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We show that the correlation functions of ghosts and gluons for the pure Yang-Mills theory in Landau

gauge can be accurately reproduced for all momenta by a one-loop calculation. The key point is to use a

massive extension of the Faddeev-Popov action. The agreement with lattice simulation is excellent in

d ¼ 4. The one-loop calculation also reproduces all the characteristic features of the lattice simulations in

d ¼ 3 and naturally explains the peculiarities of the propagators in d ¼ 2.
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The infrared (IR) physics of strong interaction is well
described today by lattice simulations of quantum chro-
modynamics (QCD). This tool is now commonly used to
determine the spectrum of particles, cross sections, and
other physical observables (see for example [1]). The
analytical (or semianalytical) approaches have not reached
such a high level of development, mainly because the
standard perturbative approach breaks down at low ener-
gies. This calls for more sophisticated techniques, and a
good guiding principle in developing them is to compare
their predictions with lattice simulations. Unfortunately,
the simplest quantities that can be computed in analytical
approaches are nongauge-invariant and therefore require to
fix the gauge. For this reason, a considerable amount of
work has been performed in the last few years to study
gauge-fixed versions of QCD in the lattice.

The simplest quantities that can be analytically studied
are the 2-point correlation functions in Landau gauge, and
most of the gauge-fixed simulations have focused on these
quantities. In the case of pure gluodynamics (with no
quarks), some facts are now clearly established. First, the
gluon propagator does not diverge in the IR but tends to a
positive constant for d > 2 [2–4] and to zero in d ¼ 2
[5,6]. The ghost propagator is divergent in the IR limit
with an enhancement when compared to the free propaga-
tor: the dressing function (i.e. the propagator times mo-
mentum squared) is monotonically decreasing with
momentum. It seems to approach a finite positive constant
in the IR for d > 2 and diverges in this limit for d ¼ 2. It is
also well documented that the Källén-Lhemann spectral
function associated with the gluon propagator is not defi-
nite positive [7,8].

Let us now recall the various analytical approaches that
have been used to determine these correlation functions.
The standard perturbation theory in the framework of
Faddeev-Popov (FP) gauge fixing, as is well known, is
unable to access the IR limit of the theory because it
presents a Landau pole. This may be related to the fact
that the FP procedure does not fix completely the gauge
because of the Gribov ambiguity: there exists in general

several gauge transformed configurations (Gribov copies)
that satisfy a gauge condition [9]. A line of investigation
has been developed to restrict the functional integral in
order to take into account only a subset of the Gribov
copies (hopefully, only one). This leads to the Gribov-
Zwanziger model [9–11] and some variants of it [12].
The IR propagators have also been studied by using
Schwinger-Dyson and nonperturbative renormalization
group equations. In these approaches, one solves a trun-
cated version of an infinite set of coupled equations for the
vertex functions. Depending on how one implements these
ideas, two families of solutions have been found: (i) the
scaling solution [13–16], where the gluon propagator goes
to zero in all dimensions and the ghost propagator is more
singular than the bare one in the IR, and (ii) the decoupling
solution [17,18] where the propagators have behaviors in
qualitative agreements with the lattice simulations. We
note at this level that all these approaches lead to quite
involved calculations, with in some cases an important
numerical part.
In this letter we take a more pragmatic point of view. We

do not try to find a gauge-fixed theory that would be
justified from first principles, but propose a minimal modi-
fication of the FP action that can account for the lattice
simulation results. Of course, this phenomenological ap-
proach can only be motivated a posteriori, if it describes in
a satisfactory way the simulation results. Our main guide is
the observation that the gluon propagator tends to a finite
positive value in the IR for d > 2. We propose to impose
this property at the tree level by adding a mass term for the
gluon in the FP action [19]. We do not change the ghost
sector since the ghost propagator is found to be IR diver-
gent in the simulations. This leads us to consider the
Landau-gauge FP Euclidean Lagrangian supplemented
with a gluon mass term:

L ¼1

4
ðFa

��Þ2þ@� �c
aðD�cÞaþ iha@�A

a
�þm2

2
ðAa

�Þ2 (1)

where ðD�cÞa ¼ @�c
a þ gfabcAb

�c
c and the field strength

Fa
�� ¼ @�A� � @�A� þ gfabcAb

�A
c
� are expressed in
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terms of the coupling constant g. The Lagrangian (1)
corresponds to a particular case of the Curci-Ferrari model
[20]. At tree level, the gluon propagator is massive and
transverse in momentum space:

Gab
��ðpÞ ¼ �abP?

��ðpÞ 1

p2 þm2
(2)

with P?
��ðpÞ ¼ ��� � p�p�=p

2. It is interesting to note

that the spectral density associated with the propagator (2)
is positive and therefore there is no violation of positivity at
the tree level. We conclude that violations of positivity, if
they exist in this model, are caused by fluctuations.

Actually, the gluon propagator observed in the lattice is
not compatible with the bare propagator (2) and we will
show below that, by including the one-loop corrections,
one obtains propagators for gluons and ghosts that are in
impressive agreement with those obtained in the lattice in
d ¼ 4 (including positivity violations) and that reproduce
at the qualitative level the results for d ¼ 3. Let us mention
that a mass term has been used to improve perturbative
QCD results in order to reproduce the phenomenology of
strong interactions [21]. Moreover, there are successful
confinement models [22] that use actions including a gluon
mass term.

When analyzing the model described above, we must
face the problem that the mass term breaks the Becchi-
Rouet-Stora-Tyutin (BRST) symmetry [23] which is very
important in the perturbative analysis. This symmetry has
the form

�Aa
� ¼ �ðD�cÞa; �ca ¼ ��

g

2
fabccbcc;

� �ca ¼ �iha; �iha ¼ 0;
(3)

where � is a global Grassmanian parameter. The BRST
symmetry is in general used to prove the renormalizability
of the theory but the breaking of this symmetry by the mass
term does not spoil renormalizability [20]. The BRST
symmetry is also used to reduce the state space to the
physical space, in which the theory is unitary. Since the
BRST symmetry is broken by the mass term, we cannot
address the problem of unitarity as usually done. This issue
is actually common to essentially all methods that try to go
beyond the standard perturbation theory (as the Gribov-
Zwanziger model) because they all break the standard

BRST symmetry. In this respect, the model considered
here is not in a worse position than other approaches
considered in the field. We must stress that this model is
equivalent to the standard FP model in the ultraviolet limit
p � �QCD ifm��QCD. This means that in the domain of

validity of standard perturbation theory, the model is as
unitary as QCD. The unitarity of the model in other mo-
mentum regimes is of course an important open problem,
as it is in all gauge fixings in which standard BRST
symmetry is broken.
The model with Lagrangian (1), as a particular case of

the Curci-Ferrari model, has a pseudo-BRST symmetry
(not nilpotent) that has the same form as the standard
BRST (3) except for the h variation which reads �iha ¼
�m2ca. On top of this symmetry, the Lagrangian has all the
standard symmetries of the FP action for the Landau gauge.
This includes the shift in antighost �c ! �cþ cst., a sym-
plectic group [24], and four gauged supersymmetries re-
cently found [25]. As a consequence, the mass [26] and
coupling constant [27] renormalization factors (even in
presence of the mass term [25]) are fixed in terms of gluon
and ghost field renormalizations.
We present now the one-loop calculation of the propa-

gators, which requires the calculation of four Feynman
diagrams. It is convenient to parametrize the gluon
Gab

��ðpÞ and the ghost GabðpÞ propagators in the form:

GabðpÞ ¼ �abFðpÞ=p2;

Gab
��ðpÞ ¼ P?

