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QCD-like theories possess a positively definite fermion determinant at finite baryon chemical potential

�B and the lattice simulation can be successfully performed. While the chiral perturbation theories are

sufficient to describe the Bose condensate at low density, to describe the crossover from Bose-Einstein

condensation (BEC) to BCS superfluidity at moderate density we should use some fermionic effective

model of QCD, such as the Nambu–Jona-Lasinio model. In this paper, using two-color two-flavor QCD as

an example, we examine how the Nambu–Jona-Lasinio model describes the weakly interacting Bose

condensate at low density and the BEC-BCS crossover at moderate density. Near the quantum phase

transition point �B ¼ m� (m� is the mass of pion/diquark multiplet), the Ginzburg-Landau free energy at

the mean-field level can be reduced to the Gross-Pitaevskii free energy describing a weakly repulsive Bose

condensate with a diquark-diquark scattering length identical to that predicted by the chiral perturbation

theories. The Goldstone mode recovers the Bogoliubov excitation in weakly interacting Bose condensates.

The results of in-medium chiral and diquark condensates predicted by chiral perturbation theories are

analytically recovered. The BEC-BCS crossover and meson Mott transition at moderate baryon chemical

potential as well as the beyond-mean-field corrections are studied. Part of our results can also be applied to

real QCD at finite baryon or isospin chemical potential.
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I. INTRODUCTION

A good understanding of quantum chromodynamics
(QCD) at finite temperature and baryon density is crucial
for us to understand a wide range of physical phenomena.
For instance, to understand the evolution of the Universe in
the first few seconds, one needs the knowledge of QCD
phase transition at temperature T � 200 MeV and very
small baryon density. On the other hand, understanding
the physics of neutron stars requires the knowledge of
QCD at high baryon density and very low temperature
[1]. Lattice simulation of QCD at finite temperature has
been successfully performed in the past few decades;
however, no successful lattice simulation at high baryon
density has been done due to the sign problem [2,3]: The
fermion determinant is not positively definite in presence
of a nonzero baryon chemical potential �B.

We thus look for some special cases which have a
positively definite fermion determinant. One case is QCD
at finite isospin chemical potential �I [4,5], where the
ground state changes from a pion condensate to a BCS
superfluid with quark-antiquark condensation with increas-
ing isospin density. Another case is the QCD-like theories
[6–12] where quarks are in a real or pseudoreal represen-
tation of the gauge group, including two-color QCD with
quarks in the fundamental representation and QCD with
quarks in the adjoint representation. While these cases do
not correspond to the real world, they can be simulated on

the lattice and may give us some information of real QCD
at finite baryon density. For all these special cases, chiral
perturbation theories predict a continuous quantum phase
transition from the vacuum to the matter phase at baryon or
isospin chemical potential equal to the pion mass, in con-
trast to real QCD where the phase transition takes place at
�B approximately equal to the nucleon mass. The resulting
matter near the quantum phase transition is a dilute Bose
condensate of diquarks or pions with weakly repulsive
interactions [13]. The equations of state and elementary
excitations in such matter have been investigated many
years ago by Bogoliubov [14] and Lee, Huang, and Yang
[15]. Bose-Einstein condensation (BEC) phenomenon is
believed to widely exist in dense matter, such as pions and
kaons, can condense in neutron star matter if the electron
chemical potential exceeds the effective mass for pions and
kaons [16–19]. However, the condensation of pions and
kaons in neutron star matter is rather complicated due to
the meson-nucleon interactions in dense nuclear medium.
On the other hand, at asymptotically high density, pertur-
bative QCD calculations show that the ground state is a
weakly coupled BCS superfluid with the condensation of
overlapping Cooper pairs [4,5,20–23]. It is interesting that
the dense BCS superfluid and the dilute Bose condensate
have the same symmetry breaking pattern and thus are
continued with one another. In condensed matter physics,
this phenomenon was first discussed by Eagles [24] and
Leggett [25] and is now called BEC-BCS crossover. It has
been successfully realized using ultracold fermionic atoms
in the past few years [26].*lianyi@th.physik.uni-frankfurt.de
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While the lattice simulations of two-color QCD at finite
baryon chemical potential [27–32] and QCD at finite iso-
spin chemical potential [33–36] have been successfully
performed, we still ask for some effective models to link
the physics of Bose condensate and the BCS superfluidity.
The chiral perturbation theories [4–11,37] as well as the
linear sigma models [38], which describe only the physics
of Bose condensate, do not meet our purpose. The
Nambu–Jona-Lasinio (NJL) model [39] with quarks as
elementary blocks, which describes well the mechanism
of chiral symmetry breaking and low energy phenomenol-
ogy of the QCD vacuum, is generally believed to work at
low and moderate temperatures and densities [40–42].
Recently, this model has been used to describe the super-
fluid transition at finite chemical potentials [12,43–56] for
the special cases we are interested in this paper. One finds
that the critical chemical potential for the superfluid tran-
sition predicted by the NJL model is indeed equal to the
pion mass [48,52], and the chiral and diquark condensates
obtained from the mean-field calculation agree with the
results from lattice simulations and chiral perturbation
theories near the quantum phase transition [48,52]. The
NJL model also predicts a BEC-BCS crossover when the
chemical potential increases [50,53–55]. A natural prob-
lem arises: how can the fermionic NJL model describe the
weakly interacting Bose condensate near the quantum
phase transition? In fact, we do not know how the repulsive
interactions among diquarks or mesons enter in the pure
mean-field calculations [52–54]. In this paper, we will
focus on this problem and show that the repulsive interac-
tion is indeed properly included even in the mean-field
calculations. This phenomenon is in fact analogous to the
BCS description of the molecular condensation in strongly
interacting Fermi gases studied by Leggett many years ago
[25]. Fermionic models have been used to describe the
BEC-BCS crossover in cold Fermi gases by the cold
atom community. Recently, it has been shown that we
can recover the equation of state of the dilute Bose con-
densate with correct boson-boson scattering length in the
strong coupling limit, including the Lee-Huang-Yang cor-
rection by considering the beyond-mean-field corrections
[57–59]. In Appendix A, we give a summary of the many-
body theoretical approach in cold atoms, which is useful
for us to understand the theoretical approach and the results
of this paper.

In this paper, using two-color two-flavor QCD as an
example and following the theoretical approach of the
BEC-BCS crossover in cold Fermi gases [57,58], we ex-
amine how the NJL model describes the weakly interacting
Bose condensate and the BEC-BCS crossover. Near the
quantum phase transition point �B ¼ m�, we perform a
Ginzburg-Landau expansion of the effective potential at
the mean-field level, and show that the Ginzburg-Landau
free energy is essentially the Gross-Pitaevskii free energy
describing weakly interacting Bose condensates via a

proper redefinition of the condensate wave function. As a
by-product, we obtain a diquark-diquark scattering length
add ¼ m�=ð16�f2�Þ (f� is the pion decay constant) char-
acterizing the repulsive interaction between the diquarks,
which recovers the tree-level result predicted by chiral
Lagrangian [6–11]. We also show analytically that the
Goldstone mode takes the same dispersion as the
Bogoliubov excitation in weakly interacting Bose conden-
sates, which gives a diquark-diquark scattering length
identical to that in the Gross-Pitaevskii free energy. The
mixing between the sigma meson and diquarks plays an
important role in recovering the Bogoliubov excitation.
The results of in-medium chiral and diquark condensates
predicted by chiral perturbation theory are analytically
recovered. At high density, we find the superfluid

matter undergoes a BEC-BCS crossover at �B ’
ðm�=m�Þ1=3m� ’ ð1:6–2Þm� with m� being the mass of
the sigma meson. At �B ’ 3m�, we find that the chiral
symmetry is approximated restored and the spectra of
pions and sigma meson become nearly degenerated. Well
above the chemical potential of chiral symmetry restora-
tion, the degenerate pions and sigma meson undergo aMott
transition, where they become unstable resonances.
Because of the spontaneous breaking of baryon number
symmetry, mesons can decay into quark pairs in the super-
fluid medium at nonzero momentum.
The beyond-mean-field corrections are studied. The

thermodynamic potential including the Gaussian
fluctuations is derived. It is shown that the vacuum state
j�Bj<m� is thermodynamically consistent in the
Gaussian approximation, i.e., all thermodynamic quantities
keep vanishing in the regime j�Bj<m� even though the
beyond-mean-field corrections are included. Near the
quantum phase transition point, we expand the fluctuation
contribution to the thermodynamic potential in powers of
the superfluid order parameter. To leading order, the
beyond-mean-field correction is quartic and its effect is
to renormalize the diquark-diquark scattering length. The
correction to the mean-field result is shown to be propor-
tional tom2

�=f
2
�. Thus, our theoretical approach provides a

new way to calculate the diquark-diquark or meson-meson
scattering lengths in the NJL model beyond-mean-field
approximation. We also find that we can obtain a correct
transition temperature of Bose condensation in the dilute
limit, including the beyond-mean-field corrections.
The paper is organized as follows: In Sec. II, we derive

the general effective action of the two-color NJL model at
finite temperature and density, and determine the model
parameters via the vacuum phenomenology. In Sec. III, we
investigate the properties of dilute Bose condensate near
the quantum phase transition at the mean-field level. In
Sec. V, the properties of matter at high density are dis-
cussed. Beyond-mean-field corrections are studied in
Sec. IV. We summarize in Sec. VI. Natural units are used
throughout.
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II. NJL MODEL OF TWO-COLOR QCD

Without loss of generality, we study in this paper two-
color QCD (the number of colors Nc ¼ 2) at finite baryon
chemical potential �B. For vanishing current quark mass
m0, two-color QCD possesses an enlarged flavor symmetry
SUð2NfÞ [Nf is the number of flavors], the so-called Pauli-

Gursey symmetry which connects quarks and antiquarks
[6–11]. For Nf ¼ 2, the flavor symmetry SU(4) is sponta-

neously broken down to Sp(4) driven by a nonzero quark
condensate h �qqi and there arise five Goldstone bosons:
three pions and two scalar diquarks. For nonvanishing
current quark mass, the flavor symmetry is explicitly bro-
ken, resulting in five pseudo-Goldstone bosons with a
small degenerate mass m�. At the finite baryon chemical
potential �B, the flavor symmetry SUð2NfÞ is explicitly

broken down to SULðNfÞ � SURðNfÞ � UBð1Þ. Further, a
nonzero diquark condensate hqqi can form at large enough
chemical potentials and breaks spontaneously the UBð1Þ
symmetry. In two-color QCD, the scalar diquarks are in
fact the lightest ‘‘baryons,’’ and we expect a baryon super-
fluid phase with hqqi � 0 for j�Bj>m�.

To construct a NJL model for two-color two-flavor QCD
with the above flavor symmetry, we consider a contact
current-current interaction Gc

P
3
a¼1ð �q��taqÞð �q��taqÞ

where ta (a ¼ 1, 2, 3) are the generators of color SUcð2Þ
and Gc is a phenomenological coupling constant. After the
Fierz transformation we can obtain an effective NJL
Lagrangian density with scalar mesons and color singlet
scalar diquarks [52],

L NJL ¼ �qði��@� �m0ÞqþG½ð �qqÞ2 þ ð �qi�5�qÞ2
þ ð �qi�5�2t2qcÞð �qci�5�2t2qÞ�; (1)

where qc ¼ C �qT and �qc ¼ qTC are the charge conjugate
spinors with C ¼ i�0�2 and �i (i ¼ 1, 2, 3) are the Pauli
matrices in the flavor space. The four-fermion coupling
constants for the scalar mesons and diquarks are the same,
G ¼ 3Gc=4 [52], which ensures the enlarged flavor
symmetry SUð2NfÞ of two-color QCD in the chiral limit

m0 ¼ 0. One can show explicitly that there are five
Goldstone bosons (three pions and two diquarks) driven
by a nonzero quark condensate h �qqi. With explicit chiral
symmetry broken m0 � 0, pions and diquarks are also
degenerate, and their mass m� can be determined via the
standard method for the NJL model [40–42].

A. Effective action at finite temperature and density

The partition function of the two-color NJL model ([39])
at finite temperature T and baryon chemical potential�B is

ZNJL ¼
Z
½d �q�½dq� exp

�Z
dx

�
LNJL þ�B

2
�q�0q

��
; (2)

where we adopt the finite temperature formalism with

� ¼ it, x ¼ ð�; rÞ, and Rdx ¼ R1=T
0 d�

R
d3r. The partition

function can be bosonized after introducing the auxiliary
boson fields

�ðxÞ ¼�2G �qðxÞqðxÞ; �ðxÞ ¼�2G �qðxÞi�5�qðxÞ (3)

for mesons and

�ðxÞ ¼ �2G �qcðxÞi�5�2t2qðxÞ (4)

for diquarks. With the help of the Nambu-Gor’kov repre-

sentation �� ¼ ð �q �qcÞ, the partition function can be written
as

ZNJL ¼
Z
½d ���½d��½d��½d��½d�y�½d�� expð�AeffÞ;

(5)

where the action Aeff is given by

A eff ¼
Z

dx
�2ðxÞ þ �2ðxÞ þ j�ðxÞj2

4G

�
Z

dx
Z

dx0 ��ðxÞG�1ðx; x0Þ�ðx0Þ; (6)

with the inverse quark propagator defined as

G�1ðx; x0Þ ¼ �0
�
�@� þ �B

2

�
þ i� � r�MðxÞ �i�5�ðxÞ�2t2

�i�5�
yðxÞ�2t2 �0

�
�@� � �B

2

�
þ i� � r�MTðxÞ

0
@

1
A�ðx� x0Þ: (7)

Here MðxÞ ¼ m0 þ �ðxÞ þ i�5� � �ðxÞ. After integrating
out the quarks, we can reduce the partition function to
ZNJL ¼ R½d��½d��½d�y�½d�� expf�Seff½�;�; �y; ��g,
where the bosonized effective action Seff is given by

S eff½�;�; �y; �� ¼
Z

dx
�2ðxÞ þ �2ðxÞ þ j�ðxÞj2

4G

� 1

2
Tr lnG�1ðx; x0Þ: (8)

Here the trace Tr is taken over color, flavor, spin, Nambu-
Gor’kov and coordinate (x and x0) spaces. The thermody-
namic potential density of the system is given by
�ðT;�BÞ ¼ �limV!1ðT=VÞ lnZNJL.

B. Evaluating the effective action

The effective action Seff as well as the thermodynamic
potential � cannot be evaluated exactly in our 3þ 1
dimensional case. In this work, we firstly consider the

NAMBU–JONA-LASINIO MODEL DESCRIPTION OF . . . PHYSICAL REVIEW D 82, 096003 (2010)

096003-3



saddle point approximation, i.e., the mean-field approxi-
mation. Then we investigate the fluctuations around the
mean field.

