves the minimal value of �0:83�ð0Þ
de

at the same scale factor a � 0:83, and grows later.
Recently, this form has been modified by [10] in order to
bring the behavior of dynamical dark energy at early epoch
closer to that of � term. Their approximation has the
additional third parameter atran which, however, is weakly
constrained by observations. The mentioned parametriza-
tions of time dependence of EoS parameter allow the
phantom divide crossing (w ¼ �1) and extend the variety
of properties of dark energy and its possible physical
interpretations. Other three, four, and more parametric
approximations of EoS have been analyzed [11] too. The
additional degeneracies and uncertainties of parameters
related to the early dark energy density and time variations
of EoS parameter are inherent for them. And vice versa, the
value of EoS w as well as of energy density �de related to
the late epoch are determined well as a result of their main
impact on the expansion history of the Universe, horizon
scale, distance to cosmic microwave background (CMB)
last scattering surface, and scale-independent growth factor
of linear matter density perturbations. These values, how-
ever, give no possibility to constrain essentially the types of
cosmological scalar fields or, in other words, the forms of
their Lagrangians and potentials.

The additional constraints on the type of cosmological
scalar fields can be obtained by determination of the
third mentioned above parameter—the effective sound
speed c2s , since it is related to the field Lagrangian as

c2s ¼ @L
@X =ð2X @2L

@X2 þ @L
@XÞ. It governs the evolution of dark

energy density perturbations, which influence the evolution
of matter density ones via the gravitational potential. Its
impact on the linear power spectrum of matter density
perturbations is essentially lower than the growth factor
caused by the background dynamics, but it is scale-
dependent and can be appreciable for some types of scalar
fields. Some of them are studied carefully in [12].
In the previous papers [13,14], we have analyzed the

cosmological models with minimally coupled classical and
tachyonic scalar fields with the EoS parameter varying in
time as wðaÞ ¼ w0a

3=ð1þ w0 � w0a
3Þ, which was de-

duced from the condition of ‘‘zero adiabatic sound speed’’:
c2a � _Pde= _�de ¼ 0. It was shown that at the early epoch
such fields can mimic the dark matter and diminish the fine
tuning problem. The magnitude of dark energy perturba-
tions of such fields increases before entering the acoustic
horizon and decays in oscillating manner after that. It was
shown also that they affect the magnitude of gravitational
potential and cause the scale dependence of matter density
perturbations, which can be used for constraining the pa-
rameters of such dark energy models along with other
cosmological ones.
Here, we analyze more general case—‘‘constant adia-

batic sound speed’’ c2a ¼ const that is equivalent to
assumption of the linear barotropic EoS of dark energy
Pde ¼ C1�de þ C2, where C1 and C2 are constants. The
important question related to such scalar fields is how their
introduction agrees with the observational data on accel-
erated expansion of the Universe, its large-scale structure,
and CMB anisotropy? To find the answer, we perform
analysis using the Markov Chain Monte Carlo (MCMC)
method for multicomponent cosmological model and the
present data, namely, seven-year WMAP data on CMB
anisotropy, SDSS DR7 data on luminous red galaxies
(LRG) power spectrum, and the SNIa photometric
relations.
The paper is organized as follows. In Sec. II, we discuss

the background dynamics of our models and parametriza-
tion of EoS parameter by the ‘‘adiabatic sound speed’’. In
Sec. III, the evolution equations for the scalar field pertur-
bations in the synchronous gauge are presented. In Sec. IV,
the method of determination of cosmological parameters
and used observational data sets are described. In Sec. V,
we present the results of determination of scalar field
parameters and discuss the properties of models with the
best fitting ones. The conclusion can be found in Sec. VI.

II. DARK ENERGY WITH BAROTROPIC EOS AND
BACKGROUND EQUATIONS

We assume that background Universe is spatially flat,
homogeneous, and isotropic with Friedmann-Robertson-
Walker (FRW) metric of 4-space

ds2 ¼ gijdx
idxj ¼ a2ð�Þðd�2 � ���dx

�dx�Þ;
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where � is the conformal time defined by relation2

dt ¼ að�Þd�, and að�Þ is the scale factor normalized
to 1 at the current epoch �0. The Latin indices i; j; . . .
run from 0 to 3, and the Greek ones are used for the spatial
part of the metric: �;�; . . . ¼ 1, 2, 3. We also suppose that
the Universe is filled with nonrelativistic particles (cold
dark matter and baryons), relativistic ones (thermal elec-
tromagnetic radiation and massless neutrino), and mini-
mally coupled dark energy. The last one is considered as
the scalar field with either Klein-Gordon (classical) or
Dirac-Born-Infeld (tachyonic) Lagrangian

Lclas ¼ X �Uð�Þ; Ltach ¼ � ~Uð�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 ~X

p
; (1)

where Uð�Þ and ~Uð�Þ are the field potentials defining the
model of the scalar field, X ¼ �;i�

;i=2 and ~X ¼ �;i�
;i=2

are kinetic terms. We assume also that the background
scalar fields are homogeneous (�ðx; �Þ ¼ �ð�Þ,
�ðx; �Þ ¼ �ð�Þ), so their energy density and pressure
depend only on time:

�clas ¼ X þUð�Þ; Pclas ¼ X �Uð�Þ; (2)

�tach ¼
~Uð�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 ~X

p ; Ptach ¼ � ~Uð�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 ~X

p
: (3)

The EoS parameters wde � Pde=�de for these fields are
following:

wclas ¼ X �U

X þU
; wtach ¼ 2 ~X � 1: (4)

Using the last relations the field variables and potentials
can be presented in terms of densities and EoS para-
meters as

�ðaÞ ��0 ¼ �
Z a

1

da0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�deða0Þð1þ wða0ÞÞp

a0Hða0Þ ; (5)

UðaÞ ¼ �deðaÞ½1� wðaÞ�
2

(6)

for the classical Lagrangian and

�ðaÞ � �0 ¼ �
Z a

1

da0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ wða0Þp

a0Hða0Þ ; (7)

~UðaÞ ¼ �deðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�wðaÞp

(8)

for the tachyonic one.
The dynamics of expansion of the Universe is com-

pletely described by the Einstein equations

Rij � 1

2
gijR ¼ 8�GðTðmÞ

ij þ TðrÞ
ij þ TðdeÞ

ij Þ; (9)

where Rij is the Ricci tensor, and TðmÞ
ij , TðrÞ

ij , T
ðdeÞ
ij are the

energy-momentum tensors of nonrelativistic matter (m),

relativistic matter (r), and dark energy (de), correspond-
ingly. Assuming that the interaction between these compo-
nents is only gravitational, each of them should satisfy
the differential energy-momentum conservation law
separately:

Ti
j;i

ðnÞ ¼ 0: (10)

Hereafter ‘‘;’’ denotes the covariant derivative with respect
to the coordinate with given index in the space with metric
gij, and (n) stands for (m), (r), or (de).

