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We investigate the pattern of chiral-symmetry restoration of QCD for Nc ¼ 3 and Nf ¼ 2 at finite

temperature (T) beyond the chiral limit. To this end, we employ the instanton-vacuum configuration for

the flavor SU(2) sector and the Harrington-Shepard caloron for modifying relevant instanton parameters

as functions of T. The meson loop corrections (MLC), which correspond to 1=Nc corrections, are also

taken into account to reproduce appropriate mq dependences of chiral order parameters. We compute the

chiral condensate as a function of T and/or mq. We observe that MLC play an important role to have a

correct universality-class behavior of chiral-restoration patterns in this framework, depending on mq:

Second-order phase transition in the chiral limit mq ¼ 0 and cross-over for mq � 0. Without MLC, all

the restoration patterns are crossover, due to simple saddle-point approximations. It turns out that

T
�
c ¼ 159 MeV in the chiral limit and T

�
c ¼ ð177; 186; 196Þ MeV for mq ¼ ð5; 10; 15Þ MeV, using the

phenomenological choices for the instanton parameters at T ¼ 0.
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I. INTRODUCTION

The spontaneous breaking of chiral symmetry ðSB�SÞ
has been one of the most important and intriguing subjects
for decades because SB�S reveals complicated structures
of the QCD vacuum. Its restoration at finite temperature
(T) and/or baryon chemical potential (�) can be under-
stood microscopically as the QCD vacuum effect is dimin-
ished and the system changes its nature drastically at a
certain �-T point, as T and/or � increase. The restoration
of chiral symmetry can be observed by the changes in the
chiral order parameters such as the chiral condensate, the
chiral susceptibility, dynamically-generated effective
quark mass via SB�S, weak-decay constant, and mass of
the Nambu-Goldstone (NG) boson, etc. In principle, lattice
QCD (LQCD) simulation is the most promising method to
deal with it, although the sign problem has been a hurdle at
finite�. To investigate the chiral restoration at finite T and/
or �, there have been also many effective approaches such
as the QCD sum rules [1–3], Nambu-Jona-Lasinio (NJL)
model [4–6], Dyson-Schinger method [7,8], Polyakov-
loop augmented NJL model (PNJL) [9–12], gauge-gravity
duality model [13–15], hidden-local symmetry model
[16–18], chiral-perturbation theroy [19–21], instanton
model [22–25], functional renormalization-group method
[26,27], and so on.

The patterns of chiral-symmetry restoration are intri-
cately linked with the quark mass. At high T, for QCD
with two-flavor massless quarks, the associated pattern of
chiral restoration belongs to the universal class of the
O(4) spin model in three dimensions and therefore it is a
second-order transition. However, with the small quark

mass, the second-order transition is replaced by a smooth
crossover. On the other hand, there is growing evidence to
show that at low T the chiral restoration in the chiral limit
(mq ¼ 0) is a first-order transition. It suggests that there

exists a tricritical point (TCP) where a line of critical points,
the so-called O(4) line, turns into a first-order transition as�
increases and/or T decreases. If the quark masses are non-
zero, there should be a critical end point (CEP) in the phase
diagram of QCD at which the first-order transition line
terminates and followed by the crossover when T increases
or � decreases. The positions of the CEP and TCP of the
chiral phase transition have been attracting a lot of interest
recently [28–34]. Moreover, the chiral (scalar) susceptibil-
ity, which stands for a response to the explicit breakdown of
chiral symmetry by nonzero mq and exhibits the pattern of

chiral-symmetry restoration, is very sensitive to how the
QCD vacuum behaves with respect to mq. Hence, it is of

great importance to study mq dependence for the pattern of

chiral restoration in a sophisticated manner.
In this article, we investigate the pattern of chiral-

symmetry restoration beyond the chiral limit at finite T.
For this purpose, we employ an effective action (or ther-
modynamic potential) derived from the instanton-vacuum
configuration [35,36]. From the previous work for
ðT;�Þ ¼ 0, based on an effective chiral action via the
instanton-liquid model [24], it turned out that the meson
loop corrections (MLC), which correspond to the 1=Nc

corrections to leading-order contributions based on
mean-field approximations, play a critical role to repro-
duce appropriate behaviors of the chiral order parameters,
such as the scalar susceptibility as a function of mq.