(I) Mean-field approximation. In this approximation, all
bosonic auxiliary fields are replaced by their expectation
values. To this end, we write h�ðxÞi ¼ �, h�ðxÞi ¼ � and
set h�ðxÞi ¼ 0. While � can be set to be real, we do not do
this first in our derivations. We will show in the following
that all physical results depend only on j�j2. The zeroth
order or mean-field effective action reads

S ð0Þ
eff ¼

V

T

�
�2 þ j�j2

4G
� 1

2

X
K

Tr ln
G�1ðKÞ

T

�
: (9)

Here and in the following K ¼ ði!n;kÞ with !n ¼ ð2nþ
1Þ�T being the fermion Matsubara frequency, and

P
K ¼

T
P

n

P
k with

P
k ¼ R

d3k=ð2�Þ3. The inverse of the
Nambu-Gor’kov quark propagator G�1ðKÞ is given by�

i!nþ�B

2

�
�0�� �k�M �i�5��2t2

�i�5�
y�2t2

�
i!n��B

2

�
�0�� �k�M

0
BB@

1
CCA;

(10)

with the effective quark Dirac mass M ¼ m0 þ �. The

mean-field thermodynamic potential �0 ¼ ðT=VÞSð0Þ
eff can

be evaluated as

�0 ¼ �2 þ j�j2
4G

� 2NcNf

X
k

½W ðEþ
k Þ þW ðE�

k Þ�; (11)

with the definitions of the function W ðEÞ ¼ E=2þ
T lnð1þ e�E=TÞ and the BCS-like quasiparticle dispersions
E�
k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEk ��B=2Þ2 þ j�j2p

where Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
.

The signs� correspond to quasiquark and quasi-antiquark
excitations, respectively. The integral over the quark mo-
mentum k is divergent at large jkj, and some regulariza-
tion scheme should be adopted. In this paper, we employ a
hard three-momentum cutoff �.

The physical values of the variational parameters
M (or �) and � should be determined by the saddle point
condition

�Sð0Þ
eff½�;��
��

¼ 0;
�Sð0Þ

eff½�;��
��

¼ 0; (12)

which minimizes the mean-field effective action Sð0Þ
eff . One

can show that the saddle point condition is equivalent to the
following Green function relations

h �qqi ¼ X
K

TrG11ðKÞ;

h �qci�5�2t2qi ¼
X
K

Tr½G12ðKÞi�5�2t2�;
(13)

where the matrix elements of G are explicitly given by

G11ðKÞ ¼ i!n þ	�
k

ði!nÞ2 �ðE�
k Þ2

�þ
k�0 þ i!n �	þ

k

ði!nÞ2 �ðEþ
k Þ2

��
k�0;

G22ðKÞ ¼ i!n �	�
k

ði!nÞ2 �ðE�
k Þ2

��
k�0 þ i!n þ	þ

k

ði!nÞ2 �ðEþ
k Þ2

�þ
k�0;

G12ðKÞ ¼ �i��2t2
ði!nÞ2 �ðE�

k Þ2
�þ

k�5 þ �i��2t2
ði!nÞ2 �ðEþ

k Þ2
��

k�5;

G21ðKÞ ¼ �i�y�2t2
ði!nÞ2 �ðE�

k Þ2
��

k�5 þ �i�y�2t2
ði!nÞ2 �ðEþ

k Þ2
�þ

k�5

(14)

with the help of the massive energy projectors [60]

��
k ¼ 1

2

�
1� �0ð� � kþMÞ

Ek

�
: (15)

Here we have defined the notation 	�
k ¼ Ek ��B=2 for

convenience.
(II) Derivative expansion. Next, we consider the fluctu-

ations around the mean field, corresponding to the bosonic
collective excitations. Making the field shifts for the aux-
iliary fields,

�ðxÞ ! �þ �ðxÞ; �ðxÞ ! 0þ �ðxÞ;
�ðxÞ ! �þ�ðxÞ; �yðxÞ ! �y þ�yðxÞ; (16)

we can express the total effective action as

Seff ¼ Sð0Þ
eff þ

Z
dx

�
�2 þ �2 þ j�j2

4G

þ ��þ��y þ �y�
2G

�

� 1

2
Tr ln

�
1þ

Z
dx1Gðx; x1Þ�ðx1; x0Þ

�
: (17)

Here Gðx; x0Þ is the Fourier transformation of Gði!n;kÞ,
and �ðx; x0Þ is defined as

�ðx;x0Þ ¼ ��ðxÞ� i�5� ��ðxÞ �i�5�ðxÞ�2t2
�i�5�

yðxÞ�2t2 ��ðxÞ� i�5�
T ��ðxÞ

 !

��ðx� x0Þ: (18)

With the help of the derivative expansion

Tr ln½1þG�� ¼ X1
n¼1

ð�1Þnþ1

n
Tr½G��n; (19)

we can calculate the effective action in powers of the
fluctuations �ðxÞ, �ðxÞ, �ðxÞ, �yðxÞ.
The first order effective action Sð1Þ

eff which includes linear

terms of the fluctuations should vanish exactly, since the
expectation value of the fluctuations should be exactly

zero. In fact, Sð1Þ
eff can be evaluated as

LIANYI HE PHYSICAL REVIEW D 82, 096003 (2010)

096003-4



Sð1Þ
eff ¼

Z
dx

��
�

2G
þ 1

2
TrðG11 þ G22Þ

�
�ðxÞ

þ 1

2
Tr½i�5ðG11� þ G22�

TÞ� � �ðxÞ

þ
�
�

2G
þ 1

2
Trði�5�2t2G12Þ

�
�yðxÞ

þ
�
�y

2G
þ 1

2
Trði�5�2t2G21Þ

�
�ðxÞ

	
: (20)

We observe that the coefficients of �ðxÞ is automatically
zero after taking the trace in Dirac spin space. The coef-
ficients of �ðxÞ, �yðxÞ and �ðxÞ vanish once the quark
propagator takes the mean-field form and M, � take the
physical values satisfying the saddle point condition. Thus,
in the present approach, the saddle point condition plays a
crucial role in having a vanishing linear term in the
expansion.

The quadratic term Sð2Þ
eff corresponds to the Gaussian

fluctuations. It reads

Sð2Þ
eff ¼

Z
dx

�2ðxÞ þ �2ðxÞ þ j�ðxÞj2
4G

þ 1

4
Tr

�Z
dx1dx2dx3Gðx; x1Þ

� �ðx1; x2ÞGðx2; x3Þ�ðx3; x0Þ
�
: (21)

For the convenience of our investigation in the following,

we will use the form of Sð2Þ
eff in the momentum space. After

the Fourier transformation, it can be written as

S ð2Þ
eff ¼

1

2

X
Q

�j�ðQÞj2 þ j�ðQÞj2 þ j�ðQÞj2
2G

þ 1

2

X
K

Tr½GðKÞ�ð�QÞGðK þQÞ�ðQÞ�
	
; (22)

where Q ¼ ði
m;qÞ with 
m ¼ 2m�T being the boson
Matsubara frequency and

P
Q ¼ T

P
m

P
q . Here AðQÞ is

the Fourier transformation of the field AðxÞ, and �ðQÞ is
defined as [61]

�ðQÞ ¼ ��ðQÞ� i�5� ��ðQÞ �i�5�ðQÞ�2t2
�i�5�

yð�QÞ�2t2 ��ðQÞ� i�5�
T ��ðQÞ

� �
:

(23)

(III) Gaussian fluctuations. After taking the trace in

Nambu-Gor’kov space, we find that Sð2Þ
eff can be written in

the following bilinear form

Sð2Þ
eff ¼

1

2

X
Q

ð�yðQÞ�ð�QÞ�yðQÞÞMðQÞ
�ðQÞ

�yð�QÞ
�ðQÞ

0
BB@

1
CCA

þ 1

2

X
Q

ð�y
1 ðQÞ�y

2 ðQÞ�y
3 ðQÞÞNðQÞ

�1ðQÞ
�2ðQÞ
�3ðQÞ

0
BB@

1
CCA: (24)

The matrix M takes the following nondiagonal form

M ðQÞ ¼
1
4Gþ�11ðQÞ �12ðQÞ �13ðQÞ

�21ðQÞ 1
4Gþ�22ðQÞ �23ðQÞ

�31ðQÞ �32ðQÞ 1
2Gþ�33ðQÞ

0
B@

1
CA:
(25)

The polarization functions �ijðQÞ (i; j ¼ 1, 2, 3) are one-

loop susceptibilities composed of the matrix elements the
Nambu-Gor’kov quark propagator, and can be expressed as

�11ðQÞ ¼ 1

2

X
K

Tr½G22ðKÞ�G11ðPÞ��;

�22ðQÞ ¼ 1

2

X
K

Tr½G11ðKÞ�G22ðPÞ��;

�12ðQÞ ¼ 1

2

X
K

Tr½G12ðKÞ�G12ðPÞ��;

�21ðQÞ ¼ 1

2

X
K

Tr½G21ðKÞ�G21ðPÞ��;

�33ðQÞ ¼ 1

2

X
K

Tr½G11ðKÞG11ðPÞ þ G22ðKÞG22ðPÞ

þ G12ðKÞG21ðPÞ þG21ðKÞG12ðPÞ�;

�13ðQÞ ¼ 1

2

X
K

Tr½G12ðKÞ�G11ðPÞ þG22ðKÞ�G12ðPÞ�;

�31ðQÞ ¼ 1

2

X
K

Tr½G21ðKÞG11ðPÞ�þG22ðKÞG21ðPÞ��;

�23ðQÞ ¼ 1

2

X
K

Tr½G11ðKÞ�G21ðPÞ þG21ðKÞ�G22ðPÞ�;

�32ðQÞ ¼ 1

2

X
K

Tr½G11ðKÞG12ðPÞ�þG12ðKÞG22ðPÞ��;

(26)

where P ¼ K þQ, � ¼ i�5�2t2 and the trace is taken
over color, flavor, and spin spaces. Using the fact

that G22ðK;�BÞ ¼ G11ðK;��BÞ and G21ðK;�BÞ ¼
Gy

12ðK;��BÞ, we can easily show that

�22ðQÞ ¼ �11ð�QÞ; �12ðQÞ ¼ �y
21ðQÞ;

�13ðQÞ ¼ �y
31ðQÞ ¼ �y

23ð�QÞ ¼ �32ð�QÞ: (27)

Therefore, only five of the polarization functions are inde-
pendent. At T ¼ 0, their explicit form is shown in
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Appendix B. For general case, we can show that�12 / �2

and �13 / M�. Thus, in the normal phase where � ¼ 0,
the matrixM recovers the diagonal form. The off-diagonal
elements �13 and �23 represents the mixing between the
sigma meson and diquarks. At large chemical potentials
where the chiral symmetry is approximately restored,
M ! m0, this mixing can be safely neglected.

On the other hand, the matrix N of the pion sector is
diagonal and proportional to the identity matrix, i.e.,

N ijðQÞ ¼ �ij

�
1

2G
þ��ðQÞ

�
; i; j ¼ 1; 2; 3: (28)

This means pions are eigen mesonic excitations even in the
superfluid phase. The polarization function��ðQÞ is given
by

��ðQÞ ¼ 1

2

X
K

Tr½G11ðKÞi�5G11ðPÞi�5

þG22ðKÞi�5G22ðPÞi�5 �G12ðKÞi�5G21ðPÞi�5

�G21ðKÞi�5G12ðPÞi�5�: (29)

Its explicit form at T ¼ 0 is shown in Appendix B. We find
that ��ðQÞ and �33ðQÞ is different only to a term propor-
tional to M2. Thus, at high density where h �qqi ! 0, the
spectra of pions and sigma meson become nearly degen-
erate which represents the approximate restoration of
chiral symmetry.

(IV) Goldstone’s theorem. The UBð1Þ baryon number
symmetry is spontaneously broken by the nonzero diquark
condensate hqqi in the superfluid phase, resulting in one
Goldstone boson. In our model, this is ensured by the
condition detMðQ ¼ 0Þ ¼ 0. From the explicit form of
the polarization functions shown in Appendix B, we find
that this condition holds if and only if the saddle point
condition (12) for � and � is satisfied. We thus emphasize
that in our theoretical framework, the condensates � and �
should be determined by the saddle point condition, and
the beyond-mean-field corrections are possible only
through the thermodynamics, i.e., the equations of state.

C. Vacuum and model parameter fixing

For a better understanding our derivation in the follow-
ing, it is useful to review the vacuum state at T ¼ �B ¼ 0.
In the vacuum, it is evident that � ¼ 0 and the mean-field
effective potential �vac can be evaluated as

�vacðMÞ ¼ ðM�m0Þ2
4G

� 2NcNf

X
k

Ek: (30)

The physical value of M, denoted by M�, satisfies the
saddle point condition @�vac=@M ¼ 0 and minimizes
�vac.

The meson and diquark excitations can be obtained from

Sð2Þ
eff , which in the vacuum can be expressed as

S ð2Þ
eff ¼ � 1

2

Z d4Q

ð2�Þ4
�
�ð�QÞD��1

� ðQÞ�ðQÞ

þX3
i¼1

�ið�QÞD��1
� ðQÞ�iðQÞ

þX2
i¼1

�ið�QÞD��1
� ðQÞ�iðQÞ

�
; (31)

where �1, �2 are the real and imaginary parts of �,
respectively. The inverse propagators in vacuum can be
expressed in a symmetrical form [41]

D��1
l ðQÞ ¼ 1

2G
þ��

l ðQÞ; l ¼ �;�;�

��
l ðQÞ ¼ 2iNcNfðQ2 � �2l ÞIðQ2Þ

� 4iNcNf

Z d4K

ð2�Þ4
1

K2 �M2�
; (32)

where �� ¼ 2M�, �� ¼ �� ¼ 0, and the function IðQ2Þ is
defined as

IðQ2Þ ¼
Z d4K

ð2�Þ4
1

ðK2þ �M2�ÞðK2� �M2�Þ
; (33)

with K� ¼ K �Q=2. Keeping in mind that M� satisfies
the saddle point condition, we find that the pions and
diquarks are Nambu-Goldstone bosons in the chiral limit,
corresponding to the symmetry breaking pattern SUð4Þ !
Spð4Þ. Using the gap equation of M�, we find that the
masses of mesons and diquarks can be determined by the
equation

m2
l ¼ �m0

M�
1

4iGNcNfIðm2
l Þ
þ �2l : (34)

Since the Q2 dependence of the function IðQ2Þ is very
weak, we find m2

� �m0 and m2
� ’ 4M2� þm2

�.
Since pions and diquarks are deep bound states, their

propagators can be well approximated by D�
�ðQÞ ’

�g2�qq=ðQ2 �m2
�Þ with g�2

�qq ’ �2iNcNfIð0Þ. The pion

decay constant f� can be determined by the matrix element
of the axial current,

iQ�f��ij ¼ � 1

2
Tr
Z d4K

ð2�Þ4
�½���5�iGðKþÞg�qq�5�jGðK�Þ�

¼ 2NcNfg�qqM�Q�IðQ2Þ�ij: (35)

Here GðKÞ ¼ ð��K� �M�Þ�1. Thus, the pion decay con-

stant can be expressed as

f2� 	 �2iNcNfM
2�Ið0Þ: (36)

Finally, together with (34) and (36), we recover the
well-known Gell-Mann–Oakes–Renner relation m2

�f
2
� ¼

�m0h �qqi0.
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There are three parameters in our model, the current
quark mass m0, the coupling constant G and the cutoff �.
In principle they should be determined from the known
values of the pion massm�, the pion decay constant f� and
the quark condensate h �qqi0. Since two-color QCD does not
correspond to our real world, we get the above values from
the empirical values f� ’ 93 MeV, h �uui0 ’ ð250 MeVÞ3
in the Nc ¼ 3 case, according to the relation f2�,
h �qqi0 � Nc. To obtain the model parameters, we fix the
values of the pion decay constant f� and slightly vary the
values of the chiral condensate h �qqi0 and the pion mass
m�. Thus, we can obtain different sets of model parameters
corresponding to different values of effective quark mass
M� and hence different values of the sigma meson mass
m�. Four sets of model parameters are shown in Table. I.
As we will show in the following, the physics near the
quantum phase transition point�B ¼ m� is not sensitive to
different model parameter sets, since the low energy
dynamics is dominated by the pseudo-Goldstone bosons
(i.e., the diquarks). However, at high density, the physics
becomes sensitive to different model parameter sets corre-
sponding to different sigma meson masses. The predictions
by the chiral perturbation theories should be recovered in
the limit m�=m� ! 1.