��ðpÞ�abGðpÞ:
(4)

The FðpÞ is known as the ghost dressing function and the
scalar function GðpÞ will be referred to as the gluon
propagator below. We choose the following renormaliza-
tion conditions:

Gðp ¼ 0Þ ¼ 1=m2;

Gðp ¼ �Þ ¼ 1=ðm2 þ�2Þ;
Fðp ¼ �Þ ¼ 1:

(5)

We use the gluon-ghost vertex in the Taylor scheme [27]
for the coupling constant g.
We consider first the 4-dimensional case. The one-loop

result for the renormalized functions FðpÞ and GðpÞ [im-
posing the renormalization prescriptions (5)] are

G�1ðpÞ=m2 ¼ sþ 1þ g2Ns

384�2

�
111s�1 � 2s�2 þ ð2� s2Þ logsþ 2ðs�1 þ 1Þ3ðs2 � 10sþ 1Þ logð1þ sÞ

þ ð4s�1 þ 1Þ3=2ðs2 � 20sþ 12Þ log
� ffiffiffiffiffiffiffiffiffiffiffiffi

4þ s
p � ffiffiffi

s
p

ffiffiffiffiffiffiffiffiffiffiffiffi
4þ s

p þ ffiffiffi
s

p
�
� ðs ! �2=m2Þ

�

F�1ðpÞ ¼ 1þ g2N

64�2
f�s logsþ ðsþ 1Þ3s�2 logðsþ 1Þ � s�1 � ðs ! �2=m2Þg (6)

where s ¼ p2=m2.
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In Fig. 1, we compare these expressions for the SUð2Þ
gauge group with the lattice simulations of [2]. The best
choice of parameter is g ¼ 7:5 and m ¼ 0:68 GeV when
normalization prescriptions are imposed at � ¼ 1 GeV.
One observes that both gluon and ghost propagators can be
fitted with the same choice of parameters in a very satis-
factory way. Note that the normalization conditions of the
lattice simulations are not compatible with (5) so that we
have to introduce a global multiplicative renormalization
factor when comparing the curves.

We have also compared our results with the data of two
different lattice studies [3,4] for the SUð3Þ group. The two
data sets have different overall momentum scale and we
have rescaled the momenta of the data of [3] for super-
imposing them with those of [4]. We represent in Fig. 2 the
dressing function of the gluon instead of the propagator in
order to make visible the ultraviolet regime. The best
choice of parameters is g ¼ 4:9 and m ¼ 0:54 GeV (again
with � ¼ 1 GeV) and it leads to a very satisfying agree-
ment for momenta p & 2 GeV. It is important to stress that
expressions (6) are one-loop results obtained from a fixed
coupling constant calculation in a fixed renormalization
point. It is well-known that in order to analyze the regime

p � m, one must take into account renormalization group
effects and, in particular, the running of the coupling. The
corresponding procedure is standard and once it is imple-
mented (see [28] for details), the agreement is essentially
within error bars for p >m as is also shown in Fig. 2.
A very good agreement is also obtained for the ghost
dressing function [28]. In any case, it is obvious that
when p � m, the model (1) reproduces correctly the
high momentum regime once renormalization group
effects are taken into account.
An interesting feature of the one-loop gluon propagator

is that it is nonmonotonous in the IR. In fact, the inverse
propagator behaves at small momenta as m2 þ
Ng2p2=ð192�2Þ logðp2=m2Þ þOðp2Þ. This prediction of
our calculation is very small for d ¼ 4 and it is not visible
in Fig. 1 but appears clearly in d ¼ 3, see below.
An important property of the propagators measured on

the lattice is the violation of positivity. One way to extract
it is to calculate the quantity:

CðtÞ ¼
Z 1

�1
dp

2�
eiptGðpÞ: (7)