Moreover, if and only if MLC is applied properly, the
effective quark mass, which originates from S�SB and
relates to the chiral condensate, showed comparable mq*sinam@cycu.edu.tw, sinam@kau.ac.kr
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dependences with those obtained by LQCD simulations
[24,37–39]. Because we are interested in computing the
chiral order parameters in the presence of nonzero mq, it is

necessary to include MLC in our calculation.
In addition to MLC, we also take into account T mod-

ifications on the instanton parameters which are average
(anti)instanton size ( ��) and inter-(anti)instanton distance
( �R). In vacuum, their values are estimated phenomenolog-
ically as �� � 1=3 fm and �R � 1 fm, comparable with
those from LQCD simulations. Following the previous
work [25], we exploit the Harrington-Shepard caloron,
corresponding to the temporally periodic semiclassical
solution of Yang-Mills action in Euclidean space [40].
The fermionic Matsubara formula is also used to evaluate
the T dependence of the chiral order parameters. We
compute the chiral condensate as a function of T and/or
mq, and observe that MLC play an important role to agree

with the universality-class behavior of the chiral-
restoration patterns in this framework: Second-order phase
transition in the chiral limit mq ¼ 0 and crossover for

mq � 0. Without MLC, all the restoration patterns are

crossover. We also find that T�
c ¼ 159 MeV in the chiral

limit and T�
c ¼ ð177; 186; 196Þ MeV for mq ¼

ð5; 10; 15Þ MeV by using the phenomenological choices
for the instanton parameters: �R � 1 fm and �� � 1=3 fm.
These values of T�

c are sensitive to the diluteness of the
instanton ensemble�1= �R. Within possible deviation of the
instanton parameters, we can obtain values for T

�
c compa-

rable with those from LQCD simulations.
This article is organized as follows: In Sec. II, we briefly

introduce an effective action derived from the instanton-
vacuum configuration, and MLC are added to the saddle-
point approximation as the 1=Nc corrections. All the in-
gredients discussed in Sec. II are extended to the finite T
case. For this purpose, we introduce the Harrington-
Shepard caloron and fermionic Matsubara formula. In
Sec. IV, we present and discuss our numerical results for
the chiral order parameters as functions of T as well asmq.

The final section is for summary and conclusion.

II. EFFECTIVE POTENTIALWITH
MESON LOOP CORRECTIONS

In this section, we first introduce an effective chiral
action derived from the instanton-vacuum configuration,
for the leading order of Nc [24,36–38],

S eff ¼ Cþ N

V
ln�þ 2�2

�
Z d4k

ð2�Þ4 Tr ln

�
kþ iðmq þMkÞ

kþ imq

�
; (1)

where C, N=V, and � denote an irrelevant constant for
further discussions, instanton number density (instanton
packing fraction) being equal to 1= �R4 � ð1 fmÞ�4, and a
Lagrangian multiplier to exponentiate the 2Nf–’t Hooft

interaction [36], respectively. � indicates the saddle-point
value of an isoscalar-scalar meson field, corresponding to
SB�S, and we ignored other meson contributions here. The
value of � will be determined self-consistently by solving
saddle-point equations in Sec. IV. Note that this sort of
treatment of mesons is equivalent to usual mean-field
approximations. Tr represents a trace over color, flavor,
and Lorentz indices. The momentum- and mq-dependent

effective quark mass originated from nontrivial quark-
(anti)instanton interactions is parametrized as

Mk ¼ M0

�
2

2þ ��2k2

�
2
: (2)

Here, M0 and �� stand for effective the quark mass at zero-
momentum transfer and average-(anti)instanton size. It is
worth mentioning that, from the Fourier transform of the
quark zero-mode solution, the effective quark mass can be
written in terms of the modified Bessel functions [36].
However, we will use the parametrized expression as in Eq.
(2) for numerical convenience. As indicated in Ref. [36], as
the momentum transfer goes high enough, the parametriza-
tion of the effective quark mass becomes different from Eq.
(2) and proportional to 1=k6. We verified that there appears
only negligible difference from usingMk / 1=k6 so that we
make use of Eq. (2) for all the momentum-transfer region.
Note that in principle M0 is a function of mq as well as T

implicitly, as will be shown shortly.
If we consider quantum fluctuations around the saddle-

point values of the mesons, we can rewrite the effective
action with an additional term, which relates to MLC,
indicating 1=Nc corrections of the effective action
[24,37,38], as follows:

Seff ¼ Cþ N

V
ln�þ 2�2 �

Z d4k

ð2�Þ4 Tr

� ln

�
kþ iðmq þMkÞ

kþ imq

�
þ 1

2

X4
i¼1

Z d4k

ð2�Þ4

� ln

�
1� 1

4�2

Z d4k

ð2�Þ4 Tr

�
Mk

kþ iðmq þMkÞ
� �i

Mkþq

kþ qþ iðmq þMkþqÞ�i

��
; (3)

k+q

k

FIG. 1. A one-loop diagram for the meson correlation func-
tion. The solid and dashed lines indicate the (anti)quark and
meson, respectively.
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where �i ¼ ð1; �5; i�; i��5Þ relates to the fluctuations from
isoscalar-scalar, isoscalar-pseudoscalar, isovector-scalar,

and isovector-pseudoscalar mesons. By evaluating over
the trace, the effective action can be simplified as