For the perfect fluid with density �n and pressure Pn,
related by the equation of state Pn ¼ wn�n, it gives

_� n ¼ �3
_a

a
�nð1þ wnÞ; (11)

and here and below a dot denotes the derivative with
respect to the conformal time, ‘‘ _ ’’� d=d�. For the

nonrelativistic matter wm ¼ 0 and �m ¼ �ð0Þ
m a�3; for the

relativistic one wr ¼ 1=3 and �r ¼ �ð0Þ
r a�4. Hereafter,

‘‘0’’ denotes the current values. The EoS parameter wde

and adiabatic sound speed c2aðdeÞ � _Pde= _�de are related by

the ordinary differential equation:

w0 ¼ 3a�1ð1þ wÞðw� c2aÞ; (12)

where a prime denotes the derivative with respect to the
scale factor a. Here and below, we omit index de for wde

and c2a ðdeÞ. As it can be easily seen, the derivative of EoS

parameter with respect to the scale factor will be negative
for w< c2a and positive for w> c2a. In the first case, the
repulsive properties of scalar fields will be raising, in the
second one—receding. In the general case, c2a can be an
arbitrary function of time, but here we assume that it is
constant: c2a ¼ const. In such case, the temporal derivative
of Pdeð�Þ is proportional to the temporal derivative of
�deð�Þ. The integral form of this condition is the general-
ized linear barotropic equation of state

Pde ¼ c2a�de þ C; (13)

where C is a constant. Cosmological scenarios for the
Universe filled with the fluid with such EoS3 have been
analyzed in [15]. The solution of the differential Eq. (12)
for c2a ¼ const is following:

wðaÞ ¼ ð1þ c2aÞð1þ w0Þ
1þ w0 � ðw0 � c2aÞa3ð1þc2aÞ � 1; (14)

where the integration constant of (12) w0 is chosen as the
current value of w. One can easily find that (14) gives (13)

with C ¼ �ð0Þ
de ðw0 � c2aÞ, where �ð0Þ

de is current density of

dark energy. Thus, we have two values w0 and c2a defining
the EoS parameterw at any redshift z ¼ a�1 � 1. The time
dependences of barotropic EoS parameter for different
values of c2a are shown in the top panel of Fig. 1. As it

2Here and below we put c ¼ 1. 3Often called in literature ‘‘wet dark fluid’’.
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follows from (14), c2a corresponds to the EoS parameter at
the beginning of expansion (winit � wð0Þ ¼ c2a, a ¼ 0,
z ¼ 1).

The differential Eq. (11) with w from (14) has the
analytic solution too:

�de ¼ �ð0Þ
de

ð1þ w0Þa�3ð1þc2aÞ þ c2a � w0

1þ c2a
: (15)

The dependences of dark energy density on scale factor for
different values of c2a are shown in the bottom panel of
Fig. 1.

Using the obtained dependences of densities of each
component on the scale factor, one can deduce from the
Einstein Eqs. (9) the following equations for background
dynamics:

H ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r=a

4 þ�m=a
3 þ�k=a

2 þ�defðaÞ
q

; (16)

q ¼ 1

2

2�r=a
4 þ�m=a

3 þ ð1þ 3wÞ�defðaÞ
�r=a

4 þ�m=a
3 þ�k=a

2 þ�defðaÞ
; (17)

where fðaÞ ¼ ½ð1þ w0Þa�3ð1þc2aÞ þ c2a � w0�=ð1þ c2aÞ,
and �k � �K=ðaHÞ2 is the dimensionless curvature pa-
rameter. H � _a=a2 is the Hubble parameter (expansion
rate) for any moment of time, and q � �ða €a= _a2 � 1Þ is
the acceleration parameter. They completely describe the
dynamics of expansion of the homogeneous isotropic
Universe.
To analyze the properties of scalar field models of dark

energy with barotropic EoS and to calculate the observa-
tional predictions, the allowed by physics and mathematics
ranges of values for w0 and c2a should be determined. The
field variables � (for positive energy density of the scalar
field) and � are always real if w � �1. The potential UðaÞ
of classical scalar field is positive if w � 1, and the poten-
tial ~UðaÞ of tachyonic one is real if w � 0. As wðaÞ
changes from c2a to w0 in the range of 0 � a � 1, the
allowed ranges of values for w0 and c2a are the same for
both fields. Other upper constraint for classical scalar field

FIG. 1. Top panel: the dependences of EoS parameter on scale
factor for barotropic dark energy with w0 ¼ �0:85 and different
c2a ð0;�0:2;�0:85;�0:99Þ. Bottom panel: the dependences of
dark energy density (in the units of critical one at the current
epoch) on scale factor with EoS parameters presented in the top
panel.

FIG. 2. The dynamics of expansion of the Universe with
barotropic dark energy: H2ðaÞ (top panel) and qðaÞ (bottom
one) for the same models as in Fig. 1.
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can be obtained from the next speculations. In order to
keep the shape of angular power spectrum of CMB tem-
perature fluctuations close to the �CDM one matching
well the observational data, the dimensionless density of
dark energy �deðaÞ ¼ 8�G�deðaÞ=3H2ðaÞ should not ex-
ceed 0.01–0.02 at the last scattering surface. Its asymptotic

at small a is �deðaÞ � �ð0Þ
de ð1þ w0Þa�3ð1þc2aÞ=ð1þ c2aÞ.

The condition �deð0:001Þ � 0:02 is satisfied for c2a � 0.
Therefore, for both quantities w0 and c2a, we accept the
ranges of values �1 � w0, c

2
a � 0 for which the scalar

field variables and potentials have no singularities during
the past history of the Universe, but there is no warranty
that the singularities will not appear in future. Let us
analyze that.

The system of Eqs. (14)–(17) describes 3 possible vari-
ants of future evolution of the Universe defined by the
relationship between w0 and c2a for given values of rest
of the parameters �m, �k, �r, and �de (Figs. 1–3).

(1) w0 < 0 (c2a > w0): As it follows from (14), in this
case w decreases monotonically from c2a at the early epoch

to w0 at current one up to �1 at the infinite time. The
constant C in EoS (13) is negative. The dark energy density

and pressure tend asymptotically to �ð1Þ
de ¼ �ð0Þ

de ðc2a �
w0Þ=ð1þ c2aÞ and Pð1Þ

de ¼ ��ð1Þ
de . Therefore, in this case

the scalar field rolls slowly to the vacuum (see Fig. 1) and
in far future the Universe will proceed into de Sitter

stage of its expansion with qð1Þ ¼ �1 and Hð1Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�deðc2a � w0Þ=ðc2a þ 1Þp

H0. The scalar fields of such
type have the following general properties [see relations
(4)–(8) and top panels of Fig. 3]: their kinetic terms and
potentials have always real positive values; for classical field
X <U, and for tachyonic one ~X < 1=2, their potentials roll
slowly to minima (Umin, ~Umin > 0), which correspond to the
infinite value of time and finite one of the field variables; the
kinetic terms of these fields tend asymptotically to 0—this

means that _� and _� ! 0 and the fields will ‘‘freeze’’.
2) w0 ¼ 0 (c2a ¼ w0): It corresponds to the well-studied

case w ¼ const. In this case, C ¼ 0, and we have usual
barotropic EoS Pde ¼ w0�de, �de ! 0 when a ! 1.

