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It has recently been pointed out that the spinning Kerr black hole with maximal spin could act as a

particle collider with arbitrarily high center-of-mass energy. In this paper, we will extend the result to the

charged spinning black hole, the Kerr-Newman black hole. The center-of-mass energy of collision for two

uncharged particles falling freely from rest at infinity depends not only on the spin a but also on the charge

Q of the black hole. We find that an unlimited center-of-mass energy can be approached with the

conditions: (1) the collision takes place at the horizon of an extremal black hole; (2) one of the colliding

particles has critical angular momentum; (3) the spin a of the extremal black hole satisfies 1ffiffi
3

p � a
M � 1,

where M is the mass of the Kerr-Newman black hole. The third condition implies that to obtain an

arbitrarily high energy, the extremal Kerr-Newman black hole must have a large value of spin, which is a

significant difference between the Kerr and Kerr-Newman black holes. Furthermore, we also show that,

for a near-extremal black hole, there always exists a finite upper bound for center-of-mass energy, which

decreases with the increase of the charge Q.

DOI: 10.1103/PhysRevD.82.103005 PACS numbers: 97.60.Lf, 04.70.�s

I. INTRODUCTION

Recently, Bañados, Silk and West (BSW) [1] showed
that spinning black holes can play the role of particle
accelerators. Compared with terrestrial accelerators, they
have a fascinating and important property that two parti-
cles (for example, the dark matter particles) falling freely
from rest at infinity can collide with arbitrarily high center-
of-mass (CM) energy at the horizon of an extremal Kerr
black hole, which could provide a visible probe of Planck-
scale physics. However, fine-tunings arise, namely, the
black hole must be a maximally spinning one and one of
the particles should have orbital angular momentum per
unit rest mass l ¼ 2 corresponding to marginally bound
geodesics. Subsequently, in [2,3], the authors further elu-
cidated the mechanism for the results of BSW. They
pointed out that there must exist a practical limitation on
the achievable CM energy from the astrophysical limita-
tions, i.e., the maximal spin, backreaction effects or gravi-
tational radiation. For example, the spin a of astrophysical
black holes should not exceed a

M ¼ 0:998 (M is the mass of

an astrophysical black hole) according to the work of
Thorne [4]. Denoting the deviation of the spin from its
maximal value as � ¼ 1� a, Jacobson and Sotiriou got the
maximal CM energy [3]

Emax
cm

m0

� 4:06��1=4 þOð�1=4Þ; (1)

where,m0 is the rest mass of the colliding particles. Taking
a
M ¼ 0:998 as a limit, one will obtain the maximal CM

energy per unit rest mass 19.20, which is a finite value.

Lake also showed that the CM energy of collision at the
inner horizon of a nonextremal Kerr black hole is limited
[5]. In Ref. [6], scattering of particles in gravitational field
and extraction of energy from a rotating black hole was
investigated.
It is known that the motion of a particle traveling in the

background of a charged spinning black hole depends not
only on the spin but also on the charge of the black hole.
Therefore, the CM energy of collision will also depend
both on the spin and charge. Note that there is no work
focusing on the CM energy for the collision in the back-
ground of a charged spinning black hole. So, it is worth-
while to study the detailed behavior of the CM energy for
the collision in the background of a charged spinning black
hole. For the purpose, we will study the CM energy in the
background of a Kerr-Newman (KN) black hole. Besides
the spin a, the black hole has another parameter, the charge
Q, which should affect the CM energy. On the other hand,
it is generally thought that the black holes are surrounded
by relic cold dark matter density spikes and there exists no
electromagnetic interactions between the cold dark matter
and other matters. So, it provides a strong motivation for us
to consider the collision of two uncharged particles in the
background of a KN black hole. With the motivation, we
find the CM energy can still be unlimited for a pair of
uncharged particles falling freely from rest at infinity and
colliding at the horizon of an extremal black hole with
some fine-tunings. For the near-extremal black hole, we
also give a numerical exploration on the CM energy. The
result implies that there always exists a finite upper bound
for the CM energy, which decreases with the increase of
the charge Q. In this paper, we neglect the effects of
gravitational waves and the backreaction.
The paper is organized as follows. In Sec. II, we

will give a detailed study on the equations of motion for
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particles. In Sec. III, employing the equations of motion for
particles, we will obtain the CM energy for two colliding
particles falling freely from rest at infinity in the back-
ground of a KN black hole. The results show that the CM
energy at the horizon can be unlimited if one of the
colliding particles has the critical angular momentum and
the spin a of the black hole satisfies 1ffiffi

3
p � a

M � 1. It is also

shown that for a near-extremal black hole there always
exists a finite upper bound of CM energy and the bound
decreases with the increase of the charge Q. The final
section is devoted to a brief summary. We use the units
c ¼ G ¼ 1 in this paper.

