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The goal of this paper is twofold: to explore the response of classical charges to electromagnetic force

at the level of unity in natural units and to establish a criterion that determines physical parameters for

which the related radiation-reaction effects are detectable. In pursuit of this goal, the Landau-Lifshitz

equation is solved analytically for an arbitrary (transverse) electromagnetic pulse. A comparative study of

the radiation emission of an electron in a linearly polarized pulse for the Landau-Lifshitz equation and for

the Lorentz force equation reveals the radiation-reaction-dominated regime, in which radiation-reaction

effects overcome the influence of the external fields. The case of a relativistic electron that is slowed down

by a counterpropagating electromagnetic wave is studied in detail. We further show that when the electron

experiences acceleration of order unity, the dynamics of the Lorentz force equation, the Landau-Lifshitz

equation and the Lorentz-Abraham-Dirac equation all result in different radiation emission that could be

distinguished in experiment. Finally, our analytic and numerical results are compared with those

appearing in the literature.
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I. INTRODUCTION

A. The radiation-reaction force
and Landau-Lifshitz equation

The equation of motion for an electron with charge �e
and massm in an external electromagnetic field is given by
the Lorentz force (LF) equation

m _u� ¼ �eF��u�; (1)

where F�� is the electromagnetic tensor, u� ¼ �ð1; ~vÞ is
the four-velocity of the charge, � ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
and the dot

represents differentiation with respect to proper time �.
We use the metric convention (þ���) and units in
which the speed of light is unity c ¼ 1. Maxwell equations
together with the LF equation imply that the rate at which
energy is emitted by an accelerated charge with respect to
laboratory time is [1]

R � dE

dt

��������lab
¼ � 2

3
e2 _u� _u�: (2)

The right-hand-side of Eq. (2) is a positive-definite Lorentz
invariant that vanishes if and only if _u� ¼ 0, and therefore
an accelerated charge emits radiation and loses energy
relative to any Lorentz observer.

The inertial reaction due to the energy-momentum loss
exhibited by Eq. (2) is not accounted for in the LF equation
[2]. Consequently, the Lorentz force equation with a pre-
scribed electromagnetic field is only an approximated de-
scription of the electron motion limited to cases in which
the radiation emission is small. The precise meaning of
‘‘small’’ will be established in Sec. IV where the radiation-
reaction (RR) dominated regime criterion suggested by

analysis [3,4] is verified by numerical evaluation of the
radiation.
During the development of the Lorentz-Maxwell theory

of electromagnetism, there has been a long search for an
improved classical equation that comprehensively de-
scribes the motion of a radiating charge in a prescribed
electromagnetic field. The most prominent equation that
was suggested after the introduction of quantum theory is
the Lorentz-Abraham-Dirac (LAD) equation [2]

m _u� ¼ �eF��u� þm�0½ €u� þ _u2u��; (3)

where

�0 ¼ 2

3

e2

mc3
(4)

is a constant with dimensions of time, whose numerical
value for the electron is �0 ¼ 6:24� 10�24 s. Other mod-
els have been introduced by Eliezer [5], Landau and
Lifshitz [3], Mo and Papas [6], Caldirola [7], Yaghjian
[8] and Sokolov et al. [9–11].
Of particular interest is the Landau-Lifshitz (LL) equa-

tion (also known as the reduced LAD equation) first pre-
sented in [3]:

m _u� ¼ �eF��u� � e�0

�
F��
;� u�u

�

� e

m
½F��F��u

� � F��F��u
�u�u

��
�
: (5)

The LL equation is often selected for further study because
it is the only equation from the above list that is equivalent
to the LAD equation up to first order in �0 [12], avoids
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the nonphysical solutions of the LAD [13] and has known
analytic solutions [14–16]. A rigorous derivation of Eq. (5)
using perturbation theory was recently given from consid-
erations of energy and momentum conservation [17].

B. Line of approach and objectives

In this paper we explore the dynamics of a charged
particle exposed to an ultraintense pulsed laser field. The
objective will be to understand how RR impacts the normal
Lorentz dynamics and to derive criteria which delineate the
domain of validity of the LF. For a thorough discussion of
the electron dynamics and radiation emission in laser fields
with a small radiation-reaction correction, the reader
should consult Ref. [18]. The assumption of small radiation
reaction breaks down as the acceleration reaches unity in
natural units. For acceleration unity, the familiar Lorentz
force dynamics cannot hold anymore, and RR effects
dominate the motion of the charge as will be discussed in
depth in the body of this work.

The investigations here are intended to help identify the
onset of new dynamics beyond that found in classical
electromagnetism, and not so much to test which of the
LF generalizations is more accurate. Moreover, since the
theory of quantum electrodynamics is founded upon clas-
sical electromagnetism, the completeness and depth of
our understanding of charged particles under high accel-
erations remains both qualitatively and quantitatively
uncertain [19]. In particular, dynamics at the critical elec-
tromagnetic field strength Ec ¼ m2c3=eℏ—both classical
and quantum—should be reconsidered [20]. At this limit
quantum effects are believed important [21,22], though we
withhold judgment on the matter and consider a thorough
analysis of classical predictions a relevant basis for further
exploration.

To reach acceleration unity with current laser systems,
we boost the intensity of the laser wave by colliding it
head-on with relativistic electrons (Fig. 1). In the instan-
taneous rest frame of the electron the laser fields are greatly
enhanced, as was demonstrated numerically in [4,23].
Since the LL equation is considered to be the best available
candidate to account for the radiation-reaction effects, we
solve the LL equation and analyze the dynamics according
to this model.

The LL Eq. (5) is nonlinear in the electromagnetic field
tensor F�� and in the four-velocity u�. Because of this
nonlinearity, it has resisted for a long time an analytic
solution, except for simple cases: constant magnetic
[24,25] and constant magnetic plus electric fields for which
the LL equation reproduces the dynamics of the LAD
equation [26], a circular orbit [14] and the nonrelativistic
motion in a Coulomb potential [15]. Recently [16], a
closed-form solution for LL was obtained for a plane
wave and studied in applications [27].
In this paper we solve for the motion of a charged

particle in a transverse wave: a monochromatic electro-
magnetic wave for which the wave fronts (surfaces of
constant phase) are infinite parallel planes of arbitrary
amplitude. This includes many useful physical scenarios
as special cases, such as constant crossed electromagnetic
fields, linearly polarized and circularly polarized plane
waves, and an electromagnetic pulse in space and time
with arbitrary shape. The solution here is obtained by a
method independent of that seen in [16], and we provide
additionally an analysis of the radiation emission and its
angular distribution. Analytic and numerical comparisons
of our solution with those of [16,27] are provided in
Appendix C.
In Sec. II we discuss the physical meaning and mathe-

matical properties of the transverse wave. Section III in-
cludes the derivation of the analytic solution of the LL
equation for this case. In Sec. IV we compare the radiation
emission with or without the RR force, and discuss in what
conditions the LL equation can be probed experimentally.
In Sec. V we study our two main examples of linearly
polarized and circularly polarized plane waves and com-
pare them to the known solution of the LF equation.

