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We investigate whether the lightest scalar mesons � and � have a large tetraquark component �q �q qq, as

is strongly supported by many phenomenological studies. A search for possible light tetraquark states with

JPC ¼ 0þþ and I ¼ 0; 2; 1=2; 3=2 on the lattice is presented. We perform the two-flavor dynamical

simulation with chirally improved quarks and the quenched simulation with overlap quarks, finding

qualitative agreement between both results. The spectrum is determined using the generalized eigenvalue

method with a number of tetraquark interpolators at the source and the sink, and we omit the disconnected

contractions. The time dependence of the eigenvalues at the finite temporal extent of the lattice is explored

also analytically. In all the channels, we unavoidably find the lowest scattering states �ðkÞ�ð�kÞ or

KðkÞ�ð�kÞ with back-to-back momentum k ¼ 0; 2�=L; . . . . However, we find an additional light state in

the I ¼ 0 and I ¼ 1=2 channels, which may be interpreted as the observed resonances � and � with a

sizable tetraquark component. In the exotic repulsive channels I ¼ 2 and I ¼ 3=2, where no resonance is

observed, we find no light state in addition to the scattering states.
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I. INTRODUCTION

The only well established hadron states so far are me-
sons �qq and baryons qqq. No exotic states like tetraquark
½ �q �q�½qq�, pentaquark �qqqqq, hybrid �qqG, or molecular
ð �qqÞð �qqÞ, ð �qqÞðqqqÞ have been confirmed beyond doubt,
although there are several serious candidates in the light
and hidden charm sectors. Perhaps the most prominent
tetraquark candidate is the Zþð4430Þ resonance, discov-
ered by Belle [1]: it decays to �þc 0, so it must have a
minimal quark content �du �cc, but it has not been confirmed
by BABAR [2].

It is still not established whether the lightest scalar
mesons �, �, a0ð980Þ, and f0ð980Þ are conventional �qq
states or they have important �q �qqq or glue Fock compo-
nents. A sizable glue component of isoscalar � is sup-
ported by some phenomenological studies [3], but we will
not explore this Fock component in this work. We will
focus on the �q �q qq Fock component, which arises in the
case of a tetraquark ½qq�½ �q �q� or in the case of a mesonic
molecule ð �qqÞð �qqÞ. The tetraquarks ½qq�½ �q �q� are com-
posed of a scalar diquark (�3C;F) and anti-diquark (3C;F)
in L ¼ 0; they form a flavor nonet and are expected to be
light [4,5]. A mesonic molecule ð �qqÞð �qqÞ is composed of
two color-singlet mesons (�, K) held together by pion
exchange [6]. Both �q �q qq interpretations expect that the
I ¼ 1 state ( �u �s sd) is heavier than the I ¼ 1=2 state

( �u �dds) due to ms > md, in agreement with experimental
ordering ma0ð980Þ >m�. On the other hand, the conven-

tional �ud and �us states can hardly explain the observed
mass ordering. Both �q �q qq interpretations also naturally
explain the large observed coupling of a0ð980Þ and f0ð980Þ
to �KK, which is due to the additional valence pair �ss.
In this paper we use a lattice QCD simulation to address

the question whether the lightest scalar mesons � (I ¼ 0)
and � (I ¼ 1=2) have a sizable �q �q qq component. The
quantities studied in our present simulation do not distin-
guish between a tetraquark and a mesonic molecule. When
we use a word ‘‘tetraquark’’ below, we have in mind both
types of exotic �q �qqq states.
The � resonance is now widely accepted since its pole

withm� ¼ 441þ16
�8 MeV and �� ¼ 544þ18

�25 MeV was de-

termined in a model-independent way [7]. The � resonance
pole with m� ¼ 658� 13 MeV and �� ¼ 557� 24 MeV
was determined in a similar manner [8]. Both resonances
have been recently experimentally confirmed [9], but they
remain slightly controversial.
In order to extract the information about tetraquark

states, lattice QCD simulations evaluate correlation func-
tions with tetraquark interpolators at the source and the
sink. In addition to possible tetraquarks, also the scattering
states P1P2 (�� for I ¼ 0; 2 and K� for I ¼ 1=2; 3=2)
unavoidably contribute to the correlation function, and this
presents the main obstacle in extracting the information
about tetraquarks. The scattering states P1ðkÞP2ð�kÞ at

total momentum ~p ¼ ~0 have discrete energy levels*sasa.prelovsek@ijs.si
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EP1P2
’ EP1

ðkÞ þ EP2
ð�kÞ; with EPðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

P þ ~k2
q

and ~k ¼ 2�

L
~n (1)

in the noninteracting approximation. The energy level
EP1P2

’ mP1
þmP2

is low and makes an important contri-

bution to the correlation functions. In order to identify
possible tetraquarks, one has to extract several energy
levels En in each isospin channel and then consider various
criteria that could distinguish between the one-particle
(tetraquark) states and the two-particle (scattering) states.
We do not consider the more challenging I ¼ 1 channel,
since there are two towers KþðkÞ �K0ð�kÞ and �ðkÞ�ð�kÞ
of scattering states.

The lattice simulations [10–13] have not yet provided
the final answer to whether the lightest scalar mesons are
tetraquarks or conventional �qq mesons. All previous tetra-
quark simulations were quenched and they ignored discon-
nected contractions (cf. Figure 3 below). All simulations
(except for [11,12]) consider only the I ¼ 0 channel, and
the simulations [12,13] extract only the ground state. The
strongest indication for � as a tetraquark was obtained for
m� ’ 180–300 MeV in [10] by considering the lowest
three energy levels1 and the volume dependence of the
spectral weights. This impressive result on the � meson
was obtained from a single correlator using the sequential
empirical Bayes method [10] and needs confirmation using
a different method, for example, the variational method
used here. The first study that used the variational method
to extract the ground and the excited energy levels in
I ¼ 0; 1=2 channels was presented in [11], but the first
excited state was found much higher than EP1

ð2�L Þ þ
EP2

ð� 2�
L Þ. The reason for that was attributed to the un-

fortunate choice of the interpolators that had the same
color and Dirac structure, while they differed only in
spatial structure. For this reason we take interpolators
with different color and Dirac structures in the present
analysis, which enables us to extract the state
P1ð2�L ÞP2ð� 2�

L Þ. We note that there have been few lattice

simulations of tetraquarks or mesonic molecules in the
related hidden charm sector [14].