II. MOTION EQUATIONS OF PARTICLES
IN THE BACKGROUND OFA KERR-NEWMAN

BLACK HOLE

In this section, we would like to study the equations of
motion for a particle in the background of a KN black hole.
First, let us give a brief review of the black hole back-
ground we dealt with. The KN black hole is described by
the metric with the Boyer-Lindquist coordinates (where we
have set the mass M of the black hole to 1)

ds2 ¼ �2

�
dr2 þ �2d�2 þ sin2�

�2
½adt� ðr2 þ a2Þd��2

� �

�2
½dt� asin2�d��2; (2)

where

� ¼ r2 � 2rþ a2 þQ2; (3)

�2 ¼ r2 þ a2cos2�: (4)

Q is the charge of the black hole, and a is its angular
momentum per unit rest mass and 0 � a � 1. In the case
Q ¼ 0, the metric (2) describes a Kerr black hole. And in
the case a ¼ Q ¼ 0, it describes a Schwarzschild black
hole. The 4-dimensional electromagnetic potential reads

Aa ¼ �Qr

�2
½ðdtÞa � asin2�ðd�Þa�: (5)

The horizons for the KN black hole are given by

r� ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ða2 þQ2Þ

q
: (6)

Here, the positive sign denotes the outer horizon and the
negative one denotes the inner one. The existence of the
horizons requires

a2 þQ2 � 1; (7)

where ‘‘¼’’ corresponds to the extremal black hole with
one degenerate horizon.

Next, we would like to study the equations of motion for
a test particle with mass � and charge q in the background

of a KN black hole. The motion of a particle is described by
the Lagrangian

L ¼ 1

2
g�� _x

� _x� þ qA� _x�; (8)

where a dot over a symbol denotes ordinary differentation
with respect to an affine parameter �. The affine parameter
� is related to the proper time by � ¼ ��, which is
equivalent to the normalizing condition

g�� _x
� _x� ¼ ��2: (9)

For an uncharged particle,�2 ¼ 1, 0,�1 are corresponded
to timelike, null or spacelike geodesics, respectively. For a
massive particle, we have �2 ¼ 1. The momenta is

P� ¼ @L
@ _x�

¼ g�� _x
� þ qA�: (10)

Thus the Hamiltonian is given by

H ¼ P� _x� �L ¼ 1

2
g��ðP� � qA�ÞðP� � qA�Þ: (11)

With the help of (11), the Hamilton-Jacobi equation can be
expressed as

@S

@�
¼ H ¼ 1

2
g��ðP� � qA�ÞðP� � qA�Þ (12)

with S the Jacobi action. To solve the Hamilton-Jacobi
equation, we separate the Jacobi action as

S ¼ � 1

2
�� Etþ l�þ SrðrÞ þ S�ð�Þ; (13)

where the parameterE is the energy of the charged particle,
and l is the angular momentum per unit rest mass of the
particle in the � direction as measured by an observer at
rest at infinity. Sr and S� are, respectively, functions of r
and �. Inserting (13) in (12), we obtain

S2� þ ðaE sin�� lsin�1�Þ2 þ a2cos2�

¼ ��S2r þ ��1ðða2 þ r2ÞE� al� qQrÞ2 � r2: (14)

From the above form, we can see that the left-hand side is
only the function of � and the right-hand side is only the
function of r. Thus, both sides must be equal to a constant
denoted by K. So, we have

S2� ¼ K� ðaE sin�� lsin�1�Þ2 � a2cos2�; (15)

�S2r ¼ �Kþ ��1ðða2 þ r2ÞE� al� qQrÞ2 � r2:

(16)

Using the relations Pr ¼ @S
@r , P� ¼ @S

@� and the Eq. (10), we

have [7,8]

d�

d�
¼ 	�

ffiffiffiffiffi
�

p
�2

; (17)
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dr

d�
¼ 	r

ffiffiffiffi
R

p
�2

(18)

with

� ¼ K� ðl� aEÞ2 � cos2�ða2ð1� E2Þ þ l2sin�2�Þ;
(19)

