
Affleck-Dine baryogenesis in effective supergravity

Bhaskar Dutta and Kuver Sinha

Department of Physics, Texas A&M University, College Station, Texas 77843-4242, USA
(Received 10 August 2010; published 5 November 2010)

We investigate the viability of Affleck-Dine baryogenesis in D ¼ 4, N ¼ 1 supergravity descending

from string theory. The process relies on an initial condition where visible sector supersymmetric flat

directions obtain tachyonic masses during inflation. We discuss this condition for a variety of cases where

supersymmetry is broken during inflation by a geometric modulus or hidden sector scalar, and outline

scenarios where the initial condition is satisfied.
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I. INTRODUCTION

M theory and its weakly coupled string theory limits
contain numerous moduli, whose vacuum expectation val-
ues determine the masses and coupling constants of the
low-energy theory. Along with moduli stabilization [1],
there has been much focus on the effects of these scalar
fields on cosmology. Certainly, inflation offers the most
promising field of application and has also been the most
studied [2,3], but one also has other paradigms such as
baryogenesis.

Most standard processes such as electroweak baryogen-
esis or leptogenesis are relatively independent of a particu-
lar UV completion. However, the situation is different for
Affleck-Dine baryogenesis [4–6], which relies on an infla-
tionary sector to produce coherent oscillations along a
supersymmetric flat direction. The interaction between
the inflationary sector and the flat direction occurs through
Planck-suppressed operators whose form is critical for the
success of the process. The setting is effective D ¼ 4,
N ¼ 1 supergravity. It is natural to probe the success of
the method when the low-energy supergravity descends
from string theory.

In this paper, we investigate initial conditions for
Affleck-Dine (AD) baryogenesis in a variety of supergrav-
ity scenarios. Our purpose is twofold. First, as mentioned
before, this offers an investigation of stringy effects in a
standard method of baryogenesis.

Second, AD baryogenesis is very useful in fortifying the
baryon asymmetry of the Universe against late-time en-
tropy production by moduli. The late decay of gravitation-
ally coupled moduli leads to various modifications of
standard cosmological scenarios such as the nonthermal
production of dark matter [7,8] and baryogenesis [9]. In the
early universe the moduli are displaced from the minimum
of their potential and start oscillating. These coherent
oscillations behave like nonrelativistic matter once the
Hubble expansion rate drops below their mass. Since the
moduli couple to other fields only gravitationally, they
are long-lived and can dominate the energy density of the
Universe. Moduli with masses above 20 TeV decay before
big-bang nucleosynthesis; however, if they are sufficiently

light (typically below 104 TeV), they result in a very low
reheat temperature, which is below a GeV. The decay of the
modulu s generates a large amount of entropy, which
dilutes any baryon asymmetry that was created in a pre-
vious era (the dilution factor may be as large as�109 [10]).
Generating sufficient baryon asymmetry below a GeV is a
challenging task since sphaleron transitions are exponen-
tially suppressed. The Affleck-Dine mechanism can pro-
duce an Oð1Þ baryon asymmetry and yield the desired
value after late-time dilution by modulus decay.
A crucial element in concrete realizations of Affleck-

Dine baryogenesis is to obtain a negative Hubble-induced
mass term along the potential of visible sector supersym-
metric flat directions. Thus, realizing the initial conditions
for baryogenesis amounts to getting tachyonic soft masses
along certain chiral fields due to supersymmetry breaking
induced by the vacuum energy. If the vacuum energy
during inflation is dominated by a field �, this places
constraints on the Kahler coupling between � and the
visible sector. We study two broad choices for �: when
it is a geometric modulus of the compactification, and
when it is a hidden sector scalar field. We find that in the
case of geometric moduli in a type IIB compactification,
tachyonic masses may be obtained if � is a local modulus
of the visible sector. For a hidden sector scalar �, gravita-
tional couplings to the visible sector can induce tachyonic
masses. To avoid tachyons in the final soft terms, � should
have a negligible F-term in the stable vacuum of the theory.
We outline inflationary scenarios where � dominates the
energy density during inflation but not in the final vacuum.
We also give the conditions for obtaining baryogenesis in
the case of the weakly coupled heterotic string.
The rest of the paper is arranged as follows. In Sec. II,

we outline the AD baryogenesis process. In Sec. III, we
write down expressions for Hubble-induced mass terms
for chiral superfields in D ¼ 4, N ¼ 1 supergravity. In
Sec. IV, we study AD baryogenesis for the case when the
energy density during inflation is dominated by a geo-
metric modulus. In Sec. V, we study Hubble-induced
masses due to a hidden sector matter field. We end with
our conclusions.
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II. AFFLECK-DINE BARYOGENESIS