In this paper we determine a spectrum of states with

JPC ¼ 0þþ, ~p ¼ ~0, and I ¼ 0; 2; 1=2; 3=2 on the lattice
using the variational method with a number of tetraquark
sources and sinks. We also determine the couplings
h0jOijni between the interpolators Oi and the physical
states jni. This is the first dynamical simulation intended
to look for tetraquarks, and we also perform the quenched
simulation in order to see whether there are any qualitative
differences between the two cases. Our dynamical simula-
tion has two flavors of chirally improved quarks, while

our quenched simulation uses overlap quarks. In this
pioneering study, we are interested in the ‘‘pure’’ tetra-
quark states with four valence quarks �q �q qq, and we
prevent �q �q qq $ �qq $ vac $ glue mixing by neglect-
ing the disconnected contractions in I ¼ 0; 1=2 channels,
as in all previous tetraquark studies.2

The accurate lattice spectrum En as a function of the
lattice size L in principle allows determination of the
resonance mass and widths [17,18]. The resonance appears
as a state in the spectrum in addition to the discrete tower
of scattering states. At the values of m�L, where the non-
interacting energies of the resonance and the scattering
state would cross, the energy levels experience the largest
energy shifts from the noninteracting values [17,18]. These
energy shifts in principle allow the determination of the
resonance width. In practice, the accurate determination of
the excited energy levels on the lattice is challenging and
only the � meson width has been reliably determined from
the ground energy level in this way [19]. So far only
simulations of the toy models were able to extract the
scattering states and the width of the resonance from the
ground and the excited energy levels [20].
In the present work, our excited energy levels are not

accurate enough to allow for the determination of the� and
� widths. We concentrate on a simpler and more realistic
question: is there any light state in addition to P1ð0ÞP2ð0Þ
and P1ð2�L ÞP2ð� 2�

L Þ in the attractive channels I ¼ 0 or

I ¼ 1=2? Such an additional state could be related to
� or �with sizable tetraquark components. Our main result
for the spectrum, shown in Figs. 1 and 2, indeed shows an
additional light state, and we propose a possible interpre-
tation that it is a tetraquark state. The extracted energy of
the additional state as a function ofm� qualitatively agrees
with m�;�ðm�Þ from unitarized chiral perturbation theory

(ChPT) [5].
The � and � are expected to become bound states at our

heavier m�, where decays � ! �� and � ! K� are no
longer allowed kinematically [5]. In the range of m�,
where this might occur, we find candidates for � and �
close to the threshold, in qualitative agreement with the
prediction of unitarized ChPT [5] and a lattice study of a
toy model with bound and scattering states [21].
We also determine the spectra in repulsive channels

I ¼ 2 and I ¼ 3=2, where no light resonance is experi-
mentally observed. Our main purpose here is to verify that
there is no light state in addition to P1ð0ÞP2ð0Þ and
P1ð2�L ÞP2ð� 2�

L Þ. The results in Figs. 1 and 2 demonstrate

that indeed we do not find any additional state.
We explore two methods to distinguish the one-particle

and two-particle states. The first is based on the time
dependence of the correlation functions and the

1The I ¼ 0 energy levels from [10] and the present work are
compared in Sec. III C.

2The disconnected contractions have been recently taken into
account in the study of the ground scattering states with I ¼ 0
[15] and I ¼ 1=2 [16].
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eigenvalues of the variational method, which are explored
analytically as well. The second method is based on the
volume dependence of the couplings h0jOijni, which is
explored in the quenched simulation and compared to the
theoretical expectations.

Some of our initial exploratory results have been pub-
lished in proceedings [22].

We present the methods to extract the spectrum and the
h0jOijni couplings in Sec. II. The analytical expectations
for the time dependence of the correlators and the eigen-
values at finite temporal extent are also given in this
section, while certain derivations are delegated to
Appendix A. Our numerical results and their interpretation
are given in Sec. III, and we end with conclusions. In
Appendix B we show that omission of the disconnected
contractions cannot lead to an unphysical intermediate
state with different isospin.

II. SIMULATION

A. Correlation matrix and interpolators

We computed the same tetraquark correlation functions
CijðtÞ in a two-flavor dynamical simulation and in a

quenched simulation. The purposewas to see whether there
are any significant qualitative differences between the two
cases. The results, presented in Sec. III, show qualitative

agreement between dynamical and quenched results. The
details about both simulation are given in Sec. II D.
The tetraquark correlation function creates a state �q �qqq

with chosen I and JPC ¼ 0þþ at t ¼ 0 and annihilates it at
some later time t, where the projection to the total momen-

tum ~p ¼ ~0 is made. The time dependence is obtained by
inserting a complete set of physical states jni with given
quantum numbers

CijðtÞ ¼ h0jOiðtÞOy
j ð0Þj0i ~p¼~0

¼ X
~x

h0jOið ~x; tÞOy
j ð~0; 0Þj0i !T!1X

n

Zn
i Z

n�
j e�Ent;

n ¼ 1; 2; . . . (2)

with coupling Zn
i � h0jOijni and temporal extent of the

lattice T. The correlation matrix is used to extract energy
levels En and couplings Zn

i for the tetraquark system.
We consider five interpolators in the case of I ¼ 0; 1=2

and three interpolators in the case of I ¼ 2; 3=2. The
interpolators differ only in Dirac and color structure, but
they have the same spatial structure: all quark fields are
evaluated at the same space-time point.
For I ¼ 0 and 1=2, where resonances may be expected,

the first three interpolators Oi¼1;2;3 are products of two

color-singlet currents (with sum over spatial components
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� for Oi¼2;3) and the flavor structure is derived in

Appendix B. The last two interpolators are of well-known
diquark anti-diquark type [4]

OI¼0
i¼1;2;3 ¼

X
�¼1;2;3

2ð �d��
i uÞð �u��

i dÞ þ 1
2ð �u��

i uÞð �u��
i uÞ

þ 1
2ð �d��

i dÞð �d��
i dÞ � ð �u��

i uÞð �d��
i dÞ;

OI¼0
i¼4;5 ¼ ½ �u ��i

�dT�a½uT�id�a;
OI¼1=2

i¼1;2;3 ¼
X

�¼1;2;3

X
q¼u;d;s

ð �s��
i qÞð �q��

i uÞ;

OI¼1=2
i¼4;5 ¼ ½ �s ��i

�dT�a½uT�id�a: (3)

Here �� � �0�
y�0 and

�1 ¼ �5; ��
2 ¼ ��; ��

3 ¼ ���5;

�4 ¼ C�5; �5 ¼ C; (4)

while ½qT�Q� denotes a (pseudo) scalar diquark
½qT�Q�a � �abc½qTb�Qc �QT

b�qc�. The I ¼ 1=2 tetra-

quark interpolators above are constructed to transform as
jI; I3i ¼ j1=2; 1=2i under SUð2ÞF and like �su flavor state
under SUð3ÞF.

