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Some nonperturbative aspects of the pure SU(3) Yang-Mills theory are investigated assuming a specific

form of the beta function, based on a recent modification by Ryttov and Sannino of the known one for

supersymmetric gauge theories. The characteristic feature is a pole at a particular value of the coupling

constant, g. First it is noted, using dimensional analysis, that physical quantities behave smoothly as one

travels from one side of the pole to the other. Then it is argued that the form of the integrated beta function

gð�Þ, where � is the mass scale, determines the mass gap of the theory. Assuming the usual QCD value of

the coupling constant one finds the mass gap to be 1.67 GeV, which is in surprisingly good agreement with

a quenched lattice calculation. A similar calculation is made for the supersymmetric Yang-Mills theory

where the corresponding beta function is considered to be exact.
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I. INTRODUCTION

The exact beta function of a gauge theory is generally
considered to contain many nonperturbative secrets of the
gauge theory behavior. Unfortunately it seems to be only
computable analytically in perturbation theory. Physically
it is related to the trace anomaly, or the nonzero value of the
divergence of the scale (dilation) current. We are special-
izing to massless theories here so it represents a violation
of the classical result.

Another object in gauge theories with massless fermi-
ons, the divergence of the U(1) axial vector current, should
be zero in the classical limit but is known not to vanish at
the quantum level (axial anomaly). Most interestingly it
has the property that there are no corrections [1] beyond
the one loop level so it can be considered to be known
exactly.

Now, in supersymmetric gauge theories, it was found [2]
that both the trace anomaly and the axial anomaly (actually
together with the divergence of a special superconformal
current) belong to the same chiral multiplet and hence
should be somehow related to each other. There was a lot
of discussion about the meaning of this feature—for ex-
ample is there a contradiction between an exact one loop
result for the axial anomaly and a result containing all
orders of coupling constant for the trace anomaly—and
finally it was realized that there could be compatibility,
with the exact beta function being determined from the
axial anomaly. This was shown both for the supersymmet-
ric Yang-Mills theory [3] and for the supersymmetric
theory containing also fermions not belonging to the
adjoint representation [4]. A characteristic feature of these

exact beta functions is a pole at a particular value of
coupling constant, g in the beta function �ðgÞ.
Recently, Ryttov and Sannino [5] conjectured such all

order beta functions for ordinary SU(N) (nonsupersym-
metric) gauge theories both with and without fermions
belonging to arbitrary representations based on analogy
to the supersymmetric case. The generalization, by one
of the authors, for the SO, and Sp gauge groups appeared
in [6] and for chiral gauge theories in [7]. These beta
functions were found to satisfy known consistency condi-
tions at second order and to work well in many interesting
applications to walking technicolor models reviewed in
[7]. These beta functions also feature a pole at a particular
value of g.
In the present note, we study some nonperturbative

consequences of the conjectured beta function for the
simple SU(N) Yang-Mills theory; already [5] the conjec-
tured beta function had been seen to give a reasonable
picture in the asymptotically free perturbative region. In
Sec. II we use dimensional analysis to investigate the
running with scale of physical quantities with various
engineering dimensions. This involves gð�Þ but it is noted
that physical quantities change smoothly as g goes through
the pole value.
In Sec. III, we investigate the integration of the defining

equation for the beta function which yields an explicit
expression for gð�Þ. We consider all Yang-Mills theories
in the sense that a full range of values for the coupling
constant at a reference mass are considered. An amusing
feature is seen to arise: the solutions for gð�Þ do not allow
� to be lower than a certain value. We interpret this as the
measure of the mass gap for the Yang-Mills theory. For the
usual value of the QCD coupling constant, withN ¼ 3, our
predicted value of 1.67 GeV is seen to be in good agree-
ment with a valence lattice calculation. We also compute
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the mass gap for the supersymmetric SU(3) and SU(N)
Yang-Mills theories. In the latter cases the starting beta
function does not require any conjecture.

Section IV contains a brief summary and discussion.