R ¼ P2 � �ðr2 þKÞ; (20)

P ¼ Eðr2 þ a2Þ � la� qQr: (21)

The sign functions 	r ¼ � and 	� ¼ � are independent
from each other. Using the relations Pt ¼ @S

@t , P� ¼ @S
@� and

Eq. (10), we get

� E ¼ gtt _tþ gt� _�þ qAt; (22)

l ¼ g�t _tþ g��
_�þ qA�: (23)

Solving these equations, we get [7,8]

dt

d�
¼ � a

r2
ðaEsin2�� lÞ þ ðr2 þ a2Þ

�2�
P; (24)

d�

d�
¼ �ðaEsin2�� lÞ

�2sin2�
þ a

�2�
P: (25)

Here, we have obtain equations of motion for a particle. On
the equatorial plane (� ¼ 


2 ), the equations are reduced to

dt

d�
¼ �aðaE� lÞ�þ ðr2 þ a2ÞP

r2�
;

dr

d�
¼ �

ffiffiffiffi
R

p
r2

;

d�

d�
¼ 0;

d�

d�
¼ ðl� aEÞ�þ aP

r2�
;

(26)

where we take 	r ¼ �1. Note that the motion of a particle
on the equatorial plane in the KN metric is completely
determined by Eq. (26).

III. CENTER-OF-MASS ENERGY FOR A
KERR-NEWMAN BLACK HOLE

In this section, we will study the CM energy of the
collision for two particles moving on the equatorial plane
of a KN black hole. Let us now consider that two charged
particles with the same rest mass m0 are at rest at infinity
(E ¼ m0), then they approach the black hole and collide at
some radius r. We assume that the two particles have
angular momenta and charges ðl1; q1Þ and ðl2; q2Þ, respec-
tively. Taking into account that the background is curved,
the energy in the center-of-mass frame for this collision
should be computed with [1]

Ecm ¼ ffiffiffi
2

p
m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g��U

�
ð1ÞU

�
ð2Þ

q
; (27)

whereU
�
ð1Þ andU

�
ð2Þ are the 4-velocities of the two particles,

which can be straightforwardly calculated from (26)
and are

U�
ð1Þ ¼

�
aðl1 � aÞ�þ ðr2 þ a2ÞPðq1; l1Þ

r2�
;

�
ffiffiffiffi
R

p
r2

; 0;
ðl1 � aÞ�þ aPðq1; l1Þ

r2�

�
; (28)

U�
ð2Þ ¼

�
aðl2 � aÞ�þ ðr2 þ a2ÞPðq2; l2Þ

r2�
;

�
ffiffiffiffi
R

p
r2

; 0;
ðl2 � aÞ�þ aPðq2; l2Þ

r2�

�
: (29)

Here, we take E ¼ 1 for simplicity. With the help of (27),
we obtain the CM energy for the collision:�

Ecmffiffiffi
2

p
m0

�
2 ¼ � H

r2�
(30)

with H given by

H ¼ �2r4 þ r3½2þQðq1 þ q2Þ� � r2ð2a2 þQ2 � l1l2

þQ2q1q2Þ � 2a2rþ 2r½aðl1 þ l2Þ � l1l2�
þQ2ða� l1Þða� l2Þ þ aQr½aðq1 þ q2Þ
� ðl2q1 þ l1q2Þ�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ r2 � al1 �Qrq1Þ2 � �ðr2 þ ða� l1Þ2Þ

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ r2 � al2 �Qrq2Þ2 � �ðr2 þ ða� l2Þ2Þ

q
:

(31)