We use a smaller three-dimensional interpolator basis
for I ¼ 2 and 3=2, which are not of our prime interest since
no resonances have been observed experimentally in these
repulsive channels. All these interpolators are of current-
current type

OI¼2
i¼1;2;3 ¼

X
�¼1;2;3

ð �d��
i uÞð �d��

i uÞ;

OI¼3=2
i¼1;2;3 ¼

X
�¼1;2;3

ð�s��
i uÞð �d��

i uÞ
(5)

with �i as defined in (4).
Figure 3 shows the contractions which enter the corre-

lation matrix with our tetraquark interpolators at the source
and the sink: I ¼ 0 has all three contractions, I ¼ 1=2 has
contractions (a),(b) and I ¼ 2; 3=2 have only the connected
contraction (a). In this pioneering study, we are interested
in physical states with four valence quarks �q �q qq (pure
tetraquark states and P1P2 states), and we therefore take
into account only the connected contractions. The singly
(doubly) disconnected contraction couples also to �qq (vac-
uum and glueball) states, and we ignore them in order to be

able to attribute a definite valence �q �q qq quark structure to
the obtained physical states. Another reason for omitting
the disconnected contractions is that they are difficult to
evaluate and they are often noisy. We note that it is not
legitimate to ignore the disconnected contractions in a
proper field theory, as it leads to the violation of the
unitarity. A possible effect of this approximation on our
results is discussed in Sec. III E and in Appendix B. We
choose this approximation in our study with the given
physical motivation and leave a proper study of physical
states including mixing �q �qqq $ �qq $ vac $ glue for
the future.

B. Variational method at T ! 1
The extraction of the energies En and the couplings Zn

i

from the correlation functions (2) using multiexponential
fits is unstable. Instead, we use our N � N correlation
matrix to compute the eigenvalues 	nðtÞ and eigenvectors
~unðtÞ of the generalized eigenvalues problem [23,24]

CðtÞ ~unðtÞ ¼ 	nðt; t0ÞCðt0Þ ~unðtÞ: (6)

The energy can be extracted from

	nðtÞ !t!1
e�Enðt�t0Þ (7)

when the temporal extent of the lattice T is very large. The
error on the extracted energy En due to finite basis N is

Oðe�ðENþ1�EnÞtÞ for t0 � t � 2t0 [24]. We will demonstrate
that our results are almost independent of t0 for t0 2 ½1; 4�,
while they get noisier for t0 � 5. Our main analysis is
based on t 2 ½6; 10�, so the condition t � 2t0 is satisfied
or close to being satisfied. The exponential time depen-
dence (7) would apply only for infinite temporal extent T,
and we discuss the significant effect of finite T on CijðtÞ
and 	nðtÞ in Sec. II C.
The eigenvectors ~unðtÞ, which satisfy the orthogonality

relation ð ~un; CðtÞ ~uðmÞÞ / 
nm, allow us to determine the
couplings Zn

i at large t (see, for example, the derivation
in [25])

jZn
i j ¼ jh0jOijnij ¼

jP
k

CikðtÞunkðtÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
lm

jun�l ðtÞClmðtÞunmðtÞj
r eEnt=2: (8)

Note that the normalization of ~unðtÞ, which is arbitrary,
cancels in (8). The error on the extracted coupling Zn

i due

to the finite basis N is Oðe�ðENþ1�EnÞt0Þ for t � 2t0 and for
fixed t� t0 [24]. Extracting the ratio of couplings for a
given state jni to two different interpolators is particularly
straightforward

jZ
n
i

Zn
j

j ¼
jP
k

CikðtÞunkðtÞj
jP
k0
Cjk0 ðtÞunk0 ðtÞj

: (9)

(a) (b) (c)

FIG. 3. Quark contractions for our tetraquark correlators: con-
nected (a), singly disconnected (b), and doubly disconnected (c).
Only connected contractions are taken into account in our
simulation, for reasons explained in the text.
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Extracting jZn
i j itself

jP
k

CikðtÞunkðtÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
lm

jun�l ðtÞClmðtÞunmðtÞj
r ¼ jZn

i je�Bt (10)

requires fitting the left-hand side to the form on the
right-hand side. We always verify that the fitted coefficient
B in the exponent is consistent with En=2 as obtained
from 	nðtÞ.

C. Effect of finite T on the correlation matrix
and the eigenvalues

Our temporal extents (T ¼ 32 for the dynamical and
T ¼ 28 for the quenched simulation) are not very large,
so we need to understand the effect of finite T on CijðtÞ and
	nðtÞ. At finite temporal extent T, the time dependence
e�Ent gets modified depending on the boundary conditions
and the nature of the states. We use antiperiodic boundary
conditions in the time direction for quarks and antiquarks.

If a single one-particle state jni dominates the correlator,
the diagonal correlator CiiðtÞ behaves as

CiiðtÞ !large tjZn
i j2½e�Ent þ e�EnðT�tÞ�: (11)

If the correlator is dominated by a two-particle state jni ¼
jP1P2i, it behaves as (see Appendix A of this paper and
Appendix A of [11,26])

CiiðtÞ !large tjZn
i j2½e�Ent þ e�EnðT�tÞ�

þ j ~Zn
i j2½e�mP1

te�mP2
ðT�tÞ þ e�mP2

te�mP1
ðT�tÞ�; (12)

where En is two-particle energy. Let us consider the rela-
tive importance of the couplings Zn

i ¼ h0jOijP1P2i and
~Zn
i ¼ hPy

1 jOijP2i [11], which will be needed in our further
study. Both matrix elements have similar structure; there-
fore one expects that Zn

i is of the same order of magnitude

as ~Zn
i . However, we do not expect that hPy

1 jOijP2i is
exactly equal to h0jOijP1P2i: in the second case Oi anni-
hilates the (interacting) state P1P2, where P1 and P2

existed at the same time and therefore interacted; in the

first caseOi annihilates the P2 and creates P
y
1 , soP1 andP2

never exist at the same time and there is no interaction

between them. We therefore believe that in the interacting

theory hPy
1 jOijP2i � h0jOijP1P2i and Zn

i � ~Zn
i , but we

expect they are of the same order of magnitude.
In reality, several physical states contribute to the corre-

lation matrix and the time dependence of the eigenvalues
becomes more complicated. We are, in particular, inter-
ested in the cases where two-particle states and also
possible one-particle (tetraquark) states contribute to the
correlation matrix. We study the generalized eigenvalue
problem for such a situation in Appendix A. We find that
(i) the eigenvalue corresponding to the one-particle

state would have a time dependence proportional to

e�Ent þ e�EnðT�tÞ and
(ii) the eigenvalue corresponding to the two-particle

state would have a time dependence propor-

tional to e�Ent þ e�EnðT�tÞ þ R½e�mP1
te�mP2

ðT�tÞ þ
e�mP2

te�mP1
ðT�tÞ� with two-particle energy En

only if the following relations would apply exactly:

hPy
1 jOijP2i ¼ h0jOijP1P2i or more generally if

hPy
1 jOijP2i ¼ Rh0jOijP1P2i with R independent of i.