II. GENERAL SCALING RESULTS
FOR YANG-MILLS THEORIES

Consider a renormalization group invariant quantity H
of mass dimensionD in any theory with a single field and a
single coupling constant g. Define � to be the renormal-
ization scale and gð�Þ to be the value assumed by the
coupling constant at that scale. Since H must be a measur-
able physical quantity, dimensional analysis implies that it
has the form,

H ¼ �DH ½gð�Þ�; (1)

whereH ½gð�Þ� is some function of the coupling constant.
Of course, for any given theory there are many different
interesting quantities H. One may, as usual, introduce a
characteristic invariant scale� for the theory by defining a
particular H to be �D. By differentiating both sides of
Eq. (1) with respect to logð�Þ, the natural log, and recog-
nizing that the left-hand side is independent of �, we
obtain the main equation:

DH þ @H
@g

�ðgÞ ¼ 0; with �ðgÞ ¼ @g

@ logð�Þ : (2)

By integrating this equation one immediately finds

log

�
H
H 0

�
¼ �D

Z g

g0

dg

�ðgÞ : (3)

Hence if the exact beta function were known as a function
of g, one could express any renormalization group invari-
ant quantity H as a known function of g up to an arbitrary
overall constant.

Now, as discussed in the preceding section, a conjec-
tured all orders beta function for the ordinary Yang-Mills
theory based on the known supersymmetric Yang-Mills
theory all orders beta function was recently introduced in
[5] by Ryttov and Sannino (RS). It was found to be con-
sistent with other nonperturbative approaches to the ordi-
nary (nonsupersymmetric) gauge theories and hence to be
a reasonable model for further investigation.

This RS all orders beta function ansatz for the SU(N)
Yang-Mills theory reads

�YM ¼ �g3
a

1� bg2
; with a ¼ 11

3

N

ð4�Þ2 and

b ¼ 17

11

N

8�2
: (4)

Using Eq. (4) in Eq. (3) then yields

H ¼ const
�D

gDb=a
exp

�
� D

2ag2

�
; (5)

where the overall constant is defined by

const ¼ H 0g
Db=a
0 exp

�
D

2ag20

�
: (6)

Here the subscript zero denotes the value corresponding to
the lower limit of integration in Eq. (3). Of course, there is
a different numerical constant for each choice of H. These
numerical constants might be approximated by using per-
turbation theory at a large value of �, for example.
For definiteness we list some possible interesting

choices for H.
(i) The gluon condensate or vacuum expectation value

of the trace of the energy momentum tensor. This has
the engineering dimension D ¼ 4.

(ii) The glueball squared masses (D ¼ 2). We presume
that there is a spectrum of glueballs with different
spin parities and masses.

(iii) The glueball-glueball scattering cross sections
(D ¼ �2).

(iv) The coefficients an in the expansion of the partial
wave amplitudes for glueball scattering �ans

n in a
region of analyticity (here D ¼ �2n).

To get an idea of the dependences of various physical
quantities on the coupling constant gwe plot the character-
istic factor,
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FIG. 1 (color online). FðgÞ as a function of g for N ¼ 3.
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FðgÞ ¼ 1

gDb=a
exp

�
� D

2ag2

�
; (7)

in Eq. (5) for the case D ¼ 4 in Fig. 1(a) and for the case
D ¼ �2 in Fig. 1(b). For definiteness the choiceN equal to
3 is made. It is seen that each of these curves displays an
extremum at the same value of g.

Differentiating shows that this value is

g2 ¼ 1=b ¼ 88�2

51
� ð4:127Þ2: (8)

Furthermore, the second derivative of FðgÞ at this point is
simply �2DFðgÞ=ag4; this means that dynamical quanti-
ties with positive dimensionDwill have a maximum at this
point while those with negative D will have a minimum at
the same point. We also note the interesting fact that for a
given value of the physical quantity F, there are two differ-
ent values of g. The situation will be further explored by
looking at the beta function.