We first outline the essential physics of the Affleck-Dine
process. The mechanism depends on a very generic prop-
erty of supersymmetric field theories: the existence of flat
directions, which are unlifted in the absence of supersym-
metry breaking, at the level of renormalizable operators.
A flat direction is the normalized scalar component of a
composite gauge invariant operator formed from the prod-
uct of chiral superfields. For example, for HuL, the flat
direction � is given by

Hu ¼ 1ffiffiffi
2

p 0
�

� �
; L ¼ 1ffiffiffi

2
p �

0

� �
: (1)

In the very early universe, if conditions are met such that
the flat direction � is initially displaced from its true
minimum, it starts to oscillate when the Hubble constant
becomes smaller than the effective mass Vð�Þ00 �m3=2.

The energy of the oscillations corresponds to a condensate
of nonrelativistic particles. It is possible to store baryon
number in a condensate in the particular case where the
supersymmetric theory is the minimal supersymmetric
standard model (MSSM). After oscillations set in, a net
baryon asymmetry may be produced depending on the
magnitude of baryon number-violating terms in Vð�Þ.

The finite energy density of the Universe during inflation
breaks supersymmetry and induces a supersymmetry
breaking mass along �. If this Hubble-induced mass is
tachyonic, the field is able to acquire a large vacuum
expectation value (vev) during inflation. It then remains
critically damped, and tracks an instantaneous minimum as
long as Vð�Þ00 �H2 � m2

3=2. After H �m3=2, it begins to

oscillate.
MSSM flat directions are lifted by nonrenormalizable

terms in the superpotential

W ¼ �

nMn�3
P

�n: (2)

The potential along �, taking into account supersymmetry
breaking terms due to the finite energy during inflation, is

Vð�Þ ¼ ðcHH2 þm2
softÞj�j2 þ

�ðAþ aHHÞ��n

nMn�3
P

þ H:c:

�

þ j�j2 j�j2n�2

M2n�6
P

: (3)

Here, cHH
2 and aHH denote soft parameters induced by

inflation, while msoft and A arise from a supersymmetry
breaking sector at the end of inflation. Note that cH could
be of either sign.

For H � msoft, the curvature along � is dominated by
the Hubble-induced mass. If cH > 0, the field sits at the
origin and a condensate does not develop. However, if
cH < 0, the minimum lies at

j�j �
� ffiffiffiffiffiffiffi�c
p

HMn�3
P

ðn� 1Þ�
�
1=ðn�2Þ

; (4)

and the field tracks this minimum until H�msoft. The
inclusion of the Hubble-induced A-term aHH gives n dis-
crete vacua in the phase of �, and the field settles into
one of them. When H �msoft, the field begins to oscillate
around the new minimum � ¼ 0; thereafter, the soft
A-term becomes important and the field obtains a motion
in the angular direction to settle into a new phase. The
baryon number violation thus becomes maximal during
this time and imparts asymmetry to the condensate. The
final baryon to entropy ratio depends on the resulting
baryon number per condensate particle, the total energy
density in the condensate, and the inflaton reheat tempera-
ture. The baryon asymmetry is obtained as

nB
n�

� 10�10

�
Tr;inflaton

109 GeV

�
mð4�nÞ=ðn�2Þ

3=2 Mð�2Þ=ðn�2Þ
P : (5)

Depending on n, the baryon asymmetry can be large
which is very useful for models with lighter moduli mass
�103 TeV corresponding to low reheat temperature. There
will be an additional dilution factor �10�8, which would
allow us to obtain the correct amount of baryogenesis as
observed in these models.
The initial condition in the above scenario is that � is

displaced from the origin to begin with. The sign of the
Hubble-induced mass term cHH

2 will depend on the
coupling between the field � that dominates the energy
during inflation and the flat direction �. Since the impor-
tant couplings occur from Planck scale operators, super-
gravity interactions should be included. We now turn to the
question of how to realize this initial condition.