However, we argued in the previous paragraph that these
relations do not apply exactly, and so the time dependence
of eigenvalues is more complicated than in statements (i)
and (ii) above. In Appendix Awe argue (although this has
not been rigorously proved) that the two-particle as well as
the one-particle eigenvalues have the general form3

	nðtÞ ¼ wn½e�Ent þ e�EnðT�tÞ�
þ ~wn½e�mP1

te�mP2
ðT�tÞ þ e�mP2

te�mP1
ðT�tÞ�: (13)

In our analysis, we extractEn from eigenvalues	nðtÞ using a
three-parameter fit (En,w, ~w), where masses of P1;2 ¼ �;K
are fixed4 to the measured values given in Tables I and II.

In case of equality hPy
1 jOijP2i ¼ h0jOijP1P2i, we would

expect ~w ¼ 0 for a one-particle state and ~w ¼ w for a two-
particle state. We note that the extracted wn and ~wn in
Tables III and IV are of similar magnitude.
Finally we note that the form (13) generally applies only

in the case when all diagonal and nondiagonal correlators

TABLE I. Two-flavor dynamical ensembles with chirally improved quarks [28]: pseudoscalar
masses, Jacobi-smearing parameters (N, �), and the number of configurations are listed. All
ensembles have volume 163 � 32.

Ensemble a [fm] m� [MeV] m�a mKa N � Conf.

C 0:1440ð12Þ 318ð5Þ 0:232ð4Þ 0:391ð3Þ 15 0.223 200

B 0:1500ð12Þ 469ð4Þ 0:357ð3Þ 0:462ð3Þ 15 0.222 200

A 0:1507ð17Þ 526ð7Þ 0:402ð5Þ 0:465ð3Þ 17 0.212 100

3This form applies if only one two-particle state P1P2 makes a
significant contribution at t ’ T=2.

4We verified that the variation of the results is negligible if
m�;K are varied in the ranges given in Tables I and II.
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are symmetric with respect to t ! T � t and that all our
CijðtÞ have this property. In the case when some parts of

nondiagonal correlators are antisymmetric with respect to
t $ T � t, ‘‘backward propagation’’ described in Sec. IIF
of [27] may appear.

D. Details of dynamical and quenched
lattice simulations

Our correlation functions are constructed based on
gauge configurations and quark propagators for two cases:

TABLE III. Extracted energies Ena (a�1 ’ 1:3 GeV) together with wn in the dynamical simulation for all isospins. The fit form (13)
is used whenever ~wn is provided, while fit form (17) is used where ~wn is not provided. The interpolator basis, t0, fit ranges, and
uncorrelated �2=[degrees of freedom (dof)] are also presented. The n ¼ 1 states with I ¼ 0; 1=2 and the lowest m� have badly
determined ~wn since they have almost flat cosh-type effective mass, which indicates they are roughly consistent with (17) and ~w ’ 0
(the finite T effect is less significant at low m� [11]).

I n m� [MeV] Ena wn ~wn t0 Interp. tmin � tmax �2=dof

0 1 318 0:36ð4Þ 0:33ð8Þ �0:15ð63Þ 1 O12345 8–15 0.015

0 1 469 0:72ð1Þ 6:6ð6Þ 8:7ð1:0Þ 3 O12345 8–15 0.0065

0 1 526 0:81ð1Þ 8:7ð7Þ 9:2ð9Þ 3 O12345 8–15 0.14

0 2 318 0:41ð2Þ 0:061ð10Þ 0:049ð16Þ 1 O12345 8–15 0.088

0 2 469 0:72ð1Þ 3:8ð3Þ 5:3ð4Þ 3 O12345 8–15 0.024

0 2 526 0:82ð1Þ 5:3ð5Þ 6:6ð5Þ 3 O12345 8–15 0.018

0 3 318 0:93ð9Þ 0:23ð12Þ 1 O12345 6–9 0.36

0 3 469 1:11ð5Þ 10:5ð3:7Þ 3 O12345 7–9 0.28

0 3 526 1:07ð6Þ 7:7ð2:9Þ 3 O12345 6–10 1.1

2 1 318 0:45ð2Þ 0:33ð4Þ 0:32ð8Þ 1 O123 8–15 0.0086

2 1 469 0:736ð5Þ 0:47ð2Þ 0:54ð3Þ 1 O123 8–15 0.016

2 1 526 0:827ð7Þ 0:57ð4Þ 0:54ð4Þ 1 O123 8–15 0.0084

2 2 318 1:33ð19Þ 0:73ð91Þ 1 O123 6–9 0.0039

2 2 469 1:33ð4Þ 0:41ð13Þ 1 O123 7–10 0.25

2 2 526 1:35ð8Þ 0:40ð27Þ 1 O123 8–11 0.60

1=2 1 318 0:55ð3Þ 2:8ð6Þ 1:5ð1:4Þ 3 O12345 8–15 0.077

1=2 1 469 0:826ð8Þ 8:1ð6Þ 9:2ð9Þ 3 O12345 8–15 0.032

1=2 1 526 0:87ð1Þ 9:4ð9Þ 9:4ð9Þ 3 O12345 8–15 0.11

1=2 2 318 0:636ð8Þ 3:4ð2Þ 3:2ð3Þ 3 O12345 8–15 0.011

1=2 2 469 0:852ð5Þ 6:7ð3Þ 7:2ð4Þ 3 O12345 8–15 0.048

1=2 2 526 0:907ð7Þ 8:3ð6Þ 7:4ð4Þ 3 O12345 8–15 0.012

1=2 3 318 1:05ð7Þ 8:8ð40Þ 3 O12345 7–10 0.11

1=2 3 469 1:16ð6Þ 9:9ð45Þ 3 O12345 8–10 0.57

1=2 3 526 1:14ð4Þ 7:9ð23Þ 3 O12345 7–10 0.32

3=2 1 318 0:630ð9Þ 0:36ð2Þ 0:34ð4Þ 1 O123 8–15 0.0088

3=2 1 469 0:844ð5Þ 0:50ð2Þ 0:55ð3Þ 1 O123 8–15 0.042

3=2 1 526 0:896ð6Þ 0:60ð4Þ 0:57ð4Þ 1 O123 8–15 0.013

3=2 2 318 1:27ð9Þ 0:33ð21Þ 1 O123 7–10 0.62

3=2 2 469 1:40ð5Þ 0:50ð19Þ 1 O123 8–10 0.017

3=2 2 526 1:34ð9Þ 2:5ð2Þ 1 O123 9–11 0.058

TABLE II. The quenched simulation with overlap quarks is
performed at two volumes 163 � 28 and 123 � 28 at the same
lattice spacing a ¼ 0:200ð3Þ fm [33]. The analysis is done at
three pion masses above (these m� are determined at the larger
volume).

m� [MeV] m�a mKa Conf.

230ð7Þ 0:2332ð56Þ 0:515ð3Þ 300

342ð6Þ 0:3470ð40Þ 0:545ð2Þ 300

478ð8Þ 0:4840ð32Þ 0:596ð2Þ 300
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the two-flavor dynamical simulation [28] and the quenched
simulation [10].