III. DILUTE BOSE CONDENSATE:
MEAN-FIELD THEORY

Now we begin to study the properties of two-color
matter at finite baryon density. Without loss of generality,
we set �B > 0. In this section, we study the two-color
baryonic matter in the dilute limit, which forms near the
quantum phase transition point �B ¼ m�. Since the di-
quark condensate is vanishingly small near the quantum
phase transition point, we can make a Ginzburg-Landau
expansion for the effective action. As we will see below,
this corresponds to the mean-field theory of weakly inter-
acting dilute Bose condensates.

A. Ginzburg-Landau free energy near the quantum
phase transition

Since the diquark condensate � is vanishingly small
near the quantum phase transition, we can derive the
Ginzburg-Landau free energy functional VGL½�ðxÞ� at

T ¼ 0 for the order parameter field �ðxÞ ¼ h�ðxÞi in the
static and long-wavelength limit. The general form of
VGL½�ðxÞ� can be written as

VGL½�ðxÞ� ¼
Z

dx

�
�yðxÞ

�
��

@2

@�2
þ �

@

@�
� �r2

�
�ðxÞ

þ 
j�ðxÞj2 þ 1

2
�j�ðxÞj4

�
; (37)

where the coefficients 
, �, �, �, � should be low energy
constants which depend only on the vacuum properties.
The calculation is somewhat similar to the derivation of
Ginzburg-Landau free energy of a superconductor from the
microscopic BCS theory [63], but for our case there is a
difference in that we have another variational parameter,
i.e., the effective quark massM which should be a function
of j�j2 determined by the saddle point condition.
(I) The potential terms. In the static and long-

wavelength limit, the coefficients 
, � of the potential
terms can be obtained from the effective action Seff in
the mean-field approximation. At T ¼ 0, the mean-field

effective action reads Sð0Þ
eff ¼

R
dx�0, where the mean-field

thermodynamic potential is given by

�0ðj�j2;MÞ ¼ ðM�m0Þ2 þ j�j2
4G

� NcNf

X
k

ðEþ
k þ E�

k Þ:

(38)

The Ginzburg-Landau coefficients 
, � can be obtained
via a Taylor expansion of �0 in terms of j�j2,

�0 ¼ �vacðM�Þ þ 
j�j2 þ 1
2�j�j4 þOðj�j6Þ; (39)

where �vacðM�Þ is the vacuum contribution which should
be subtracted. One should keep in mind that the effective
quark mass M is not a fixed parameter, but a function of
j�j2 via its saddle point condition or gap equation
@�0=@M ¼ 0.
For convenience, we define y 
 j�j2. The Ginzburg-

Landau coefficient 
 is defined as

TABLE I. Model parameters (3-momentum cutoff �, coupling constant G, and current quark
mass m0) and related quantities (quark condensate h �uui0, constituent quark mass M� and pion
mass m�) for the two-flavor two-color NJL model ([39]). The pion decay constant is fixed to be
f� ¼ 75 MeV.

Set � [MeV] G�2 m0 [MeV] h �uui1=30 [MeV] M� [MeV] m� [MeV]

1 657.9 3.105 4.90 �217:4 300 133.6

2 583.6 3.676 5.53 �209:1 400 134.0

3 565.8 4.238 5.43 �210:6 500 134.2

4 565.4 4.776 5.11 �215:1 600 134.4
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 ¼ d�0ðy;MÞ
dy









y¼0

¼ @�0ðy;MÞ
@y









y¼0
þ@�0ðy;MÞ

@M

dM

dy









y¼0

¼ @�0ðy;MÞ
@y









y¼0
; (40)

where the indirect derivative term vanishes due to the
saddle point condition for M. After some simple algebra,
we get


 ¼ 1

4G
� NcNf

X
k

E�
k

E�2
k ��2

B=4
; (41)

where E�
k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þM2�
p

. We can make the above expres-
sion more meaningful using the pion mass equation in the
same three-momentum regularization scheme [41,42],

1

4G
� NcNf

X
k

E�
k

E�2
k �m2

�=4
¼ 0: (42)

We therefore obtain a G-independent result


 ¼ 1

4
NcNfðm2

� ��2
BÞ
X
k

E�
k

ðE�2
k �m2

�=4ÞðE�2
k ��2

B=4Þ
:

(43)

From the fact that m� � 2M� and �> 0 (see below), we
see clearly that a second order quantum phase transition
takes place at exactly �B ¼ m�. Thus, the Ginzburg-
Landau free energy is meaningful only near the quantum
phase transition point, i.e., j�B �m�j � m�, and 
 can
be further simplified as


 ’ ðm2
� ��2

BÞJ ; (44)

where the factor J is defined as

J ¼ 1

4
NcNf

X
k

E�
k

ðE�2
k �m2

�=4Þ2
: (45)

The coefficient � of the quartic term can be evaluated
via the definition

� ¼ d2�0ðy;MÞ
dy2









y¼0

¼ @2�0ðy;MÞ
@y2









y¼0
þ@2�0ðy;MÞ

@M@y

dM

dy









y¼0
: (46)

Notice that the last indirect derivative term does not vanish
here and will be important for us to obtain a correct
diquark-diquark scattering length. The derivative dM=dy
can be analytically derived from the gap equation for M.
From the fact that @�0=@M ¼ 0, we obtain

@

@y

�
@�0ðy;MÞ

@M

�
þ @

@M

�
@�0ðy;MÞ

@M

�
dM

dy
¼ 0: (47)

Thus, we find

dM

dy
¼ �@2�0ðy;MÞ

@M@y

�
@2�0ðy;MÞ

@M2

��1
: (48)

Then the practical expression for � can be written as

� ¼ �1 þ �2; (49)

where �1 is the direct derivative term

�1 ¼ @2�0ðy;MÞ
@y2









y¼0
; (50)

and �2 is the indirect term

�2 ¼ �
�
@2�0ðy;MÞ

@M@y

�
2
�
@2�0ðy;MÞ

@M2

��1








y¼0

: (51)

Near the quantum phase transition, all chemical poten-
tial dependence can be absorbed into the coefficient 
, and
we can set �B ¼ m� in �. After a simple algebra, the
explicit form of �1 and �2 can be evaluated as

�1 ¼ 1

4
NcNf

X
e¼�

X
k

1

ðE�
k � em�=2Þ3

(52)

and

�2 ¼ �
�
1

2
NcNf

X
e¼�

X
k

M�
E�
k

1

ðE�
k � em�=2Þ2

	
2

�
�

m0

2GM�
þ 2NcNf

X
k

M2�
E�3
k

��1
: (53)

TheG-dependent termm0=ð2GM�Þ in (53) can be approxi-
mated as m2

�f
2
�=M

2� using the relation m2
�f

2
� ¼ �m0h �qqi.

(II) The kinetic terms. The kinetic terms in the Ginzburg-
Landau free energy can be derived from the inverse of the
diquark propagator [63]. In the general case with � � 0,
the diquarks are mixed with the sigma meson. However,
approaching the quantum phase transition point, � ! 0,
the problem is simplified. After the analytical continuation
i
m ! !þ i0þ, the inverse of the diquark propagator in
the limit �B ! m� can be evaluated as

D�1
d ð!;qÞ ¼ 1

4G
þ�dð!;qÞ; (54)

where the polarization function �dð!;qÞ is given by

�dð!;qÞ ¼ NcNf

X
k

E�
k þ E�

kþq

ð!þ�BÞ2 � ðE�
k þ E�

kþqÞ2

�
�
1þ k � ðkþ qÞ þM2�

E�
kE

�
kþq

�
: (55)

In the static and long-wavelength limit (!, jqj ! 0), the
coefficients �, �, � can be determined by the Taylor
expansion D�1

d ð!;qÞ ¼ D�1
d ð0; 0Þ � �!2 � �!þ �q2.

Notice that 
 is identical to D�1
d ð0; 0Þ which is in

fact the Thouless criterion for the superfluid transition.
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On the other hand, keeping in mind thatD�1
d ð!;qÞ can be

related to the pion propagator in the vacuum, i.e.,
D�1

d ð!;qÞ ¼ ð1=2ÞD��1
� ð!þ�B;qÞ, in the static and

long-wavelength limit and for �B ! m� � 2M� we can
well approximate it as [41]

D�1
d ð!;qÞ ’ �J ½ð!þ�BÞ2 � q2 �m2

��; (56)

where J is the same factor defined in (44), and one can
show that J ’ g�2

�qq=2. We thus find that � ’ � ’ J which

ensures the Lorentz invariance of the vacuum, and
� ’ 2�BJ .

B. From Ginzburg-Landau to Gross-Pitaevskii
free energy

We now show how the Ginzburg-Landau free energy can
be reduced to the theory describing weakly repulsive Bose
condensates, i.e., the Gross-Pitaevskii free energy [64,65].

(I) Nonrelativistic version. First, since the Bose
condensed matter is indeed dilute, let us consider the
nonrelativistic version, where ! � m� and the kinetic
term / @2=@�2 is neglected. To this end, we define the
nonrelativistic chemical potential �d for diquarks, �d ¼
�B �m�, and further simplify the coefficient 
 as


 ’ ��dð2m�J Þ: (57)

Then the Ginzburg-Landau free energy can be reduced to
the Gross-Pitaevskii free energy of a dilute repulsive Bose
gas, if we define a new condensate wave function �ðxÞ as

�ðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�J

p
�ðxÞ: (58)

The resulting Gross-Pitaevskii free energy is given by

VGP½�ðxÞ� ¼
Z

dx

�
�yðxÞ

�
@

@�
� r2

2m�

�
�ðxÞ

��dj�ðxÞj2 þ 1

2
g0j�ðxÞj4

�
; (59)

where g0 ¼ 4�add=m�. The repulsive diquark-diquark in-
teraction is characterized by a positive scattering length add
defined as

add ¼ �

16�m�

J�2: (60)

Keep in mind that the scattering length obtained here is at
the mean-field level. We will discuss the possible beyond-
mean-field corrections in Sec. V. Thus, for a dilute medium

with density n satisfying na3dd � 1, the system is indeed a

weakly interacting Bose condensate [13–15].
(II) Diquark-diquark scattering length. Even though we

have shown that the Ginzburg-Landau free energy is in-
deed a Gross-Pitaevskii version near the quantum phase
transition, a key problem is whether the obtained diquark-
diquark scattering length add is quantitatively correct.
A numerical calculation for (60) is straightforward. The
obtained values of add for the four model parameter sets are
shown in Table II. We can also give an analytical expres-
sion based on the formula of the pion decay constant in the
three-momentum cutoff scheme,

f2� ¼ NcM
2�
X
k

1

E�3
k

: (61)

According to the fact thatm� � 2M�,� andJ can bewell
approximated as

� ’ f2�
M2�

� ð2f2�=M�Þ2
m2

�f
2
�=M

2� þ 4f2�
’ f2�m

2
�

4M4�
; J ’ f2�

2M2�
: (62)

Thus, the diquark-diquark scattering length add in the limit
m�=ð2M�Þ ! 0 is related only to the pion mass and decay
constant,

add ¼ m�

16�f2�
: (63)

The values of add for the four model parameter sets accord-
ing to the above expression are also listed in Table II. The
errors are always about 1% comparing with the exact
numerical results, which means that the expression (63)
is a good approximation for the diquark-diquark scattering
length. The error should come from the finite value of
m�=ð2M�Þ. We can obtain a correction in powers of
m�=ð2M�Þ [66], but it is obviously small, and its explicit
form is not shown here.
The result add / m� is universal for the scattering

lengths of the pseudo-Goldstone bosons. Even though the
SU(4) flavor symmetry is explicitly broken in presence of a
nonzero quark mass, a discrete symmetry �1, �2 $ �1,
�2 holds exactly for arbitrary quark mass. This also means
that the partition function of two-color QCD has a discrete
symmetry�B $ �I [8]. Because of this discrete symmetry
of two-color QCD, the analytical expression (63) of add
(which is in fact the diquark-diquark scattering length in
the B ¼ 2 channel) should be identical to the pion-pion
scattering length at tree level in the I ¼ 2 channel which
was first obtained by Weinberg many years ago [67].

TABLE II. The values of diquark-diquark scattering length add (in units of m�1
� ) for different

model parameter sets.

Set 1 2 3 4

add according to (60) [m�1
� ] 0.0631 0.0635 0.0637 0.0639

add according to (63) [m�1
� ] 0.0624 0.0628 0.0630 0.0633
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Therefore, the mean-field theory can describe not only the
quantum phase transition to a dilute diquark condensate
but also the effect of repulsive diquark-diquark interaction.