It can be shown (see for instance [7]) that the positivity of
the spectral function implies the positivity of CðtÞ. In
Fig. 3, we plot a numerical Fourier transform of the
SUð3Þ gauge group gluon propagator for the best parame-
ters described above; this shows a clear violation of pos-
itivity. We observe that the curve of CðtÞ is very similar to
the one of [7]: it is strongly positive for t & 1 fm and
slightly negative beyond.
Let us now consider the three-dimensional case, where

the one-loop calculation can be done explicitly again. The
details of the calculations and the final expressions will be
presented in a future publication [28]. We only mention
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FIG. 2 (color online). Four-dimensional gluon propagator for
SUð3Þ gauge group times p2. The results of the present work (red
curve) are compared with lattice data of [3] (green open circles)
and [4] (green crosses). The (black) dashed curve is the
ultraviolet-improved curve obtained by the renormalization group.
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FIG. 1 (color online). Four-dimensional correlation functions
for SUð2Þ gauge group. The results of the present work (red
curve) are compared with lattice data of [2] (green points). Top
figure: gluon propagator. Bottom figure: ghost dressing function.
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here that the model (1) is able to account for the main
features of gluon and ghost propagators found in lattice
simulations. In Fig. 4 the results of the present model with

the best fit parameters g ¼ 3:7
ffiffiffiffiffiffiffiffiffiffi
GeV

p
and m ¼ 0:89 GeV

for � ¼ 1 GeV are compared with d ¼ 3 simulations
performed with the gauge group SUð2Þ [2]. We observe
that the best fit for gluon and ghost propagators are not as
good as in d ¼ 4. This is probably related to the fact that
higher loop corrections are not very small. It is worth
mentioning that the results improve if one imposes the
normalization conditions at a larger momentum scale (for

� ¼ 11 GeV the best parameters are g ¼ 1:6
ffiffiffiffiffiffiffiffiffiffi
GeV

p
and

m ¼ 0:35 GeV). Such a large scheme dependence indi-
cates that higher loop corrections give significant contri-
butions. In any case, our calculation reproduces the finite
IR gluon propagator and ghost dressing function. It also
reproduces the nonmonotonic behavior of the gluon propa-
gator in the IR. An expansion of the inverse propagator at
low momentum leads to m2 � Ng2p=64þOðp2Þ.

Within the model, the difference between d ¼ 2 and
d > 2 that is observed in the lattice (see above) also
appears natural. In d ¼ 2, we find that the gluon mass m
and ghost dressing function at zero momentum Fð0Þ
develop logarithmic IR divergences. Such divergences
exclude the possibility of controlling the one-loop calcu-
lation as was used above for d > 2. A proper treatment of
the d ¼ 2 case requires a renormalization group approach
adapted to the IR regime [28] and goes beyond the scope of
the present letter.

The model presented here reproduces surprisingly well
the d ¼ 4 propagators of pure gluodynamics for SUð2Þ and
SUð3Þ and describes in a simple way the main character-
istics of those propagators in d ¼ 3. The specificities of the
d ¼ 2 case result from the IR divergences that appear in

this dimension. Given the technical simplicity of this
approach, this work opens the door to many subsequent
applications in strong interactions physics (for example,
the inclusion of quarks, a study of the dependence on the
gauge fixing, three- and four-point correlation functions,
quark-anti-quark static potential).
Considering the surprisingly good agreement between

the one-loop calculation and the simulations, it is tempting
to think that the model is not just a good phenomenological
description and one should try to justify the use of this
action from first principles. The issue of unitarity should be
also explored.
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FIG. 3 (color online). Four-dimensional real space propagator
CðtÞ for SUð3Þ gauge group. The curves grow when t tends to
zero, saturating at the value Cð0Þ ’ 2:1.
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FIG. 4 (color online). Three-dimensional functions for SUð2Þ
gauge group: Comparison of present results (plain red curve for
� ¼ 1 GeV and dashed blue curve for � ¼ 11 GeV) with
lattice data of [2] (green bars). Top figure: gluon propagator.
Bottom figure: ghost dressing function.
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