III. BETA FUNCTION AND MASS GAP

A graph of the N ¼ 3 Yang-Mills conjectured beta
function in Eq. (4) is shown in Fig. 2(a). From its shape

one concludes that the origin g ¼ 0 is an ultraviolet stable

fixed point and that there is clearly a pole at g ¼ b�1=2.
However, we observe from Figs. 1(a) and 1(b) that the
physical quantities H remain smooth as one goes from one
side of the pole to the other.
In order to discuss the coupling constant in a gauge

theory, one chooses a reference value�0 of the energy scale
and specifies (from experiment) the value of the running
coupling constant gð�0Þ at this point. In the case of QCD, it
is convenient to choose �0 ¼ mZ � 91:19 GeV. For illus-
tration we will also choose this value of �0 as our reference
scale. The value of the QCD coupling constant at this scale
is measured to be about 1.228. In the present pure Yang-
Mills case we are dealing with a hypothetical model so we
are free to choose any value for gð�0Þ. In fact it is better to
allow gð�0Þ to range over all possible values, which corre-
sponds to describing all pure Yang-Mills N ¼ 3 theories.
Clearly, the first step is finding out how the coupling

constant runs with the scale �. Integrating the second of
Eqs. (2) yields the following relation between g ¼ gð�Þ
and logð�Þ corresponding to any choice of g0 ¼ gð�0Þ:

log

�
�

�0

�
¼ 1

2a

�
1

g2
� 1

g20

�
þ b

a
log

�
g

g0

�
: (9)

It is convenient to plot in Fig. 2(b) logð�=�0Þ as a function
of g with the choice g0 ¼ 1. In the part of this plot to the
left of gð�Þ ¼ b�0:5 � 4:127, gð�Þ decreases as logð�Þ
increases. That is the expected asymptotically free behav-
ior. On the other hand, to the right of this point, gð�Þ
smoothly starts rising with increasing logð�Þ. There is no
discontinuity at the pole. Clearly, this behavior is the same
as that shown for physical quantities in Figs. 1(a) and 1(b).
The existence of a smoothly connected different phase for
the theory is intriguing. For the present, however, we will
concentrate on the asymptotically free region. In any event,
the right-hand region is required since there is no reason not
to consider a Yang-Mills theory described by a coupling
constant (at the reference scale) with a value g0 > 4:127.
The different N ¼ 3 pure Yang-Mills theory which is

defined by g0 ¼ 3 yields the running coupling constant
plotted in Fig. 3(a). The overall picture is substantially the
same. In particular, the asymptotically free region still
corresponds to gð�Þ< b�0:5. Similarly the theory charac-
terized by g0 ¼ 0:5 is seen from the plot in Fig. 3(b) to still
have the same range in gð�Þ for the asymptotically free
region, but with rather different � values.
Figures 2(b), 3(a), and 3(b) each illustrate that there is a

particular (but different in each case) value of logð�Þ
below which the curve does not extend. This is peculiar
since it would imply that the running coupling constant
could not be measured experimentally in that region. The
only way in which this might be consistent is if the dis-
allowed region would be lower than M, twice the mass
of the lightest glueball state in the theory. Then it would
be below threshold and not accessible to experiment.

FIG. 2 (color online). Plots of the YM beta function (a), and of
the solution for the running of the scale (b) as a function of the
coupling constant g with g0 ¼ 1.
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That seems like a plausible determination of the mass gap
of the theory. It is clear that the value of such a mass gap is
determined by the ordinate of the point where logð�Þ is
minimum, i.e. where g ¼ b�0:5. Specifically,

logðMÞ ¼ logð�0Þ þ 1

2a

�
b� 1

g20

�
� b

a
logðg0b0:5Þ; (10)

where g0 is the assumed value of the coupling constant at
�0 ¼ 91:19 GeV.