(III) Equations of state. The mean-field equations of
state of the dilute diquark condensate are thus determined
by the Gross-Pitaevskii free energy (59). Minimizing
�VGP½ðxÞ� with respect to a uniform condensate �, we
find the physical minimum is given by

j�0j2 ¼ �d

g0
; (64)

and the baryon density is n ¼ j�0j2. Using the thermody-
namic relations, we therefore get the well-known results
for the pressure P, the energy density E and the chemical
potential �B in terms of the baryon density n,

PðnÞ ¼ 2�add
m�

n2;

EðnÞ ¼ m�nþ 2�add
m�

n2;

�BðnÞ ¼ m� þ 4�add
m�

n;

(65)

which were first obtained by Bogoliubov many years ago
[14]. We can examine the above results through a direct
numerical calculation with the mean-field thermodynamic
potential. The pressure is given by P ¼ �ð�0 ��vacÞ and

the baryon density reads n ¼ �@�0=@�B. In Fig. 1 we
show the numerical results for the pressure and the chemi-
cal potential as functions of the density for the four model
parameter sets. At low enough density, the equations of
state are indeed consistent with the results (65) with the
scattering length given by (60). It is evident that the results
at low density are not sensitive to different model parame-
ter sets, since the physics at low density should be domi-
nated by the pseudo-Goldstone bosons.
In fact, we can derive the equations of state (65) analyti-

cally from the mean-field thermodynamic potential �0.
For example, the baryon number density reads

n ¼ 1

2
NcNf

X
k

��
1� 	�

k

E�
k

�
�
�
1� 	þ

k

Eþ
k

��

¼ 1

2
NcNf

X
k

� j�j2
E�
k ðE�

k þ 	�
k Þ

� j�j2
Eþ
k ðEþ

k þ 	þ
k Þ
�
: (66)

Near the quantum phase transition point and to leading
order of j�j2, we obtain

n ’ 1

4
NcNf

X
k

� j�j2
ðE�

k �m�=2Þ2
� j�j2

ðE�
k þm�=2Þ2

�

¼ 2m�J j�j2 ¼ j�0j2: (67)

Further, since our treatment is only at the mean-field
level, the Lee-Huang-Yang corrections [15] which are
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FIG. 1. The baryon chemical potential�B and the pressure P as functions of the baryon density n for different model parameter sets.
The solid lines correspond to the direct mean-field calculation, and the dashed lines are given by (65).
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proportional to ðna3ddÞ1=2 are absent in the equations of

state. As we have shown in Appendix A, to obtain such
corrections, it is necessary to go beyond the mean field, and
a beyond-mean-field correction to the scattering length add
is also possible [57,58].

(IV) Relativistic version. We can also consider a relativ-
istic version of the Gross-Pitaevskii free energy via defin-
ing the condensate wave function

	ðxÞ ¼ ffiffiffiffiffi
J

p
�ðxÞ: (68)

In this case, the Ginzburg-Landau free energy is reduced to
a relativistic version of the Gross-Pitaevskii free energy,

VRGP½	ðxÞ� ¼
Z

dx

�
	yðxÞ

�
� @2

@�2
þ 2�B

@

@�
� r2

�
	ðxÞ

þ ðm2
� ��2

BÞj	ðxÞj2 þ �

2
j	ðxÞj4

�
: (69)

The self-interacting coupling � ¼ �J�2 is now dimen-
sionless and can be approximated by � ’ m2

�=f
2
�. For

realistic values of m� and f�, we find ��Oð1Þ. In this
sense, the Bose condensate is not weakly interacting, ex-
cept for the low density limit na3dd � 1. One should keep

in mind that this result cannot be applied to high density,
since it is valid only near the quantum phase transition
point.

C. Bogoliubov excitation in a dilute diquark condensate

An ideal Bose-Einstein condensate is not a superfluid.
In presence of weakly repulsive interactions among
the bosons, a Goldstone modewhich has a linear dispersion
in the low energy limit appears, and the condensate
becomes a superfluid according to Landau’s criterion
minq½!ðqÞ=jqj�> 0. The Goldstone mode which is also

called the Bogoliubov mode here should have a dispersion
given by [13–15]

!ðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

2m�

�
q2

2m�

þ 8�addn

m�

�s
; jqj � m�: (70)

Since the Gross-Pitaevskii free energy obtained above is
at the classical level, to study the bosonic collective
excitations we should consider the fluctuations around
the mean field [62,68,69]. The propagator of the bosonic
collective modes is given by M�1ðQÞ and N�1ðQÞ. The
Bogoliubov mode corresponds to the lowest excitation
obtained from the equation detMð!;qÞ ¼ 0. With the

explicit form of the matrix elements ofM in the superfluid
phase, we can analytically show that detMð0; 0Þ ¼ 0
which ensures the Goldstone’s theorem. In fact,
for ð!;qÞ ¼ ð0; 0Þ, we find that detM ¼ ðM2

11 �jM12j2ÞM33 þ 2jM13j2ðjM12j �M11Þ. Using the saddle
point condition for �, we can show that M11ð0; 0Þ ¼
jM12ð0; 0Þj and hence the Goldstone’s theorem holds in
the superfluid phase. Further, we may obtain an analytical
expression of the velocity of the Bogoliubov mode via a
Taylor expansion for Mð!;qÞ around ð!;qÞ ¼ ð0; 0Þ
like those done in [62,68,69]. Such a calculation for our
case is more complicated due to the mixing between the
sigma meson and diquarks, and it cannot give the full
dispersion (70).
On the other hand, since � ! 0 near the quantum phase

transition point, we can expand the matrix elements of M
in powers of j�j2. The advantage of such an expansion is
that it cannot only give the full dispersion (70) but also link
the meson properties in the vacuum. Formally, we can
write down the following expansions:

M11ð!;qÞ ¼ D�1
d ð!;qÞ þ j�j2Að!;qÞ þOðj�j4Þ;

M22ð!;qÞ ¼ D�1
d ð�!;qÞ þ j�j2Að�!;qÞ þOðj�j4Þ;

M12ð!;qÞ ¼ My
21ð!;qÞ ¼ �2Bð!;qÞ þOðj�j4Þ;

M13ð!;qÞ ¼ My
31ð!;qÞ ¼ �Hð!;qÞ þOðj�j3Þ;

M23ð!;qÞ ¼ My
32ð!;qÞ ¼ �yHð�!;qÞ þOðj�j3Þ;

M33ð!;qÞ ¼ D��1
� ð!;qÞ þOðj�j2Þ: (71)

Notice that the effective quark mass M is regarded as a
function of j�j2 as we have done in deriving the Ginzburg-
Landau free energy. Since we are interested in the disper-
sion in the low energy limit, i.e., !, jqj � m�, we can
approximate the coefficients of the leading order terms as
their values at ð!;qÞ ¼ ð0; 0Þ. That is,

Að!;qÞ ’ Að�!;qÞ ’ Að0; 0Þ 
 A0;

Bð!;qÞ ’ Bð0; 0Þ 
 B0;

Hð!;qÞ ’ Hð�!;qÞ ’ Hð0; 0Þ 
 H0:

(72)

Further, since m� � m�, we can approximate the
inverse sigma propagator D��1

� ð!;qÞ as its value at
ð!;qÞ ¼ ð0; 0Þ. Therefore, the dispersion of the
Goldstone mode in the low energy limit can be determined
by the following equation:

det
D�1

d ð!;qÞ þ j�j2A0 �2B0 �H0

�y2B0 D�1
d ð�!;qÞ þ j�j2A0 �yH0

�yH0 �H0 D��1
� ð0; 0Þ

0
B@

1
CA ¼ 0: (73)
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Now we can link the coefficients A0, B0, H0 and
D�1

� ð0; 0Þ to the derivatives of the mean-field thermody-
namic potential �0 and its Ginzburg-Landau coefficients.
Firstly, using the explicit form of M12, we find that

jM12ð0; 0Þj ¼ j�j2�1 ) B0 ¼ �1: (74)

Second, using the fact that

M 11ð0; 0Þ � jM12ð0; 0Þj ¼ @�0

@j�j2 ; (75)

and together with the definition for Að!;qÞ,

Að!;qÞ ¼ dM11ðy;MÞ
dy









y¼0

¼ @M11ðy;MÞ
@y









y¼0
þ @M11ðy;MÞ

@M

dM

dy









y¼0
;

(76)

we find the following exact relation:

A0 ¼ �þ B0 ¼ �þ �1: (77)

On the other hand, we have the following relations for H0

and D��1
� ð0; 0Þ,

H0 ¼ @2�0ðy;MÞ
@M@y









y¼0
;

D��1
� ð0; 0Þ ¼ @2�0ðy;MÞ

@M2









y¼0
:

(78)

One can check the above results from the explicit forms of
M13 and M33 in Appendix B directly. Thus, we have

� H2
0

D��1
� ð0; 0Þ ¼ �2: (79)

According to the above relations, Eq. (73) can be re-
duced to

3�2j�j4 þ 2�j�j2½D�1
d ð!;qÞ þD�1

d ð�!;qÞ�
þD�1

d ð!;qÞD�1
d ð�!;qÞ

¼ 0: (80)

It is evident that only the coefficient � appears in the final
equation. Further, in the nonrelativistic limit !, jqj � m�

and near the quantum phase transition point, D�1
d ð!;qÞ

can be approximated as

D�1
d ð!;qÞ ’ �2m�J

�
!� q2

2m�

þ�d

�
: (81)

Together with the mean-field results for the chemical po-
tential �d ¼ g0j�0j2 ¼ �j�j2=ð2m�J Þ and for the
baryon density n ¼ j�0j2, we finally get the Bogoliubov
dispersion (70).
We should emphasize that the mixing between the sigma

meson and the diquarks, denoted by the terms �H0 and
�yH0, plays an important role in recovering the correct
Bogoliubov dispersion. Even though we do get this disper-
sion, we find the procedure is quite different to the standard
theory of weakly interacting Bose gas [13,14,64,65].
There, the elementary excitation is given only by the
diquark-diquark sectors, i.e.,

det
M11ðQÞ M12ðQÞ
M21ðQÞ M22ðQÞ

� �
¼ 0 ) det

�!þ q2

2m�
��d þ 2g0j�0j2 g0j�0j2
g0j�0j2 !þ q2

2m�
��d þ 2g0j�0j2

0
@

1
A ¼ 0: (82)

But in our case, we cannot get the correct Bogoliubov
excitation if we simply set H0 ¼ 0 and consider only the
diquark-diquark sector. In fact, this requires A0 ¼ 2B0 ¼
2� which is not true in our case.

One can also check how the momentum dependence
of A, B, H and D��1

� modifies the dispersion. This needs
direct numerical solution of the equation detMð!;qÞ ¼ 0.
We have examined that for j�B �m�j up to 0:01m�, the
numerical result agrees well with the Bogoliubov formula
(70). However, at higher density, a significant deviation is
observed. This is in fact a signature of BEC-BCS crossover
which will be discussed in Sec. IV.

D. In-medium chiral condensate

Up to now we have studied the properties of the dilute
Bose condensate induced by a small diquark condensate
hqqi. The chiral condensate h �qqi will be modified in the

medium. In such a dilute Bose condensate, we can
study the response of the chiral condensate to the baryon
density n.
To this end, we expand the effective quark mass M in

terms of y ¼ j�j2. We have

M�M� ¼ dM

dy









y¼0
yþOðy2Þ: (83)

The expansion coefficient can be approximated as

dM

dy









y¼0
’ � 2f2�=M�

m2
�f

2
�=M

2� þ 4f2�

¼ � 1

2M�

�
1þO

�
m2

�

4M2�

��
: (84)

Using the definition of the effective quark mass, M ¼
m0 � 2Gh �qqi, we find that
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h �qqin
h �qqi0

¼ 1� j�j2
4Gh �qqi0M�

’ 1� j�j2
2M2�

: (85)

Since the baryon number density reads n ¼ j�0j2 ¼
2m�J j�j2, using the fact that J ’ f2�=ð2M2�Þ, we obtain
to leading order

h �qqin
h �qqi0

’ 1� n

2f2�m�

: (86)

This formula is in fact a two-color analogue of the density
dependence of the chiral condensate in the Nc ¼ 3 case,
where we have [70,71]

h �qqin
h �qqi0

’ 1� ��N

f2�m
2
�

n; (87)

with ��N being the pion-nucleon sigma term. In Fig. 2, we
show the numerical results via solving the mean-field gap
equations. One finds that the chiral condensate has a per-
fect linear behavior at low density. For large value of M�
(and hence the sigma meson mass m�), the linear behavior
persists even at higher density.

In fact, the Eq. (86) can be obtained in a model inde-
pendent way. Applying the Hellmann-Feynman theorem to
a dilute diquark gas with energy density EðnÞ given by (65),
we can obtain (86) directly. According to the Hellmann-
Feynman theorem, we have

2m0ðh �qqin � h �qqi0Þ ¼ m0

dE
dm0

: (88)

The derivative dE=dm0 can be evaluated via the chain rule
dE=dm0 ¼ ðdE=dm�Þðdm�=dm0Þ. Together with the Gell-
Mann–Oakes–Renner relation m2

�f
2
� ¼ �m0h �qqi0 and the

fact that dadd=dm� ’ add=m�, we can obtain to leading
order Eq. (86). Beyond the leading order, we find the
correction of order Oðn2Þ vanishes. Thus, the next-to-

leading order correction should be Oðn5=2Þ coming from
the Lee-Huang-Yang correction to the equation of state
[72].
Finally, we can show analytically that the ‘‘chiral rota-

tion’’ behavior [4–11] predicted by the chiral perturbation
theories is valid in the NJL model near the quantum phase
transition. In the chiral perturbation theories, the chemical
potential dependence of the chiral and diquark condensates
can be analytically expressed as

h �qqi�B

h �qqi0
¼ m2

�

�2
B

;
hqqi�B

h �qqi0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m4

�

�4
B

s
: (89)

Near the phase transition point, we can expand the above
formula in powers of�d ¼ �B �m�. To leading order, we
have

h �qqi�B

h �qqi0
’ 1� 2�d

m�

;
hqqi�B

h �qqi0 ’ 2

ffiffiffiffiffiffiffi
�d

m�

s
: (90)

Using the mean-field result (64) for the chemical potential
�d, one can easily check that the above relations are also
valid in our NJL model.
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FIG. 2. The ratio Rn ¼ h �qqin=h �qqi0 as a function of n=ðf2�m�Þ for different model parameter sets. The dashed line is the linear
behavior given by (86).
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E. Chiral limit

In the above studies we focused on the ‘‘physical point’’
where m0 � 0. In the final part of this section, we briefly
discuss the chiral limit with m0 ¼ 0.

We may naively expect that the results at m0 � 0 can be
directly generalized to the chiral limit via setting m� ¼ 0.
The ground state is a noninteracting Bose condensate of
massless diquarks, since m� ¼ 0 and add ¼ 0. However,
this cannot be true since many divergences develop due to
the vanishing pion mass. In fact, the conclusion of second
order phase transition is not correct since the Ginzburg-
Landau coefficient� vanishes. Instead, the superfluid phase
transition is of strongly first order in the chiral limit [48,52].

In the chiral limit, the effective action in the vacuum
should depend only on the combination �2 þ �2 þ j�j2
due to the exact flavor symmetry SUð4Þ ’ SOð6Þ. The
vacuum is chosen to be associated with a nonzero chiral
condensate h�i without loss of generality. At zero and at
finite chemical potential, the thermodynamic potential
�0ðM; j�jÞ has two minima locating at ðM; j�jÞ ¼ ða; 0Þ
and ðM; j�jÞ ¼ ð0; bÞ. At zero chemical potential, these two
minima are degenerate due to the exact flavor symmetry.
However, at nonzero chemical potential (even arbitrarily
small), the minimum ð0; bÞ has the lowest free energy.
Analytically, we can show that b ! M� at �B ¼ 0þ. This
means the superfluid phase transition in the chiral limit is of
strongly first order, and takes place at arbitrarily small

chemical potential. Since the effective quark massM keeps
vanishing in the superfluid phase, a low density Bose con-
densate does not exist in the chiral limit.