III. HUBBLE-INDUCED MASS TERMS
IN SUPERGRAVITY

In this section we study the coupling between the MSSM
flat direction and the Hubble mass-inducing field� in four-
dimensional effective supergravity.
The scalar potential is given by

V ¼ eKðKi �jDiWD �j
�W � 3jWj2Þ: (6)

The Kahler potential and superpotential can be written as

K ¼ K̂ðTi; �TiÞ þ ~K� ��ðTi; �TiÞ ����� þ � � �
W ¼ ŴðTiÞ þ 1

6Y����
���:

(7)

In the above, � denotes an MSSM chiral superfield, and T
is a generic modulus or hidden sector field. �, �, � are
flavor indices, and for the sake of simplicity, we will
henceforth consider diagonal matrices in flavor space.
We will also use � to denote the scalar component of the
visible sector superfield, as well as a flat direction formed
from combinations of chiral superfields.
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Plugging K and W into the scalar potential and expand-
ing in a series in ���, one obtains the soft mass term for the
chiral fields [11,12]

m2
soft ¼ m2

3=2 þ V0 � FiF
�j@i@ �j ln ~K: (8)

In the above, V0 is the potential along the modulus,
given by

V0 ¼ FiF
�jK̂i �j � 3m2

3=2 þ VD; (9)

where Fi ¼ eK̂=2D �jK̂
i �j and m2

3=2 ¼ eK̂jWj2. We have also

included possible D-term contributions to the vacuum
energy. Note that in the effective low-energy theory the

chiral matter is normalized as�normalized ¼ ~K1=2�. We will
implicitly assume normalized fields henceforth.

Usually the soft mass computation due to modulus
mediation proceeds by stabilizing moduli in the potential
V0 and using the values of the F terms at the minimumwith
V0 � 0. However, we want the soft masses induced due to
the positive energy during inflation. Thus, we take the limit

when V0 � F�F ��K̂� �� þ VD is large and positive, and the
energy is dominated by a combination of D-term effects
and the F-term of a field � 2 fTig during inflation.

We thus obtain

cH ¼ m2

H2
� 1� K̂� ��@�@ �� ln ~K þ VD

V0

K̂� ��@�@ �� ln ~K:

(10)

It is clear that successful AD baryogenesis depends on

several factors: (i) geometric data: the Kahler potential K̂
of the moduli and the Kahler metric ~K of the chiral super-
fields in the visible sector, (ii) which particular field �
dominates the energy density of the Universe during in-
flation, and (iii) the importance of D-term effects relative
to the vacuum energy during inflation.

Making definitive statements about the Kahler potential
in effective supergravity is difficult since it is not protected
by the nonrenormalization theorems. One can assume vari-
ous forms for the Kahler metric ~K of visible sector chiral
matter which gives the coupling of flat directions to a
modulus inflaton. For example, for minimal supergravity,
~K ¼ const, and the Hubble-induced mass is positive, as is
well known [13,14].

We now study Hubble-induced mass terms for various
cases. The remainder of the paper is divided into cases
where the energy density is dominated by a geometric
modulus, and cases where the energy density is dominated
by hidden sector matter fields.

IV. GEOMETRIC MODULUS DOMINATION

In this section, we consider Hubble-induced mass terms
for cases when a geometric modulus dominates the energy
density of the Universe during inflation. For concreteness,
we first consider candidates in type IIB string theory.