FIG. 3. Evolution of potentials and kinetic terms of classical (left) and tachyonic (right) scalar fields with barotropic EoS for c2a > w0

(top panels), c2a ¼ w0 (middle panels), and c2a < w0 (bottom panels). In the top panels c2a ¼ �0:2, in the middle ones c2a ¼ �0:85, and
in the bottom ones c2a ¼ �0:99. In all panels w0 ¼ �0:85.
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So, the future Universe will experience the power law

expansion with a / t2=3ð1þw0Þ and acceleration parameter
q ! ð1þ 3w0Þ=2. The scalar fields of such type have the
following general properties [see relations (4)–(8) and
middle panels of Fig. 3]: their kinetic terms and potentials
have always real positive values; for classical field
U=X ¼ const> 1, and for tachyonic one ~X ¼ ð1þ
w0Þ=2 ¼ const; their potentials roll very slowly to minima,
which correspond to the infinite values of the field varia-
bles and time; the potentials of these fields tend asymptoti-
cally to 0—it means that such fields ‘‘thaw’’.

3) w0 > 0 (c2a < w0): The EoS parameter w increases
monotonically from c2a at the early epoch to w0 at the
current one and still continues to increase after that. It

will reach 0 in future at aðw¼0Þ ¼ ½c2að1þ w0Þ=ðc2a �
w0Þ�1=ð3ð1þc2aÞÞ when potential of tachyonic scalar field be-
comes imaginary (relation (8) and right bottom panel of

Fig. 3) and 1 at aðw¼1Þ ¼ ½12 ð1� c2aÞð1þ w0Þ=ðw0 �
c2aÞ�1=ð3ð1þc2aÞÞ when potential of the classical one
becomes negative (relation (6) and left bottom panel
of Fig. 3). The scalar field densities at these a are posi-

tive: �deðaðw¼0ÞÞ ¼ �ð0Þ
de ðc2a � w0Þ=c2a and �deðaðw¼1ÞÞ ¼

�ð0Þ
de ðc2a � w0Þ=ðc2a � 1Þ, correspondingly. The field will

satisfy the strong energy condition�de þ 3Pde � 0 starting

from a ¼ ½ð1þ w0Þð1þ 3c2aÞ=ð2ðc2a � w0ÞÞ�1=ð3ð1þc2aÞÞ,
and then accelerated expansion of the Universe will
be changed by the decelerated one. The density of
scalar field continues decreasing, reaches 0 at

að�¼0Þ ¼ ½ð1þ w0Þ=ðw0 � c2aÞ�1=ð3ð1þc2aÞÞ, and then be-

comes negative. The EoS parameter at this moment will

have discontinuity of the second kind (Fig. 1). Later, when

�m þ �de reaches 0, the expansion of the Universe will be

changed by the contraction since at this moment _a ¼ 0,

€a < 0, as it follows from Eqs. (16) and (17), which have no

solution for larger a. Such behavior can be corrected only

slightly by the curvature parameter from the allowable

range. Though the potential and field variable of tachyonic

scalar field become imaginary at aðw¼0Þ < a< að�¼0Þ and
a > að�¼0Þ, correspondingly (their energy density and pres-
sure are real value always), we have no substantial argu-

ments for ruling out such models since they have not

singularities in past and are not excluded by the observa-

tional data. We have also no physical argument against the

possibility of generation of such fields at the early epoch.

Meanwhile, we will use the condition c2a > w0 too for

analysis of the scalar field dark energy without singularities

in future. The appearance of imaginary values of either

FIG. 4 (color online). The w� dw=d lna phase plane for scalar fields, with barotropic EoS as models of dynamical dark energy
(solid lines). If dw=d lna < 0, the fields evolve from right to left raising their repulsion properties; if dw=d lna > 0 the fields evolve
from left to right receding them. Thick dashed lines show the ranges occupied by the thawing and freezing scalar fields deduced by
[16] from the analysis of simplest particle-physics scalar field models of dynamical dark energy. In the left panel, the phase plane
evolution tracks of the scalar fields with barotropic EoS are shown in the range 0:5 � a � 1 (0 � z � 1) and in the same scale as in
[16] for easy comparison. In the right panel, the phase plane evolution tracks of the scalar fields with barotropic EoS correspond to the
range 0:0001 � a � 10 (� 0:9 � z � 10000). Thick solid black lines show the limits for such scalar field models: the upper line
corresponds to c2a ¼ �1, the lower one to c2a ¼ 0 (superimposed with the lower limit for freezing scalar fields from [16]). The thin
solid blue lines show the phase tracks of models considered in this section, the thin solid red lines show the phase tracks of the best
fitting models discussed in Sec. V. The red point shows the best fitting w ¼ const model.
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field variable or potential of the tachyonic scalar field
suggests that this case needs to be analyzed using the
multifield model of dark energy. That will be the matter
of a separate paper.

At the end of the analysis of general properties of the
scalar field models of dark energy with c2a ¼ const, let us
examine their occupancy of the w� dw=d lna phase
plane. From (12) and the constraint �1 � c2a � 0 follows
that the scalar field models of dark energy with c2a ¼ const
occupy the w� dw=d lna region limited by the lines
dw=d lna ¼ 3ð1þ wÞ2 and dw=d lna ¼ 3wð1þ wÞ
(Fig. 4). The last one coincides with the lower limit for
freezing scalar field models of dark energy deduced by [16]
from the analysis of the simplest particle-physics models
of cosmological scalar fields. Below it the scalar fields
have too large density at the early epoch that contradicts
the data on CMB anisotropy. Above the upper limit, there
is a range of fields which started as phantom ones, which
is excluded for fields with classical and tachyonic
Lagrangians considered here. The scalar fields, which are
in the phase plane between the lines dw=d lna ¼ 0 and
dw=d lna ¼ 3wð1þ wÞ, evolve from right to left in Fig. 4,
and their repulsion properties are raising with time. They
are unlimited in time, and w for them tends asymptotically
to �1. The scalar fields, which are in the phase plane
between the lines dw=d lna ¼ 0 and dw=d lna ¼
3ð1þ wÞ2, evolve from left to right in the Fig. 4, and their
repulsion properties are receding with time (dw=d lna > 0,
w increases) to change the accelerated expansion by decel-
erated one and even collapse. They can start in the range
below the lower limit for thawing scalar fields, then enter
the range of thawing scalar fields limited by [16], cross it,
and go out of upper limit dw=d lna ¼ 3ð1þ wÞ when
w> 0. So, the scalar fields with dw=d lna > 0 (c2a < w0)
can only partially be called thawing. We propose to call
them ‘‘scalar fields receding repulsion’’, reflecting their
main properties. Symmetrically, the scalar fields with
dw=d lna < 0 (c2a > w0), occupying the same range as
freezing scalar fields from [16], can be called ‘‘scalar fields
raising repulsion’’. Establishing of how well they can fit
the current observational data is the goal of the paper.

Since the classical scalar fields are completely indistin-
guishable from the tachyonic ones when considering only
the background dynamics, the linear theory of perturba-
tions in the multicomponent Universe must be included
into analysis.