IV. MATTER AT HIGH DENSITY: BEC-BCS
CROSSOVER AND MOTT TRANSITION

The investigations in Sec. III are restricted near the
quantum phase transition point �B ¼ m�. Generally the
state of matter at high density should not be a relativistic
Bose condensate described by (69). In fact, perturbative
QCD calculations show that the matter is a weakly coupled
BCS superfluid at asymptotic density [20–23]. In this
section, we will discuss the evolution of the superfluid
matter as the baryon density increases from the NJL model
point of view. While some results presented in the follow-
ing have been published elsewhere [52–55], we will still
show them for the sake of completeness.

A. Chiral and diquark condensates

The numerical results for the chiral condensate h �qqi and
diquark condensate hqqi are shown in Fig. 3. As a com-
parison, we also show the analytical result (89) predicted
by chiral perturbation theories. While the behavior of the
chiral condensate is in good agreement with the chiral
perturbation theories, the diquark condensate deviates sig-
nificantly from the result (89) for small values of M�.
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FIG. 3. The chiral and diquark condensates (in units of h �qqi0) as functions of the baryon chemical potential (in units of m�) for
different model parameter sets.
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This deviation can be understood from the fact that the
chiral perturbation theories correspond to the nonlinear
sigma model limit m� ! 1. For finite value of m�, one
should consider the O(6) linear sigma model [55]

L LSM ¼ 1
2ð@�’Þ2 � 1

2m
2’2 þ 1

4�’
4 �H�; (91)

where ’ ¼ ð�;�; �1; �2Þ and m2 < 0. The model pa-
rameters m2, �, H can be determined from the vacuum
phenomenology. In this model, we can show that the chiral
and diquark condensates are given by [48,55]

h �qqi�B

h �qqi0
¼m2

�

�2
B

;
hqqi�B

h �qqi0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m4

�

�4
B

þ2
�2

B�m2
�

m2
��m2

�

s
: (92)

In the nonlinear sigma model limit m� ! 1, the above
results are indeed reduced to the result (89) predicted by
chiral perturbation theories. However, for finite values of
m�, the results can be significantly different from (89) at
large chemical potential.

B. BEC-BCS crossover

While the Ginzburg-Landau free energy can be reduced
to the Gross-Pitaevskii free energy near the quantum phase
transition point, it is not the case at arbitrary �B.

When �B increases, we find that the fermionic excita-
tion spectra E�

k undergo a characteristic change. Near the
quantum phase transition �B ¼ m� they are nearly degen-
erate since m� � 2M� and their minima are located at
jkj ¼ 0. However, at very large �B the minimum of E�

k

moves to jkj ’ �B=2 since M ! m0. Meanwhile the ex-
citation energy of the antifermion excitations become
much larger than that of the fermion excitations and can
be neglected. This characteristic change of the fermionic
excitation spectra takes place when the minimum of the
lowest band excitation E�

k moves from jkj ¼ 0 to jkj � 0
[53,54,62,68,69,73–79], i.e.,�B=2 ¼ Mð�BÞ [80]. A sche-
matic plot of this characteristic change is shown in Fig. 4.
The equation �B=2 ¼ Mð�BÞ defines the so-called cross-
over point �B ¼ �0 which can be numerically determined
by the mean-field gap equations. The numerical results of
the crossover chemical potential �0 for the four model
parameter sets are shown in Table III. For reasonable

parameter sets, the crossover chemical potential is in the
range ð1:6–2Þm�.
In fact, an analytical expression for �0 can be achieved

according to the fact that the chiral rotation behavior
h �qqi�B

=h �qqi0 ’ m2
�=�

2
B is still valid in the NJL model at

large chemical potentials as shown in Fig. 3. We obtain
[53]

�0

2
’ m2

�

�2
0

M� ) �0 ’ ð2M�m2
�Þ1=3: (93)

Using the fact that m� ’ 2M�, we find that �0 can be
expressed as

�0

m�
’
�
m�

m�

�
1=3

: (94)

Thus, in the nonlinear sigma model limit m�=m� ! 1,
there should be no BEC-BCS crossover. On the other hand,
this means the physical prediction power of the chiral
perturbation theories is restricted near the quantum phase
transition point.
The fermionic excitation gap �ex (as shown in Fig. 4),

defined as the minimum of the fermionic excitation energy,
i.e., �ex ¼ minkfE�

k ; E
þ
k g, can be evaluated as

�ex ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðM� �B

2 Þ2 þ j�j2
q

�B <�0

j�j �B >�0

: (95)

It is evident that the fermionic excitation gap is equal to the
superfluid order parameter only in the BCS regime. This is
similar to the BEC-BCS crossover in nonrelativistic systems
[62], and we find that the corresponding fermion chemical
potential� can be defined as� ¼ �B=2�M. The numeri-
cal results of the fermionic excitation gap �ex for different
model parameter sets are shown in Fig. 5. We find that for a
wide range of the baryon chemical potential, it is of order
OðM�Þ. The fermionic excitation gap is equal to the pairing
gap j�j only at the BCS side of the crossover, and exhibits a
minimum at the quantum phase transition point.
On the other hand, the momentum distributions of

quarks (denoted by nðkÞ) and antiquarks (denoted by
�nðkÞ) can be evaluated using the quark Green function
G11ðKÞ. We obtain

nðkÞ ¼ 1

2

�
1� 	�

k

E�
k

�
; for quarks;

�nðkÞ ¼ 1

2

�
1� 	þ

k

Eþ
k

�
; for antiquarks:

(96)

∆
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E(k)

k k
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FIG. 4. A schematic plot of the fermionic excitation spectrum
in the BEC state (left) and the BCS state (right).

TABLE III. The crossover chemical potential �0 (in units of
m�) for different model parameter sets.

Set 1 2 3 4

Crossover chemical

potential �0 [m�]

1.65 1.81 1.95 2.07
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The numerical results for nðkÞ and �nðkÞ (for model pa-
rameter set 1) are shown in Fig. 6. Near the quantum phase
transition point, the quark momentum distribution nðkÞ is a
very smooth function in the whole momentum space. In the
opposite limit, i.e., at large chemical potentials, it ap-
proaches unity at jkj ¼ 0 and decreases rapidly around
the effective ‘‘Fermi surface’’ at jkj ’ j�j. For the anti-
quarks, we find that the momentum distribution �nðkÞ ex-
hibits a nonmonotonous behavior: it is suppressed at both
low and high densities and is visible only at moderate
chemical potentials. However, even at very large chemical
potentials, e.g., �B ¼ 10m�, the momentum distribution
nðkÞ does not approach the standard BCS behavior, which
means the dense matter is not a weakly coupled BCS

superfluid for a wide range of the baryon chemical poten-
tial. In Fig. 7, we show the ratio j�j=� up to�B ’ 10m�. It
is clear that the ratio is not small even at large chemical
potentials. At�B ¼ 10m�, it is about 0.5, which means the
dense matter is still a strongly coupled BCS superfluid.
The Goldstone mode also undergoes a characteristic

change in the BEC-BCS crossover. Near the quantum
phase transition point, i.e., in the dilute limit, the
Goldstone mode recovers the Bogoliubov excitation of
weakly interacting Bose condensates. In the opposite limit,
we expect the Goldstone mode approaches the Anderson-
Bogoliubov mode of a weakly coupled BCS superfluid,

which takes a dispersion !ðqÞ ¼ jqj= ffiffiffi
3

p
up to the two-

particle continuum ! ’ 2j�j. In fact, at large chemical
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FIG. 5. The fermionic excitation gap �ex (in units ofM�) as a function of the baryon chemical potential (in units of m�) for different
model parameter sets. The effective quark mass M and the pairing gap j�j are also shown by dashed and dash-dotted lines,
respectively.
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FIG. 6. The momentum distributions for quarks (upper panel) and antiquarks (lower panel) for various values of�B. The momentum
is scaled by j�j ¼ j�B=2�Mj.
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potentials, we can safely neglect the mixing between the
sigma meson and diquarks. The Goldstone boson disper-
sion is thus determined by the equation

det
M11ðQÞ M12ðQÞ
M21ðQÞ M22ðQÞ

� �
¼ 0: (97)

The problem is totally the same as that has been inves-
tigated in [68,69]. Therefore, at very large chemical
potentials where j�j=� becomes small enough, the
Goldstone mode recovers the Anderson-Bogoliubov
mode of a weakly coupled BCS superfluid.

Finally, we should emphasize that the existence of a
smooth crossover from the Bose condensate to the BCS
superfluid depends on whether there exists a deconfine-
ment phase transition at finite �B [31,32,81] and where it
takes place. Recent lattice calculation predicts a deconfine-
ment crossover which occurs at a baryon chemical poten-
tial larger than that of the BEC-BCS crossover [32].

C. Chiral restoration and meson Mott transition

As in real QCD with two quark flavors, we expect the
chiral symmetry is restored and the spectra of sigma meson
and pions become degenerate at high density [82]. For the
two-flavor case and with vanishing m0, the residue
SULð2Þ � SURð2Þ � UBð1Þ symmetry group at �B � 0 is
spontaneously broken down to SpLð2Þ � SpRð2Þ in the
superfluid medium with nonzero h �qqi and hqqi, resulting
in one Goldstone boson. For small nonzero m0, we expect

the spectra of sigma meson and pions become approxi-
mately degenerate when the in-medium chiral condensate
h �qqi becomes small enough.
In fact, according to the result h �qqin=h �qqi0 ’

1� n=ð2f2�m�Þ at low density, we can roughly expect
that the chiral symmetry is approximately restored at
n� 2f2�m�. From the chemical potential dependence of
the chiral condensate h �qqi shown in Fig. 3, we find that it
becomes smaller and smaller as the density increases. As a
result, we should have nearly degenerate spectra for the
sigma meson and pions. To show this we need the explicit
form of the matrix MðQÞ and NðQÞ given in Appendix B.
Since M13, M32 / M�, at high density where h �qqi ! 0,
they can be safely neglected and the sigma meson decou-
ples from the diquarks. The propagator of the sigma meson
is then given by M�1

33 ðQÞ. From the explicit form of the

polarization functions ��ðQÞ ¼ �33ðQÞ and ��ðQÞ, we
can see that the inverse propagators of the sigma meson
and pions differ from each other in a term proportional to
M2. Thus, at high density their spectra are nearly degen-
erate, and their masses are given by the equation

1–2G��ð!; 0Þ ¼ 0: (98)

Using the mean-field gap equation for �, we find the
solution is ! ¼ �B, which means the meson masses are
equal to�B at large chemical potentials. In Fig. 8, we show
the chemical potential dependence of the meson and
diquark mass spectra determined at zero momentum.
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FIG. 7. The ratio of the pairing gap j�j to the effective fermionic chemical potential � ¼ �B=2�M as a function of the baryon
chemical potential (in units ofm�) for different model parameter sets. The divergent point corresponds to�B ¼ �0, i.e., the BEC-BCS
crossover point.
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We find from the meson spectra that the chiral symmetry is
approximately restored at �B ’ 3m�, corresponding to
n ’ 3:5f2�m�. It is interesting that near the quantum phase
transition point �B ¼ m� the mixing between the sigma
meson and diquarks is very strong and makes the sigma
meson lost its way. Since it is continuous with the anti-
diquark mode in the normal phase, it is also called the
‘‘antidiquark’’ mode in the superfluid phase [52,83]. The
‘‘sigma meson,’’ which is continuous with the sigma

meson in the normal phase, is in fact the Higgs mode of
the BCS superfluid with a mass 2� at high density.
Even though the deconfinement transition or crossover

which corresponds to the gauge field sector cannot be
described in the NJL model, we can on the other hand
study the meson Mott transition associated with the chiral
restoration [84–86]. The meson Mott transition is defined
as the point where the meson energy becomes larger
than the two-particle continuum ! �qq for the decay process

� ! �qq at zero momentum, which means the mesons are
no longer bound states. The two-particle continuum ! �qq is

different at the BEC and the BCS sides. From the explicit
form of ��ðQÞ, we find that

! �qq¼
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM��B

2 Þ2þj�j2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMþ�B

2 Þ2þj�j2
q

�B<�0

j�jþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMþ�B

2 Þ2þj�j2
q

�B>�0

:

(99)

Thus, the pions and the sigma meson will undergo a Mott
transition when their masses become larger than the two-
particle continuum ! �qq, i.e., �B >! �qq. Using the mean-

field results for � andM, we can calculate the two-particle
continuum ! �qq as a function of �B, which is shown in

Fig. 9. We find that the Mott transition does occur at a
chemical potential �B ¼ �M1 which is sensitive to the
value of M�. The values of �M1 for the four model pa-
rameter sets are shown in Table IV. For reasonable model
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FIG. 8. The mass spectra of mesons and diquarks (in units of
m�) as functions of the baryon chemical potential (in units of
m�) for model parameter set 1. For other model parameter sets,
the mass of the heaviest mode is changed but others are almost
the same.
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parameter sets, the value of �M1 is in the range ð7–10Þm�.
Above this chemical potential, the mesons are no longer
stable bound states and can decay into quark-antiquark
pairs even at zero momentum. We note that the Mott
transition takes place well above the chiral restoration, in
contrast to the pure finite temperature case where the
mesons are dissociated once the chiral symmetry is
restored [84,85].

On the other hand, we find from the explicit forms of the
meson propagators in Appendix B that the decay process
� ! qq is also possible at q � 0 (even though jqj is small)
due to the presence of superfluidity. Thus, we have another
unusual Mott transition in the superfluid phase. Notice that
this process is not in contradiction to the baryon number
conservation law, since the UBð1Þ baryon number symme-
try is spontaneously broken in the superfluid phase.
Quantitatively, this transition occurs when the meson
mass becomes larger than the two-particle continuum
!qq for the decay process � ! qq at q ¼ 0þ. In this

case, we have

!qq ¼
8><
>: 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
M� �B

2

�
2 þ j�j2

s
�B <�0

2j�j �B >�0

: (100)

The two-particle continuum !qq is also shown in Fig. 9.

We find that the unusual Mott transition does occur at
another chemical potential �B ¼ �M2 which is also sensi-
tive to the value of M�. The values of �M2 for the four
model parameter sets are also shown in Table IV. For
reasonable model parameter sets, this value is in the range
ð5–8Þm�. This process can also occur in the 2SC phase of
quark matter in the Nc ¼ 3 case [87]. In the 2SC phase, the

symmetry breaking pattern is SUcð3Þ � UBð1Þ ! SUcð2Þ �
~UBð1Þ where the generator of the residue baryon number

symmetry ~UBð1Þ is ~B ¼ B� 2T8=
ffiffiffi
3

p ¼ diagð0; 0; 1Þ cor-
responding to the unpaired blue quarks. Thus the baryon
number symmetry for the paired red and green quarks are
broken and our results can be applied. To show this ex-
plicitly, we write down the explicit form of the polarization
function for pions in the 2SC phase [87]

�2SC
� ðQÞ ¼ �2�color

� ðQÞ þX
K

Tr½G0ðKÞi�5G0ðPÞi�5�;

(101)

where G0ðKÞ is the propagator for the unpaired blue
quarks. Here �2�color

� ðQÞ is given by (29) (the effective

quarks mass M and the pairing gap � should be given by
the Nc ¼ 3 case of course) and corresponds to the contri-
bution from the paired red and green sectors. The second
term is the contribution from the unpaired blue quarks.
Therefore, the unusual decay process is only available for
the paired quarks.