Note that the so defined mass gap depends on the par-
ticular N ¼ 3 Yang-Mills theory we are considering via its
dependence on g0. In Fig. 4(a) twice the mass gap M in
GeV is plotted for g0 ranging from 1 to 10. For orientation,
the mass gap for g0 slightly larger than 1 is seen to be in the
GeV range. The mass gap reaches a maximum when g0
takes the pole value 1=b0:5 and declines somewhat for larger
values of g0. It seems reasonable that within the asymptoti-
cally free regime, the mass gap increases with the strength
of the coupling constant, g0. For g0 < 1, the mass gap starts
to decline extremely rapidly, as may be seen from Fig. 4(b).

To further test the reasonableness of our interpretation,
we may try to predict the mass of the lightest glueball in
this model. We would like the result to be similar to the
usually expected value (about 1.5 GeV) when we adopt
the QCD value for the coupling constant, g0 ¼ 1:228,

mentioned above. This would correspond to neglecting
the effects of quark fields on the glueball mass. Since it
is seen that there is a rapid dependence ofM on g0 we give
in Fig. 5 a blowup of the prediction forM=2 in the region of
g0 near the experimental one. This yields for the lightest
glueball mass,

FIG. 3 (color online). Solution for running scale vs coupling
constant g.

FIG. 4 (color online). M (twice the mass gap) dependence on
g0 for �0 ¼ 91:19 GeV and g ¼ b�0:5.
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FIG. 5 (color online). Mass gap dependence on 1:1 � g0 �
1:3 for �0 ¼ 91:19 GeV and g ¼ b�0:5.
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M=2 � 1:67 GeV; (11)

which does seem reasonable for an a priori prediction. We
may compare this value with the result of a lattice QCD
calculation employing a valence assumption [8]. That
calculation gave the result for the 0þ glueball which is
found to be lightest:

mð0þÞ ¼ 1648� 58 MeV: (12)

This embarrassingly accurate agreement gives us at least
some confidence in the correctness of the interpretation of
the mass gap and the validity of the RS conjectured beta
function. Other lattice results are also in agreement with
the value quoted above [9,10]. To sum up, the pole in the
beta function does not produce any singularity in the theory
but seems to be the feature which generates the mass gap. It
would be interesting to investigate the dependence of this
result on the choice of renormalization scheme.

If the conjectured pure Yang-Mills beta function could
be shown to be the same as the exact one, it would amount

to showing that the theory has the kind of mass gap defined
above.
Actually, it is easy to see that this mass gap mechanism

does not, in general, require the RS conjecture if one goes
beyond the ordinary Yang-Mills model. That is because the
supersymmetric Yang-Mills theory, which is of course the
starting point of the RS conjecture, is known to possess an
exact beta function of the same form as Eq. (4) but with
somewhat different values of a and b, namely:

a0 ¼ 3N

ð4�Þ2 ; b0 ¼ N

8�2
: (13)

The numerical results are qualitatively similar if one
assumes a similar value of the coupling constant. For
example if we choose to specify the super Yang-Mills
theory by taking a similar coupling constant at the scale,
�0 ¼ mZ, we would get for the choice g0 ¼ 1:0, the curve
shown in Fig. 6, which describes the running of gð�Þ with
respect to logð�Þ and can be compared with the curve in
Fig. 2(b).
We can compare the mass gap M0=2 in the supersym-

metric case by using Eq. (10) and making the choice g0 ¼
1:228 (and also N ¼ 3). This would give for the mass of
the lightest supersymmetric multiplet,

M0=2 � 0:49 GeV: (14)

Clearly, the supersymmetric and nonsupersymmetric
Yang-Mills model results seem to be only qualitatively
similar, the lightest supersymmetric multiplet having a
mass about 1=3 that of the nonsupersymmetric model
glueball (assuming the same coupling constant).
Of course, another interesting aspect to explore for

gauge theories is their behavior as the number of colors
N gets large. Taking the supersymmetric gauge theory as
an example and fixing, for the sake of definiteness, the
gauge coupling constant as 1.228 at �0 ¼ 91:19 GeV,
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FIG. 6 (color online). Solution of the running of the scale as a
function of the coupling constant g for the super Yang-Mills
theory.