A. Type IIB

In a typical compactification in type IIB, the effective
four-dimensional N ¼ 2 action (which is subsequently
broken to N ¼ 1 by orientifold projections) consists of
h1;1 þ 1 hypermultiplets. One of them is the axio-dilaton.
The bosonic components of the remaining h1;1 consist of
(i) the volume modulus and other size moduli, denoted by
Ti and (ii) the axionic modluli bi, ci corresponding to
integrating Neveu-Schwarz and Ramond-Ramond gauge
potentials over nontrivial two-cycles. These moduli fields
are natural condidates for the hidden sector that is respon-
sible for inflation.
In a moduli stabilization scheme like Kachru-Kallosh-

Linde-Trivedi, the complex structure moduli and the dila-

ton are fixed by fluxes. The superpotential is given by Ŵ ¼
Wflux þWnp, where Wflux ¼

R
G3 ^� and the nonpertur-

bative superpotential Wnp is sourced by gaugino conden-

sation on D7-branes. The Ti are fixed at an anti-de Sitter
vacuum by the nonperturbative contribution to the super-
potential. The vacuum is then further lifted to a near
Minkowski vacuum by D-term effects or by the introduc-
tion of anti–D3-branes. We denote these effects by VD.
In many models of inflation that are based on Kachru-

Kallosh-Linde-Trivedi moduli stabilization, the scale of
inflation is typically set by the uplifting effect to avoid
decompactification of the internal dimensions [15–17].
One thus obtains

VD �m2
3=2 � V0 ) cH � 2� 3K̂� ��@�@ �� ln ~K: (11)

It has been argued recently, however, that it may generi-
cally be possible to obtain models with V0 � m2

3=2 � VD

[18], by considering situations where hWi relaxes from
large to small values during inflation. For a generic sce-
nario where inflation is dominated by F-terms of a field
and other energy scales are much smaller, one obtains

cH � 1� K̂� ��@�@ �� ln ~K: (12)

For the rest of the paper, we will be interested in this
general scenario where inflation is dominated by F-terms.
The Kahler potential for the moduli may be written, up

to �0 corrections, as

K̂ ¼ �2 lnV : (13)

In the above, V denotes the Einstein-frame volume of the
Calabi-Yau manifold.
The moduli dependence of the Kahler coupling ~K

to chiral matter can be argued out on physical grounds
[19–21]. For concreteness, we consider Calabi-Yau mani-
folds with h1;1 � 2 with all Kahler moduli stabilized [22].
The visible sector is taken to be localized near a small four-
cycle �s ¼ ReTs. Because of holomorphy and the shift
symmetry of ImT, the Kahler moduli Ti cannot appear at
any level in perturbation theory in W, and hence, impor-
tantly, in Y in Eq. (7). The normalized Yukawa coupling
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Ŷ ���ð�s;UÞ ¼ eK̂=2
Y���ðUÞ

ð ~K�
~K�

~K�Þ1=2
(14)

should only depend on local geometric data �s and com-
plex structure moduli U, but not the overall volume.

Thus, from Eq. (14), we obtain

ln ~K ¼ 1
3K̂ þ lnkð�s;UÞ; (15)

where kð�s;UÞ is an undetermined, model-dependent
function of local data.

Several cases are possible from Eq. (12) and (15).
(i) The energy density is dominated by a modulus that is

not a local modulus of the visible sector. In this case, one
obtains

cH ¼ 2
3: (16)

As an example of this case, one can consider a typical
compactification on P4

½1;1;1;6;9�. There is a large four-cycle

�b and a small four-cycle �s on which the visible sector is

located. The volume is given by V ¼ �3=2b � �3=2s . If the

large modulus �b dominates inflation, then one obtains
positive cH.

1

A similar value of cH is obtained if Neveu-Schwarz or
Ramond-Ramond axions dominate the energy density of
the Universe during inflation. For example, in compactifi-

cations with O3=O7 planes with h1;1þ ¼ 1, one obtains

K̂ ¼ �3 lnðTi þ �Ti þ �ijkbjbkÞ; (18)

where j; k ¼ 1 � � �h1;1� and �ijk are triple intersection num-
bers [23]. Following Eqs. (12), (13), and (15), it is clear
that if the energy density is dominated by axions b, one
obtains cH ¼ 2=3.2

(ii) The second case to consider is when the energy
density is dominated by the F-term of a local modulus.
In this case,

cH ¼ 2
3 � K̂Ts

�Ts@Ts
@ �Ts

lnkð�s;UÞ: (19)