II. THE TRANSVERSE WAVE

We consider the motion of a charged particle in a
transverse wave: a monochromatic electromagnetic wave
for which the wave fronts are infinite parallel planes of
arbitrary amplitude. The four-potential of such an electro-
magnetic wave is

A�ðxÞ ¼ A0 Re½"�fð�Þ�; (6)

where A0 is the maximal amplitude of the wave, "� is the

(complex) polarization four-vector, k� ¼ ð!; ~kÞ is the
propagation four-vector and f is an arbitrary (complex)
function of � ¼ k�x� � k � x that represents the shape of
the wave.
To keep the dependence on the intensity of the electro-

magnetic wave explicit, we introduce the normalized four-
potential

Â �ðxÞ ¼ Re½"�fð�Þ� (7)

so that the four-potential is A� ¼ A0Â
�. This will prove

useful in the analysis of the radiation emission in Sec. IV.

FIG. 1 (color online). The experimental setup, represented
qualitatively. The radiation propagates mostly in the direction
of the electron and is projected onto the screen on the left.
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We take a polarization four-vector "� and a propagation
four-vector k� that satisfy

k2 ¼ 0; j"j2 ¼ �1; (8)

and the transverse condition

k � " ¼ 0: (9)

This means that the polarization of the wave is orthogonal
to the direction of wave propagation. Namely, the electric
and magnetic fields are perpendicular to the direction of
energy transfer.

The transverse condition Eq. (9) guarantees that the
electromagnetic potential satisfies the Lorenz gauge
condition

@�A
� ¼ 0: (10)

The electromagnetic field tensor is

F��ðxÞ ¼ @�A� � @�A� ¼ A0 Re½ðk�"� � k�"�Þf0ð�Þ�
¼ k�A0� � k�A0�; (11)

where the prime denotes differentiation with respect to
the variable �. Equation (8) and the transverse condition
Eq. (9) imply that the field tensor satisfies the following
identities

k�F
�� ¼ 0; (12a)

k�F
��
;� ¼ 0; (12b)

"�F
�� ¼ �ð" � A0Þk�; (12c)

"�F
��
;� ¼ �ð" � A00Þk�k�; (12d)

F��u� ¼ ðu � A0Þk� � ðk � uÞA0�; (12e)

F��F�� ¼ �k�k�ðA0Þ2: (12f)

Equation (12a) reveals that the potential (6) generates a
very special field configuration, in which the wave four-
vector k� is orthogonal to each of the row/column four-
vectors of the Faraday field tensor F��. We will see later
that this implies that the four-acceleration _u� is orthogonal
to k� in the case of the LF Eq. (1). However, the orthogo-
nality of the four-acceleration and the wave four-vector
will cease to hold once RR terms are included, in the case
of the LL Eq. (5).

Two concrete examples of the transverse wave Eq. (6)
we will address in Sec. V are

(a) Linearly polarized plane wave propagating in the
positive z direction with polarization in the x direc-
tion. In this case

"� ¼ ð0; 1; 0; 0Þ;
k� ¼ ð!; 0; 0; kÞ;

fð�Þ ¼ sinð�� �0Þ;
~A ¼ �A0 sinðkz�!tþ �0Þx̂;
~E ¼ �!A0 cosðkz�!tþ �0Þx̂;
~B ¼ �kA0 cosðkz�!tþ �0Þŷ;

(13)

where �0 is the phase of the wave. The choice of
phase has an important physical significance, as it
determines the intensity and the direction of the
electromagnetic wave as it initially hits the particle.

(b) Circularly polarized plane wave propagating in the
positive z direction with positive helicity. In this
case

"� ¼ 1ffiffiffi
2

p ð0; 1;�i; 0Þ;

k� ¼ ð!; 0; 0; kÞ;
fð�Þ ¼ ffiffiffi

2
p

eið���0Þ;
~A ¼ A0½cosðkz�!tþ �0Þx̂

� sinðkz�!tþ �0Þŷ�;
~E ¼ �!A0½sinðkz�!tþ �0Þx̂

þ cosðkz�!tþ �0Þŷ�;
~B ¼ �kA0½� cosðkz�!tþ �0Þx̂

þ sinðkz�!tþ �0Þŷ�: (14)

This example of a circularly polarized plane wave
also demonstrates the importance of allowing "�

and fð�Þ to be complex.

III. THE SOLUTION

The gist of the method used to solve the LL equation is
to introduce a change of variables similar to the one used in
[28] for the LF Eq. (1). We use the phase � ¼ k � x instead
of the proper time � as the independent variable. This
means that � is related to the proper time � by the relation

d�

d�
¼ k � u (15)

since the wave vector k� is fixed. Writing the LL Eq. (5) in
terms of �, one obtains

ðk � uÞu0� ¼ � e

m
F��u� � e

m
�0

�
F��
;� u�u

�

� e

m
½F��F��u

� � u�F
��F��u

�u��
�
; (16)

where the prime denotes differentiation with respect to the
new variable �. Equation (16) is a differential equation in
u� that contains the terms " � u and k � u as we can see
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from identities (12). Contracting Eq. (16) with k� and
using the field identities (12) gives

ðk � uÞ0 ¼ �0a
2
0ðk � uÞ2ðÂ0Þ2; (17)

where

a0 ¼ eA0

m
(18)

is a positive dimensionless constant measuring the inten-
sity of the electromagnetic wave.

Dividing by ðk � uÞ2 and integrating, we have

k � u ¼ k � u0
1� �0a

2
0ðk � u0Þc ð�Þ ; (19)

where we defined the first structure integral

c ð�Þ ¼
Z �

0
½Â0ðyÞ�2dy: (20)

Relation (15) allows integration of Eq. (19), obtaining an
explicit expression for � as a function of �, namely,

�ð�Þ ¼ �

k � u0 � �0a
2
0

Z �

0
c ðyÞdy: (21)

If A0� is a spacelike vector (e.g., when the time compo-
nent of the polarization four-vector vanishes, "0 ¼ 0), then
when � � 0 the function c is a non-negative function.

Thanks to Eq. (19) we now see that d�d� > 0. Therefore � is

an (increasing) monotone function of �, and the change of
variables � ! � can indeed be used for � � 0 (notice,
however, that it might run into a singularity if the proper
time is negative).

There is a caveat in Eq. (19) that the reader should be
aware of. Since we perform the integration with respect to
� and not �, the constant of integration should be deter-
mined by setting � ¼ 0. Given u0 ¼ uð� ¼ 0Þ, in general
u0 is not the initial four-velocity of the particle. In order to
remedy this situation and to minimize confusion, we now
choose the coordinate system such that at � ¼ 0, the par-
ticle is at the origin and therefore � ¼ 0 as well. Since the
change of variables was proved to be one-to-one, this
guarantees that u0 ¼ uð� ¼ 0Þ ¼ uð� ¼ 0Þ, so for this
particular coordinate system u0 is indeed the initial four-
velocity of the particle.