III. EVOLUTION OF LINEAR PERTURBATIONS IN
THE SYNCHRONOUS GAUGE

Now we consider the spatially flat (�k ¼ 0) background
with scalar perturbations in the synchronous gaugewith the
line element

ds2 ¼ gijdx
idxj ¼ a2ð�Þðd�2 � ð��� þ h��Þdx�dx�Þ:

(18)

The scalar perturbations of metric h�� can be decomposed

into the trace h � h�� and traceless ~h�� components as

h�� ¼ h���=3þ ~h��. The perturbations are supposed to

be small (h 	 1), henceforth, all following equations are
linearized with respect to the perturbed variables. In the
multicomponent fluid each component moves with a small
peculiar velocity V� ¼ dx�=d�, defined by its intrinsic
properties (density, pressure, entropy, etc.) and h. At the
linear stage of evolution of perturbations the cold dark
matter (CDM) component is a pressureless perfect fluid
interacting with other components only via gravity.
Therefore, the synchronous coordinates are usually defined
as comoving to the particles of CDM. The energy density

�̂n and pressure P̂n of each component are perturbed as

�̂ðx�; �Þ ¼ �nð�Þð1þ �ðnÞðx�; �ÞÞ and P̂nðx�; �Þ ¼
Pnð�Þ þ �PðnÞðx�; �Þ. They are measured by a comoving

observer being at rest relative to the fluid at the instant of
measurements, so their perturbations are related as �PðnÞ ¼
c2sðnÞ�n�ðnÞ, where c2sðnÞ is the comoving effective sound

speed of component (n). This sound speed equals to zero
for dust medium (e. g. CDM or baryonic matter after
recombination at scales above Jeans scale) and 1=3 for
relativistic components. For scalar fields, the entropy per-
turbations are inherent and cause in addition to the adia-
batic pressure perturbations, which follow from the

variation of (13), the nonadiabatic pressure ones �PðnadÞ
ðdeÞ ,

so the total perturbation is their sum [17]:

�PðdeÞ ¼ c2a��ðdeÞ þ �PðnadÞ
ðdeÞ :

In the rest frame of dark energy (VðdeÞ ¼ �� ¼ �� ¼ 0), it
can be presented as

�PðdeÞ ¼ c2sðdeÞ�de�ðdeÞ;

where the effective (rest-frame) sound speed c2sðdeÞ for the
scalar field with given Lagrangian can be calculated as

c2sðdeÞ �
P;X

�;X

¼ L;X

2XL;XX þ L;X

:

It equals 1 for the classical scalar field and �w for the
tachyonic one (hereafter c2s � c2sðdeÞ).
For pure barotropic fluid,4 �PðnadÞ

ðdeÞ ¼ 0 and c2s ¼ c2a—

that distinguishes it from the scalar fields with barotropic
equation of state.
In the linear perturbation theory, it is convenient to

perform the Fourier transformation of all spatially-
dependent variables and use the equations for correspond-
ing Fourier amplitudes. The differential energy-momentum

conservation law �Ti
j;i

ðdeÞ ¼ 0 for perturbations in the

4The conditions on the Lagrangian for vanishing nonadiabatic
pressure perturbation in the case of generic scalar field can be
found in [18].
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space with metric (18) gives the equations for evolution of
Fourier amplitudes of density and velocity perturbations of
dark energy in the synchronous gauge:

_�ðdeÞ þ 3ðc2s � wÞaH�ðdeÞ þ ð1þ wÞ
_h

2

þ ð1þ wÞ
�
kþ 9a2H2 c

2
s � c2a
k

�
VðdeÞ ¼ 0; (19)

_V ðdeÞ þ aHð1� 3c2sÞVðdeÞ � c2sk

1þ w
�ðdeÞ ¼ 0: (20)

These equations in the conformal-Newtonian gauge are
presented in [12], in the gauge-invariant variables in [14].
In these papers, it was shown also that the perturbations of
scalar fields with different c2s evolve differently. For the
case of classical and tachyonic scalar fields with c2a ¼ 0,
the evolution was extensively studied for the two-
component (dark energy plus dark matter) model in [14].
It was shown also that the transfer function of the cold
dark matter perturbations is different for the same set of

cosmological parameters but different Lagrangians (and
thus c2s) of dark energy.
The equations for the rest of components (nonrelativistic

and relativistic) are the same as in [19], so we skip this part
here. For calculation of the evolution of perturbations in all
components and power spectra of matter density perturba-
tions and cosmic microwave anisotropy, we have used the
publicly available code CAMB [20,21], modified to in-
clude the presented here expressions for HðaÞ, �deðaÞ, and
the evolution equations for dark energy perturbations. The
evolution of density perturbations (k ¼ 0:1 Mpc�1) of
cold dark matter, baryons, and scalar fields with different
c2a ð0;�0:2;�0:85;�0:99Þ is shown in Fig. 5. Other cos-
mological parameters have the next values: �de ¼ 0:722,
w0 ¼ �0:85, �cdmh

2 ¼ 0:111, �bh
2 ¼ 0:0227, H0 ¼

66:1 km=s=Mpc, ns ¼ 0:975, 	rei ¼ 0:085. The adiabatic
initial conditions from [19], for all components except dark
energy, are used here and below. The initial conditions for
dark energy perturbations are obtained from the asymptotic
solutions of (19) and (20) for k� 	 1 (the superhorizon
perturbations) in the early radiation-dominated epoch and
are following:

FIG. 5 (color online). Evolution of linear density perturbations of cold dark matter (dash-dotted line), baryons (dotted), and scalar
field (solid) with c2a ¼ w0 ¼ �0:85, c2a ¼ 0, c2a ¼ �0:2, c2a ¼ �0:99 (from top to bottom). Classical scalar field—left column,
tachyonic one—right. The wave number of perturbations is k ¼ 0:1 Mpc�1.
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�init
ðdeÞ ¼ � ð4� 3c2sÞð1þ wÞ

8þ 6c2s � 12wþ 9c2sðw� c2aÞ
h; (21)

V init
ðdeÞ ¼ � c2sk�init

8þ 6c2s � 12wþ 9c2sðw� c2aÞ
h: (22)

The character of evolution of scalar field density perturba-
tions depends on the temporal behavior of EoS parameter,
the difference of adiabatic and effective sound speeds (the
value of intrinsic entropy of scalar field is proportional to
it), and the ratio of the scale of perturbation to particle
horizon [see Eqs. (19) and (20)]. We can see that the
magnitude of density perturbations of such fields increases
before entering the acoustic horizon, decreases and
changes the sign during entering one, and decays with
oscillations later. So, at the current epoch the magnitude
of dark energy linear density perturbations is essentially
lower than matter one at all subhorizon scales.

Evolution of matter density perturbations is affected
by the dynamics of background expansion through the

scale-independent expansion rate and by scalar field den-
sity perturbations through the perturbations of metric
which depend on scale. For visualization of such total
influence of dark energy on matter density evolution, we
present in Fig. 6 the ratios of matter density power spec-
trum PðkÞ and CMB angular power spectrum Cl in the
models with scalar field to the corresponding ones in the
�CDM model with the same cosmological parameters.
The dependence of both ratios on scale, c2a, and type of
scalar field inspires hope that usage of the accurate enough
data set will give the possibility to constrain the scalar field
models of dark energy considered here. For that we use
here the available currently observational data.
At the end of this section, let us discuss the difference

between scalar field models of dark energy with barotropic
equation of state and pure barotropic fluid models of dark
energy. For pure barotropic fluid (PBF), c2s ¼ c2a. The
analysis of equation (49) from [14] shows that such dark
energy is strongly gravitationally instable at subhorizon
scales of density perturbations (k� 	 1) for c2s < 0.