Obtaining an induced tachyonic mass imposes conditions

on K̂Ts
�Ts which depends on the specific Calabi-Yau com-

pactification, and on kð�s;UÞ, which depends on the con-
struction of the visible sector. Thus, information both about

the global compactification, as well as the local model,
are required.
There are some general statements that can be made,

however. The condition may be recast as

@Ts
@ �Ts

lnkð�s;UÞ> 2
3K̂Ts

�Ts
: (20)

Since K̂Ts
�Ts > 0, it is necessary (but not sufficient) that

@Ts
@ �Ts

lnkð�s;UÞ> 0: (21)

This condition should hold regardless of the global details
of the compactification.
The exact nature of the function k is difficult to deter-

mine. If the visible sector construction is in the supergrav-
ity limit, for example, on intersecting stacks of magnetized
D7-branes wrapping cycles �s larger than string scale in a
localized region of the Calabi-Yau, then we may take
kð�s;UÞ � �ps kðUÞ. This dependence holds for dilute
flux where ��1

s controls the gauge coupling in the weak
limit. Depending on the details of the construction of the
matter fields, one has 0< p< 1 and in this class of con-
structions Eq. (21) is violated.3

On the other hand, if the visible sector gauge theory is
constructed with branes at singularities, it is more difficult
to write down supersymmetry breaking terms in general
and the Hubble-induced mass, in particular. While the
dictionary between local geometry and superpotential de-
formations is quite well understood, the dictionary for
supersymmetry breaking deformations requires under-
standing Kahler deformations and is much less clear.
Quiver gauge theories typically occur in nongeometric

phases of the Kahler moduli space, and the supergravity
approximation becomes invalid [25]. Using homological
mirror symmetry, it is possible to map the type IIB brane
configuration on a Calabi-Yau X to D6-branes wrapping
special Lagrangian cycles in type IIA on a mirror Calabi-
Yau Y. The dynamics can be controlled if we work near the
large complex limit point in the complex structure moduli
space of X, which corresponds to the geomtric limit of the
Kahler moduli space of Y [26].
The problem of obtaining Hubble-induced supersymme-

try breaking terms should thus be formulated in the lan-
guage of type IIA string theory, where obtaining models of
inflation is difficult [27]. We will simply give an outline of
how it may be possible to obtain tachyonic Hubble-induced
masses. The holomorphic coordinates on the complex
structure moduli space M of Y may be identified with
the dilaton and Kahler coordinates � of X by mirror sym-
metry. A priori, these are defined near the large complex
structure limit of M, but may be defined near the Landau-
Ginzburg point (where our quiver theory is located) by
analytic continuation. The moduli dependence of the

1In models with a single Kahler modulus, the calculation is
slightly different, although the conclusion is similar. One has
V ¼ �3=2b . If the visible sector is localized on a stack of
D7-branes wrapped on a single 4-cycle, then the physical
Yukawas may be argued to scale as ��1=2

b and finally, one obtains

~K ¼ �1=3b

V 2=3
k1ðUÞ ) cH ¼ 7

9
: (17)

2A similar conclusion holds in models of warped brane in-
flation [24], if the energy density during inflation is dominated
by the brane-anti-brane separation.

3It may be possible to arrange fluxes such that the next-to-
leading-order term kð�s;UÞ � �p�1

s k2ðUÞ dominates over the
leading term �ps . In that case, one obtains cH � 2ðp� 1Þ=3< 0.
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Kahler metric ~KM for matter fields may be argued from
the locality condition of the Yukawas, and the function k
expanded in a power series in �, obtaining

kð�Þ ¼ k0 þ k1�
p þ � � � ; (22)

where k0 and k1 are functions of the Kahler moduli of Y.
Equation (20) then imposes a relation on k0 and k1, which
may be obtained by tuning even Ramond-Ramond fluxes
on Y. In such a scenario, it is possible to obtain a negative
value of cH.

B. Other scenarios

We now comment on some other scenarios of modulus
domination.

In compactifications of M theory on G2 manifolds, the
complexified moduli space has holomorphic coordinates
zi ¼ 	i þ {�i, where 	i are the axionic partners of the
moduli �i. In the fluxless sector, the moduli are stabilized
by nonperturbative effects, sourced by strong gauge
dynamics [28].