Note that (30) is invariant under the interchange l1 $ l2
and q1 $ q2. On the other hand, in the case Q ¼ q1 ¼
q2 ¼ 0, the CM energy (30) for two charged particles in
the background of a KN black hole will reduce to the one
for two uncharged particles in the background of a Kerr
black hole given in [1], as it is expected. In fact, we need
only the condition Q ¼ 0 to obtain the CM energy in the
background of a Kerr black hole, which indicates that the
charge of the collision particles has no influence on the
CM energy in the background of an uncharged black hole.
We keep in mind that black holes are surrounded by relic
cold dark matter density spikes. The CM energy of massive
cold dark matter particles colliding near the black hole may
reach a high CM energy, which could provide a probe to
the high energy physics. It is also thought that the cold dark
matter has no electromagnetic interactions with other mat-
ters. So, we consider that two uncharged cold dark matter
particles collide in the background of a KN black hole.
Thus, we take q1 ¼ q2 ¼ 0. Then the CM energy can be
read from (30):
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�
Ecmffiffiffi
2

p
m0

�
2 ¼ � K

r2�
; (32)

where K is

K ¼ �2r4 þ 2r3 � r2ð2a2 þQ2 � l1l2Þ � 2a2r

þ 2r½aðl1 þ l2Þ � l1l2� þQ2ða� l2Þða� l2Þ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ r2 � al1Þ2 � �½r2 þ ða� l1Þ2�

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ r2 � al2Þ2 � �½r2 þ ða� l2Þ2�

q
: (33)

Clearly, the result confirms that the charge Q of the black
hole indeed has influence on the CM energy.

Next, it is worthwhile to study the properties of (32) as
the radius r approaches to the horizon rþ of an extremal
black hole. Since the black hole considered here is an

extremal one, we haveQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
. Note that the horizon

is always at rþ ¼ 1 for any spin a. It is clear that the
denominator of Ecm in (32) vanishes at r ¼ rþ. Then it is
naive to obtain the result that Ecm diverges at the horizon.
In fact, the numerator also vanishes at that point. The
limiting value of Ecm at r ¼ rþ can be calculated as
follows:

Ecmðr ! rþÞ ¼ 2m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðl1 � l2Þ2

ðl1 � lcÞðl2 � lcÞ
lc
4a

s
;

ða2 þQ2 ¼ 1Þ: (34)

Clearly, the value of Ecm is indeed finite for generic values
of l1 and l2. However, when l1 or l2 takes the critical
angular momentum

lc ¼ 1þ a2

a
; (35)

the CM energy Ecm will be unlimited, which means that the
particles can collide with arbitrarily high CM energy at the
horizon. Thus, the result may provide an effective way to
probe the Planck-scale physics in the background of an
extremal KN black hole. Compared with the result for the
Kerr black hole [1], the spin a of the black hole here can
deviate from its maximal value to obtain an arbitrarily
high CM energy. However, we need to make sure that
the particle with critical angular momentum lc can reach
the horizon.

As we mentioned before, to obtain an arbitrarily high
CM energy, one of the colliding particles should have
critical angular momentum lc. Here we first examine the
critical angular momentum (35). When the spin a ¼ 1, we
get lc ¼ 2, which is just the critical angular momentum in
the case of an extremal Kerr black hole [1]. However, for
the case a ¼ 0, lc is divergent and the CM energy is

Ecmðr ! rþÞ ¼ 2m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðl1 � l2Þ2

4

s
; (36)

which implies that, in order to get a very high CM energy,
one of the colliding particles should have very large angu-
lar momentum. However, a particle with very large angular
momentum cannot reach the horizon if it falls freely from
rest at infinity. So there must exist a range for the spin a to
ensure that the particle with critical angular momentum lc
reaches the horizon of the black hole. Next, we will deter-
mine the range of the spin a by the effective potential
method. The effective potential for a particle with critical
angular momentum lc on the equatorial plane of an ex-
tremal black hole is

Veff ¼ � 1

2

�
dr

d�

�
2 ¼ �ðr� 1Þ2ðr� rcÞ

r4
(37)

with rc ¼ 1�a2

2a2
. As expected, the effective potential Veff

approaches 0 at infinity. Here, we can get a condition
for the particle falling freely from rest at infinity to reach
the horizon:

Veff � 0 for any r � 1; (38)

which is equivalent to

rc � 1: (39)

Solving Eq. (39), we get the range for the spin a of the
black holes:

1ffiffiffi
3

p � a � 1; (40)

which means that for an extremal black hole with the spin
a 2 ð 1ffiffi

3
p ; 1Þ, the particle with critical angular momentum

lc can reach the horizon of the black hole. We can also
determine the range of the angular momentum for a fixed
spin awith the same method. However, it cannot be written
in a closed form for an arbitrary spin a. Here, we give
some results: the range of the angular momentum is
ð�3:9539; 2:6471Þ for a ¼ 0:4, ð�4:2185; 2:3094Þ for a ¼
1ffiffi
3

p and ð�4:6864; 2:0111Þ for a ¼ 0:9. So, for a fixed spin

a 2 ð 1ffiffi
3

p ; 1Þ, if l1 ¼ lc and l2 is in a proper range, the CM

energy will be unlimited. We plot the effective potential
Veff in Fig. 1(a) for the spin a ¼ 0:4, 1ffiffi

3
p and 0.9, respec-

tively. Clearly, for a ¼ 0:4, the effective potential Veff is
positive near the horizon rþ ¼ 1, so the particle cannot
reach the horizon in this case. For a ¼ 1ffiffi

3
p and 0.9, the effect

potential Veff is negative when r > rþ ¼ 1. So, the particle
can reach the horizon in both cases. We also plot the CM
energy Ecm of collision in Fig. 1(b) for l1 ¼ lc and l2 ¼
�2. For the case a ¼ 0:4< 1ffiffi

3
p , the CM energy only exists

for r > 2:625. This is because the collision for the two
colliding particles with angular momenta l1 ¼ lc and l2 ¼
�2 cannot take place at r < 2:625. For the spin a ¼ 1ffiffi

3
p and

0.9, the CM energy is divergent at the horizon rþ ¼ 1.
As noted above, we show that an arbitrarily high CM

energy can be obtained when the collision takes place at
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the horizon of an extremal KN black hole with l ¼ lc and

a 2 ð1= ffiffiffi
3

p
; 1Þ. This scenario is an idealized one, because

the proper time for a particle with the critical angular
momentum lc to approach the horizon of an extremal black
hole from infinity is infinite. Thus this collision process
does not take place in the real world. However, for the case
of a near-extremal black hole, the proper time for the
particle to reach the horizon is a finite value even though
it is very large. So, it seems worthwhile to consider a near-
extremal black hole. The CM energy at the outer horizon
rþ for a near-extremal black hole is found to be

Ecmðr ! rþÞ ¼ 2m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðl1 � l2Þ2

ðl1 � l0cÞðl2 � l0cÞ
l0c
4a

s
; (41)

where

l0c ¼ 2þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2 �Q2

p �Q2

a
: (42)

The form is the same as (34) with the replacement lc ! l0c.
Here, we denote the small parameter � ¼ amax � a with

amax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Q2

p
. For fixed charge Q and �, the range

ðlmin; lmaxÞ of angular momentum for the particles to reach
the horizon can be determined numerically with the effec-
tive potential Veff for a near-extremal black hole. For a
angular momentum l 2 ðlmin; lmaxÞ, we can get a negative
VeffðlÞ for r > rþ. However, for arbitrary charge Q and �,
we find that, within a small range near the horizon rþ, the
effective potential Veffðl0cÞ is always positive, which means
the angular momentum l0c does not lie in the range
ðlmin; lmaxÞ. So the CM energy Ecm in (41) is not divergent.
Thus the CM energy is finite for arbitrary charge Q and
spin a. Considering that one of the colliding particles has
the maximum angular momentum lmax and another one has

the minimum angular momentum lmin, we obtain the CM
energy per unit rest mass for differentQ and �. The result is
shown in Table I. From it, we can see that for a KN black
hole with spin a less than amax there will be an upper bound
for the CM energy. It is also suggested that the CM energy
grows very slowly as the maximally spinning case (� ! 0)
is approached. For fixed parameter �, the value of CM
energy decreases with the increase of the charge Q. For
the caseQ ¼ 0, it describes a Kerr black hole and the result
shown in Table I is exactly consistent with [3].
In order to obtain a Planck-scale CM energy EPl �

1019 GeV, we would like to study how much the tolerances
on the critical angular momentum lc and the black hole
parameter are allowed. First, we consider the case that the
black hole is still an extremal one, but there exists a small
tolerance �l on the critical angular momentum lc. For
simplicity, we choose l1 ¼ lc � �l and l2 ¼ 0. The rest
mass for the colliding particle is considered to m0 �
1 GeV, just like the mass of a neutron. Then with the
help of (34), we get a approximate �l:

TABLE I. The CM energy per unit rest mass Ecm

m0
for a KN

black hole with spin a ¼ amax � � and l1 ¼ lmax, l2 ¼ lmin.