S eff � Cþ N

V
ln�þ 2�2 � 2NcNf

Z d4k

ð2�Þ4 ln

�
k2 þ �M2

k

k2 þm2
q

�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
LO

þX4
i¼1

1

2

Z d4q

ð2�Þ4 ln

�
1þ cð1Þi

NcNf

�2

Z d4k

ð2�Þ4
�
MkMkþq½k � ðkþ qÞ þ cð2Þi

�Mk
�Mkþq�

ðk2 þ �M2
kÞ½ðkþ qÞ2 þ �M2

kþq�
��

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
NLO

; (4)

where we have denoted 1=Nc leading order (LO) and next-
to-leading-order (NLO) contributions. Note that we also
have used a short-hand notation �Mk � mq þMk. As
understood in Eq. (4), the term inside the square bracket
in the last line indicates a (one-loop) correlation function
for the relevant mesons, propagating with momentum q, as
shown in Fig. 1. The coefficient cð1Þi corresponding to each
meson is assigned as

cð1Þi ¼ð�1;þ1;þ3;�3Þ; cð2Þi ¼ð�1;þ1;�1;þ1Þ: (5)

III. EFFECTIVE POTENTIAL AT
FINITE TEMPERATURE

To investigate the physical quantities at finite T, we
discuss briefly how to modify the instanton parameters, ��
and �R at finite temperature. We will follow our previous
work [25] and Refs. [22,40] to this end. Usually, there are
two different instanton configurations at finite T, being
periodic in Euclidean time, with trivial and nontrivial
holonomies. They are called the Harrington-Shepard [40]
and Kraan-van Baal-Lee-Lu (KvBLL) calorons [41,42],
respectively. The nontrivial holonomy can be identified
as the Polyakov line as an order parameter for the
confinement-deconfinement transition of QCD. However,
since we are not interested in the confinement-
deconfinement phase transition in this work, the
Harrington-Shepard caloron is chosen here for simplicity.

Here, wewould like to explain our strategy to modify the
effective action in Eq. (4) as a function of T. As in
Ref. [43], the quark zero-mode solution can be obtained
directly by solving the Dirac equation in the presence of
the caloron background. By performing a Fourier trans-
form of this zero-mode solution, one is led to an expression
for the T-dependent effective quark massM0ðTÞ. However,
in the present work, we choose a simpler way to obtain
M0ðTÞ: Since the effective quark mass can be expressed as
a function of the instanton parameters, �R and �� [36],
instead of solving the Dirac equation directly, we modify
�R and �� as functions of T using the Harrington-Shepard
caloron, resulting in the T-dependent effective quark mass.
As will be shown, this modification together with MLC
obtains compatible results with those given in Ref. [43] and

other similar approaches. We now write the instanton
distribution function at finite T with the Harrington-
Shepard caloron as follows:

dð�; TÞ ¼ CNc
�b

RS�̂
Nc|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

C

�b�5

� exp½�ðANc
T2 þ ���n ��2Þ�2�: (6)

Here the abbreviated notations are given as

�̂ ¼ �b ln½�RS�cut�;
�� ¼ �b ln½�RShRi�;

CNc
¼ 4:60e�1:68	RSNc

�2ðNc � 2Þ!ðNc � 1Þ! ;
(7)

ANc
¼ 1

3

�
11

6
Nc � 1

�
�2; � ¼ 27

4

�
Nc

N2
c � 1

�
�2;

b ¼ 11Nc � 2Nf

3
; n ¼ N

V
:

(8)

Note that we defined �̂ and �� at a certain phenomenologi-
cal cutoff value �cut and hRi � �R. Actually only �� is
relevant in the following discussions and will be fixed
self-consistently within the present framework.�RS stands
for a scale depending on a renormalization scheme,
whereas V3 stands for the three-dimensional volume.
Using the instanton distribution function in Eq. (6), we
can compute the average value of the instanton size, ��2

straightforwardly as follows [35]:

�� 2ðTÞ ¼
R
d��2dð�; TÞR
d�dð�; TÞ

¼ ½A2
Nc
T4 þ 4
 ���n�1=2 � ANc

T2

2 ���n
; (9)

where 
 ¼ ðb� 4Þ=2. Substituting Eq. (9) into Eq. (6), the
distribution function can be evaluated further as

dð�; TÞ ¼ C�b�5 exp½�MðTÞ�2�;
MðTÞ ¼ 1

2
ANc

T2 þ
�
1

4
A2
Nc
T4 þ 
 ���n

�
1=2

:
(10)
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The instanton-number density n can be computed self-
consistently as a function of T, using the following equation:

n1=
MðTÞ ¼ ½C�ð
Þ�1=
; (11)

where we have replaced NT=V3 ! n, and �ð
Þ indicates a
� function with an argument 
. Note that C and �� can be
determined easily using Eqs. (9) and (11), incorporating the
vacuum values of the n and ��: C � 9:81� 10�4 and �� �
9:19. Using these results we can obtain the average instanton
size �� as a function of T with Eq. (9). The T dependences of
the normalized ��= ��0 and n=n0 are plotted in the left panel of
Fig. 2. As shown there, these quantities are decreasing with
respect to T as expected. However, even beyond T

�
c �

�QCD � 200 MeV, the instanton contribution remains

finite.