A family of Kahler potentials that are consistent with
G2 holonomy and widely used [29] is

K̂¼�3 logð4
1=3V Þ; V ¼Y
�aii ;

X
ai ¼ 7=3:

(23)

The Kahler metric for chiral matter may be obtained
similarly to the type IIB case [30], and if the moduli
�i dominate the energy density during inflation, we get
cH ¼ 2=3.

The weakly coupled heterotic string furnishes a canoni-
cal example of global visible sector model building. It is
interesting to probe initial conditions for AD baryogenesis
for effective supergravity theories derived from orbifold
compactifications of the weakly coupled heterotic string
[31–33]. In the linear superfield formalism, the Kahler
potential is given by

K ¼ lnðlÞ þ gðlÞ �X
i

lnxi þ
X
A

XA; (24)

where

xi ¼ Ti þ �Ti �
X
A

jc Aij2; XA ¼ ðY
i

x
nAi
i Þjc Aj2:

(25)

The c Ai are untwisted matter fields and c A are twisted
matter fields with modular weight nI. The Ti are the three
Kahler moduli of the compactification and l is the dilaton.
The function gðlÞ is a nonperturbative contribution that
stabilizes the dilaton.

The perturbative superpotential is given by

Wp ¼ X
m

�m

�Y
i

�ðtiÞ�2

�Y
�

c p�
m

�

Y
j

�ðtjÞ2p�
mq

�
j ; (26)

where� denotes twisted as well as untwisted sector matter,
running over Ai, A. The �m are constants, the p�

m are
nonnegative integers and �ðtIÞ is the Dedekind eta
function.
In addition, there may be nonperturbative contributions.
If the energy density during inflation is dominated by

the F-term of the overall Kahler moduli T, then from
Eq. (24), (25), and (12), the Hubble-induced mass is

cH ¼ m2

H2
¼ 1þ n�

3
; (27)

where n ¼ P
ni. One thus requires the modular weight of

the flat direction chiral field to be n <�3 for successful
AD baryogenesis.
For Abelian orbifolds, the range of overall modular

weights is given by �3 � nQ; �u; �e � 0 and �5 � nL; �d;H �
1 and more negative values are possible for higher choice
of Kac-Moody levels [34]. Thus, for example, a flat direc-

tion formed by the gauge invariant operator LLddd can
have the correct modular weight for AD baryogenesis.

V. HUBBLE-INDUCED MASSES FROM HIDDEN
SECTOR MATTER FIELDS

If supersymmetry breaking during inflation is dominated
by the F-term of a hidden sector matter field, it is possible
to obtain tachyonic Hubble-induced masses for visible
sector flat directions. Broadly, some conditions should be
satisfied for such a scenario (Fig. 1).
(i) Planck-suppressed operators mixing the visible and

inflationary sectors in the Kahler potential induce
negative masses by gravity mediation along flat di-
rections if the dimensionless coupling is chosen
appropriately.

(ii) The contribution to soft masses from the hidden
matter sector in the final stabilized vacuum at the
end of inflation should be negligible.

(iii) The inflationary dynamics should be compatible
with moduli stabilization.

We first outline this scenario in type IIB.

A. Type IIB

It is interesting to study cases when supersymmetry
breaking effects during inflation in the hidden matter sector
have only mild effects on the moduli sector. We add to the
moduli stabilization sector a hidden sector where super-
symmetry is broken independently of gravitational effects
at an intermediate scale � [35–39].
Concretely, we take

K ¼ K̂ðTiÞ þ Khiddenð
Þ þ ~KðTi; 
Þ ��� ~KðTi; 
Þ

¼ 1

V 2=3
ð1þ � �

ÞW ¼ ŴðTiÞ þWhiddenð
Þ: (28)

Here, 
 is a hidden sector matter field.
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If the F-term for 
 dominates during inflation, we obtain
for 
 � 1

cH � 1� �: (29)

For � > 1, it is possible to obtain a negative induced mass
during inflation. However, note that the soft scalar masses
in the final vacuum of the theory, in the case of (hidden)
matter domination, are given by

m2 �m2
3=2 � �jF
j2 �m2

3=2ð1� 3�Þ: (30)

This leads to tachyons for � > 1.
To avoid tachyons and couplings that give rise to the

flavor problem, the final supersymmetry breaking should
not be matter dominated but sourced by another (seques-
tered) sector.