(i) Details of the two-flavor dynamical simulation to-
gether with the ground state hadron spectroscopy are
given in [28], while some related results based on a
similar setup are given in [27,29]. In that simulation
the Lüscher-Weisz gauge action [30] and two flavors
of dynamical degenerate chirally improved quarks
[31] have been used. The gauge fields are periodic in
all four space-time directions, the fermion field anti-
periodic in the time direction. One level of stout
smearing [32] is applied to the gauge configurations,
which is considered as a part of full Dirac operator.
We use three ensembles (C, B, A) with the
same lattice volume 163 � 32 and three different
u=d quark masses, corresponding to m� ’
318–526 MeV (see Table I). The lattice spacings,
also given in Table I, have been determined using

r0 ¼ 0:48 fm and are close to a ’ 0:15 fm for all
three ensembles.
The valence u, d, s quarks are also of chirally
improved type. The valence u=d quark masses are
always fixed to the dynamical u=d quark masses in
our study. The valence strange quark masses is fixed
from m�.
All quark sources and sinks are Jacobi smeared by
applying

XN
n¼0

ð�HÞn with H ¼ X3
j¼1

½Ujð ~x; tÞ
~xþ ~j; ~y

þUy
j ð ~x� ~j; tÞ
~x� ~j; ~y�; (14)

which is invariant under rotations and preserves the
interpolator quantum numbers. For this analysis we
use a single (‘‘narrow’’) smearing with the values
of N and � in Table I, which are chosen to give

TABLE IV. Analogous to Table III, but for the quenched simulation at the larger volume V ¼ 163 � 28 and a�1 ’ 1 GeV.

I n m� [MeV] Ena wn ~wn t0 Interp. tmin � tmax �2=dof

0 1 230 0:40ð3Þ 1:2ð6Þ 3 O123 8–10 0.0013

0 1 342 0:72ð2Þ 3:1ð6Þ 1:5ð4Þ 3 O12345 8–13 0.0010

0 1 478 1:03ð2Þ 7:2ð14Þ 2:0ð3Þ 3 O1245 8–13 0.0020

0 2 230 0:45ð4Þ 0:15ð6Þ 3 O123 8–10 0.039

0 2 342 0:75ð8Þ 0:45ð44Þ 0:57ð9Þ 3 O12345 8–13 0.0084

0 2 478 1:03ð6Þ 0:46ð43Þ 0:38ð4Þ 3 O1245 8–13 0.018

0 3 230 1:05ð21Þ 0:8ð12Þ 3 O123 6–8 0.41

0 3 342 1:15ð6Þ 1:3ð5Þ 3 O12345 7–9 0.018

0 3 478 1:33ð5Þ 1:2ð5Þ 3 O1245 8–10 0.053

2 1 230 0:54ð9Þ 3:3ð19Þ 2:5ð6Þ 3 O123 8–13 0.085

2 1 342 0:719ð9Þ 1:8ð2Þ 1:64ð9Þ 3 O123 8–13 0.0027

2 1 478 1:032ð7Þ 2:8ð2Þ 1:90ð7Þ 3 O123 8–13 0.16

2 2 342 1:00ð37Þ 0:05ð55Þ 3 O123 7–10 0.21

2 2 478 1:50ð9Þ 0:62ð52Þ 3 O123 8–11 0.21

1=2 1 230 0:76ð3Þ 2:7ð10Þ 1:6ð5Þ 3 O12345 9–13 0.00034

1=2 1 342 0:94ð2Þ 4:5ð8Þ 1:7ð3Þ 3 O12345 9–13 0.0030

1=2 1 478 1:16ð2Þ 8:1ð13Þ 1:9ð2Þ 3 O12345 9–13 0.0038

1=2 2 230 0:76ð3Þ 1:1ð3Þ 1:1ð2Þ 3 O12345 9–13 0.0030

1=2 2 342 0:94ð2Þ 1:2ð2Þ 0:90ð6Þ 3 O12345 9–13 0.00018

1=2 2 478 1:18ð1Þ 2:0ð2Þ 0:93ð4Þ 3 O12345 9–13 0.029

1=2 3 230 1:23ð7Þ 1:7ð8Þ 3 O12345 7–10 0.014

1=2 3 342 1:29ð9Þ 1:0ð7Þ 3 O12345 8–10 0.096

1=2 2 478 1:47ð4Þ 1:7ð5Þ 3 O12345 8–10 0.22

3=2 1 230 0:771ð9Þ 2:1ð2Þ 2:2ð1Þ 3 O123 9–13 0.0062

3=2 1 342 0:937ð6Þ 2:3ð1Þ 1:93ð7Þ 3 O123 9–13 0.0047

3=2 1 478 1:156ð5Þ 3:45ð2Þ 2:15ð7Þ 3 O123 9–13 0.046

3=2 2 230 1:19ð29Þ 0:09ð22Þ 3 O123 8–10 0.00014

3=2 2 342 1:27ð11Þ 0:09ð12Þ 3 O123 9–12 0.23

3=2 2 478 1:55ð7Þ 0:47ð33Þ 3 O123 9–11 0.12
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the source/sink Gaussian width of approximately
0.27 fm.

(ii) Details of the quenched simulation are presented in
[10,33]. It employs overlap valence quarks, which
have exact chiral symmetry even at finite lattice spac-
ing. The gauge fields are generated using Iwasaki
actions, where the lattice spacing a ¼ 0:200ð3Þ fm
is determined using f�. Our main analysis is based
on the volume 163 � 28, while a smaller volume
123 � 28 with the same lattice spacing is used for
the study of the volume dependence of couplings
h0jOijni. All u, d, s quarks have pointlike sources
and sinks, while the strange quark mass is fixed from
m�. We use three u=d quark masses, corresponding

to m� ¼ 230–478 MeV (see Table II).

III. RESULTS

A. Time dependence of diagonal correlators

The effective masses for diagonal correlators CiiðtÞ for
four isospins are displayed in Fig. 4. We show the cosh-
type effective mass, defined as

FðtÞ
Fðtþ 1Þ ¼ e�mt

eff
t þ e�mt

eff
ðT�tÞ

e�mt
eff
ðtþ1Þ þ e�mt

eff
ðT�t�1Þ ;

FðtÞ ¼ CiiðtÞ or 	nðtÞ;
(15)

so that meff equals the energy E if FðtÞ ¼ w½e�Et þ
e�EðT�tÞ�. The observed effective masses have sizable

excited state contributions at small t, and they have a
significant drop for t > 10, which indicates that a two-
particle state jni dominates CiiðtÞ at t ’ T=2 for each i
and I (see Sec. II D).