IV. EFFECTIVE THERMODYNAMIC POTENTIAL
WITH MESON LOOP CORRECTIONS

To use the effective action in Eq. (4) to study the pattern
of chiral-symmetry restoration, one needs to extend it to a
finite T case. For this purpose, we make use of the fermi-
onic Matsubara formula as follows:

Z d4k

ð2�Þ4 ! T
X1

n¼�1

Z d3k

ð2�Þ3 fðwn;kÞ

¼ T
X
n

Z d3k

ð2�Þ3 fðwn; kÞ; (12)

where wn and k stand for the fermionic Matsubara fre-
quency assigned as ð2nþ 1Þ�T for n 2 I and the three-
momentum of the quark. Substituting Eq. (12) into Eq. (4),
one can derive an effective thermodynamic potential for a
unit volume as

�eff � Cþ N

V
ln�þ 2�2 � 2NcNfT

X
n

Z d3k

ð2�Þ3 ln

�
w2

n þ k2 þ �M2
a

w2
n þ k2 þm2

q

�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
LO

þ �

4�

Z d3q

ð2�Þ3 ln

�
1� 3NcNfT

�2

X
n

Z d3k

ð2�Þ3
�
MaMb½w2

n þ k � ðkþ qÞ þ �Ma
�Mb�

ðw2
n þ E2

aÞðw2
n þ E2

bÞ
��

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
NLO

: (13)

In deriving above effective thermodynamic potential from
Eq. (4), we have taken the following approximations:
(1) For the integral over q4, we set a cutoff mass �.
(2) We also ignore q4 dependence inside the square bracket
of the NLO contribution for simplicity. In this way, we
have an additional parameter � in the present framework.

However, as shown in Ref. [24], since the isovector-
pseudoscalar meson, i.e. pion, dominates the meson fluc-
tuations, it is reasonable to set the cutoff � proportional to
m� as follows:

� � m�

��0

��
: (14)
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FIG. 2 (color online). Normalized ��= ��0 and n=n0 as a function of T for Nc ¼ 3 (left).Mk as a function of T and absolute value of the
momentum jkj (right).

SEUNG-IL NAM AND CHUNG-WEN KAO PHYSICAL REVIEW D 82, 096001 (2010)

096001-4



Note that, in the above equation, we have multiplied a
factor ��0= �� to m� in order to include T dependence of
the cutoff mass. Moreover, this multiplication factor rep-
resents a correct chiral-restoration pattern of m�. That is,
the mass of the pion which is a NG boson should increase
as SB�S is restored. In the left panel of Fig. 2, this factor
increases, as T does show a reasonable behavior under
chiral restoration transition, i.e. m� gets heavier as chiral
symmetry is restored. We also have taken into account the
third approximation: (3) As mentioned above, the fluctua-
tion from pion dominates the NLO contribution. Hence, we
ignored all the meson fluctuations except for that from the
pion. According to these approximations ð1Þ � ð3Þ and we
obtain the expression for the thermodynamic potential with
the MLC contribution in Eq. (13). The energies for the
quarks are written as E2

a ¼ k2 þ �M2
a and E

2
b ¼ ðkþ qÞ2 þ

�M2
b. Accordingly, the momentum- and T-dependent effec-

tive quark masses read

Ma¼M0

�
2

2þk2 ��2

�
; Mb¼M0

�
2

2þðkþqÞ2 ��2

�
: (15)

Here, we have ignored the fourth component of the mo-
mentum for brevity, k4 ! 0, and verified that this simpli-
fication does not make considerable difference in
comparison to the full calculations. Note �� inside Ma;b in
Eq. (15).

The value ofM0 is obtained as a function ofmq and T by

solving the self-consistent saddle-point equation with re-
spect to �: @�eff=@� ¼ 0, resulting in

N

V
� 2NcNfT

X
n

Z d3k

ð2�Þ3
Ma

�Ma

w2
n þ E2

a

þ �

4�

Z d3q

ð2�Þ3
T
P
n

R
d3k
ð2�Þ3

h
3MaMbðw2

nþ�2Þ
ðw2

nþE2
aÞðw2

nþE2
b
Þ
i

T
P
n

R
d3k
ð2�Þ3

h
Ma

�Ma

w2
nþE2

a

i

¼ 2NcNf

Z d3k

ð2�Þ3 F0 þ �

4�

Z d3q

ð2�Þ3

�
�R d3k

ð2�Þ3 ðF1 þ F2ÞR
d3k
ð2�Þ3 F0

�
; (16)

where we have introduced a notation �2 ¼ k � ðkþ qÞ þ
�Ma

�Mb þ ðMa
�Mb þ �MaMbÞ=2. The relevant functions

F0�2 after summing over n are given in the Appendix.
Note that N=V in Eq. (16) is a function of T as discussed in
the previous section.