� ¼ 0:1 � ¼ 0:05 � ¼ 0:01 � ¼ 0:001 � ¼ 0:0001

Q ¼ 0 6.901 8.244 12.54 22.63 40.49

Q ¼ 0:1 6.894 8.234 12.51 22.59 40.40

Q ¼ 0:2 6.875 8.203 12.45 22.44 40.12

Q ¼ 0:3 6.842 8.150 12.33 22.19 39.64

Q ¼ 0:4 6.794 8.073 12.16 21.82 38.93

Q ¼ 0:5 6.730 7.967 11.93 21.30 37.94

Q ¼ 0:6 6.647 7.826 11.60 20.57 36.54

Q ¼ 0:7 6.539 7.636 11.14 19.49 34.44

Q ¼ 0:8 6.398 7.367 10.42 17.57 30.35

a 0.4

a 1 3
a 0.9

2 4 6 8 10 12 14
r

0.15

0.10

0.05

0.05

0.10

Veff

(a)

a 0.4

a 1 3
a 0.9

1 2 3 4 5
r

4

6

8

10

Ecm

(b)

FIG. 1 (color online). For an extremal KN black hole (a) shows the effective potential Veff vs r with angular momentum
l ¼ lc ¼ 1þa2

a . (b) shows the behavior of the CM energy Ecm with m0 ¼ 1 and l1 ¼ lc, l2 ¼ �2.
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�l � l2c
a

�
m0

EPl

�
2 � 10�37: (43)

Note that we have considered that a 2 ð 1ffiffi
3

p ; 1Þ. Now, we
would like to estimate the tolerance on the extremal
black hole parameters to achieve the Planck-scale energy.
Here we consider that one of the colliding particles has the
critical angular momentum lc, but the black hole is a near-
extremal one. Here, we denote the tolerance � ¼ amax �
a 	 1, and suppose that l1 ¼ lc and l2 ¼ 0. Then, for
m0 � 1 GeV, with the CM energy (41), we have

� � l4c
8a

�
m0

EPl

�
4 � 10�76: (44)

Here, we have shown that to achieve the Planck-scale
energy, if the black hole is an extremal one, then the
tolerance on the critical angular momentum is �l�
10�37, and if one of the colliding particles has the critical
angular momentum lc but the black hole is a near-extremal
one, then the tolerance on the black hole parameter is ��
10�76. Replacing Planck-scale energy EPl with an arbitrary
energy Ecm, (44) can be reexpressed as�

Ecm

m0

�
� lcffiffiffiffiffiffi

8a4
p ��1=4: (45)

Comparing with (1), we find they have the same order

��1=4. However, our formula (45) is only an approxima-
tion; the more exact result can be found in Table I for
different charge Q and �.

IV. SUMMARY

In this paper, we have investigated the collision of two
uncharged particles (which could be thought to be the cold
dark matter particles) falling freely from rest at infinity in
the background of a KN black hole. It is pointed out by
BSW [1] that the CM energy of collision for two particles

in the background of an extremal Kerr black hole can
approach to an arbitrarily high value if one of the particles
has angular momentum l ¼ 2. Our results show that when
extended to the KN black hole case, an unlimited CM
energy requires three conditions: (1) the collision takes
place at the horizon of an extremal black hole; (2) one of
the colliding particles has critical angular momentum

l ¼ 1þa2

a ; (3) the spin a of the extremal black hole satisfies
1ffiffi
3

p � a � 1. Compared with the Kerr black hole, to obtain

an arbitrarily high CM energy, besides the conditions that
the black hole is an extremal black hole and one of the
colliding particles has critical angular momentum, there
still exists a restriction on the value of the spin a of the KN
black hole, which is a significant difference between the
two black holes. For a near-extremal black hole, we also
find that there always exists an upper bound for the CM
energy, which decreases with the increase of the charge Q.
For an extremal black hole, in order to obtain the Planck-
scale energy, the tolerance on the critical angular momen-
tum should be �l� 10�37. On the other hand, if one of the
colliding particles has the critical angular momentum
lc, then the tolerance on the black hole parameter is
�� 10�76. However, if the particle does not fall freely
from rest at infinity [6,9,10], the unlimited CM energy
may be approached. In future work, we will explore the
CM energy for the collision of charged particles taking
place in a nonextremal black hole background.
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