FIG. 6 (color online). Top panels: The ratios of matter density power spectra PðkÞ in the models with classical (left) and tachyonic
(right) scalar fields to the matter density power spectra in the �CDM model. Bottom panels: the ratios of CMB angular power spectra
Cl in the models with classical (left) and tachyonic (right) scalar fields to the corresponding ones in the �CDM model. In each panel,
the solid line stands for the scalar field with c2a ¼ w0 ¼ �0:85, dotted one for c2a ¼ 0, dashed one for c2a ¼ �0:2, dash-dotted for
c2a ¼ �0:99.
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So, such fluid model of dark energy will not contradict the
observational data when c2s ¼ c2a > 0. In the left panel of
Fig. 7, the evolution of linear density perturbations of cold
dark matter, baryons, and pure barotropic fluid with c2s ¼
c2a ¼ 0, c2s ¼ c2a ¼ 0:1, and c2s ¼ c2a ¼ �0:1 is shown for
perturbations with the wave number k ¼ 0:1 Mpc�1. The
curves for last case (c2s ¼ �0:1) illustrate the strong in-
stabilities in perturbation growth so that the models with
c2s < 0 should be avoided. In order to check the viability of
PBFmodels of dark energy, we have computed the ratios of
matter density power spectrum PðkÞ and CMB angular
power spectrum Cl in such models to the corresponding
ones in the �CDM model. In the right panel of Fig. 7, one
can see that the influence of PBF dark energy with c2s ¼
c2a ¼ 0 on the evolution of matter density perturbations
differs from one of classical and tachyonic scalar fields
with c2a ¼ 0 (see Fig. 6). The large difference between the
power spectra of PBFþ CDM with c2s ¼ 0:1 and �CDM
models means that the upper observational constraint on c2s
should be close to zero.

In the context of this discussion and results presented in
this section, we would like to explain the title of the

analyzed here dark energy model—scalar field with baro-
tropic equation of state. It was shown above that the
scalar field is not exactly barotropic because of the non-
adiabaticity, which appears at the level of linear perturba-
tions and is / �ðdeÞ. Since �ðdeÞ 	 1 now and in the past

at all scales (at large scales due to the initial power
spectrum / kns , at small scales due to the decaying of
subhorizon perturbations of the scalar field, shown in
Fig. 5), in the main order, the dark energy equation of
state is the generalized linear barotropic one. This prop-
erty defines the scalar field dynamics as well as the
dynamics of expansion of the Universe and its future.
That is why we call such scalar field the ‘‘scalar field
with barotropic equation of state’’.

IV. METHOD AND DATA

To determine the best fitting values and confidential
ranges of the scalar field parameters together with other
cosmological ones, we perform the MCMC analysis for the
set of current observational data, which include the power
spectra from WMAP7 [3] and SDSS DR7 [4], the Hubble

FIG. 7 (color online). Pure barotropic fluid models of dark energy in the multicomponent Universe. Left: the evolution of linear
density perturbations (k ¼ 0:1 Mpc�1) of cold dark matter (dash-dotted line), baryons (dotted), and barotropic fluid (solid) with c2s ¼
c2a ¼ 0:0, c2s ¼ c2a ¼ 0:1, and c2s ¼ c2a ¼ �0:1 (from top to bottom). Right: the ratios of matter density power spectrum PðkÞ (top
panel) and CMB angular power spectrum Cl in the model with barotropic fluid to the corresponding ones in the�CDMmodel. In each
panel, the solid line corresponds to the pure barotropic fluid with c2s ¼ c2a ¼ 0:0, dashed one with c2s ¼ c2a ¼ �0:1.
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constant measurements [5], the light curves of SNIa [22],
and Big Bang nucleosynthesis (BBN) prior [23].

We use the publicly available package CosmoMC
[24,25], which includes the code CAMB [20,21], for calcu-
lation of model predictions for sampled sets of 8 cosmo-
logical parameters5 (for recent usage of this package
see [26]): the present value of the dark energy EoS w0,
the physical energy density of cold dark matter �ch

2, the
physical energy density of baryons �bh

2, the Hubble con-
stant6 H0, the scalar spectral index of the primordial pertur-
bations ns, the amplitude of primordial perturbations As, the
reionization optical depth 	, and the Sunyaev-Zel’dovich
amplitude ASZ. The run of original CosmoMC with data set
listed above gives the best fitting values and confidential
ranges for these parameters, which are presented in the first
and second columns of Table II.

The original CAMB has been modified as described
above, so the CosmoMC has been run with proposed
here parametrization of dark energy EoS parameter (14).
The extra parameter c2a can be either fixed or left free for
determination of its best fitting value. Thus, we have 9 free
parameters to be explored with MCMC. By now, we have
excluded the phantom models (w<�1) and assumed flat
priors for w0 and c2a in the range �1<w0, c

2
a � 0.

V. RESULTS AND DISCUSSION

We have performed MCMC runs for 9 spatially flat
cosmological models with the data set described above.
All models consist of 5 components: scalar field as dark
energy, dark matter, baryons, thermal background radia-
tion, and massless active neutrinos. The models differ by
the type of scalar field [classical scalar field (CSF) or
tachyonic scalar field (TSF)] and additional conditions
for values of adiabatic sound speed (c2a ¼ w0, c2a ¼ 0,
c2a > w0, and c2a free). We assume that dark matter is
cold (CDM), and since the density of dark components
are dominating now and defining the dynamical and clus-
tering properties of our Universe the models are called
CSFþ CDM or TSFþ CDM with corresponding addi-
tional conditions for c2a, which determine the type of
dark energy. Each run has 8 chains, and the number of
samples in each chain is �200000. The main results are
presented in the Tables I and II, where the parameter values
of best fit samples, and 1
 confidential ranges are shown
for the main cosmological parameters. In the last row of the
tables, the quantity � logL ¼ �2=2 of best fit sample is
presented for each model.

The most interesting models with free c2a we have tested
using 2 sets of observational data: WMAP7þ SDSS LRG

DR7 (Table I), and WMAP7þ SDSS LRG DR7þ SNþ
HSTþ BBN (Table II, last 2 columns). The normalized
mean likelihood functions Lðxj;�iÞ and marginalized pos-

terior distributions ~Lð�i; xjÞ for �de, w0, and c2a are pre-

sented for both data sets in Fig. 8. The first of them,
Lðxj; �iÞ, is the probability distribution of the observational
data xj for given model parameters �i. The second one,
~Lðxj; �iÞ, is the probability distribution of the parameters �i
for given observed data xj.