FIG. 7 (color online). In (a) we plot the solution of the running of the scale as a function of the coupling constant g for the super
Yang-Mills theory for N ¼ 3, solid blue line; N ¼ 15, red-dashed line; and N ¼ 100, black dot-dashed line. We have kept fixed
g0 ¼ 1:228 at the scale �0 ¼ 91:19 GeV. In (b) we plot the mass gap M0=2 as a function of the number of colors N.
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we find the running of gð�Þ by substituting Eq. (13) into
Eq. (9). Figure 7(a) shows logð�Þ plotted against gð�Þ for
respectively N ¼ 3 (blue solid line), N ¼ 15 (red dashed
line), and N ¼ 100 (black dot-dashed line). It is seen that
the asymptotically free (left) region in g shrinks as N
increases. Furthermore, the mass gap (corresponding to
the ordinate at the minimum point) is shown in Fig. 7(b).
It shows that the mass gap has a maximum as a function of
the number of colors.

When considering the large N behavior of gauge theo-
ries it is often desired to make an extrapolation where large
N is taken in such a way that the quantity,

g2t � g2N (15)

is held fixed. With such an extrapolation there will be no
dependence (in either the supersymmetric Yang-Mills or
the pure Yang-Mills with RS type beta function cases) on
N. This may be immediately seen by writing, from Eq. (4),

a � ~aN and b � ~bN so that ~a and ~b are independent of N.
Then, as an example, Eq. (10) for the mass gap becomes

log

�
M

�0

�
¼

~b

~a

�
1

2
� logð~b1=2g0N1=2Þ

�
� 1

2~ag20N
; (16)

which only involves N via the fixed combination g20N.

IV. SUMMARYAND DISCUSSION

First, an exploration of the scale dependence of physical
quantities (with engineering dimension, D) was made us-
ing dimensional analysis and a specific form, conjectured
by Ryttov and Sannino, of the beta function for the pure
Yang-Mills theory. It was noted that even though the beta
function had a pole (inherited from the known form for
supersymmetric gauge theories which stimulated the con-
jecture) physical quantities remained smooth as the pole
value of the coupling constant g was crossed.

For a more detailed understanding of how the coupling
constant runs, the integration of the beta function was next
carried out for the complete set of SU(3) Yang-Mills theo-
ries, i.e. those corresponding to any choice of coupling

constant g0 at a convenient reference scale, �0 ¼ mZ.
Then gð�Þ was also seen to have a smooth behavior at the
pole value of g. Most interesting is that (due to the existence
of the pole) the curve of gð�Þ predicts a numerical value for
the mass gap of the Yang-Mills theory, i.e. the mass of the
lightest glueball. The predicted value, 1.67 GeV, seems
rather close to the one obtained from a lattice treatment of
QCD in the valence or quenched approximation.
It is noted that if the value of the coupling constant, g0 at

the reference mass, decreases below about 1 (the experi-
mental value is 1.228) the mass gap drops very quickly.
A similar treatment was carried out for the supersym-

metric SU(3) Yang-Mills theory and the mass gap was
calculated to be about 0.49 GeV. In this case, the form of
the beta function is quite similar but is based on a known
rather than a conjectured beta function.
We plan to next investigate the extent to which this work

can be carried out for nonsupersymmetric gauge theories
containing fermions. Evidently there are many interesting
questions which remain.
After this paper was submitted for publication we

learned of an interesting related work [11] in which (for
QCD and Yang-Mills theories) the polynomial represent-
ing the perturbative four loop beta function was improved
using the Padé technique. This was shown to give rise to a
pole and can thus be regarded as support for the RS
conjecture. The authors showed that the running coupling
constant had the 2-valued shape being considered here but
they did not discuss the proof of smoothness for physical
quantities given in Sec. II nor the prediction of the lightest
glueball mass in the Yang-Mills case given in Sec. III.
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