B. Time dependence of eigenvalues

Because of the lack of reliable plateaus in the diagonal
elements of the correlation function, we turn to use the
eigenvalues of the variational method in order to extract
the spectrum. Typical cosh-type effective masses (15) for
eigenvalues are plotted by empty symbols in Fig. 5. The
excited state contribution at small t is smaller than for the
diagonal correlators and meff reach a short plateau, but
then they drop significantly for t > 10. We note that the
drop is less significant for smaller m� and more
significant for larger m�, as illustrated in [11]. The drop
demonstrates that eigenvalues do not have a simple

e�Ent þ e�EnðT�tÞ time dependence, but have a more com-
plicated time dependence (13) due to the presence of
two-particle states �� or K� in the box with finite T.
The corrected effective mass takes that effect into account

FðtÞ � ~w½e�mP1
te�mP2

ðT�tÞ þ ft $ T � tg�
Fðtþ 1Þ � ~w½e�mP1

ðtþ1Þe�mP2
ðT�t�1Þ þ ft $ T � tg�

¼ e�mt
eff
t þ e�mt

eff
ðT�tÞ

e�mt
eff
ðtþ1Þ þ e�mt

eff
ðT�t�1Þ ; (16)

so meff is equal to En when FðtÞ ¼ CiiðtÞ or FðtÞ ¼ 	nðtÞ
has the form (13). Such meff is obtained after ~w has been
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FIG. 4 (color online). Cosh-type effective mass (15) for the diagonal correlators CiiðtÞ at m� ¼ 469 MeV in the dynamical
simulation. The lines indicate 2m� or m� þmK.
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determined by fitting 	nðtÞ to (13). The corrected effective
mass is presented by the full symbols in Fig. 5, it is flat, and
it demonstrates that eigenvalues really have time depen-
dence of the form (13).

We will always use the fitting form (13) and the cor-

rected effective mass (16) for 	n¼1;2
I¼0;1=2 and for 	

n¼1
I¼2;3=2. For

higher states 	n�3
I¼0;1=2 and 	n�2

I¼2;3=2, the error bars on 	nðtÞ
are large at t > 10, where the finite T effect is significant,
such that the three-parameter fit with ðEn; w

n; ~wnÞ is not
stable. In this case we will present cosh-type effective
masses (15) and we will fit to

	nðtÞ ¼ wn½e�Ent þ e�EnðT�tÞ� (17)

at rather small t, where the finite T effect is not significant.
Let us note that the significant effect at finite T ¼ 28; 32

prevents us from a reliable determination of the energy
shifts �En ¼ En �mP1

�mP2
, which require very long

stable plateaus. Therefore, we do not aim at determining
the energy shifts, but we determine the spectrum En¼1;2;3

itself with a reasonable precision.

C. Energy levels En and couplings Zn
i

1. I ¼ 0 and I ¼ 2

The typical effective masses for I ¼ 0; 2 are collected in
Fig. 6. The ratios of couplings jZn

i =Z
n
j j extracted via (9) are

also shown. The lines display the three lowest energies of
�ðkÞ�ð�kÞ in the noninteracting case.

In the I ¼ 0 case, we find one state with energy close to
�ð0Þ�ð0Þ, we find another state with energy close to
�ð2�L Þ�ð� 2�

L Þ, and we also find an additional light state

(close to the lowest state). This applies for all quark masses

and for the dynamical as well as the quenched simulation.
We varied t0 2 ½1; 4� and performed the diagonalization of
5� 5 and all possible 4� 4 and 3� 3 submatrices. We
find that the extracted energies5 En and couplings

6 jZn
i j are

almost independent of these choices for all quark masses
and both simulations, as demonstrated for a specific case
in Fig. 7.
In the I ¼ 2 case, we find one state with energy close

to �ð0Þ�ð0Þ, another state with energy close to
�ð2�L Þ�ð� 2�

L Þ, and no additional light state (see Fig. 6).

Again, this applies for all quark masses, for both simula-
tions, and for the range of t0 2 ½1; 4�. In this case we use
only a 3� 3 matrix (5), which is probably not large
enough to capture the energy of �ð2�L Þ�ð� 2�

L Þ exactly

(it naturally comes out too high). We point out that our
intention was not to capture the energy of �ð2�L Þ�ð� 2�

L Þ
correctly, but to verify that there is no light state in
addition to �ð0Þ�ð0Þ in the I ¼ 2 channel.
The final result for the dependence of the extracted

spectrum on m� in both simulations is presented in
Fig. 1. Tables III and IV provide the corresponding nu-
merical results, together with the choices of t0, interpolator
sets, and fit ranges. The values are obtained using an
uncorrelated fit to (13) or (17) and the error bars are
obtained with the single elimination jackknife method.
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FIG. 5 (color online). The typical cosh-type effective masses according to (15) (open symbols) and the corrected effective masses
(16) (filled symbols) for the two lightest states in I ¼ 0; 1=2 channels and for the lightest state in I ¼ 2; 3=2 channels. The full 5� 5
correlation matrix is used for I ¼ 0; 1=2 and the 3� 3 correlation matrix is used for I ¼ 2; 3=2. The figure shows as an example our
results for the dynamical simulation with m� ¼ 469 MeV and t0 ¼ 3, with ~w fitted via (13) in the range t 2 ½8; 15�. The lines
represent 2m� (I ¼ 0; 2) and m� þmK (I ¼ 1=2; 3=2).

5As an exception, all energies in Figs. 7 and 9 are extracted
using the fit form (17) at rather small t 2 ½7; 10�, where a finite T
effect is not significant. The resulting En are just intended to
demonstrate independence on t0 and on the choice of the
interpolator set.

6The jZn
i j was determined via (10) by fitting in the time range

indicated in the plot.
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Finally, we compare our I ¼ 0 results to those ob-
tained from a single �� correlator using the sequential
empirical Bayes method (SEBM) [10]. Above 300 MeV,
we get degenerate results for the two states below
�ð2�L Þ�ð� 2�

L Þ. For m� > 300 MeV, the authors of [10]

were unable to separate these two states using the
SEBM; there is no disagreement since the SEBM is
not designed to resolve degenerate states. Although the
m� > 300 MeV results were not included in the publi-
cation, the authors of [10] do present results for pion
masses in the range 182 MeV to 250 MeV. Both groups
have analyzed a pion mass of 230 MeV. For this, the
authors of [10] get the first state close to �ð0Þ�ð0Þ and
the third state close to �ð2�L Þ�ð� 2�

L Þ, just as we do.

Although the detailed results are somewhat different,
both groups obtain a second state below �ð2�L Þ�ð� 2�

L Þ,
which is the crucial result.

2. I ¼ 1=2 and I ¼ 3=2

The effective masses and ratios jZn
i =Z

n
j j for

I ¼ 1=2; 3=2 are shown in Fig. 8, while the resulting
spectrum En is given in Fig. 2 and in Tables III and IV.