We can see that for both fields the current density �de

is constrained well by both data set: the likelihoods and
posteriors are close. The current density �de and EoS
parameters w0 are determined more accurately by the
complete data set: �de ¼ 0:72þ0:04

�0:06, w0 ¼ �0:93þ0:13
�0:07

for the classical scalar field and �de ¼ 0:72þ0:04
�0:05, w0 ¼

�0:97þ0:17
�0:03 for the tachyonic one. The adiabatic sound

speed c2a, which is the EoS parameter at early epoch, is
essentially unconstrained; its 1
 confidence range is wide
and coincides practically with the prior range ½�1; 0�. The
mean likelihood and posterior are different, for both fields
the likelihood is bimodal. First peak is close to �1,
another one to 0. For classical scalar field the bimodal
character of distribution is more appreciable. It means
that the used data sets are not appropriate for the estima-
tion of this parameter. On the other hand, it means that for
any fixed value of c2a from the range ½�1; 0� there exists a
set of the rest best fitting parameters for which the model
predictions match the used observational data well. The
results presented in the columns 1–7 of Table II illustrate
that. In order to remove the uncertainties in determination
of c2a, the other data and/or other statistical methods of

TABLE I. The best fitting values and 1
 confidential ranges of
cosmological parameters in the CSFþ CDM and TSFþ CDM
models, determined on the base of WMAP7 and SDSS LRG
DR7 data. The current Hubble parameter H0 is in units
km s�1 Mpc�1, the age of the Universe t0 is given in Giga years.

Parameters CSFþ CDM TSFþ CDM

�de 0:69þ0:06
�0:08 0:68þ0:06

�0:08

w0 �0:80þ0:34
�0:20 �0:95þ0:46

�0:05

c2a �0:91þ0:91
�0:09 �0:20þ0:19

�0:80

100�bh
2 2:27þ0:16

�0:15 2:27þ0:17
�0:16

10�cdmh
2 1:10þ0:14

�0:13 1:12þ0:12
�0:15

H0 65:4þ7:0
�7:1 65:0þ7:4

�7:1

ns 0:97þ0:05
�0:04 0:97þ0:04

�0:04

logð1010AsÞ 3:08þ0:09
�0:10 3:08þ0:09

�0:10

zrei 10:8þ3:2
�3:6 10:4þ3:3

�3:1


8 0:75þ0:13
�0:21 0:74þ0:15

�0:21

t0 13:8þ0:6
�0:3 14:0þ0:5

�0:5

� logL 3760.26 3760.39

5The curvature parameter was fixed at �K ¼ 0, so �de ¼
1��b ��cdm.

6Instead of H0 the CosmoMC code varies the parameter �,
which is the ratio of the sound horizon to the angular diameter
distance multiplied by 100.
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analysis must be used, but this will be the matter of a
separate paper.

Analogical likelihood and posterior distributions for the
rest of parameters have the shape of the Gaussians with
half width equal approximately to the values shown in the
upper/lower indices of each value in the tables. We can
see also that the best fitting values of all parameters of
models, presented in the Table II in columns 1–7, lie in
the 1
 marginalized confidential limits of the models with
free c2a. The differences of �2 values are statistically
insignificant. It means that observational data sets used
here give no possibility to distinguish these 9 models at
high statistical level, none of which can be ruled out by
these data.

In Fig. 9, we compare the power spectra of CMB tem-
perature fluctuations and matter density ones for cosmo-
logical models with the best fitting parameters from
Table II with WMAP7 and SDSS DR7 LRG data. They
demonstrate perfect agreement of all models with obser-
vations. The power spectra of best fitting �CDM model
(its parameters are presented in the column 1 of Table II)
overlap with the spectra of CSFþ CDM and TSFþ CDM
models.

Let us discuss the best fitting CSFþ CDM and TSFþ
CDM models presented in the Table II. For comparison,
we present the �CDM model with the best fitting
parameters determined for the same data set by original
CosmoMC.

1. Scalar field models with c2a ¼ 0 (columns 4 and 5 in
Table II). Such fields have partially the properties of
�CDM model. Their pressure is constant during the whole

history of the Universe: Pde ¼ w0�
ð0Þ
de ¼ const. But their

density �de ¼ �ð0Þ
de ½ð1þ w0Þa�3 � w0� at the early epoch

changes similarly to one of the dust matter (/ a�3) and

asymptotically approaches the constant value �w0�
ð0Þ
de in

far future (a 
 1). The EoS parameter wðaÞ ¼ w0a
3=ð1þ

w0 � w0a
3Þ decreases from� 0 at the early epoch (a � 0)

to�1 in future. Now it is very close to its asymptotic value:
w0 � �0:99. The expansion rate (16) decreases from

HðaÞ ¼ ffiffiffiffiffiffiffi
�r

p
H0a

�2 in early epoch to the constant value

H ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�w0�de

p
H0 � 0:85H0 in future. The acceleration

parameter varies slowly from þ1 in the early Universe to
q0 ¼ �0:57 for classical field and q0 ¼ �0:58 for ta-
chyonic one at the current epoch up to �1 in far future.
So, such scalar fields in the early Universe mimic the dust
matter and will mimic vacuum energy density in future.
The final stage of evolution of the Universe with classical
or tachyonic scalar field with c2a ¼ 0 will be de Sitter one:
a / expH t forever. These fields, jointly with cold dark
matter, can be considered as some type of the generalized
dark component, which decays and has properties of the
two-component model, dark matter plus dark energy. The
evolution of density perturbations of matter and both scalar
fields is shown for the wave number k ¼ 0:1 Mpc�1 in
Fig. 5 (for other scales in the two-component model see
[14]). The density perturbations of classical and tachyonic
scalar fields evolve differently because of difference of
their effective sound speeds (c2s ¼ 1 for classical field
and c2s ¼ �wðaÞ for the tachyonic one). Their impact on
the matter density perturbations in the models with the
same parameters is distinguishable too (see Fig. 6).

TABLE II. The best fitting values and 1
 confidential ranges of cosmological parameters in the �CDM, CSFþ CDM, and TSFþ
CDMmodels determined on the base of complete data set listed in Sec. IV. The current Hubble parameterH0 is in units km s�1 Mpc�1;
the age of the Universe t0 is given in Giga years.

Parameters �CDM CSFþ CDM TSFþ CDM CSFþ CDM TSFþ CDM CSFþ CDM TSFþ CDM CSFþ CDM TSFþ CDM