V. BEYOND-MEAN-FIELD CORRECTIONS

The investigations in Sec. III and IVare restricted in the
mean-field approximation, even though the bosonic collec-
tive excitations are studied. In this section, we will include
the Gaussian fluctuations in the thermodynamic potential,
and thus really go beyond the mean field. The scheme of
going beyond the mean field is somewhat like those done in
the study of finite temperature thermodynamics of the NJL
model [88,89]; however, in this paper we will focus on the
beyond-mean-field corrections at zero temperature, i.e., the
pure quantum fluctuations. We will first derive the thermo-
dynamic potential beyond the mean field which is valid at
arbitrary chemical potential and temperature, and then
briefly discuss the beyond-mean-field corrections near the
quantum phase transition. The numerical calculations are
deferred for future studies.

A. Thermodynamic potential beyond the mean field

In the Gaussian approximation, the partition function
can be expressed as

ZNJL ’ expð�Sð0Þ
effÞ

Z
½d��½d��½d�y�½d�� expð�Sð2Þ

effÞ:
(102)

Integrating out the Gaussian fluctuations, we can express
the total thermodynamic potential as

�ðT;�BÞ ¼ �0ðT;�BÞ þ�flðT;�BÞ; (103)

where the contribution from the Gaussian fluctuations can
be written as

�fl ¼ 1

2

X
Q

½lndetMðQÞ þ lndetNðQÞ�: (104)

However, there is a problem with the above expression,
since it is actually ill-defined: the sum over the boson
Matsubara frequency is divergent and we need appropriate
convergent factors to make it meaningful. In the simpler
case without superfluidity, the convergent factor is simply

given by ei
m0
þ
[88,89]. In our case, the situation is some-

what different due to the introduction of the Nambu-
Gor’kov spinors. Keep in mind that in the equal time limit,

there are additional factors ei!n0
þ
for G11ðKÞ and e�i!n0

þ

for G22ðKÞ. Therefore, to get the proper convergent factors
for �fl, we should keep these factors when we make the
sum over the fermion Matsubara frequency !n in evaluat-
ing the polarization functions �ijðQÞ and ��ðQÞ.

TABLE IV. The chemical potentials �M1 and �M2 (in units of
m�) for different model parameter sets.

Set 1 2 3 4

�M1 [m�] 7.22 7.76 8.63 9.62

�M2 [m�] 5.29 6.06 6.96 7.92
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The problem in the expression of �fl is thus from
the opposite convergent factors for M11 and M22. From

the above arguments, we find that there is a factor ei
m0
þ

for M11 and e�i
m0
þ

for M22. Keep in mind that the
Matsubara sum

P
m is converted to a standard contour

integral (i
m ! z). The convergence for z ! þ1 is auto-
matically guaranteed by the Bose distribution function
bðzÞ ¼ 1=ðe�z � 1Þ, we thus should treat only the problem
for z ! �1. To this end, we write the first term of �fl asX
Q

lndetMðQÞ ¼ X
Q

�
lnM11e

i
m0
þ þ lnM22e

�i
m0
þ

þ ln

�
detM

M11M22

�
ei
m0

þ
�
: (105)

Using the fact that M22ðQÞ ¼ M11ð�QÞ, we obtain
X
Q

lndetMðQÞ ¼X
Q

ln

�
M11ðQÞ
M22ðQÞ detMðQÞ

�
ei
m0

þ
: (106)

Therefore, the well-defined form of �fl is given by the
above formula together with the other term

P
Q lndetNðQÞ

associated with a factor ei
m0
þ
.

The Matsubara sum can be written as the contour inte-
gral via the theorem

P
mgði
mÞ ¼ H

C dz=ð2�iÞbðzÞgðzÞ,
where C runs on either side of the imaginary z axis,
enclosing it counterclockwise. Distorting the contour to
run above and below the real axis, we obtain

�fl ¼
X
q

Z þ1

�1
d!

2�
bð!Þ½�Mð!;qÞ þ �11ð!;qÞ

� �22ð!;qÞ þ 3��ð!;qÞ�; (107)

where the scattering phases are defined as

�Mð!;qÞ ¼ Im lndetMð!þ i0þ;qÞ;
�11ð!;qÞ ¼ Im lnM11ð!þ i0þ;qÞ;
�22ð!;qÞ ¼ Im lnM22ð!þ i0þ;qÞ;
��ð!;qÞ ¼ Im ln½ð2GÞ�1 þ��ð!þ i0þ;qÞ�:

(108)

Keep in mind the pressure of the vacuum should be zero,
the physical thermodynamic potential at finite temperature
and chemical potential should be defined as

�phyðT;�BÞ ¼ �ðT;�BÞ ��ð0; 0Þ: (109)

B. Thermodynamic consistency of the vacuum

As we have shown in the mean-field theory, at T ¼ 0,
the vacuum state is restricted in the region j�Bj<m�. In
this region, all thermodynamic quantities should keep zero,
no matter how large the value of �B is. While this should
be an obvious physical conclusion, it is important to check
whether our beyond-mean-field theory satisfies this
condition.

Notice that the physical thermodynamic potential is
defined as �phyð�BÞ ¼ �ð�BÞ ��ð0Þ, we therefore

should prove that the thermodynamic potential �ð�BÞ
keeps a constant in the region j�Bj<m�. For the mean-
field part �0, the proof is quite easy. Because of the fact
that M� >m�=2, the solution for M is always given by
M ¼ M�. Thus �0 keeps its value at �B ¼ 0 in the region
j�Bj<m�.
Now we turn to the complicated part �fl. Since � ¼ 0,

all the off-diagonal elements of M vanishes, and �fl is
reduced to

�fl ¼ 1

2

X
Q

ln

�
1

2G
þ��ðQÞ

�
ei
m0

þ þ 3

2

X
Q

ln

�
1

2G

þ��ðQÞ
�
ei
m0

þ þX
Q

ln

�
1

4G
þ�dðQÞ

�
ei
m0

þ
;

(110)

where ��ðQÞ ¼ �33ðQÞ, and we should set � ¼ 0 and
M ¼ M� in evaluating the polarization functions. First, we
can easily show that the contributions from the sigma
meson and pions do not have explicit �B dependence
and thus keep the same values as those at �B ¼ 0. In
fact, since the effective quark mass M keeps its vacuum
value M� guaranteed by the mean-field part, all the �B

dependence in ��;�ðQÞ is included in the Fermi distribu-

tion functions fðE��B=2Þ. Since M� >�B=2, they van-
ish automatically at T ¼ 0. In fact, from the explicit
expressions for ��;�ðQÞ in Appendix B, we can check

that there is no �B independence in ��;�ðQÞ.
The diquark contribution, however, has an explicit �B

dependence through the combination i
m þ�B in the
polarization function �dðQÞ. The diquark contribution
(at T ¼ 0) can be written as

�d ¼ �X
q

Z 0

�1
d!

�
�dð!;qÞ;

�dð!;qÞ ¼ Im ln½ð4GÞ�1 þ�dð!þ i0þ;qÞ�:
(111)

Making a shift ! ! !��B, and noticing that fact
�dð!��B;qÞ ¼ ��ð!;qÞ=2, we obtain

�d ¼ �X
q

Z ��B

�1
d!

�
��ð!;qÞ: (112)

To show the above quantity is in fact �B independent, we
separate it into a pole part and a continuum part. There is a
well-defined two-particle continuum EcðqÞ for pions at
arbitrary momentum q,

EcðqÞ ¼ min
k

ðE�
k þ E�

kþqÞ: (113)

The pion propagator has two symmetric poles �!�ðqÞ
when q satisfies !�ðqÞ< EcðqÞ. Thus in the region j!j<
EcðqÞ, the scattering phase �� can be analytically
evaluated as
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��ð!;qÞ ¼ �½
ð�!�!�ðqÞÞ �
ð!�!�ðqÞÞ�:
(114)

Since EcðqÞ>!�ðqÞ>m� >�B, the thermodynamic
potential �d can be separated as

�d ¼
X
q

½!�ðqÞ � EcðqÞ� �
X
q

Z �EcðqÞ

�1
d!

�
��ð!;qÞ;

(115)

which is indeed �B independent. Notice that in the first
term the integral over q is restricted in the region jqj< qc
where qc is defined as !�ðqcÞ ¼ EcðqcÞ.

In conclusion, we have shown that the thermodynamic
potential � in the Gaussian approximation keeps a con-
stant in the vacuum state, i.e., at j�Bj<m� and at T ¼ 0.
All other thermodynamic quantities such as the baryon
number density keep zero in the vacuum. The subtraction
term �ð0; 0Þ in the Gaussian approximation can be
expressed as

�ð0;0Þ ¼�vacðM�Þþ 5

2

X
q

½!�ðqÞ�EcðqÞ�

�X
q

Z �EcðqÞ

�1
d!

2�
½��ð!;qÞþ 5��ð!;qÞ�: (116)

C. Quantum corrections near the phase transition

Now we consider the beyond-mean-field corrections
near the quantum phase transition point �B ¼ m�.
Notice that the effective quark mass M and the diquark
condensate � are determined at the mean-field level, and
the beyond-mean-field corrections are possible only
through the equations of state.

Formally, the Gaussian contribution to the thermody-
namic potential �fl is a function of �B, M and y ¼ j�j2,
i.e., �fl ¼ �flð�B; y;MÞ. In the superfluid phase, the total
baryon density including the Gaussian contribution can be
evaluated as

nð�BÞ ¼ n0ð�BÞ þ nflð�BÞ; (117)

where the mean-field part is simply given by n0ð�BÞ ¼
�@�0=@�B and the Gaussian contribution can be
expressed as

nflð�BÞ ¼ �@�fl

@�B

� @�fl

@y

dy

d�B

� @�fl

@M

dM

d�B

: (118)

The physical values ofM and j�j2 should be determined by
their mean-field gap equations. In fact, from the gap equa-
tions @�0=@M ¼ 0 and @�0=@y ¼ 0, we obtain

@2�0

@�B@M
þ @2�0

@y@M

dy

d�B

þ @2�0

@M2

dM

d�B

¼ 0;

@2�0

@�B@y
þ @2�0

@y2
dy

d�B

þ @2�0

@M@y

dM

d�B

¼ 0:

(119)

Thus, we can obtain the derivatives dM=d�B and dy=d�B

analytically. Finally, nflð�BÞ is a continuous function of�B

guaranteed by the properties of second order phase tran-
sition, and we have nflðm�Þ ¼ 0.
Next we focus on the beyond-mean-field corrections

near the quantum phase transition. Since the diquark con-
densate � is vanishingly small, we can expand the
Gaussian part �fl in powers of j�j2. Notice that �B and
M can be evaluated as functions of j�j2 from the Ginzburg-
Landau potential and mean-field gap equations. Thus, to
order Oðj�j2Þ, the expansion takes the form

�fl ’ �j�j2; (120)

where the expansion coefficient � is defined as

� ¼
�
@�fl

@y
þ @�fl

@�B

d�B

dy
þ @�fl

@M

dM

dy

�







�B¼m�;y¼0;M¼M�
:

(121)

Using the definition of nfl, we find that � can be related to
nfl by

� ¼ nflðm�Þ d�B

dy









y¼0
: (122)

Thus, the coefficient � vanishes, and the leading order of
the expansion should be Oðj�j4Þ.
As shown above, to leading order, the expansion of �fl

can be formally expressed as

�fl ’ � �

2
�j�j4: (123)

The method to derive the exact expression of the numerical
factor � is shown in Appendix C. Notice that the factor � is
in fact �B independent, thus the total baryon density to
leading order is

n ¼ n0 þ ��j�j2 dj�j
2

d�B









�B¼m�

: (124)

Near the quantum phase transition point, the mean-field
contribution is n0 ¼ j�0j2 ¼ 2m�J j�j2 from the Gross-
Pitaevskii free energy. The last term can be evaluated using
the analytical result

j�0j2 ¼ �d

g0
) j�j2 ¼ 2m�J

�
�d; (125)

which is in fact the solution of the mean-field gap equa-
tions. Therefore, to leading order, the total baryon density
reads

n ¼ ð1þ �Þ2m�J j�j2: (126)

On the other hand, the total pressure P can be expressed as

P ¼ ð1þ �Þ�
2
j�j4: (127)
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Thus we find that the leading order quantum corrections are
totally included in the numerical factor � . Setting � ¼ 0,
we recover the mean-field results obtained in Sec. III.

Including the quantum fluctuations, the equations of
state shown in (65) are modified to be

PðnÞ ¼ 1

1þ �

2�add
m�

n2;

�BðnÞ ¼ m� þ 1

1þ �

4�add
m�

n:

(128)

This means, to leading order, the effect of quantum fluc-
tuations is giving a correction to the diquark-diquark scat-
tering length. The renormalized scattering length is

a0dd ¼
add

1þ �
: (129)

Generally, we have � > 0 and the renormalized scattering
length is smaller than the mean-field result.

An exact calculation of the numerical factor � can be
performed using the method shown in Appendix C.
However, this needs huge numerical power and we defer
it to future work. In this paper we will give an analytical
estimation of � based on the fact that the quantum fluctua-
tions are dominated by the gapless Goldstone mode. To this
end, we approximate the Gaussian contribution �fl as

�fl ’ 1

2

X
Q

ln½D�1
d ðQÞD�1

d ð�QÞ þ 3�2j�j4

þ 2�j�j2ðD�1
d ðQÞ þD�1

d ð�QÞÞ�; (130)

whereD�1
d ðQÞ is given by (54) and can be approximated by

(56). Subtracting the value of�fl at �B ¼ m� with � ¼ 0,
and using the result �B ¼ m� þ g0j�0j2 from the Gross-
Pitaevskii equation, we find that � can be evaluated as

� ¼ �

J 2
ðI1 þ I2Þ ’ m2

�

f2�
ðI1 þ I2Þ; (131)

where the numerical factors I1 and I2 are given by

I1 ¼ 1

2

X
m

X
X

Z2
m þX2

ðZ2
m �X2Þ2 � 4Z2

m

;

I2 ¼ 4
X
m

X
X

ð3Z2
m �X2Þ2

½ðZ2
m �X2Þ2 � 4Z2

m�2
:

(132)

Here the dimensionless notations Zm and X are defined as
Zm ¼ i
m=m� andX ¼ q=m� respectively. Notice that the
integral over X is divergent and hence such an estimation
has no prediction power due to the fact that the NJL model
is nonrenormalizable. However, regardless of the numerical
factor I1 þ I2, we find that � / m2

�=f
2
�. Thus, the correc-

tion should be small in the nonlinear sigma model limit
m� � 2M�.