The conclusions regarding I ¼ 1=2 are completely analo-
gous to the I ¼ 0 case above: there is a light state in addition
to Kð0Þ�ð0Þ and Kð2�L Þ�ð� 2�

L Þ. Results for the exotic

I ¼ 3=2 channel are analogous to results for I ¼ 2: there
is no light state in addition to Kð0Þ�ð0Þ and Kð2�L Þ�ð� 2�

L Þ.
This applies to all quark masses, to both simulations, and

to any choice of t0 2 ½1; 4�. We performed the diagonal-
ization of the 5� 5 and all possible 4� 4 and 3� 3
submatrices in I ¼ 1=2 case. We find that the extracted
En and jZn

i j are almost independent of these choices for all
quark masses and both simulations, as demonstrated for a
specific case in Fig. 9.

D. Volume dependence of Zn
i

For completeness we provide now the volume depen-
dence of couplings Zn

i in the case of the quenched simula-
tion, which was performed at two volumes 163 � 28 and
123 � 28 at the same lattice spacing a ¼ 0:200ð3Þ fm. We
are unable to show the analogous volume dependence in
the case of dynamical simulation as it was performed on a
single volume.
The expectation for the L dependence of Zn

i ðLÞ is
[10,11,18]

(i) Zn
i ð16Þ ’ ð1216Þ3=2Zn

i ð12Þ ’ 0:65Zn
i ð12Þ in the case

when jni is two-particle state P1P2;
(ii) Zn

i ð16Þ ’ Zn
i ð12Þ in the case when jni is a one-

particle state (resonance);

but these two behaviors are observed in practice only when
eigenstates have very long and stable plateaus, as pointed
out in [34].
Figures 10 and 11 compare Zn

i ð16Þ with Zn
i ð12Þ and

ð1216Þ3=2Zn
i ð12Þ for all I. We have verified that the depen-

dence of Zn
i on the choice of t0 and the interpolator

set is well below the (sizable) error bars on Zn
i for all

i, n, I.
The ground state n ¼ 1 for I ¼ 2; 3=2 is expected to be

�� or K� since there are no observed light resonances in
these repulsive channels. We determined couplings Zn¼1

i

from the variational method (10) as well as from the
diagonal correlators CiiðtÞ using a fit (12), and both results
agree within the error bars. Our observed couplings seem

to be roughly consistent with Zn
i ð16Þ ’ ð1216Þ3=2Zn

i ð12Þ,
which applies for two-particle states. The relation is, how-
ever, not satisfied exactly, which is not surprising given
our short plateaus and sizable finite T effect, as pointed
out in [34].
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The error bars on extracted Zn
i for I ¼ 0; 1=2 in Figs. 10

and 11 are too large to distinguish between the one- and
two-particle states.7

E. Interpretation of the results

We now discuss our interpretation of the observed spec-
trum in Figs. 1 and 2, which has the same distinctive
features in the quenched and dynamical simulations.

1. I ¼ 2 and I ¼ 3=2

Let us first focus on the repulsive channels I ¼ 2 and
I ¼ 3=2, where n ¼ 1 and n ¼ 2 states are well separated
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i ðL ¼ 16Þ with Zn
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i ðL ¼ 12Þ for the ground state n ¼ 1, I ¼ 0; 2; 3=2,

and m� ¼ 342 MeV in the quenched simulation. The couplings for the excited states n � 2 have sizable errors and are not shown. All
couplings are obtained via (10) by a fit in the range t 2 ½7; 10� from a 3� 3 matrix (I ¼ 2; 3=2) or a 5� 5 matrix (I ¼ 0) at t0 ¼ 1.
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7The errors on Zn¼1;2
i for I ¼ 0; 1=2 in the dynamical

simulation are smaller than in the quenched simulation (see
Figs. 7 and 9).
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in energy. We interpret the n ¼ 1 ground state as �ð0Þ�ð0Þ
[Kð0Þ�ð0Þ] since it has its energy close to 2m� (m� þmK)
for I ¼ 2 (I ¼ 3=2). The time dependence of the diagonal
correlators CiiðtÞ in Fig. 4 can also distinguish the
one-particle (11) or two-particle (12) nature of the state
n ¼ 1 that dominates the correlator.8The drop of cosh-type
effective mass near t ’ T=2 in Fig. 4 speaks in favor
of two-particle state n ¼ 1. The volume dependence of
Zn¼1
i couplings in Fig. 10 is also roughly consistent with

expectation for a two-particle state. The most important
feature is a large gap between the n ¼ 1 and n ¼ 2 states,
so we do not observe any light resonance in I ¼ 2; 3=2
channel, as expected for these repulsive channels. We
interpret the n ¼ 2 state as P1ð2�L ÞP2ð� 2�

L Þ scattering state.
It has an energy somewhat above EP1

ð2�L Þ þ EP2
ð� 2�

L Þ (1),
which is most probably due to the small 3� 3 interpolator
basis, which is not big enough to capture En¼2 energy well.

2. I ¼ 0 and I ¼ 1=2

Now we turn to the more interesting attractive channels
I ¼ 0 and 1=2, where broad resonances � and � may
be expected. In each channel we observe two light states
(n ¼ 1; 2) near the threshold mP1

þmP2
and a third state

n ¼ 3 nicely consistent with EP1
ð2�L Þ þ EP2

ð� 2�
L Þ (1). It is

natural to interpret the n ¼ 3 state as the P1ð2�L ÞP2ð� 2�
L Þ

state, while the most interesting question is the nature of
n ¼ 1; 2 states.

States n ¼ 1 and n ¼ 2 are orthogonal to each other

according to ð ~un; CðtÞ ~un0 Þ / 
nn0 , so they must correspond
to two distinct physical states. There is only one scattering
state with given jI; I3i ¼ j0; 0i in this energy range, and
there is no way to envisage that the other state may also

be a scattering state. This leads to a possible interpretation
that the other state corresponds to a resonance � for I ¼ 0
and resonance � for I ¼ 1=2.
Before considering this interpretation in more detail, let

us point out again our most severe approximation,9 which
amounts to omitting the disconnected contractions in
Fig. 3. One might wonder if this omission could lead to
the unphysical appearance of an additional scattering state
with wrong flavor near threshold. In Appendix B we
explicitly show that the scattering state jI ¼ 2; I3 ¼ 0i
cannot enter as an intermediate state in our connected
correlator hOI¼0jOyI¼0i, since the connected part of the
matrix element h2; 0jOyI¼0i vanishes. The jI ¼ 1; I3 ¼ 0i
state could also not appear as an intermediate state with
E ’ 2m�, since there is no �ð0Þ�ð0Þ state with JP ¼ 0þ
and jI ¼ 1; I3 ¼ 0i. In Appendix B we also show that the
jI ¼ 3

2 ; I3 ¼ 1
2i state cannot enter as intermediate states in

our connected I ¼ 1=2 correlator, since the connected part

of the matrix element h32 ; 12 jOyI¼1=2i vanishes. Therefore
we believe that the omission of the disconnected contrac-
tions cannot be responsible for the appearance of the
additional light scattering state. Our results with two light
states in the I ¼ 0; 1=2 channels stimulate a future lattice
simulation to search for low-lying states in I ¼ 0; 1=2
channels using the connected as well as the disconnected
contractions.
After these cautionary remarks, we examine the inter-

pretation that one of the low-lying states is a scattering
state and the other is � for I ¼ 0 and � for I ¼ 1=2.
According to this interpretation, the resonances �=� found
in the simulation are pure �q �q qq states and have no �qq
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FIG. 11 (color online). Comparison of Zn
i ðL ¼ 16Þ with Zn

i ðL ¼ 12Þ and ð1216Þ3=2Zn
i ðL ¼ 12Þ for the three states n ¼ 1; 2; 3 and

I ¼ 1=2 atm� ¼ 342 MeV in the quenched simulation. For the second excited state n ¼ 3, we show only the largest component Zn¼3
4 ,

which is expected to be the most reliable. Couplings Z are obtained via (10) by fit in the range t 2 ½7; 10� from 5� 5 matrix (3)
and t0 ¼ 1.