We plot the momentum- and T-dependent effective
quark mass Ma in Eq. (15) for mq ¼ 0 in the right panel

of Fig. 2. As shown in the figure, Ma is a decreasing
function of jkj as well as T, according to the decreasing
instanton effect. Thus, the effective quark mass plays the
role of a natural UV regulator and signals the chiral resto-
ration with respect to T. Similarly, the mq dependence of

M0 can be easily computed by solving Eq. (16) by putting

nonzeromq in a self-consistent manner. We will see themq

dependence of the effective quark mass in detail in the next
section. However, before going further, wewant to mention
that here is one assumption in obtainingM0 as a function of
mq: �� and �R are not dependent onmq but only T. We argue

that this assumption is reasonable considering that, since
these instanton parameters, indicating the QCD vacuum
properties approximately, do not correspond to external
sources such as mq, they behave independently with re-

spect to mq. The chiral condensate hiqyqi is obtained from
the thermodynamic potential as follows:

hiqyqi ¼ � 1

Nf

@�eff

@mq

� 4NcT
X
n

Z d3k

ð2�Þ3

�
� �Ma

w2
n þ E2

a

� mq

w2
n þ E2

0

�
þ �

4�Nf

�
Z d3q

ð2�Þ3
T
P
n

R
d3k
ð2�Þ3

h
3MaMbð �Maþ �MbÞ
ðw2

nþE2
aÞðw2

nþE2
b
Þ
i

T
P
n

R
d3k
ð2�Þ3

h
Ma

�Ma

w2
nþE2

a

i

¼ 4Nc

Z d3k

ð2�Þ3 ðG0 �G1Þ þ �

4�Nf

�
Z d3q

ð2�Þ3
�R d3k

ð2�Þ3 G2R
d3k
ð2�Þ3 F0

�
: (17)

Here, E2
0 ¼ k2 þm2

q and G0�2 are also given in the

Appendix. For more details of the derivation of Eqs. (16)
and (17), one can refer to Ref. [24]. Since the chiral
condensate is one of the most pronounced order parameters
for the breakdown and restoration of SB�S, we briefly
discuss how we study the chiral-restoration pattern using
the chiral condensate. At certain T, SB�S is restored from
the NG phase, following the universality-class pattern of
QCD phase transition. Thus, at the critical T for the resto-
ration, denoted by T�

c , the chiral condensate behaves irreg-
ularly. Hence, by seeing this irregularity, we can have
information on the chiral-restoration patterns from the
order parameters. Another way is to observe the behavior
of the chiral susceptibility with respect to T [9]. In the
present work, following Refs. [10,11,44], we sort out T

�
c by

differentiating the chiral condensate with respect to T,
@hiqyqi=@T. At T�

c , @hiqyqi=@T becomes finite maximum
for the crossover and infinity for the (first) second-order
phase transitions.

V. NUMERICAL RESULTS

In this section, we present the numerical results for
various quantities, such as the effective quark mass and
the chiral condensate as functions of mq and T. To identify

the effects from the MLC contribution, we will show those
quantities with and without MLC, separately. In Fig. 3, we
depict the effective quark mass with zero-momentum
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transfer M0, which was determined by solving the saddle-
point equation in Eq. (16), as a function of mq for T ¼
ð0� 150Þ MeV. Note that the left panel shows it without
MLC, while the right one with MLC. As shown in the left
panel, M0 turns out to be a monotonically decreasing
function of mq in the absence of MLC. The value of M0

without MLC in the chiral limit is about 325 MeV and
becomes smaller as T increases. This observation is con-
sistent with that given in Ref. [45] for the case at T ¼ 0.

However, the situation changes drastically when MLC is
included. At T ¼ 0, the curve of M0 increases until mq �
10 MeV then starts to decrease after it. In the chiral limit,
the value ofM0 is about 190 MeV. It is about 45% less than
the value without MLC. We note that this value of M0 is
considerably different from that without MLC. Actually,
this result agrees with the result of the previous work in
Refs. [37,38]. The value of M0 is changed from 350 MeV
to 125 MeV by including MLC in [37] and from 567 MeV
to 360 MeV in [38]. The MLC reduces the value of M0 at
T ¼ 0 ranging from 37% to 63%. The difference between
the results in [37,38] is due to the different instanton
parameters �R and ��. In Refs. [37,38], it was also argued
that the MLC contribution corresponds to the chiral log
term which provides considerable contributions to the
chiral condensate [46]. Hence, considering that h �qqi /
M0 in general SB�S pictures, these drastic changes of
M0 can be understood in the same way since our present
framework is essentially equivalent to that of Refs. [37,38].
We indeed verify that the value of M0 with MLC is very
sensitive to the instanton parameters. Furthermore we also
verified that the fine-tuning of the instanton parameters
provides only negligible changes in the value of T�

c . The
shape of the curve for T ¼ 0 is well consistent with the
LQCD simulation [39], although the magnitude of the
curve is rather different. The difference between our result
and the LQCD simulation can be understood by their
different renormalization scales: 0.6 GeV for ours and
1.65 GeV for Ref. [39]. Thus, the value of M0 is very
sensitive to the choice of �R so that one may obtain more
comparable results with the LQCD data by tuning those
instanton parameters.