We continue by contracting Eq. (16) with "� and using
the field identities (12) in a similar fashion, which gives

ðk � uÞð" � uÞ0 ¼ a0ðk � uÞð" � Â0Þ þ �0a0ðk � uÞ2ð" � Â00Þ
þ �0a

2
0ð" � uÞðk � uÞ2ðÂ0Þ2: (22)

This is a nonhomogeneous linear differential equation
for " � u which can be solved given k � u. The last term
in Eq. (22) is ð" � uÞðk � uÞ0 as we can see from Eq. (17).
Therefore, one can write

ðk � uÞð" � uÞ0 � ðk � uÞ0ð" � uÞ
¼ a0ðk � uÞð" � Â0Þ þ �0a0ðk � uÞ2ð" � Â00Þ; (23)

and dividing by ðk � uÞ2 we have
�
" � u
k � u

�0 ¼ a0
" � Â0

k � u þ �0a0" � Â00: (24)

Substituting Eq. (19) for k � u and integrating yields

" � u
k � u ¼ " � u0

k � u0 þ a0
" � ðÂ� Â0Þ

k � u0 � �0a
3
0" � �

þ �0a0" � ðÂ0 � Â0
0Þ; (25)

where here again Â�
0 ¼ Â�ð0Þ and we defined as a second

structure integral the four-vector

��ð�Þ ¼
Z �

0
Â0�ðyÞc ðyÞdy: (26)

Multiplying Eq. (25) by f0 and f00 and taking the real part
gives us

Â0 � u
k � u ¼ Â0 � u0

k � u0 þ a0
Â0 � ðÂ� Â0Þ

k � u0 � �0a
3
0ðÂ0 � �Þ

þ �0a0Â
0 � ðÂ0 � Â0

0Þ (27)

and

Â00 � u
k � u ¼ Â00 � u0

k � u0 þ a0
Â00 � ðÂ� Â0Þ

k � u0
� �0a

3
0ðÂ00 � �Þ þ �0a0Â

00 � ðÂ0 � Â0
0Þ: (28)

We are finally ready to integrate the LL Eq. (16).
Writing it explicitly in terms of the four-potential using
Eq. (11) gives

ðk � uÞu0� ¼ �a0½ðÂ0 � uÞk� � ðk � uÞÂ0��
� �0a0½ðk � uÞðÂ00 � uÞk� � ðk � uÞ2Â00��
� �0a

2
0½ðk � uÞÂ02k� � ðk � uÞ2Â02u��: (29)

Similarly to what we had earlier, Eq. (17) reveals that the
last term is ðk � uÞ0u�; therefore
�
u�

k�u
�0 ¼

�
a0

1

k�uÂ
0�þ�0a0Â

00�
�

þ
�
�a0

Â0 �u
ðk�uÞ2��0a0

Â00 �u
k�u ��0a

2
0

Â02

k�u
�
k�; (30)

where we separated terms that are parallel to "� in the first
brackets from terms that are parallel to k� in the second
brackets. Substituting Eqs. (19), (27), and (28), integrating
and collecting powers of �0, we finally obtain
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u� ¼ k � u
k � u0

�
u�0 þ a0ðÂ� � Â�

0 Þ � k�

k � u0
�
a0ðÂ� Â0Þ � u0 þ a20

ðÂ� Â0Þ2
2

��
þ ðk � uÞ�0

�
½a0ðÂ0� � Â0�

0 Þ � a30�
��

þ k�

k � u0 ½�a0ðÂ0 � Â0
0Þ � u0 � a20c � a20ðÂ� Â0Þ � ðÂ0 � Â0

0Þ þ a30� � u0 þ a40ðÂ� Â0Þ � ��
�

þ k�ðk � uÞ�20
�
�a20

ðÂ0 � Â0
0Þ2

2
þ a40ðÂ0 � Â0

0Þ � �þ a40
c 2

2
� a60

�2

2

�
: (31)

This is an analytic expression for the four-velocity u� as a
function of the variable �. It is verified by direct compu-
tation that u�u� ¼ 1 as expected. Moreover, it is given in a
manifestly covariant form that is valid for any reference
frame. The presence of the four-potential A� makes the
solution not manifestly gauge invariant. Nevertheless, the
solution is invariant under gauge transformations satisfying
the transverse condition Eq. (9), i.e., transformations of the
form A�ð�Þ ! A�ð�Þ þ k��ð�Þ.

Equation (31) together with Eqs. (19) and (21) provide a
complete description of the velocity of the particle as a
function of its proper time. Once the structure integrals
Eqs. (20) and (26) are evaluated, Eq. (31) forms an analytic
solution of the LL Eq. (5) for the transverse wave potential
Eq. (6) in a closed form. The equivalence of the solution
presented here with [16] is proven analytically in
Appendix C. A direct comparison of numerical results for
the physical situation studied in [27] is also presented there.

Since the LF Eq. (1) is obtained from the LL Eq. (5) in
the limit �0 ! 0 and the field is continuous, the solution of
the LL equation contains the solution of the LF Eq. (1) as a
special case. In the limit of �0 ! 0, we see that the solution
Eq. (31) reduces to

u� ¼ u�0 þ a0ðÂ� � Â�
0 Þ

� k�

k � u0
�
a0ðÂ� Â0Þ � u0 þ a20

ðÂ� Â0Þ2
2

�
; (32)

which is the known solution [18] to the LF Eq. (1). In
this case � and � have linear dependence, and Eq. (21)
reduces to

�ð�Þ ¼ ðk � u0Þ�: (33)

Comparing the solution Eq. (31) to the LL equation with
the solution Eq. (32) to the LF equation we see that �0 and
�20 appear in the former. Terms that are quadratic in �0 are
in the direction of the wave vector k�. The linear terms in
�0 were separated intentionally in Eq. (31) to terms in the
direction of "� (last term in the first line) and terms in the
direction of k� (whole second line). Most of the new terms
that produce the deviation from the LF prediction are in the
direction of propagation of the wave, as one would expect.

Despite the appearance of (at most) quadratic terms in
the solution Eq. (31), it is important to realize that the
dependence of u� on �0 is more complicated than what
meets the eye. The projection k � u can be expanded in an
(infinite) Taylor series in �0 using Eq. (19), from which it is

seen that u� contains an infinite number of powers of �0.
This all-orders expansion does not imply that the LL
equation gives an exact description of the radiating charged
particle. The LL Eq. (31) is an approximation taking into
account the radiative energy loss of the particle only from
the zeroth order (Lorentz) motion given in Eq. (1). For a
more complete discussion of the physics and assumptions
involved in this expansion, see [17].
The solution Eq. (31) to the LL equation contains

powers in the intensity up to a60, four powers higher than
a20, the highest power appearing in the solution Eq. (32) to

the LF equation. Consequently, increasing the intensity of
the electromagnetic wave brings the dynamics closer to the
RR dominated regime, in which the predictions of the LL
model differ significantly from those of the LF equation as
we now discuss.