w ¼ const w ¼ const c2a ¼ 0 c2a ¼ 0 c2a > w0 c2a > w0 c2a free c2a free

1 2 3 4 5 6 7 8 9

�de 0:72þ0:04
�0:05 0:72þ0:04

�0:04 0:72þ0:04
�0:05 0:72þ0:04

�0:05 0:72þ0:04
�0:05 0:71þ0:04

�0:05 0:71þ0:05
�0:04 0:72þ0:04

�0:06 0:72þ0:04
�0:05

w0 �1 �1:00þ0:17
�0:00 �0:99þ0:16

�0:01 �0:99þ0:03
�0:01 �1:00þ0:03

�0:00 �0:99þ0:16
�0:01 �1:00þ0:17

�0:00 �0:93þ0:13
�0:07 �0:97þ0:17

�0:03

c2a �1 �1:00þ0:17
�0:00 �0:99þ0:16

�0:01 0 0 �0:05þ0:05
�0:94 �0:06þ0:06

�0:94 �0:97þ0:97
�0:03 �0:99þ0:99

�0:01

100�bh
2 2:27þ0:13

�0:14 2:25þ0:16
�0:12 2:26þ0:15

�0:15 2:26þ0:14
�0:15 2:24þ0:17

�0:13 2:25þ0:17
�0:12 2:25þ0:17

�0:13 2:25þ0:17
�0:13 2:29þ0:14

�0:16

10�cdmh
2 1:14þ0:09

�0:08 1:15þ0:09
�0:11 1:14þ0:09

�0:11 1:14þ0:09
�0:10 1:14þ0:10

�0:13 1:13þ0:10
�0:13 1:15þ0:08

�0:14 1:11þ0:13
�0:12 1:13þ0:10

�0:13

H0 70:0þ3:4
�3:8 69:4þ4:0

�3:9 69:7þ4:0
�4:4 69:2þ3:8

�4:3 69:5þ4:0
�3:6 68:6þ4:7�4:4 69:2þ4:2�4:7 69:2þ4:2

�5:1 69:7þ3:7
�5:6

ns 0:97þ0:03
�0:03 0:97þ0:04

�0:03 0:97þ0:03
�0:04 0:98þ0:05

�0:04 0:97þ0:03
�0:03 0:97þ0:05

�0:04 0:97þ0:04
�0:03 0:97þ0:05

�0:03 0:97þ0:04
�0:04

logð1010AsÞ 3:09þ0:09
�0:09 3:09þ0:09

�0:09 3:09þ0:09
�0:10 3:09þ0:09

�0:10 3:09þ0:09
�0:09 3:09þ0:10

�0:09 3:09þ0:10
�0:09 3:07þ0:11

�0:08 3:09þ0:10
�0:09

zrei 10:5þ3:0
�3:3 10:6þ3:2

�3:4 10:5þ3:2
�3:4 10:7þ3:7

�3:3 10:5þ3:2
�3:5 10:8þ3:2

�3:7 10:3þ3:4
�3:2 10:3þ3:9

�3:3 10:4þ3:4
�3:2


8 0:83þ0:06
�0:06 0:83þ0:06

�0:10 0:83þ0:06
�0:10 0:78þ0:10

�0:19 0:82þ0:07
�0:12 0:78þ0:10

�0:18 0:83þ0:06
�0:19 0:79þ0:10

�0:19 0:81þ0:08
�0:20

t0 13:7þ0:3
�0:3 13:8þ0:3

�0:3 13:7þ0:3
�0:3 13:7þ0:4

�0:3 13:8þ0:3
�0:3 13:8þ0:4

�0:4 13:8þ0:4
�0:3 13:8þ0:4

�0:3 13:7þ0:4
�0:3

� logL 4027.60 4027.63 4027.62 4027.24 4027.75 4027.51 4027.79 4027.35 4027.41
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However, small variation of the main cosmological pa-
rameters (columns 3 and 4 in the Table II) reduce this
distinction (Fig. 9) at the cost of a bit larger �2 for the
tachyonic field. At the decoupling (zdec � 103) and at the
earlier epochs, the ratio of scalar field density to matter one
was constant (�de=�m � ð1þ w0Þ�de=�m), and for
parameters from the table it equals � 0:015. So, scalar
fields with such parameters do not change practically the
predictions of the concordance �CDM model for the
Big Bang nucleosynthesis; however, they reduce essen-
tially the fine tuning problem: at the end of phase transi-
tions (t� 10�10 s) their energy densities were about 10�12

of radiation energy density against 10�54 for �CDM
model.

2. Scalar field models with c2a > w0 (columns 6 and 7 in
Table II). The condition c2a > w0 changes slightly the
distributions shown in the bottom row of Fig. 8 but causes
finding of the best fitting value of c2a near 0; therefore, the
properties of such dark energy models are similar to ones
with fixed c2a ¼ 0. The future of the Universe with such

fields is de Sitter expansion a / expH t, where H ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�deðc2a � w0Þ=ð1þ c2aÞ

p
H0 � 0:84H0 for both fields.

3. Scalar field models with w ¼ const (columns 2 and 3
in Table II). The density of scalar fields with the best
fitting parameters decreases very slowly (�de / a�0:0003

for classical field and / a�0:03 for tachyonic one) during
the whole history of the Universe, the pressure follows it
rigorously: Pde � ��de. The ratio of scalar field density

to matter one was �de=�m � 10�8 at the decoupling and
lower at the earlier epoch. So, such fields also do not
change the expansion dynamics of the early Universe and
predictions of the concordance �CDM model. In the very
early Universe, at t� 10�10 s, the energy densities of
classical and tachyonic scalar fields with the best fitting
parameters were about 10�54 of radiation one, so the
models with such fields have the same fine tuning prob-
lem. The acceleration parameters at current epoch are the
same for both fields: q0 ¼ �0:57. Therefore, the past and
future dynamics of expansion of the Universe with such
fields is similar to the �CDM model one. The best fitting
parameters of CSFþ CDM and TSFþ CDM models with
w ¼ const are close, since the evolution of their density
perturbations is similar for values of w relatively close to
�1 (see Figs. 5 and 6). So, such fields with different
Lagrangians are practically indistinguishable by cosmo-
logical observations.
4. Scalar field models with �1< c2a < w0 (columns 8

and 9 in Table II). The best fitting values of c2a and w0 are
�0:97 and �0:93 for classical scalar field, �0:99 and
�0:97 for tachyonic one, correspondingly. The EoS pa-
rameter w increases very slowly from the first value to the
second one during the age of the Universe. In the early
epoch, the density of classical scalar field changed / a�0:09,
the density of tachyonic one / a�0:04. Their energy den-
sities were only�10�51 of radiation one at the baryogenesis
epoch (t� 10�10) and �10�31 at the nucleosynthesis

FIG. 8 (color online). One-dimensional marginalized posteriors (blue lines, lower ones in the middle panels, unimodal in the right
panels) and mean likelihoods (upper lines in the middle panels, bimodal in the right panels) and mean likelihoods (upper lines in the
middle panels, bimodal in the right panels) for �de, w0, and c2a (from left to right) for the combined data sets WMAP7þ SDSS LRG
DR7 (upper row) and WMAP7þ SDSS LRGDR7þ SNþ HSTþ BBN (bottom row) averaged in each of 30 bins. Solid lines
correspond to the classical scalar field, dashed lines to the tachyonic one.
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epoch. At the decoupling, they were �10�8 of matter
density. For the �CDM model, these values are �10�54,
�10�32, and�10�8, respectively. So, in this case—like the
previous one—the classical and tachyonic scalar fields do
not change the expansion dynamics of the Universe in its
past history and do not affect the local physical processes
such as cosmological recombination, nucleosynthesis, bar-
yosynthesis, etc. comparing to the concordance �CDM
model. The current acceleration parameters are q0 ¼
�0:51 in the model with classical scalar field and q0 ¼
�0:55 in the model with tachyonic one. But predicted by
these models, future dynamics of the Universe differs es-
sentially from the one predicted by previous models. The
general properties were discussed in Sec. II, here we par-
ticularize them for the best fitting parameters of the model
with classical scalar field. So, in this model, the EoS pa-
rameter will continue to increase in future. It will reach
�1=3 at aðq¼0Þ � 570, when accelerated expansion of the