As T goes higher, the curve of M0 changes its shape as
well as magnitude as shown in the right panel of Fig. 3. As
expected from the decreasing instanton effects with respect
to T, the magnitude of the curves becomes smaller being
similar to that without MLC. On the contrary, the value of
M0 in the vicinity of mq ¼ 0 is more sensitive to T in

comparison to that without MLC, whereas the curves
become relatively flat as mq increases for mq * 10 MeV

for all T values. In other words, focusing on the region
mq & 10 MeV, this behavior indicates that the effect of the

explicit chiral-symmetry breaking becomes obvious. This
manifestation of the explicit chiral-symmetry breaking at
smallmq can be explained again in terms of the decreasing

instanton effects, i.e. decreasing nonperturbative QCD
vacuum effects. Since the strength of the instanton effects
prevails over that of the explicit chiral-symmetry breaking
for lower T, one can see only a small difference inM0 with
respect tomq, and vice versa for higher T. For the largermq

beyond mq � 20 MeV, this manifestation becomes ob-

scure since M0 is almost saturated as already mentioned.
This behavior also can be analytically understood by see-
ing the functions F1 and F2, which contain (E2

a � E2
b) in

the denominator as shown in Appendix. In a simple analy-
sis, this term gives Oðm�1

q Þ,

FuncðTÞ
E2
a � E2

b

� FuncðTÞ
ð�k2Þ � 2ð�MÞðmq þM0Þ

; (18)

where �k2 � k2a � k2b and the same for �M, and FuncðTÞ
is an appropriate function of T. For �k2 > 0, we have
�M> 0. Hence, the functions F1;2 are enhanced for

smaller mq, enhancing the T dependence, FuncðTÞ,
simultaneously.
In Fig. 4, we show the chiral condensate as a function of

mq for T ¼ ð0� 250Þ MeV without (left panel) and with

(right panel) MLC. The global behaviors of the curves are
very similar to those of M0. Without MLC, the chiral
condensate decreases linearly with respect to mq. Again,

we observe the manifestation of the explicit chiral-
symmetry breaking with MLC as seen in the right panel
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FIG. 3 (color online). Effective quark mass M0 in Eq. (15) as a function of current-quark mass mq for the different values of
temperature T ¼ ð0� 150Þ MeV without (left) and with (right) the meson loop corrections.
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of Fig. 4. In addition, for the case with MLC, we see that
the slope of the curves at mq � 0 increases then decreases

around T ¼ 200 MeV. In other words, at a certain value of
T between 150 MeV and 250 MeV, there appears an
inflection point with respect to T. Considering that this
slope corresponds to chiral susceptibility [24], the inflec-
tion point indicates the chiral phase transition at T�

c . We
will see this in detail in what follows.

The numerical results for the chiral condensate are drawn
in Fig. 5 as a function of T for mq ¼ ð0; 5; 10Þ MeV.

Since the empirical values for u and d quarks lie
below about 10 MeV, mu ¼ ð2:55þ0:75

�1:05Þ MeV and md ¼
ð5:04þ0:96

�1:54Þ MeV for instance [47], we confined ourselves

to small mq values. In the left panel of Fig. 5, the chiral

condensate without MLC shows smoothly decreasing
curves, and the magnitude decreases for larger mq as ex-

pected from the left panel of Fig. 4. These smoothly de-
creasing curves indicate that the chiral restoration without
MLC is crossover with different mq values. This observa-

tion is far different from the universality consideration of
the chiral phase transition [5,48], which is second order for
mq ¼ 0 and crossover for mq � 0. This flaw is cured by

inclusion of MLC as shown in the right panel of the figure.
The solid line in the right panel of Fig. 5 indicates the chiral
condensate for mq ¼ 0, i.e. in the chiral limit, whereas the

dotted and dashed lines indicate those formq ¼ 5 MeV and

10 MeV, respectively. Obviously, in the chiral limit, we
observe the second-order chiral phase transition, and it
becomes crossover for mq � 0, just satisfying the univer-

sality class of the chiral phase transition [49]. Moreover, the
differences between the curves are negligible for the region
below T & 100 MeV in contrast to those without MLC.
This behavior is consistent with that shown in the right
panel of Fig. 4: The chiral condensate is insensitive to mq

below T � 100 MeV.
We note that these results are consistent in principle with

those given in Ref. [5], in which the NJL model was
exploited beyond the mean-field approximation.
However, here we would like to give some comments
concerning this universality-class pattern of the chiral res-
toration via the present framework with the MLC:
(1) Although the MLC contribution is certainly very im-
portant and plays a dominant role among the 1=Nc correc-
tions, there are still other 1=Nc corrections which are not
included in our calculation. Consequently one cannot ex-
clude the possibility that the result may be different with
the full consideration including the complete 1=Nc correc-
tions. (2) We modified the instanton parameters using the
Harrington-Shepard caloron, which ignores the dynamical
quark contributions. The outcome would be different if the
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FIG. 5 (color online). Chiral condensate hiqyqi in Eq. (17) as a function of T for the different values of m ¼ ð0� 10Þ MeV without
(left) and with (right) the meson loop corrections.
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FIG. 4 (color online). Chiral condensate hiqyqi in Eq. (17) as a function of current-quark mass mq for the different values of
temperature T ¼ ð0� 250Þ MeV without (left) and with (right) the meson loop corrections.