D. Transition temperature

While the effect of the Gaussian fluctuations at zero
temperature is to give a small correction to the diquark-
diquark scattering length and the equations of state, it can be
significant at finite temperature. In fact, as the temperature
approaches the critical value of superfluidity, the Gaussian
fluctuations should dominate. In this part, we will show that
to get a correct critical temperature in terms of the baryon
density n, we must go beyond the mean field. The situation
is analogous to the Nozieres–Schmitt-Rink treatment of
molecular condensation in strongly interacting Fermi gases
[75–78].
The transition temperature Tc is determined by the

Thouless criterion D�1
d ð0; 0Þ ¼ 0 which can be shown

to be consistent with the saddle point condition
�Seff=��j�¼0 ¼ 0. Its explicit form is a BCS-type gap

equation

1

4G
¼ NcNf

X
e¼�

Z d3k

ð2�Þ3
1� 2fð	e

kÞ
2	e

k

: (133)

Meanwhile, the dynamic quark mass M satisfies the
mean-field gap equation

M�m0

2GM
¼ NcNf

Z d3k

ð2�Þ3
1� fð	�

k Þ � fð	þ
k Þ

Ek

: (134)

To obtain the transition temperature as a function of n,
we need the so-called number equation given by n ¼
�@�=@�B, which includes both the mean-field contribu-
tion n0ð�B;TÞ ¼ 2Nf

P
k½fð	�

k Þ� fð	þ
k Þ� and the Gaussian

contribution nflð�B; TÞ ¼ �@�fl=@�B. At the transition
temperature where � ¼ 0, �fl can be expressed as

�fl ¼
Z d3q

ð2�Þ3
Z 1

�1
d!

2�
bð!Þ � ½2�dð!;qÞ þ ��ð!;qÞ

þ 3��ð!;qÞ�; (135)

where the scattering phases are defined as �dð!;qÞ ¼
Im ln½1=ð4GÞ þ�dð!þ i0þ;qÞ� for the diquarks,
��ð!;qÞ ¼ Imln½1=ð2GÞþ��ð!þ i0þ;qÞ� for the sigma
meson, and ��ð!;qÞ ¼ Im ln½1=ð2GÞ þ��ð!þ i0þ;qÞ�
for the pions. Obviously, the polarization functions should
take their forms at finite temperature in the normal phase.
The transition temperature Tc at arbitrary baryon num-

ber density n can be determined numerically via solving
simultaneously the gap and number equations. However, in
the dilute limit n ! 0 which we are interested in this
section, analytical result can be achieved. Keep in mind
that Tc ! 0 when n ! 0, we find that the Fermi distribu-
tion functions fð	�

k Þ vanish exponentially (since M� �
m�=2 � Tc) and we obtain �B ¼ m� and M ¼ M� from
the gap Eqs. (133) and (134), respectively. Meanwhile the
mean-field contribution of the density n0 can be neglected
and the total density n is thus dominated by the Gaussian
part nfl. When T ! 0 we can show that ��ð!;qÞ and
��ð!;qÞ are independent of �B, and the number equation
is reduced to
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n ¼ �X
q

Z 1

�1
d!

�
bð!Þ@�dð!;qÞ

@�B

: (136)

Since Tc ! 0, the inverse diquark propagator can be re-
duced to D�1

d ð!;qÞ in (54). Thus the scattering phase �d

can be well approximated by �dð!;qÞ ¼ �½
ð�B � �q �
!Þ �
ð!��B � �qÞ� with �q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þm2
�

p
. Therefore,

the number equation can be further reduced to the well-
known equation for ideal Bose-Einstein condensation,

n ¼ X
q

½bð�q ��BÞ � bð�q þ�BÞ�j�B¼m�
: (137)

Since the above equation is valid only in the low density
limit n ! 0, the critical temperature is thus given by the
nonrelativistic result

Tc ¼ 2�

m�

�
n

	ð3=2Þ
�
2=3

: (138)

At finite density but na3dd � 1, there exists a correction to

Tc which is proportional to n
1=3add [13]. Such a correction

is hard to handle analytically in our model since we should
consider simultaneously the corrections to M and �B, as
well as the contribution from the sigma meson and pions.

VI. SUMMARY

In summary, we have examined the NJL model descrip-
tion of weakly interacting Bose condensate and BEC-BCS
crossover in QCD-like theories at finite baryon density.
Our main conclusions are as follows:

(1) Near the quantum phase transition point �B ¼ m�,
we have performed a Ginzburg-Landau expansion
of the effective potential. At the mean-field level,
the Ginzburg-Landau free energy is essentially the
Gross-Pitaevskii free energy describing weakly re-
pulsive Bose condensates after a proper redefinition
of the condensate wave function. The obtained
diquark-diquark scattering length reads add ¼
m�=ð16�f2�Þ, which recovers the tree-level result
predicted by chiral Lagrangian.

(2) We have analytically shown that the Goldstone mode
near the quantum phase transition point takes the
same dispersion as the Bogoliubov excitation in
weakly interacting Bose condensates, which gives a
diquark-diquark scattering length identical to that in
the Gross-Pitaevskii free energy. Themixing between
the sigma meson and the diquarks plays an important
role in recovering the Bogoliubov dispersion.

(3) The results of baryon number density and in-medium
chiral and diquark condensates predicted by chiral
perturbation theory are analytically recovered near
the quantum phase transition point in the NJL model.

(4) At high density, the superfluid matter undergoes a

BEC-BCS crossover at �B ’ ðm�=m�Þ1=3m� ’
ð1:6–2Þm�. At �B ’ 3m�, the chiral symmetry is

approximated restored and the spectra of pions and
sigma meson become nearly degenerate. Well above
the chemical potential of chiral symmetry restora-
tion, the degenerate pions and sigma meson undergo
a Mott transition, where they become unstable reso-
nances. Because of the spontaneous breaking of
baryon number symmetry, mesons can decay into
quark pairs in the superfluid medium at nonzero
momentum.

(5) The general theoretical framework of the thermody-
namics beyond the mean field is established. It is
shown that the vacuum state in the region j�Bj<
m� is thermodynamically consistent in the Gaussian
approximation, i.e., all thermodynamic quantities
keep vanishing for j�Bj<m� even though the
Gaussian fluctuations are included.

(6) Near the quantum phase transition point, we find
that the effect of the leading order beyond-mean-
field correction is to renormalize the diquark-
diquark scattering length. The correction to the
mean-field result is estimated to be proportional to
m2

�=f
2
�. Our theoretical approach provides a new

way to calculate the diquark-diquark or meson-
meson scattering lengths in the NJL model
beyond-mean-field approximation. We also find
that we can obtain a correct transition temperature
of Bose condensation in the dilute limit once the
beyond-mean-field corrections are included.

Our studies can be generalized to describe pion conden-
sation at finite isospin chemical potential�I [4,5] and kaon
condensation at finite strangeness chemical potential �S

[90]. In the NJL model, pion condensation is shown to
occur at j�Ij ¼ m� when j�Sj<mK �m�=2, and kaon is
shown to condense at j�Sj ¼ mK when �I ! 0 [46,48].
The generalization to pion condensation is straightforward.
The obtained Ginzburg-Landau and Gross-Pitaevskii free
energies are the same as those derived in this paper, if we
replace �B ! �I. The results are valid both for Nc ¼ 2
and Nc ¼ 3 cases. At the mean-field level, the results for
diquark condensation at Nc ¼ 2 and pion condensation at
Nc ¼ 3 are formally identical in the NJL model.
Significant difference may appear if we consider the
beyond-mean-field corrections, since for the Nc ¼ 3 case
the scalar diquarks are not pseudo-Goldstone bosons. A
calculation of the pion-pion scattering length in the I ¼ 2
channel can be performed within our theoretical frame-
work. The calculations of kaon condensation and kaon-
kaon scattering length are also possible, but somewhat
complicated due to the large mass difference between the
light and strange quarks.
We are also interested in how the beyond-mean-field

corrections modify the superfluid equations of state. As
we learn from the knowledge of BEC-BCS crossover in
cold Fermi gases, the superfluid equations of state
can be strongly modified in the crossover regime [57,58],
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corresponding to the moderate baryon density in our case.
This issue is also important to the color-superconducting
quark matter [91–93] at moderate density, i.e., for quark
chemical potential around 400 MeV where the pairing gap
can be of order Oð100 MeVÞ. The numerical works are in
progress.
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APPENDIX A: FERMIONIC MODEL
DESCRIPTION OF DILUTE BOSE CONDENSATE

In this appendix, we briefly review the theory of
molecular Bose condensation in two-component Fermi
gases in the strong coupling limit. While there exist
many theoretical approaches [94–96] to deal with this
problem, we employ the field theoretical approach
[57,58] parallel to that used in this paper.

The Lagrangian density of the system can be written as

L ¼ X
�¼";#

c y
�

�
i@t þr2

2m
þ�

�
c � þgc y

" c
y
# c #c "; (A1)

where c ";# denote the two-component (nonrelativistic) fer-

mion fields with equal masses m and chemical potentials
�. The gas is assumed to be dilute, and the coupling
constant g can be related to the s-wave fermion-fermion
scattering length as as

m

4�as
¼ � 1

gð�Þ þ
X

jkj<�

1

2�k
; (A2)

where �k ¼ k2=ð2mÞ. In the dilute limit, we can take the
limit � ! 1 in the final result.

Performing the Hubbard-Stratonovich transformation
with the auxiliary boson field �ðxÞ ¼ gc #ðxÞc "ðxÞ,
and defining the Nambu-Gor’kov representation �y ¼
ðc y

" ; c #Þ, we can evaluate the partition function of the

system as Z¼R½d�y�½d��½d�y�½d��expð�AeffÞ, where

A eff ¼
Z

dx
j�ðxÞj2

g

�
Z

dx
Z

dx0�yðxÞG�1ðx; x0Þ�ðxÞ; (A3)

and the inverse fermion propagator G�1 is given by

�@� þ r2

2m þ� �ðxÞ
�yðxÞ �@� � r2

2m ��

 !
�ðx� x0Þ: (A4)

Then integrating out the fermionic degree of freedom, we
get Z ¼ R½d�y�½d�� expð�SeffÞ where the bosonized
effective action reads

S eff½�y; �� ¼
Z

dx
j�ðxÞj2

g
� Tr lnG�1ðx; x0Þ: (A5)

1. Mean-field theory

First, we consider the mean-field theory where the aux-
iliary boson field �ðxÞ is replaced by its expectation value
h�ðxÞi ¼ �ðxÞ. In the strong coupling limit as ! 0þ, the
fermion chemical potential � approaches �Eb=2 with
Eb ¼ 1=ðma2sÞ being the molecular binding energy. Since
the pairing gap j�j � j�j, we can expand the effective
action in powers of j�j, which resulting in a Ginzburg-
Landau free energy functional

VGL½�ðxÞ� ¼
Z

dx

�
�yðxÞ

�
�

@

@�
� �r2

�
�ðxÞ þ 
j�ðxÞj2

þ 1

2
�j�ðxÞj4

�
: (A6)

The coefficients 
, � of the potential terms can be
obtained from the mean-field thermodynamic potential
�0 ¼ ðT=VÞSeff½�y;�� which can be evaluated as

�0 ¼ � m

4�as
j�j2 �X

k

�
Ek � 	k � j�j2

2�k

�
; (A7)

where 	k ¼ �k �� and Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2
k þ j�j2

q
. After a simple

algebra, the coefficients 
 and � can be evaluated as


¼ m

4�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2m�
p � 1

as

�
; �¼ m3

8�

1

ð�2m�Þ3=2 : (A8)

From the expression of 
, we find that a quantum phase
transition from vacuum to Bose condensation takes place at
� ¼ �1=ð2ma2sÞ ¼ �Eb=2. Thus, near the phase transi-
tion, 
 can be simplified as


 ’ �m2as
8�

�b; (A9)

where �b ¼ 2�þ Eb is the boson chemical potential.
Further, setting � ¼ �Eb=2, � can be simplified as

� ’ �m3a3s
16�

: (A10)

The coefficients �, � of the kinetic terms can be
obtained from the inverse boson propagator D�1ðQÞ with
� ¼ 0. It can be evaluated as

D�1ðQÞ¼� m

4�as
þX

k

�
1

i
m�	k�	kþq

þ 1

2�k

�
: (A11)

In the strong coupling limit, it can be well approximated
as [94]

D�1ðQÞ ’ �m2as
8�

�
i
m � q2

4m

�
: (A12)

In summary, if we define the new condensate wave
function �ðxÞ by
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�ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
m2as
8�

s
�ðxÞ; (A13)

the Ginzburg-Landau free energy can be reduced to the
Gross-Pitaevskii free energy of dilute Bose gases,

VGP½�ðxÞ� ¼
Z

dx

�
�yðxÞ

�
@

@�
� r2

2mb

�
�ðxÞ ��bj�ðxÞj2

þ 1

2

4�abb
mb

j�ðxÞj4
�
; (A14)

where mb ¼ 2m is the boson mass and abb ¼ 2as is the
boson-boson scattering length. Since as ! 0þ, the inter-
actions among the composite bosons are repulsive and
weak.

2. Beyond-mean-field corrections

To study the beyond-mean-field corrections, we consider
the fluctuations around the mean field. Making the field
shift�ðxÞ ! �þ�ðxÞ, we can expand the effective action
Seff in powers of the fluctuations. The zeroth order term

Sð0Þ
eff is just the mean-field result, and the linear terms vanish

automatically guaranteed by the saddle point condition for
�. The quadratic terms, corresponding to Gaussian fluctu-
ations, can be evaluated as

S ð2Þ
eff ¼

1

2

X
Q

ð�yðQÞ�ð�QÞÞMðQÞ �ðQÞ
�yð�QÞ

� �
; (A15)

where the inverse boson propagator M is given by

M11ðQÞ ¼M22ð�QÞ ¼ 1

g
þX

K

G22ðKÞG11ðKþQÞ

¼ 1

g
þX

k

� u2ku
2
kþq

i
m �Ek �Ekþq

� v2
kv

2
kþq

i
m þEk þEkþq

�

(A16)

and

M 12ðQÞ ¼ M21ðQÞ ¼ X
K

G12ðKÞG21ðK þQÞ

¼ X
k

�
ukvkukþqvkþq

i
m þ Ek þ Ekþq

� ukvkukþqvkþq

i
m � Ek � Ekþq

�
:

(A17)

Here the fermion Green function G is defined as G�1 ¼
G�1½�� and the BCS distribution functions v2

k ¼
ð1� 	k=EkÞ=2 and u2k ¼ 1� v2

k are used.
In the strong coupling limit where j�j=j�j � 1, the

matrix elements of M can be analytically evaluated. We
have [57]

M ðQÞ ’ m2as
8�

� �!þ q2

2mb
��b þ 2g0j�0j2 g0j�0j2
g0j�0j2 !þ q2

2mb
��b þ 2g0j�0j2

0
@

1
A; (A18)

where g0 ¼ 4�abb=mb and j�0j2 is the minimum of the
Gross-Pitaevskii free energy. Together with the mean-field
result for the boson density nb ¼ j�0j2, we can show that
the Goldstone mode takes a dispersion relation given by

!ðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

2mb

�
q2

2mb

þ 8�abbnb
mb

�s
; (A19)

which is just the Bogoliubov excitation in a dilute Bose
condensate.