IV. RADIATION EMISSION

A. Radiation reaction

The rate of energy-momentum loss due to radiation is
normally computed by the Abraham-Heaviside formula

dP�

d�
¼ � 2

3
e2ð _u2Þu�: (34)

However, a careful examination of its derivation [1] shows
that Eq. (34) depends on the equation of motion, which is
assumed to be the LF Eq. (1). This renders a serious
difficulty in the computation of radiation emission for the
LL equation, as it currently does not have a corresponding
expression for the rate of energy lost in radiation. The
difficulty stems from the implicit description of radiation
reaction in terms of the Maxwell equations and thus ab-
sence of a complete theory of charged-particle dynamics,
as would be encoded in a single unified action principle.
We are therefore compelled to proceed by retaining the
usual expressions for radiation emission obtained from the
Maxwell-Lorentz theory. The present work should be con-
sidered as a case study for the radiation emission where RR
effects are present, computed within the limitations of the
current theoretical framework, as no other approach yet
exists.
The rate of energy-momentum loss Eq. (34) is a four-

vector that requires the knowledge of the four-velocity and
four-acceleration of the particle. The four-velocity was
already given in Eq. (31), and the four-acceleration is
supplied by Appendix B. Since the four-velocity and
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four-acceleration are different in the Lorentz and in the LL
dynamics, the radiation emission produces different results
as well. The rate (with respect to proper time) at which
energy is emitted from the particle is just the 0-component
of the four-vector in Eq. (34). In order to obtainR, the rate
at which energy is emitted with respect to laboratory time,
we notice that

R � dP0

dt
¼ d�

dt

dP0

d�
¼ � 2

3
e2 _u2; (35)

where we used Eq. (34) in the last equality. This is nothing
other than Eq. (2) which was stated earlier in the introduc-
tion. Evaluating R using the four-acceleration Eq. (B1)
yields the rate at which energy is radiated from the charge
with respect to the laboratory time according to the LL
equation

R ¼ � 2

3
e2

ðk � uÞ4
ðk � u0Þ2

�
a20Â

02

þ �0ðk � u0Þ½2a20Â00 � Â0 � 2a40c Â02�
þ �20ðk � u0Þ2

�
a20Â

002 � 2a40c Â0 � Â00

þ a40ðÂ02Þ2 k � u
k � u0

�
k � u
k � u0 � 2

�
þ a60c

2Â02
�

þ �30ðk � uÞðk � u0Þ2ðÂ02Þ2a60c
�
2� 2

k � u
k � u0

�

þ �40ðk � uÞ2ðk � u0Þ2ðÂ02Þ2a80c 2

�
: (36)

With the aid of Eq. (19), it can be written as

R ¼ � 2

3
e2

ðk � uÞ4
ðk � u0Þ2

f½a0Â0 þ ðk � u0Þ�0a0Â00

� ðk � u0Þ�0a30c Â0�2 � ðk � u0Þ2�20a40ðÂ02Þ2g: (37)

Since the four-vector in the brackets is a spacelike four-
vector, this is a manifestly positive-definite expression [this
is also evident from its definition in Eq. (35)]. By taking the
limit �0 ! 0 one obtains the radiation rate in the absence
of RR effects

R ¼ � 2

3
e2ðk � u0Þ2a20Â02: (38)

This is the rate at which energy is radiated from the
particle in the case of motion according to the LF Eq. (1).
Comparing Eq. (36) with Eq. (38) allows us to determine
the condition in which the predictions of the LL model
depart from the predictions of the LF equation. The particle
has an initial velocity of u�0 ¼ �0ð1; ~v0Þ, and

k � u0 ¼ �0ð!� ~k � ~v0Þ: (39)

If the wave vector ~k and the initial 3-velocity v0 point in
the same direction, k � u0 � !. However, when the wave

vector ~k and the initial 3-velocity v0 are in opposite direc-
tions, k � u0 has order of magnitude!�0. This corresponds

to a head-on collision between the electron and the laser
beam, which thanks to the factor of �0 enhances the
radiation-reaction effects greatly as we will see next.
When a0 � 1, the leading order correction to the LF
equation will be the �0 term, in which the dominant term
is that proportional to a40. We therefore enter the RR

dominated regime when the corrections supplied by the
LL equation become of the same order of magnitude as the
ones in Eq. (38), namely, as

a20 	 ð!�0Þ�0a
4
0: (40)

For an electron traveling into a laser beam with wavelength
�	 942 nm (or equivalently frequency !	 2 fs�1)
we have !�0 	 10�8, and we enter the RR dominated
regime as

�0a
2
0 	 108: (41)

Obtained on the basis of an analytical solution, these
conditions provide nontrivial validation of the conditions
found by [3,4]. Furthermore, with an explicit solution in
hand we can go further and verify the condition (40) by
directly comparing experimental observables predicted
by the LF and LL equations.
We see that there is an inverse squared relation between

the initial energy of the particle and the intensity of the
laser. Notice, however, that once we are deep inside the
radiation dominated regime, i.e., when

a20 
 ð!�0Þ�0a
4
0; (42)

higher order terms in �0 begin to dominate the emission
from the particle and not the term linear in �0. This still
results in a different radiation emission than the one pre-
dicted by the LF equation.
Figure 2 demonstrates the validity of Eq. (41) in the case

of a head-on collision between an electron and a linearly
polarized plane wave. The density at each value of the
intensity a0 and �0 was computed numerically over one
period of the wave (in �) by considering the statistical
deviation in the energy of the particle predicted by the
LL equation and the LF equation. It is a value between 0
and 1 given by

� ¼ 1

2	

Z 2	

0

jELLð�Þ � ELorentzð�Þj
jELLð�Þ þ ELorentzð�Þj d�: (43)

The result is striking, as Fig. 2 shows that already with
current laser systems RR effects can be tested. In fact, the
figure shows that RR effects can already be tested for high-
intensity lasers with a0 ¼ 100 and �0 ¼ 1000 (a ‘‘mod-
est’’ initial energy of E0 ¼ 0:511 GeV), as is demonstrated
in the next section. The boundary of the shaded domain is
in agreement with condition Eq. (41).
Recall that the LL Eq. (5) was derived from the LAD

Eq. (3) using perturbation theory [3]. The earlier edition
[29] makes it clear that the radiation-reaction forces of the
LAD and LL equations agree (perturbatively) when the
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Lorentz force dominates. However, solutions to the LAD
or LL equation need not be equivalent in general, though a
relationship can be established in the case that the
radiation-reaction force remains subdominant [13].

Specifically, LAD and LL predictions can disagree when
radiation-reaction forces dominate the Lorentz force. In
fact, a difference is possible in a region of parameter space
where classical dynamics are valid, as is seen by compar-
ing the dominant term in the LL force Eq. (5)

� e2�0
m

F��F��u
�u�u

� 	��0m!2a20�
3
0 (44)

to the LF

� eF��u� 	�m!a0�0 (45)

which gives

�0m!2a20�
3
0 
 m!a0�0: (46)

For wavelengths �	 942 nm we have !�0 	 10�8, and
the LL equation is compatible with the LAD equation
when

a0�
2
0 
 108: (47)

As noted also in Sec. 76 of [3], this condition differs from
Eq. (41): In the former, a0 is proportional to the square of
the inverse of �0 and in the latter �0 is proportional to the
square of the inverse of a0. Consequently, there are values

of a0 and �0 for which radiation reaction dominates the
dynamics.
We can therefore arrange experiments for which the LF

Eq. (1), the LAD Eq. (3) and the LL Eq. (5) may all predict
different particle dynamics. For these values we cannot
only measure RR effects, but can also distinguish the LL
equation from the LAD equation. The dashed (blue) line in
Fig. 2 represents the quantitative condition in Eq. (47), for
values at which the RR force is 1% the magnitude of
the LF, and above it, LL and LAD dynamics will be
distinguishable. For example, the point marked at intensity
a0 ¼ 100, initial �0 	 103 suffices to probe the RR domi-
nated regime in which the LL Eq. (5) is incompatible with
the LAD Eq. (3).
Since the RR force stems from radiation emission, and

radiation is emitted only if the particle is being accelerated
[see Eq. (2)], the real key physical property that is respon-
sible for the RR is the acceleration. In natural units, the
magnitude of acceleration [m] and force [m2] obtained by
hitting a resting electron with a laser beam is usually not
approaching unity (measured in units of the electron’s
mass). For example, for a0 ¼ 100 the maximal Lorentz
invariant force is only

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� _u� _u�
p ¼ 8� 10�4 me.