CHIRAL RESTORATION AT FINITE TEMPERATURE WITH . . . PHYSICAL REVIEW D 82, 096001 (2010)

096001-7



different types of caloron solutions such as the KvBLL one
are used. (See Refs. [50–52] for recent developments based
on the calorons with the quark determinant.) (3) We re-
place the fourth component of the pion momentum q by the
cutoff mass � / m� as in Eq. (14). Although we verified
that the change of the value of the � does not cause
qualitatively significant changes in the relevant physical
quantities, the T dependence of the � (� / ��0= ��) would
be too simple to be real. It also satisfies the T dependence
of the m�: The m� increases as the SB�S is partially
restored. Naturally a more realistic T dependence of the
� would produce a different outcome. Admittedly our
present results may be altered to a certain extent because
of the ingredients mentioned above. Nevertheless, either
the full 1=Nc calculation or the similar calculation using
the KvBLL caloron is formidable task which requires
much greater effort and time to achieve. On the other
hand, our relatively simple model calculation did grasp
the effect of the MLC contribution which is believed to be
the dominant one—we consider that our current result is
still helpful and very instructive for the further develop-
ment of understanding the phase structure of QCD. We
would like to leave the more sophisticated approach for
future works.

The critical T for the chiral phase transition T
�
c can be

obtained by differentiating the chiral condensate with re-
spect to T as mentioned in the previous section, resulting in
T
�
c ¼ 159 MeV in the chiral limit, as long as the phenome-

nological choices of the instanton parameters �R � 1 fm
and �� � 1=3 fm at T ¼ 0 are adopted. As for mq ¼
ð5; 10; 15Þ MeV, we obtain T�

c ¼ ð177; 186; 196Þ MeV, re-
spectively. According to this observation, T

�
c increases as

mq does. It is worth mentioning that, from LQCD simula-

tions in the chiral limit, it turned out that T�
c � 180 MeV

for Nf ¼ 2 using the clover-improved Wilson fermions

[53]. Also, using the renormalization-group improved ac-
tion, it was found that T

�
c � 171 MeV [54]. In Ref. [32],

employing the Nf ¼ 2 staggered fermions, the critical T

was estimated as T�
c ¼ ð165� 181Þ MeV. From effective-

model approaches, Ref. [7], using the Schwinger-Dyson
model, obtained T

�
c in wide ranges depending on model

parameters: T�
c ¼ ð82� 169Þ MeV. Similarly, the NJL

model analysis showed T� � 125 MeV with the 1=Nc

next-to-leading order computation [5]. In their work, it
was also shown that T�

c appears at higher T without the
NLO contribution, i.e. in the mean-field approximation.
However, even in the case without the NLO contribution,
the pattern of chiral-symmetry restoration presents second-
order phase transition, being different from ours.

Comparing with the LQCD values, our current value
(T�

c ¼ 159 MeV) presents only about 5� 20% deviation.
Hence, we can conclude that, qualitatively, the assump-
tions discussed in Secs. IV and V can be justified. We also
note that T�

c can be much closer to the LQCD values by
tuning the instanton parameters within possible changes of

�R and �� as in Ref. [37,55,56]. We obtain T
�
c ¼ ð168�

177Þ MeV by choosing �R ¼ ð0:98� 0:96Þ fm. It is also
observed that T�

c is very sensitive to �R. In other words, it is
sensitive to the diluteness of the instanton ensemble.
Technically, this tendency can be understood by the fact
that �R controls the instanton-number densityN=V � 1= �R4,
which determines all the strength of relevant quantities in
the present framework as in Eq. (16). Theoretically, it is
interesting to see that T�

c is inversely proportional to �R as
shown above. We can explain this as follows: If the in-
stanton ensemble is relatively denser, corresponding to
smaller �R, the vacuum effect tends to remain effective up
to higher T. In contrast, in the dilute instanton ensemble,
the chiral NG phase which is governed by the vacuum
effect will be terminated more easily at lower T. In this
way, we can understand the higher (lower) T

�
c for the dense

(dilute) instanton ensemble, respectively. Numerical re-
sults are summarized in Table I.
Finally, in Fig. 6, we plot the chiral condensate as a

function of T and mq. Although we have been interested

only in the SU(2) light-flavor sector, we show the numeri-
cal result up tomq � 200 MeV to see overall behaviors for

the mq dependence of the chiral condensate. It is clear that

the second-order chiral restoration at mq ¼ 0 turns into

that of crossover gradually asmq increases. In addition, the

magnitude of the chiral condensate decreases as mq be-

comes more massive. This is a consequence of general
behaviors of the QCD vacuum contribution which de-
creases as mq increases [57]. The decreasing instanton

effects make the chiral condensate smaller as T gets higher
as already shown in Figure. 5.