Universe is changed by the decelerated one (the age of the
Universe will be� 195 Gyrs). Thereafter, w will reach 0 at
aðw¼0Þ � 678, when the age of the Universe is� 208 Gyrs.
If the scalar field is tachyonic, then at this moment its
potential will become imaginary. The potential of classical
scalar field will become negative when w reaches 1 at
aðw¼1Þ � 804, the age of the Universe will be � 226 Gyrs

then. The next important moment in the evolution of the
scalar field with such parameters will occur when the
Universe is � 268 Gyrs old (a ¼ 950); it will violate the
weak energy condition (�de � 0) and its energy density will
become negative after that. The pressure at this time will

have constant positive value (Pde � ðw0 � c2aÞ�ð0Þ
de �

0:03�ð0Þ
de ), EoS parameter will have a discontinuity of the

second kind (like in Fig. 1), as well as the potentials of both
fields, and kinetic terms of tachyonic scalar field (like in
Fig. 3). Some time after að�de¼0Þ the total energy density

remains positive (�m þ �de > 0), the strong energy condi-
tion �m þ �de þ 3Pde > 0 is still satisfied. The decelerated
expansion of the Universe will stop finally when the scale
factor reaches the maximal value amax, which is slightly
larger than að�de¼0Þ. At this moment _a ¼ 0 and €a < 0. The

values of matter and dark energy densities at the turnaround

are �m ¼ ��de � 3� 10�10�ð0Þ
de . The age of the Universe

will be� 268 Gyrs then. After that the collapse begins. So,
the Universe, filled with the scalar field with such parame-
ters, is limited in time by the age of � 540 Gyrs and
finishes its existence in the Big Crunch singularity. Of
course, the possibility of existence of scalar fields with
such unusual properties needs yet the comprehensive
analysis.

FIG. 9 (color online). The power spectra of CMB temperature fluctuations (top) and matter density ones (bottom) for cosmological
models with classical (left) and tachyonic (right) scalar fields and best fitting parameters from Table II. The corresponding
observational data from WMAP7 and SDSS LRG DR7 are presented.
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Therefore, all models presented in Table II match well
the set of current observational data used here (Fig. 9).
Using different subsets (for example, excluding SDSS
LRG DR7, SN data or both) or substituting the last release
of SDSS LRG DR7 by one of the previous ones, e. g. by
DR4, changes somewhat the best fitting values, so the
preferable model has c2a > w0. The same relation between
these parameters holds when the SDSS data are excluded
as well as WMAP7 and Union2 SN data are substituted by
the WMAP5 [10] and Union [27] data sets, correspond-
ingly (see also [28]). It means that the different data sets,
obtained by different techniques and corresponding to
different redshifts, are not in complete agreement with
each other yet.

VI. CONCLUSION

We have analyzed the minimally coupled cosmological
scalar fields with the time-variable EoS parameter wðaÞ
and constant adiabatic sound speed c2a, which means that
the temporal derivative of pressure follows rigorously the
temporal derivative of energy density: _Pde / _�de. In this
case, the equation of state has two natural parameters w0

and c2a, which are the EoS parameter at the present epoch
and at the early stages, correspondingly. The evolution of
wðaÞ from c2a at the beginning to w0 now is monotonous;
however, the future character of it is determined by the
relation between the values of w0 and c2a. So, in the case
c2a > w0 the derivative of w with respect to the scale
factor a is negative w0 < 0, and fields roll down to the
vacuum energy at the infinite time like one with w ¼ �1.
In the opposite case c2a < w0, w

0 > 0 and fields lose their
repulsion properties. The accelerated expansion of the
Universe will change in future to the decelerated one,
the weak energy condition will be violated, and the
Universe will eventually collapse. Intermediate case c2a ¼
w0 is the well studied, simplest dark energy model with
w ¼ const. The dynamics of expansion of the multicom-
ponent Universe in the past depends slightly on the value
of c2a (see Fig. 2) but depends strongly on the values of
�de and w0 related to the current epoch. This gives the
possibility to constrain them by observational data. In this
paper, we have concentrated on determination of all pa-
rameters of scalar field models of dark energy. For this
purpose, we have analyzed the evolution of density and
velocity perturbations of scalar fields [Eqs. (19) and (20)]
and their influence on the evolution of matter ones. The
entropy perturbations are inherent for scalar fields, so the
dark energy pressure perturbations are connected with the
density ones via the effective sound speed c2s instead of
the adiabatic one c2a. For the classical and tachyonic
Lagrangians, it equals 1 and �w, correspondingly. The
results, presented in Figs. 5 and 6, show that the fields
with different c2a and c2s are distinguishable in principle if
the rest of cosmological parameters is known.
Unfortunately, it is not the case, and we have to determine

the parameters of scalar field models of dark energy �de,
w0, c

2
a jointly with other cosmological parameters, the

minimal set of which is �b, �cdm, ns, As, H0, 	, ASZ.
We restricted ourselves to the spatially flat models—that
reduces the number of free model parameters to 9.
For the calculations of evolution of perturbations in all

components, the power spectra of matter density perturba-
tions, and cosmic microwave background anisotropy, we
have used the publicly available code CAMB [20,21],
modified to include the presented here expressions (14)–
(16) and (19)–(22). To determine the parameters of scalar
field models of dark energy jointly with rest of cosmologi-
cal ones, we have performed the MCMC analysis for set of
current observational data, which include the power spectra
from WMAP7 [3] and SDSS DR7 [4], the light curves of
SNIa [22], the Hubble constant measurements [5], and BBN
prior [23]. It has been obtained that the best fitting parame-
ters of scalar field models of dark energy have next values
and 1
 confidence limits: �de ¼ 0:72þ0:04

�0:06, w0 ¼
�0:93þ0:13

�0:07, c
2
a ¼ �0:97þ0:97

�0:03 in the case of Klein-Gordon

Lagrangian, and �de ¼ 0:72þ0:04
�0:05, w0 ¼ �0:97þ0:17

�0:03, c
2
a ¼

�0:99þ0:99
�0:01 in the case of Dirac-Born-Infeld one. The first

two parameters, corresponding to the current epoch, are
determined well, while the last one much worse (Fig. 8).
So the used observational data prefer the scalar fields with
w0 > 0, which lose their repulsive properties, and predict
the collapse of spatially flat Universe. But other models
withw0 � 0, c2a � w0, and even c

2
a ¼ 0 are in the 1
 range

of the best fitting one (Table II). Therefore, the values of
EoS parameters of the scalar fields at the early epoch are not
determined surely enough to say which field dominates now
with receding (w0 > 0) or raising (w0 < 0) repulsion, and,
correspondingly, which is the future fate of our Universe,
eternal accelerated expansion or decelerated one and col-
lapse. We also conclude that the used observational data
give no possibility to distinguish two different scalar fields
(Fig. 9 and Table II), classical and tachyonic, but we hope
that the operating and planed observational programs will
give the possibility to constrain better the parameters of
scalar field models of dark energy and the number of
admissible evolution trajectories of our Universe.
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