However, in a head-on collision between the electron
and the laser pulse, the ‘‘critical’’ force (i.e., acceleration
of the order of the electron mass) can be achieved easily, as
is presented in Fig. 3. This figure shows an acceleration of
order unity, achieved by colliding a relativistic electron
(�0 ¼ 1000) with a laser with intensity a0 ¼ 100. In fact,
by computing the LF we see that ‘‘unity’’ acceleration is
achieved when

!a0�0 	me; (48)

corresponding to the appearance of the ‘‘critical’’ field
strength Ec ¼ m2c3=eℏ in the electron rest frame. This
defines the solid (green) line in Fig. 2. Quantum effects
may become relevant beyond this boundary [21,22], and

FIG. 2 (color online). A density plot of Eq. (43) for a LP wave
with wavelength � ¼ 942 nm. Above the dashed (blue) line
given by Eq. (47), the predictions of the LL equation differ
from those of the Lorentz-Abraham-Dirac equation. Along the
solid green line the electron experiences a force of order unity
[m2] [see Eq. (48)]. The Schwinger critical field Ec ¼ m2c3=eℏ
is indicated in the bottom right corner. The solid circles are the
values that are studied in Sec. V.
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FIG. 3 (color online). The Lorentz invariant accelerationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� _u� _u�
p

in natural units for a circularly polarized laser wave
with a0 ¼ 100 and initial �0 ¼ 1000. The solid red line is the
acceleration in the LF case, while the dashed blue line gives the
acceleration according to the LL.
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we have chosen examples within the domain where clas-
sical dynamics certainly dominate. It is noteworthy that
Eq. (48) also loosely demarcates the domain of validity of
the LL equation itself, i.e., the lighter areas of Fig. 2 where
the predicted radiation remains ‘‘small.’’ For particles
other than the electron, condition Eq. (48) differs, as the
constant a0 defined in Eq. (18) depends on the mass of the
particle.

Figure 2 exhibits the existence of an area of ða0; �0Þ
parameter space especially sensitive for experiments prob-
ing radiation reaction. Between the solid (green) and
dashed (blue) lines, the classical LAD and LL equations
are both valid, but their dynamical predictions in general
can differ observably. The importance of this recognition is
the reason we have chosen to provide in Sec. V numerical
solutions for the point marked at (a0 ¼ 100, �0 ¼ 1000).

B. Angular distribution of radiation

The energy flux measured in the laboratory frame is
given by the Poynting vector [1]

~S ¼ 1

4	
~E� ~B; (49)

where ~E, ~B are the electric and magnetic field, respectively.
Let y� ¼ ðt; ~yÞ be the spacetime point at which we evaluate
the electromagnetic field, and denote by �0 the proper time
at which the worldline of the charge x� intersects the past
light cone emanating from y�. The retarded time �0 is
defined by the light-cone constraint

t� x0ð�0Þ ¼ R; (50)

where we denote by R the spatial separation between the
two events, namely,

R ¼ j ~y� ~xð�0Þj: (51)

Since the Poynting vector in Eq. (49) is quadratic in the
fields, and radiation is defined as the energy transported to
infinity, only fields that are falling off as R�1 or slower
radiate. Consequently, it can be shown [1] that the energy
flux radiated to infinity by a single charge is

½ ~S � ~n�ret ¼ e2

4	

�
1

R2

��������
~n� ½ð ~n� ~vÞ � ~a�

ð1� ~v � ~nÞ3
��������

2
�
ret
; (52)

where ~n is a unit vector in the direction of ~y� ~xð�Þ, ~v, ~a
are the three-dimensional velocity and acceleration of
the charge, respectively, and subscript ret means that the
quantity in the brackets is to be evaluated at the retarded
time �0.

The total amount of energy per unit solid angle emitted
during a finite acceleration period T is obtained by inte-
grating the Poynting vector from the retarded lab time
t ¼ 0 to t ¼ T and is given by [1]

dE

d�
¼

Z T

0
R2ð ~S � ~nÞð1� ~v � ~nÞdt: (53)

Since the solution in Eq. (31) is given in terms of �, it
is useful to express the integrand using the variable � as
well, as

dE

d�
¼

Z �ðt¼TÞ

0
R2ð ~S � ~nÞð1� ~v � ~nÞ dt

d�

d�

d�
d�

¼ e2

4	

Z �ðt¼TÞ

0

j ~n� ½ð ~n� ~vÞ � ~a�2j
ð1� ~v � ~nÞ5

�

k � u d�: (54)

In order to compute Eq. (54) we choose the coordinate
system such that the electromagnetic wave propagates in
the positive z direction while the particle initially moves in
the negative z direction. Equation (54) results in a cum-
bersome expression in the general case, which does not add
much to the understanding of the physics of the problem.
Instead, in the next section we will consider the angular
distribution of the energy emitted in the specific cases
presented earlier, of linearly and circularly polarized plane
waves.
Figure 4 shows the normalized angular distribution of

radiation in the x-z plane in the laboratory frame for a LP
plane wave hitting an electron initially at rest. The distri-
bution was normalized to unity by dividing it by its maxi-
mal value in order to demonstrate the different shapes of
radiation distribution for a laser beam with wavelength
� ¼ 942 nm and intensity a0 ¼ 0:1, 1, 10. For these in-
tensities (and an electron at rest) the LF equation and the
LL equation produce indistinguishable radiation distribu-
tion. The asymmetry in the dashed blue curve for a0 ¼ 10
is because the plot was generated for a laser wave duration

1.0 0.5 0.5 1.0
z

1.0

0.5

0.5

1.0

x

FIG. 4 (color online). The angular distribution of radiation for
a linearly polarized wave. This is the normalized radiation
distribution for an electron initially at rest, after interacting
with a laser with a0 ¼ 0:1, a0 ¼ 1 and a0 ¼ 10 plotted in solid
green, dotted red and dashed blue lines, respectively. This plot is
identical for the LF and for the LL equation.
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of 26.8 fs. For these values of the wave duration and laser
intensity, the velocity of the electron in the x direction does
not finish an integer number of periods and results in an
asymmetric motion in the x direction and consequently in
the angular distribution of radiation.

V. EXAMPLES

We now discuss our main examples of an electron
traveling in linearly and circularly polarized plane waves.
Assume that in the lab frame, the electron is initially
traveling towards the electromagnetic wave to a head-on
photon-electron collision at time t ¼ 0. For the figures and
the numerical values, we take an electromagnetic wave
with intensity a0 ¼ 100, wavelength � ¼ 942 nm, fre-
quency ! ¼ 2 fs�1 and a pulse that runs for a duration
of 26.8 fs. The RR effects are demonstrated graphically for
an electron initially at rest �0 ¼ 1 and a highly relativistic
electron with initial �0 ¼ 1000.

A. Linearly polarized plane wave

The definitions given in Eq. (13) give the structure
integrals Eqs. (20) and (26)

c ¼ � 1

2
ð�þ sin� cos�Þ;

�� ¼
�
0;
1

6
ð2� 3 cos�� 3� sin�þ cos3�Þ; 0; 0

�
: (55)

The projection of the four-velocity onto the wave vector is
given by Eq. (19) and yields

k � u ¼ k � u0
1þ 1

4 �0a
2
0ðk � u0Þð2�þ sin2�Þ : (56)

In Appendix A we provide the explicit expression for the
four-velocity of the particle in this case, as is given by Eq.
(31).