To evaluate the thermodynamic potential beyond the
mean field, we express the partition function in the
Gaussian approximation as

Z ’ expð�Sð0Þ
effÞ

Z
½d�y�½d�� expð�Sð2Þ

effÞ: (A20)

Integrating out the Gaussian fluctuations, the total thermo-
dynamic potential can be expressed as

�ð�Þ ¼ �0ð�Þ þ�flð�Þ; (A21)

where the contribution from the Gaussian fluctuations can
be evaluated as [58]

�fl ¼ 1

2

X
Q

ln

�
M11ðQÞ
M22ðQÞ detMðQÞ

�
ei
m0

þ
: (A22)

Near the quantum phase transition point � ¼ �Eb=2,
we can expand �fl in powers of j�j2. Because of the
properties of second order phase transition, the terms of
order Oðj�j2Þ vanish. To leading order, the result is [58]

�fl ’ � �

256�

�
2m

��

�
3=2j�j4 ’ ��

m3a3s
32�

j�j4; (A23)

where the numerical factor � ¼ 2:61. From the Gross-
Pitaevskii free energy, we find that the pressure P in the
mean-field approximation can be expressed as

P ¼ m3a3s
32�

j�j4: (A24)

Thus, to leading order, the beyond-mean-field corrections
renormalize the boson-boson scattering length abb. The
new renormalized scattering length reads

abb ¼ 2as
1þ �

’ 0:55as: (A25)
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Notice that this result is quite close to the exact result for
the four body problem of 0:6as [97]. This means the
quantum fluctuations are almost correctly included in the
present theoretical approach.

Further, going beyond the leading order we find that we
can fit �fl to the functional form [58]

�fl ¼ Eb

2a3s
ðc1 ~�2

b þ c2 ~�
5=2
b þ � � �Þ; (A26)

where ~�b ¼ �b=Eb and the dimensionless factors c1, c2
can be numerically determined. Solving for the molecular
chemical potential �b one obtains

�b ¼ 4�abbnb
mb

�
1þ 	

32

3
ffiffiffiffi
�

p ðnba3bbÞ1=2 þ � � �
�
; (A27)

with the coefficient 	 ¼ 0:94 [58] which is 6% smaller
than the Lee-Huang-Yang result 	 ¼ 1 [15].

APPENDIX B: THE ONE-LOOP
SUSCEPTIBILITIES

In this appendix, we evaluate the explicit forms of the
one-loop susceptibilities �ijðQÞ (i, j ¼ 1, 2, 3) and

��ðQÞ. At arbitrary temperature, their expressions are
rather huge. However, at T ¼ 0, they can be written in
rather compact forms. For convenience, we define � ¼
j�jei� in this appendix.
(I) Diquark sector. First, the polarization functions

�11ðQÞ and �12ðQÞ can be evaluated as

�11ðQÞ ¼ NcNf

X
k

�� ðu�k Þ2ðu�p Þ2
i
m � E�

k � E�
p

� ðv�
k Þ2ðv�

p Þ2
i
m þ E�

k þ E�
p

� ðuþk Þ2ðuþp Þ2
i
m þ Eþ

k þ Eþ
p

þ ðvþ
k Þ2ðvþ

p Þ2
i
m � Eþ

k � Eþ
p

�
T þ

þ
� ðu�k Þ2ðvþ

p Þ2
i
m � E�

k � Eþ
p

� ðv�
k Þ2ðuþp Þ2

i
m þ E�
k þ Eþ

p

� ðuþk Þ2ðv�
p Þ2

i
m þ Eþ
k þ E�

p

þ ðvþ
k Þ2ðu�p Þ2

i
m � Eþ
k � E�

p

�
T �

�
;

�12ðQÞ ¼ NcNf

X
k

��
u�kv�

k u
�
p v

�
p

i
m þ E�
k þ E�

p

� u�kv�
k u

�
p v

�
p

i
m � E�
k � E�

p

þ uþkvþ
k u

þ
p v

þ
p

i
m þ Eþ
k þ Eþ

p

� uþkvþ
k u

þ
p v

þ
p

i
m � Eþ
k � Eþ

p

�
T þ

þ
�

u�kv�
k u

þ
p v

þ
p

i
m þ E�
k þ Eþ

p

� u�kv�
k u

þ
p v

þ
p

i
m � E�
k � Eþ

p

þ uþkvþ
k u

�
p v

�
p

i
m þ Eþ
k þ E�

p

� uþkvþ
k u

�
p v

�
p

i
m � Eþ
k � E�

p

�
T �

�
e2i�;

(B1)

where p ¼ kþ q. Here T � are factors arising from the
trace in spin space,

T � ¼ 1

2
� k � pþM2

2EkEp

; (B2)

and u�k , v�
k are the BCS distribution functions defined as

ðu�k Þ2 ¼
1

2

�
1þ 	�

k

E�
k

�
; ðv�

k Þ2 ¼
1

2

�
1� 	�

k

E�
k

�
: (B3)

At Q ¼ 0, we find that

�12ð0Þ ¼ �2 1

4
NcNf

X
k

�
1

ðE�
k Þ3

þ 1

ðEþ
k Þ3

�
: (B4)

Thus, near the quantum phase transition point, we have
�12ð0Þ ¼ �2�1 þOðj�j4Þ. On the other hand, a simple
algebra shows that

1

4G
þ�11ð0Þ � j�12ð0Þj ¼ @�0

@j�j2 : (B5)

Therefore, the mean-field gap equation for � ensures the
Goldstone’s theorem in the superfluid phase.
(II) Diquark-sigma mixing terms. The term�13 standing

for the mixing between the sigma meson and the diquarks
reads

�13ðQÞ ¼ NcNf

X
k

��
uþkvþ

k ðvþ
p Þ2 þ uþp vþ

p ðvþ
k Þ2

i
m � Eþ
k � Eþ

p

þ uþkvþ
k ðuþp Þ2 þ uþp vþ

p ðuþk Þ2
i
m þ Eþ

k þ Eþ
p

� u�kv�
k ðu�p Þ2 þ u�p v�

p ðu�k Þ2
i
m � E�

k � E�
p

� u�kv
�
k ðv�

p Þ2 þ u�p v�
p ðv�

k Þ2
i
m þ E�

k þ E�
p

�
Iþ þ

�
uþkv

þ
k ðu�p Þ2 þ u�p v�

p ðvþ
k Þ2

i
m � Eþ
k � E�

p

þ uþkv
þ
k ðv�

p Þ2 þ u�p v�
p ðuþk Þ2

i
m þ Eþ
k þ E�

p

� u�kv
�
k ðvþ

p Þ2 þ uþp vþ
p ðu�k Þ2

i
m � E�
k � Eþ

p

� u�kv
�
k ðuþp Þ2 þ uþp vþ

p ðv�
k Þ2

i
m þ E�
k þ Eþ

p

�
I�

�
ei�; (B6)
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where the factors I� are defined as

I � ¼ M

2

�
1

Ek

� 1

Ep

�
: (B7)

One can easily find that �13 �M�, thus it vanishes when
� or M approaches zero. At Q ¼ 0, we have

�13ð0Þ ¼ �
1

2
NcNf

X
k

M

Ek

�
	�
k

ðE�
k Þ3

þ 	þ
k

ðEþ
k Þ3

�
: (B8)

Thus the quantity H0 defined in (71) can be evaluated as

H0 ¼ 1

2
NcNf

X
e¼�

X
k

M�
E�
k

1

ðE�
k � em�=2Þ2

¼ @2�0ðy;MÞ
@M@y









y¼0
: (B9)

(III) Sigma meson and pions. The polarization function
�33 which stands for the sigma meson can be evaluated as

�33ðQÞ ¼ NcNf

X
k

�
ðv�

k u
�
p þ u�kv�

p Þ2
�

1

i
m � E�
k � E�

p

� 1

i
m þ E�
k þ E�

p

�
T 0� þ ðvþ

k u
þ
p þ uþkvþ

p Þ2
�

1

i
m � Eþ
k � Eþ

p

� 1

i
m þ Eþ
k þ Eþ

p

�
T 0� þ ðvþ

kv
�
p þ uþk u�p Þ2

�
1

i
m � Eþ
k � E�

p

� 1

i
m þ Eþ
k þ E�

p

�
T 0þ

þ ðv�
kv

þ
p þ u�k uþp Þ2

�
1

i
m � E�
k � Eþ

p

� 1

i
m þ E�
k þ Eþ

p

�
T 0þ

�
; (B10)

where the factors T 0� are defined as

T 0� ¼ 1

2
� k � p�M2

2EkEp

: (B11)

At Q ¼ 0 and for � ¼ 0, we find that

M 33ð0Þ ¼ 1

2G
� 2NcNf

X
k

1

E�
k

þ 2NcNf

X
k

M2�
E�3
k

¼ @2�0ðy;MÞ
@M2









y¼0
: (B12)

Finally, the polarization function ��ðQÞ for pions can be
obtained by replacingT 0� ! T �. Thus, whenM ! 0, the
sigma meson and pions become degenerate and chiral
symmetry is restored.

APPENDIX C: EXPANSION OF �fl

IN TERMS OF j�j2
In this appendix, we derive the expression of the Taylor

expansion of �fl in terms of j�j2 
 y. As we have shown
in Sec. V, the leading order term should be Oðj�j4Þ. Thus,
we need to evaluate the numerical factor � . A key problem
here is that the effective quark mass M and the chemical
potential �B are both functions of j�j2 determined at the
mean-field level.

First, we expand the matrix elements of M and N in
terms of y. Any of these elements denoted by F is a
function of �B, M and y. Our method of expansion is as
follows. We firstly expand Fð�B;M; yÞ in terms of y for-
mally with �B and M being fixed parameters, i.e.,

Fð�B;M; yÞ ¼ F0ð�B;MÞ þ F1ð�B;MÞyþ F2ð�B;MÞy2
þOðy3Þ; (C1)

where F0ð�B;MÞ 
 Fð�B;M; 0Þ and the expansion coef-
ficients are defined as

F1ð�B;MÞ ¼ @Fð�B;M; yÞ
@y









y¼0
;

F2ð�B;MÞ ¼ 1

2

@2Fð�B;M; yÞ
@y2









y¼0
:

(C2)

We then expand the coefficients Fið�B;MÞ (i ¼ 0, 1, 2) at
ð�B;MÞ ¼ ðm�;M�Þ, using the fact that

M ’ M� � 1

2M�
y; �B ’ m� þ �

2m�J
y: (C3)

Doing this we formally obtain

Fið�B;MÞ ¼ Fiðm�;M�Þ þ F1
i ðm�;M�Þy

þ F2
i ðm�;M�Þy2 þOðy3Þ: (C4)

Finally, up to order Oðy2Þ, we have

Fð�B;M; yÞ ¼ F0ðm�;M�Þ þ ½F1
0ðm�;M�Þ

þ F1ðm�;M�Þ�yþ ½F2
0ðm�;M�Þ

þ F1
1ðm�;M�Þ þ F2ðm�;M�Þ�y2: (C5)

Using this method, we can expand the matrix elements of
M and N formally as follows:
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M 11ðQÞ ¼ D��1
d ðQÞ þ X1ðQÞj�j2 þ Y1ðQÞj�j4

þOðj�j6Þ;
M12ðQÞ ¼ �2ZðQÞ þOðj�j4Þ;
M13ðQÞ ¼ �WðQÞ þOðj�j3Þ;
M33ðQÞ ¼ D��1

� ðQÞ þ X2ðQÞj�j2 þ Y2ðQÞj�j4
þOðj�j6Þ;

N11ðQÞ ¼ D��1
� ðQÞ þ X3ðQÞj�j2 þ Y3ðQÞj�j4

þOðj�j6Þ:

(C6)

Here D��1
d ðQÞ is defined as D�1

d ðQ;�B ¼ m�Þ.

Meanwhile, the thermodynamic potential �fl can be
expressed as

�fl ¼ 1

2

X
Q

�
ln

�
M11ðQÞ
M22ðQÞ detMðQÞ

�
þ ln detNðQÞ

	
ei
m0

þ

� 1

2

X
Q

½2 lnD��1
d ðQÞ þ lnD��1

� ðQÞ

þ 3D��1
� ðQÞ�ei
m0þ : (C7)

Using the expansion (C6), we find that the factor � is given
by

�� ¼ X
Q

�
X2ðQÞ

D��1
� ðQÞ þ

X1ðQÞ
D��1

d ðQÞ þ
X1ð�QÞ

D��1
d ð�QÞ þ

W2ðQÞ
D��1

d ðQÞD��1
� ðQÞ þ

W2ð�QÞ
D��1

d ð�QÞD��1
� ðQÞ

	
2

�X
Q

�
Y2ðQÞ

D��1
� ðQÞ þ

Y1ðQÞ
D��1

d ðQÞ þ
Y1ð�QÞ

D��1
d ð�QÞ þ

X1ðQÞX1ð�QÞ � Z2ðQÞ
D��1

d ðQÞD��1
d ð�QÞ

	

þX
Q

W2ð�QÞX1ðQÞ þW2ðQÞX1ð�QÞ � 2WðQÞWð�QÞZðQÞ
D��1

d ðQÞD��1
d ð�QÞD��1

� ðQÞ þX
Q

��
X3ðQÞ

D��1
� ðQÞ

�
2 � Y3ðQÞ

D��1
� ðQÞ

	
: (C8)

It is obvious that ZðQÞ ¼ BðQÞ and WðQÞ ¼ HðQÞ where BðQÞ and HðQÞ are defined in (71). On the other hand, since

�

2m�J
’ m�

2M�
1

2M�
; (C9)

to leading order of Oðm�=2M�Þ, we can set �B ¼ m� in all equations and identify X1ðQÞ ¼ AðQÞ defined in (71).
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[89] P. Zhuang, J. Hüfner, and S. P. Klevansky, Nucl. Phys.
A576, 525 (1994).

[90] J. B. Kogut and D. Toublan, Phys. Rev. D 64, 034007
(2001).

[91] R. Rapp, T. Schaefer, E. V. Shuryak, and M. Velkovsky,
Phys. Rev. Lett. 81, 53 (1998).

[92] M. Alford, K. Rajagopal, and F. Wilczek, Phys. Lett. B
422, 247 (1998).

[93] M. Alford, K. Rajagopal, T. Schäfer, and A. Schmitt, Rev.
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