VI. SUMMARYAND CONCLUSION

We have studied the pattern of chiral restoration for
the SU(2) light-flavor sector at finite T beyond the chiral
limit. We used the instanton-vacuum configuration in the
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FIG. 6 (color online). Chiral condensate hiqyqi1=3 ½MeV� in
Eq. (17) as a function of T and mq.
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grand-canonical instanton ensemble. The relevant instan-
ton parameters such as �R and ��were modified at finite T by
using the Harrington-Shepard caloron. As has been noticed
in previous works, MLC, which correspond to the 1=Nc

corrections, are critical ingredients to incorporate appro-
priate mq dependences of the physical observables. Hence,

we employed MLC in the present work to investigate the
pattern of chiral-symmetry restoration as a function of mq.

We computed the effective quark mass and the chiral
condensate as functions of T and/or mq. The critical T

for the chiral-phase transition T�
c was obtained by differ-

entiating the chiral condensate with respect to T. Our main
results are listed below:

(i) As a general consequence in the present framework,
the instanton contribution is weakened as T increases
because the instanton ensemble becomes dilute. It
results in the decreasing magnitudes of the chiral
order parameters. As a result, the magnitude of the
effective quark mass as well as the chiral condensate,
as the order parameters for the chiral-phase transi-
tion, get diminished with respect to T. Inclusion of
MLC does not change this trend.

(ii) In contrast, theirmq dependences are largely depen-

dent on whether MLC is taken into account or not.
Without MLC, the chiral order parameters are
monotonically decreasing functions with respect to
mq. If and only if MLC is taken into account, the

computed effective quark mass can be comparable
with that from LQCD simulations.

(iii) MLC is indeed responsible for appropriate chiral-
restoration patterns, which follow the universality-
class restoration patterns depending on mq:

Second-order and crossover phase transitions for
mq ¼ 0 and mq > 0, respectively, for Nf ¼ 2.

Without MLC the chiral-restoration patterns are
all crossover, regardless of the value of mq.

(iv) Our results show that T
�
c ¼

ð159; 177; 186; 196Þ MeV for mq ¼
ð0; 5; 10; 15Þ MeV for the SU(2) light-flavor sector,
when we employ the phenomenological choices for
the instanton parameters �R � 1 fm and �� �
1=3 fm at T ¼ 0. We observe that T�

c is sensitive
to �R, and the LQCD compatible values of T�

c can be
obtained by choosing the instanton parameters,
which are deviated by a few percent from the
phenomenological ones.

Overall, we conclude that MLC is crucial to produce
correct patterns of chiral restoration for Nf ¼ 2 in the

present framework. This observation is very important
when one tries to apply this framework to study the QCD
phase diagram, in particular, the positions of CEP and TCP.
The extensions of the present results to the nonzero� and/
or Nf ¼ 2þ 1 cases are urgent tasks to explore realistic

understanding of QCD at finite temperature and finite
chemical potential. The related works are underway.
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APPENDIX

The relevant functions in Eqs. (16) and (17) are defined
as follows:

F0¼T
X1

n¼�1

Ma
�Ma

w2
nþE2

a

¼Ma
�Ma

2Ea

tanh

�
Ea

2T

�
; F1¼T

X1
n¼�1

3MaMbw
2
n

ðw2
nþE2

aÞðw2
nþE2

bÞ
¼ 3MaMb

2ðE2
a�E2

bÞ
�
Ea tanh

�
Ea

2T

�
�Eb tanh

�
Eb

2T

��
;

F2¼T
X1

n¼�1

3MaMb�
2

ðw2
nþE2

aÞðw2
nþE2

bÞ
¼ 3MaMb�

2

2EaEbðE2
a�E2

bÞ
�
Ea tanh

�
Eb

2T

�
�Eb tanh

�
Ea

2T

��
; G0¼

�Ma

2Ea

tanh

�
Ea

2T

�
;

G1¼ m

2E0

tanh

�
Ea0

2T

�
; G2¼T

X1
n¼�1

3MaMbð �Maþ �MbÞ
ðw2

nþE2
aÞðw2

nþE2
bÞ
¼3MaMbð �Maþ �MbÞ

2EaEbðE2
a�E2

bÞ
�
Ea tanh

�
Eb

2T

�
�Eb tanh

�
Ea

2T

��
; (A1)

where the definitions of Ma;b, �Ma;b, and Ea;b are given in the text.

TABLE I. T
�
c and the phase-transition pattern for different values of current-quark masses.

mq 0 MeV 5 MeV 10 MeV 15 MeV

Phase transition Second order Crossover Crossover Crossover

T�
c 159 MeV 177 MeV 186 MeV 196 MeV
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