Equation (21) gives the relationship between � and �,
which is in this case

�ð�Þ ¼ �

k � u0 þ
1

8
a20�0½1þ 2�2 � cos2��: (57)

Notice that the limit �0 ! 0 indeed exists, where we obtain
the linear relation of Eq. (33). In fact, in this particular case
of the LF equation with a linearly polarized plane wave,
Eq. (33) is a known result [18], which means that the four-
acceleration of the particle is always orthogonal to the
wave vector k� in the absence of RR effects.

Figure 5 shows � and the longitudinal velocity for an
electron that is initially at rest. All figures are presented in
the laboratory frame with respect to the laboratory time t.
As Fig. 2 shows, this is still far from the RR dominated
regime and the predictions of the LL equation are practi-
cally indistinguishable from the ones given by the LF
equation. The particle is boosted rapidly in the direction

of the laser wave ẑ and is relativistic after approximately
100 as.
If the particle is initially moving in the negative ẑ

direction, there is a head-on collision between the
wave and the particle. An electron with initial �0 ¼ 1000
(E0 ¼ 0:511 GeV) is on the critical line of the RR domi-
nated regime. It is presented in Fig. 6. The pulse duration is
not long enough to flip the direction of the highly relativ-
istic electron (a 180 fs pulse duration is needed). The
radiation emitted by the particle slows the electron down
rapidly in the direction of the wave, while it gains momen-
tum in the direction of polarization. This is only true in the
case of the LL model (the dashed blue line) due to the RR
effects. In the absence of RR (the solid red line) the pulse is
incapable of slowing the particle down.
Although the wave is active for about 8 periods, we see

from Fig. 6 that the transverse velocity has 16 periods,
while the longitudinal velocity has 32 periods. The reason
for this effect is twofold. First, recall that the solution
Eq. (31) was given in terms of the variable �, which has
a nontrivial relation to the laboratory time in which we
measure the velocities of the particle. This relation is
demonstrated in Fig. 7 in which we see a doubling of the
duration for �. Second, a careful examination of the
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FIG. 5 (color online). The electron’s Lorentz factor � and
the longitudinal velocity vz for a linearly polarized wave with
a0 ¼ 100 and wavelength � ¼ 942 nm hitting an electron ini-
tially at rest. The solid red line represents the solution of the LF
equation, while the dashed blue line represents the LL equation
which is indistinguishable in this case.
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solution for a linearly polarized plane wave (in
Appendix A) shows that the period is doubled for the
longitudinal velocity once more, resulting in 32 periods.
The second effect is a feature of the linear polarization and
is absent in the case of a circularly polarized wave.

Since the electron is highly relativistic, the radiation is
emitted almost purely in the direction of its initial motion,
namely, in the negative z direction. The different radiation
emission from the LF equation and the LL equation is
shown in Fig. 8 where we see that the LF dynamics
produce different radiation emission than the LL dynamics.

B. Circularly polarized plane wave

We use Eq. (14) to evaluate the structure integrals
Eqs. (20) and (26)

c ¼��;

��¼ð0;sinð�Þ��cosð�Þ;1�cosð�Þ��sinð�Þ;0Þ: (58)

The projection of the four-velocity onto the wave vector is
given by Eq. (19) and yields

k � u ¼ k � u0
1þ �0a

2
0ðk � u0Þ�

: (59)

The four-velocity of the particle is given by Eq. (31) and
the analytic expression for it in this case is given in
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FIG. 6 (color online). The electron’s Lorentz factor �, the
transverse velocity vx, and the longitudinal velocity vz in the
laboratory frame as a function of lab time for a linearly polarized
wave with a0 ¼ 100 and an electron with initial �0 ¼ 1000. The
solid red line represents the solution of the LF equation, while
the blue (dashed) line represents the LL equation.

20 40 60 80 100

10

20

30

40

50

60
t

FIG. 7 (color online). The dependence between the laboratory
time t and the variable � in a LP plane wave for LF (solid red
line) and LL (dashed blue line) dynamics. The duration of � is
doubled from the original duration of the wave in !t.
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FIG. 8 (color online). Radiation emission for a linearly polar-
ized wave with a0 ¼ 100 colliding head-on with an electron with
initial �0 ¼ 1000. The angle 
 is measured on the x-z plane,
starting from the negative z axis. The radiation for the LF
equation (solid red line) is 1 order of magnitude greater than
the radiation in the case of the LL equation (the dashed blue
line).
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Appendix A. In order to have the four-velocity in terms of
the proper time �, we need to invert Eq. (21). In the case of
a circularly polarized plane wave, we can find the inverse
explicitly and obtain

�ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2a20ðk � u0Þ2�0�

q
� 1

a20ðk � u0Þ�0
: (60)

Since a circularly polarized wave with intensity
a0 ¼ 100 produces similar results to a linearly polarized
plane wave of the same intensity (Fig. 5), the graphs are not
presented here. However, because for the circularly polar-
ized case in Eq. (14) there is no choice of phase �0 of the
wave for which the transverse motion of the resting elec-
tron vanishes, the phase at the instant of collision has
physical significance resulting in a drift in the direction
of initial polarization (x̂ in this case). This drift is a non-
physical consequence of the nonphysical electromagnetic
field. A different choice of initial phase for the linearly
polarized wave produces a drift in the direction of polar-
ization as well. This mathematical artifact is a result of a
plane wave whose duration is infinitely long, as one can see
from Eq. (31) that the solution depends explicitly on the

four-potential at the initial time Â�
0 . If the initial four-

potential Â�
0 is nonzero, the second term in Eq. (31) causes

a drift in the opposite direction of Â�
0 .

In practice, any experiment involving laser beams will
require a certain finite duration on which the wave is being
turned on. This can be modeled into the solution by defin-
ing a turn-on function

Hð�Þ ¼
�
sin2ð�=�Þ � � �	

2

1 � > �	
2 ;

(61)

which vanishes for negative �, and increases continuously
to 1 over a finite period determined by the parameter �.
The new shape function for the four-vector potential is

fð�Þ ¼
Z �

0
HðyÞ ffiffiffi

2
p

eiðyÞdy (62)

for the circularly polarized wave [cf. with Eq. (14)]. The
introduction of the turn-on function Hð�Þ in the shape
function guarantees that the electromagnetic field will be
turned on smoothly. The integration appears since fð�Þ
defines the four-potential, but we would like a smooth
turn-on of the electromagnetic field which is defined in
terms of the derivative of fð�Þ [see Eqs. (6) and (11)].

In the following graphs we choose the parameter � to be
such that the electromagnetic field is turned on on a period
of about a quarter of a wavelength	�=4 ¼ 210 nm. Since
the turn-on function makes the mathematical expressions
in the solution of Sec. III cumbersome, they were omitted.