A concrete model of inflation depends on the moduli and
hidden sector superpotentials. For the modulus, racetrack
superpotentials can be appropriately tuned to give inflec-
tion or saddle point inflation [40],

WðTÞ ¼ Wflux þ Ae�aT þ Be�bT (31)

with A, B� 1 and a ¼ 2
=Na, b ¼ 2
=Nb where Na, Nb

are the ranks of the gauge groups on the D7-branes.
For the hidden sector, one may choose a model that

breaks supersymmetry globally. Inflation with Polonyi or

O’Raifeartaigh models [41,42] with Whidden ¼ 
0 þ�2

have been studied recently in this context [43]. One has
F
 � FT during inflation, and thus for � > 1 one obtains
acceptable conditions for AD baryogenesis. However, the
final vacuum also has matter dominated supersymmetry
breaking, leading to tachyons in the visible sector.
For the purpose of baryogenesis, it is thus more appro-

priate to choose hidden sector models that have supersym-
metry preserving vacua. To lowest order in 
=MP, the total
potential can be written as

V ¼ eK̂Vð
Þ þ VðTÞ: (32)

An interesting possibility arises if 
 is a pseudomodulus.
Suppose there is a supersymmetry preserving vacuum at

 ¼ 
susy. For 
 � 
susy, where the supersymmetry resto-

ration effects are subdominant, 
 is flat at tree level. In this
regime, Vð
Þ is generated at one-loop and may be suitable
for inflation with F
 � FT . Inflation ends in the vacuum at

susy.

Although the situation outlined above is quite generic,
we may consider the concrete example of SQCD in the free
magnetic range [44–46]. At low energies, the theory is
given by a weakly coupled SUðNÞ gauge theory with Nf

magnetic quarks qi and a gauge singlet Nf 	 Nf meson 
.

The tree level superpotential and Kahler potential are
given by

Wð
Þ ¼ hqi

i
j~q

j � h�2
i
i;

Kð
Þ ¼ 
y
þ ~qy~qþ qyq:
(33)

Note that � � MP and h is dimensionless. The pseudo-
modulus piece is a Nf � N block of 
; however, for

simplicity, we will refer to this direction as 
.
Supersymmetric vacua are obtained by competition be-
tween the tree-level piece and a nonperturbative contribu-
tion to the superpotential generated by SUðNÞ gaugino
condensation

Wnp ¼ NðhNf�
�ðNf�3NÞ
m det
Þ1=N; (34)

where �m sets the scale of the IR free theory above which
it is strongly coupled. One has � � 
susy � �m � MP.

For 
 � �, Coleman-Weinberg corrections give a qua-
dratic potential and a metastable supersymmetry breaking
vacuum at the origin. In the intermediate region 
��, the
corrections are logarithmic. Thus, one has in this regime

V � 1

ðT þ �TÞ3 �
4 lnðj
j2Þ þ VðTÞ: (35)

In this regime, the potential along 
 is extremely flat,
sloping very gently toward 
susy, and it is possible to

implement inflation as suggested in [44] (note that the
modulus sector is also at a saddle/inflection point by choice
of parameters). To obtain acceptable inflation, a suitable
choice of parameters ðWflux; A; B; a; bÞ in the modulus

FIG. 1. The role of various hidden sectors for Affleck-Dine
baryogenesis and supersymmetry breaking. The 
-sector domi-
nates the energy density during inflation and induces tachyonic
masses along visible sector flat directions. In the final vacuum,
the 
-sector contributes negligibly to soft masses, which are
sourced by a sequestered supersymmetry breaking sector.
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superpotential and � in the matter potential is required,
which we leave for future work. The scale of inflation is
given byH ��2, with F
 dominating. For � > 1, the field

 induces tachyonic masses along visible sector flat direc-
tions. Inflation ends with 
 rolling out to 
susy, restoring

supersymmetry. If the racetrack superpotential is also
chosen such that the final vacuum along T is Minkowski,
this effectively decouples the scale of inflation from
constraints of moduli stabilization. One can thus choose
H ��2 � m3=2.

We thus have a scenario where

cH ¼ 1����1; H�msoft; msoft � 100 GeV;

(36)

where the soft mass along the flat directions is induced by a
sequestered sector, while the soft mass induced by the

-sector vanishes since F
 � 0. The flat directions are
thus able to acquire nonzero vev during inflation and AD
baryogenesis can proceed.

B. Matter domination in heterotic models

We can obtain tachyonic Hubble-induced masses in
weakly coupled heterotic models. If the energy density
during inflation is dominated by the F-term of a matter
field c , then a coupling like � �c c ��� can induce negative
mass along the flat direction� similar to the type IIB case.
In this case, one has to ensure that the dilaton and Kahler
moduli are stabilized and dominate the final supersymme-
try breaking in the stable vacuum of the theory.

In modular invariant theories, the scalar potential has
stable minima at Ti ¼ 1, expði
=6Þ. At this vacuum, as-
suming that matter fields vanish, the dilaton can also be
stabilized by appropriately choosing the parameters of the
nonperturbative contribution gðlÞ in Eq. (24). To obtain
conditions for inflation, note that the superpotential in
Eq. (26) can be taken, for example, to be

W ¼ �c 1�ðT2Þ�2�ðT3Þ�3: (37)

Then, assuming the vev of c 1 ¼ 0, Wc 1
� 0 and that the

F-terms of all other fields vanish, the scalar potential can
be shown to be independent of untwisted matter in the first
moduli sector T1 at tree level [47]. Such a matter field
belonging to the first sector can be taken as the inflaton:

Vtree ¼ ‘eg

1þ b‘

j�j2
x2x3j�2�3j4

: (38)

The inflaton dependence enters at loop level. Thus, we
have a situation where moduli are fixed and inflation may
be obtained with the vacuum energy being dominated by
a matter field c 1. The final vacuum of the theory is
dominated by F-terms of moduli and the dilaton.
Appropriate coupling of c 1 to the visible sector flat direc-
tions leads to an implementation of AD baryogenesis.

VI. CONCLUSION

In this paper, we have investigated Affleck-Dine baryo-
genesis in a variety of supergravity scenarios. Since the
Affleck-Dine process naturally produces large baryon
asymmetry, it is useful in obtaining the correct baryon
asymmetry of the Universe even if there are late-decaying
moduli which dilute previously existing asymmetry.
However, successful AD baryogenesis requires ta-

chyonic masses along supersymmetric flat directions dur-
ing inflation. If we consider such masses to be provided by
the F-term of a modulus �, then to avoid tachyons in the
final vacuum the finalF-term of the modulus should vanish.
Whether or not � is able to produce tachyonic masses

along flat directions depends on an interplay between
global and local geometric data. The details of inflation,
the energy density, depend on global data such as the
Kahler potential of the moduli fields. The induced soft
masses also depend on local data, such as the Kahler metric
of the chiral superfields in the visible sector.
We have considered the separate cases of when � is a

geometric modulus, and when it is a hidden sector scalar in
type IIB. For a geometric modulus, we have argued that
the Hubble-induced masses are generically positive if the
modulus� is a nonlocal one. If it is a local modulus and the
visible sector is constructed on cycles larger than the
string scale, then the induced masses are typically positive.
If the construction is at a singularity, then the induced mass
depends on mirror type IIA variables, and may become
negative for appropriate choice of fluxes on the mirror
manifold.
On the other hand, if the modulus � is a hidden sector

scalar, then it is possible to satisfy conditions for AD
baryogenesis through higher-order couplings of � to the
visible sector. We have outlined a scenario which satisfies
all the requirements, based on a hidden sector that breaks
supersymmetry at an intermediate scale during inflation,
but has supersymmetry preserving final vacua.
We have also studied the two cases in global construc-

tions of the weakly coupled heterotic string. The results are
similar to type IIB. If� is a geometric modulus, then it may
be possible to obtain tachyonic Hubble-induced masses if
the flat directions lie along twisted sectors with oscillators.
If it is a matter scalar, then it is possible to construct
inflationary models where the energy density is dominated
by the matter, and appropriate coupling to the visible sector
induces tachyonic Hubble-induced mass.
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