Figure 9 presents the head-on collision between the
wave and a relativistic particle (�0 ¼ 1000). The circular
polarization is much more efficient in slowing the particle
down, as can be seen by comparing the velocity in the

ẑ direction in the two cases (compare Figs. 6 and 9). About
26 fs suffice for a circularly polarized wave to stop the
highly relativistic electron, after which the electron re-
verses its direction of motion to coincide with the direction
of propagation of the wave. Figure 10 presents the radia-
tion emission, where we see that the LF equation results
in the familiar dipole radiation (the angle of separation
between the two branches of the dipole is of order
1=�	 10�3). Similarly to the LP case, the LL equation
produces radiation which is 1 order of magnitude smaller
than the LF equation.
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FIG. 9 (color online). The electron’s Lorentz factor �, the
transverse velocity vx and the longitudinal velocity vz for a
circularly polarized wave with a0 ¼ 100 hitting an electron with
�0 ¼ 1000. The solid red line is the solution of the LF equation,
while the dashed blue line is the LL equation.
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VI. CONCLUSIONS

The dynamics of a radiating charged particle has been
the subject of investigation for more than a century.
Lorentz himself recognized the need to expand the
Maxwell-Lorentz framework to include an additional force
due to radiation reaction. In the intervening years, many
others sought physical consistency by including a
radiation-reaction force as a modification of the Lorentz
force equation. These efforts have produced numerous
radiation-reaction models but unlike the Maxwell-
Lorentz equations none of these has been derived from
an action principle.

So far, the theoretical efforts have remained experimen-
tally untested. Our objective here has been to connect
theory with possible experiment. We found that when col-
liding relativistic electrons (� � 1000) with an extremely
intense laser beam (a0 � 100, power� 2� 1022 W=cm2),
the laser is capable of stopping the relativistic electron once
radiation-reaction force is included.

For the linearly polarized wave, the chosen pulse length
was insufficient to reverse the initial momentum of the
electron. However, a longer laser pulse could reverse the
net momentum of the electron, accelerating it back in the
direction from which it came. Thus being a dissipative
effect, radiation reaction makes the gross consequences
sensitive to the duration of the interaction [4]. A more
thorough exploration of the outcomes and observables for
various pulse lengths using the solutions here presented
would be an important preliminary to any experiment.

We have presented an analytic solution of the Landau-
Lifshitz Eq. (5), and an analysis of the radiation distribu-
tion emitted by the charged particle. The radiation-
reaction-dominated regime criterion given by Eq. (41) is
visualized in Fig. 2, showing that the radiation-reaction
force can be probed using current pulsed laser systems.

Figure 2 exhibits the domain in which the classical dynam-
ics here solved dominates, but the Landau-Lifshitz equa-
tion results in different radiation patterns than those
obtained from the Lorentz force Eq. (1). This suggests
that a study of the radiation patterns emitted in such experi-
ments will provide a first experimental opportunity, well
within the reach of current laser systems, in which
radiation-reaction effects can be observed and understood
in the new physics domain.
Examining the radiation emission in both Figs. 8 and 10

one sees that the LL equation predicts less total integrated
radiation emission than the LF equation. On first sight this
appears to conflict with rapid, large amplitude oscillations
of the electron. However, we recall that the radiation rate is
proportional to the acceleration, R	 _u2, and Fig. 3 forffiffiffiffiffiffiffiffiffiffi
� _u2

p
or Figs. 6 and 9 for Lorentz factors exhibit how the

LL equation permits the electron to decelerate while the LF
does not. One may thus expect the energy converted to
radiation by the accelerated motion of the electron to
decrease with time for the LL equation, but to remain
constant for the LF equation. As a result, the total inte-
grated emitted power predicted by the Lorentz force can
indeed be larger. For this reason, one cannot evaluate the
radiation produced in high-intensity laser-matter interac-
tions according to the Lorentz force dynamics alone.
The examples here thus exhibit the more general point

that accurate predictions of radiation emission require in-
corporating radiation-reaction effects whenever high ac-
celerations are expected. It should be emphasized that our
radiation results are computed according to Dirac’s evalu-
ation of the radiated momentum, which leads in turn to the
LAD dynamics. On this point, an improvement on the
present work would be derivation of a Landau-Lifshitz-
like equation for particle motion self-consistent with the
particle’s radiation field.
The authors hope that this work will assist in explor-

ing the nature of radiation-reaction effects on firm ex-
perimental ground, and support the search for a
fundamental theory of electromagnetism applicable in
the high acceleration regime. In that way the investiga-
tions presented here also reveal the possibility of reach-
ing for fundamental physics horizons. When the applied
force approaches unity in natural units [m2], the current
physics framework has not been tested and we are at the
limit of our understanding.
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FIG. 10 (color online). Radiation emission for a circularly
polarized wave with a0 ¼ 100 colliding head-on with an elec-
tron with initial �0 ¼ 1000. The angle 
 is measured on the x-z
plane, starting from the negative z axis. The radiation for the LF
equation (solid red line) is 1 order of magnitude greater than the
radiation in the case of the LL equation (the dashed blue line).
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APPENDIX A: SUPPLEMENTAL FORMULAS FOR THE EXAMPLES

1. Linearly polarized plane wave

Equation (31) for the linearly polarized plane wave in Eq. (13) gives

� ¼ k � u
k � u0

�
1þ 1

2
a20sin

2�þ ðk � u0Þ�0
�
a20

�
�

2
� sin�þ 3

4
sin2�

�
þ a40

�
�

2
sin2�� 1

3
sin�� 1

6
sin�cos3�þ 1

4
sin2�

��

þ ððk � u0Þ�0Þ2
�
1

2
a20ð1� cos�Þ2 þ 1

72
a40ð9ð�þ sin� cos�Þ2 � 12ðcos�� 1Þð�3� sin�þ cos3�� 3 cos�þ 2ÞÞ

þ 1

72
a60ð�3� sin�þ cos3�� 3 cos�þ 2Þ2

��
;

ux ¼ k � u
k � u0

�
a0 sin�þ ðk � u0Þ�0

�
a0ðcos�� 1Þ þ a30

3� sin�þ 3 cos�� cos3�� 2

6

��
;

uy ¼ 0;

uz ¼ k � u
k � u0

�
1

2
a20sin

2�þ ðk � u0Þ�0
�
a20

�
�

2
� sin�þ 3

4
sin2�

�
þ a40

�
�

2
sin2�� 1

3
sin�� 1

6
sin�cos3�þ 1

4
sin2�

��

þ ððk � u0Þ�0Þ2
�
1

2
a20ð1� cos�Þ2 þ 1

72
a40ð9ð�þ sin� cos�Þ2 � 12ðcos�� 1Þð�3� sin�þ cos3�� 3 cos�þ 2ÞÞ

þ 1

72
a60ð�3� sin�þ cos3�� 3 cos�þ 2Þ2

��
: (A1)

2. Circularly polarized plane wave

The solution in this case is

� ¼ k � u
k � u0

�
1þ a20ð1� cos�Þ þ ðk � u0Þ�0½a20�þ a40ð�� � cos�Þ�

þ ððk � u0Þ�0Þ2
�
a20ð1� cos�Þ þ a40

�
2� 2 cos�� � sin�þ �2

2

�
þ a60

�
1� cos�� � sin�þ �2

2

���
;

ux ¼ k � u
k � u0 f�a0ð1� cos�Þ þ ðk � u0Þ�0½�a0 sin�þ a30ð� cos�� sin�Þ�g;

uy ¼ k � u
k � u0 fa0 sin�þ ðk � u0Þ�0½a0ðcos�� 1Þ þ a30ð� sin�þ cos�� 1Þ�g;

uz ¼ k � u
k � u0

�
a20ð1� cos�Þ þ ðk � u0Þ�0½a20�þ a40ð�� � cos�Þ�

þ ððk � u0Þ�0Þ2
�
a20ð1� cos�Þ þ a40

�
2� 2 cos�� � sin�þ �2

2

�
þ a60

�
1� cos�� � sin�þ �2

2

���
: (A2)

APPENDIX B: THE FOUR-ACCELERATION

We differentiate Eq. (31) with respect to � [remember that in Eq. (31) the four-velocity is given in terms of �] and obtain
the four-acceleration of the particle according to the LL equation:
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_u� ¼
�
k � u
k � u0

�
2fðk � u0Þa0Â0� � ½a0Â0 � u0 þ a20ðÂ� Â0Þ � Â0�k�g

þ �0ðk � uÞ2
��
a0Â

00� þ a20
k � u
k � u0 Â

02u�0 þ a30
k � u
k � u0 Â

02ðÂ� � Â�
0 Þ � a30c Â0�

�

þ
�
�a0Â

00 � u0 � a20Â
02 � a20Â

0 � ðÂ0 � Â0
0Þ � a20ðÂ� Â0Þ � Â00 þ a30c Â0 � u0

� a30
k � u
k � u0 Â

02ðÂ� Â0Þ � u0 þ a40Â
0 � �þ a40ðÂ� Â0Þ � Â0c � a40

k � u
k � u0 Â

02 ðÂ� Â0Þ2
2

�
k�

k � u0
�

þ �20ðk � uÞ2
�
½a30ðk � uÞÂ02ðÂ0� � Â0�

0 Þ � a50ðk � uÞÂ02���

þ
�
�a20ðÂ0 � Â0

0Þ � Â00 � a30
k � u
k � u0 Â

02ðÂ0 � Â0
0Þ � u0 þ a40Â

00 � �þ a40ðÂ0 � Â0
0Þ � Â0c þ a40c Â02 � a40

k � u
k � u0 Â

02c

� a40
k � u
k � u0 Â

02ðÂ� Â0Þ � ðÂ0 � Â0
0Þ þ a50

k � u
k � u0 Â

02� � u0 � a60� � Â0c þ a60
k � u
k � u0 Â

02ðÂ� Â0Þ � �
�
k�

�

þ �30ðk � uÞ3Â02
�
�a40

ðÂ0 � Â0
0Þ2

2
þ a60ðÂ0 � Â0

0Þ � �þ a60
c 2

2
� a80

�2

2

�
k�; (B1)

where we collected terms in powers of �0 and separated
them according to the direction of propagation and depen-
dence on the intensity of the wave a0 as before.

APPENDIX C: COMPARISON
WITH PREVIOUS WORKS

1. Analytic comparison

As an initial value problem, the Landau-Lifshitz Eq. (5)
satisfies the conditions of the uniqueness and existence
theorem. Therefore, one expects the evolution of the par-
ticle to be uniquely determined by the equation together
with the initial conditions. This raises the question as to
whether the solution given here by Eq. (31) and the solu-
tion given in [16] are equivalent or even consistent.

The differences in notation between our paper and [16]
are presented in Table I and can be used to identify our
expressions with the equivalent ones given in [16].

In order to see equivalence between the two solutions we
define the four-vector

I�ð�Þ ¼ a0�A
�ð�Þ þ ðk � u0Þ�0a0�A0�ð�Þ

� ðk � u0Þ�0a30��ð�Þ (C1)

and the scalar quantity

hð�Þ ¼ k � u0
k � u ¼ 1� ðk � u0Þ�0a20c ð�Þ: (C2)

They allow us to express the solution in Eq. (31) as

u� ¼ k �u
k � u0

�
u�0 þ

1

2k �u0 ½h
2 � 1�k�

� 1

k �u0 ½k
�I� � k�I��u0;� � 1

2k �u0 I
2k�

�
;

(C3)

where I� and h are functions of the phase �. Using
Table I, this can be compared with the solution given in
Eq. (11) of [16]:

u� ¼ 1

h

�
u�0 þ 1

2�0

½h2 � 1�n� � 1

�0

�
I1

ef��1
m

þ I2

ef��2
m

�
u0;� � 1

2�0

½�2
1I

2
1 þ �2

2I
2
2�n�

�
; (C4)

where

I ðÞ ¼
Z 

0

d’

�
hð’Þc 0

jð’Þ þ
2

3
�
�0

m
c 00

j ð’Þ
�

(C5)

and

f��j ¼ n�a�j � n�a�j : (C6)

Here a�j are two four-vectors that can be associated with

the polarization of the wave, and n� is the wave four-
vector.
To show the equivalence of Eqs. (C3) and (C4), we

rewrite four-vector (C1) using Eq. (26) as

I�ð�Þ ¼ a0�Â
�ð�Þ � ðk � u0Þ�0a30��ð�Þ

þ ðk � u0Þ�0a0�Â0�ð�Þ
¼ a0

Z �

0
Â0�ðyÞ½1� ðk � u0Þ�0a20c ðyÞ�dy

þ ðk � u0Þ�0a0
Z �

0
Â00�ðyÞdy

¼ a0
Z �

0
½Â0�ðyÞhðyÞ þ ðk � u0Þ�0Â00ðyÞ�dy: (C7)
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This reveals that I� in our notation is nothing other than
I1a

�
1 þ I2a

�
2 in the notations of [16].

Therefore although the notations in this paper and paper
[16] differ, Table I together with the result of Eq. (C7) show
that the two solutions in Eqs. (C3) and (C4) are identical
and both solve the Landau-Lifshitz Eq. (5).

2. Numerical comparison

In [27] the influence of radiation reaction according to
the LL equation was studied numerically for a head-on
collision of an electron with a strong laser pulse. The
electron was initially traveling in the negative y direction
with initial energy of 40 MeVand the laser wave propagat-
ing in the positive y direction with frequency! ¼ 1:55 eV
and an intensity I0 ¼ 5� 1022 W=cm2. The laser wave
was linearly polarized in the z direction and subject to a
sine-squared envelope with duration of 27 fs, resulting in a
motion in the y-z plane given by Fig. 1 of [27].

In our notation, the above parameters translate to
! ¼ 2:35 fs�1, a0 ¼ 152:925 and �0 ¼ 78:28. The enve-
lope can be modeled into the analytic solution (31) by
defining [see Eq. (6)]

fð�Þ ¼ �
Z �

0
cosðyÞsin2ðy=20Þdy; (C8)

where the cosine in the integral gives the usual linear
polarization, while the sine squared term gives the required
envelope shape (the factor 20 was chosen by comparing
our result to the image in [27] and corresponds to an exact
pulse duration of 26:7fs). Figure 11 shows the correspond-
ing analytical result obtained from Eq. (31), and shows the
same qualitative features as [27].

The trajectories in [27] and Fig. 11 cannot match per-
fectly, as [27] in principle considers a focused laser beam,
which would have a nonplanar wave front that is not
implemented in our analytic solution. Notably, we do
not find any transverse drift comparable to Fig. 1 of [27].
Nevertheless, the solution provided here is versatile
enough to be used to provide the same features that one
would expect from a focused beam. This capability is a
result of the containment apparent in Fig. 11 of the trans-
verse oscillation to <0:2� from the beam axis, a distance
over which the envelope of a focused laser pulse does not
appreciably vary.
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