8The n ¼ 2 state is much heavier in case of I ¼ 2; 3=2 and it
dies out near t ’ T=2.

9The other approximations are finite volume and lattice spac-
ing, absence of dynamical strange quark and unphysical u=d
quark masses, but these approximations could not lead to the
presence of unphysical scattering state near threshold.
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Fock component: we are able to attribute a definite Fock
component to the simulated states since we used tetraquark
interpolators and omitted the singly and doubly discon-
nected contractions in Fig. 3. The physical resonances �=�
that correspond to the simulated states in Nature therefore
have a �q �q qq Fock component (probed in our simulation),
but they may also have an additional �qq component (not
probed in our simulation without singly disconnected
contractions).

We already mentioned that the presence of the additional
light state has to be confirmed in a future simulation, which
takes into account also the disconnected contractions. Such
a simulation will, however, not be able to claim the pres-
ence of the �q �qqq Fock component due to �q �qqq ! �qq
mixing via singly disconnected contractions. Once the
additional light state is confirmed in a simulation with
disconnected contractions, the results of our present simu-
lation will make a case for the presence of �q �q qq Fock
components in � and �.

Now, let us attempt to establish which one of n ¼ 1; 2
states is a candidate for the one-particle state � or �. Based
on the drop of the cosh-type effective mass for CiiðtÞ near
t ’ T=2 (Fig. 4) we expect that a state jni that dominates
CiiðtÞ has a two-particle nature (12). Our states n ¼ 1; 2 are
close to degenerate, so CiiðtÞ seems to be dominated by the
state n ¼ 1 that has bigger coupling jZn¼1

i j> jZn¼2
i j

(Figs. 7, 9, and 11). This would indicate that n ¼ 1 is the
scattering stateP1ð0ÞP2ð0Þ, whilen ¼ 2 corresponds to� or
�, although we cannot claim that with complete certainty.
The errors on the couplings Zn

i ðL ¼ 12; 16Þ for I ¼ 0; 1=2
are too large to distinguish one- and two-particle behavior
based on L dependence of Zn

i , as noted in Sec. III D.
Our interpretation that En¼1 corresponds to the scatter-

ing state P1ð0ÞP2ð0Þ and En¼2 ¼ m�;� corresponds to �
and � is in agreement with several expectations:

(i) The � and � are resonances for our lowerm�, and so
they are expected to be above the P1ð0ÞP2ð0Þ scat-
tering states, which is supported by the energies in
Figs. 1 and 2 at low m�.

(ii) The � and � are expected to be bound states for our
higher m� [5]. In the range of m� where this might
occur, we find � and � almost degenerate with
P1ð0ÞP2ð0Þ, which is in qualitative agreement with
expectation from the lattice study of a toy model
with loosely bound and scattering states [21]. The
authors [21] show that a loosely bound state lies
slightly below the mP1

þmP2
and the P1ð0ÞP2ð0Þ

scattering state slightly above10 mP1
þmP2

, but our

study is not accurate enough to reliably extract these
small energy shifts.

(iii) Our resulting m� dependence of m�;�ðm�Þ ¼
En¼2ðm�Þ is in qualitative agreement with the pre-

diction of m�;�ðm�Þ within unitarized ChPT [5].

The authors [5] predict that m�;� are very close to

threshold form�=m
phy
� 2 ½2; 3�, which is supported

by our results in Figs. 1 and 2. The authors [5] find
that� and � transform from a resonance to a bound
state at about m� ’ 350 MeV, which corresponds
to intermediate m� in our simulation. We note that

at m� >m
phy
� used in our simulation, the � and �

are expected to be significantly narrower than the
broad resonances observed in the experiment [5].

IV. CONCLUSIONS AND OUTLOOK

We determined the energy spectrum and the couplings
h0jOijni for the states with JPC ¼ 0þþ, isospin I ¼
0; 1=2; 3=2; 2, and ~p ¼ ~0 using a number of tetraquark
interpolators �q �qqq at the source and the sink. We omitted
the disconnected contractions in Fig. 3. Our main question is
whether there are any light states in addition to the towers
of scattering states P1ðkÞP2ð�kÞ with k ¼ 0; 2�=L; . . .
and P1P2 ¼ �� or K�. Such additional states could be
related to resonances � or � with a sizable tetraquark
component.
The resulting spectra in Figs. 1 and 2 show qualitative

agreement between the dynamical and the quenched simu-
lations. In the repulsive channels I ¼ 2; 3=2, where no
resonance is expected, we indeed find only the scattering
states P1ð0ÞP2ð0Þ and P1ð2�L ÞP2ð� 2�

L Þ with no additional

light state. In the attractive channels I ¼ 0; 1=2 we find
two (orthogonal) states close to the threshold mP1

þmP2

and another state consistent with P1ð2�L ÞP2ð� 2�
L Þ, so we

do find an additional light state. This leads to a possible
interpretation that one of the two light states is a scattering
state P1ð0ÞP2ð0Þ and the other one corresponds to a reso-
nance� for I ¼ 0 and resonance � for I ¼ 1=2. According
to this interpretation, the physical resonances � and � have
a nonzero �q �qqq Fock component, since the corresponding
states in our simulation couple to the tetraquark interpola-
tors. Along these lines, these physical resonances could
not be pure �qq resonances since pure �qq resonances do
not couple to tetraquark interpolators in the absence of
singly disconnected diagrams in our simulation. Our
candidates for � and � have an m� dependence in
qualitative agreement with expectation from unitarized
ChPT [5].
The volume dependence of the couplings h0jOijni for

I ¼ 2; 3=2 is roughly consistent with the above interpreta-
tion, while errors on I ¼ 0; 1=2 couplings are too large to
distinguish the one- and two-particle states based on this
criterion. We also use the time dependence of the correla-
tors and eigenvalues at finite temporal extent as criteria for
distinguishing the one- or two-particle states, and we dem-
onstrate that one of the two light states in the I ¼ 0; 1=2
channels is a scattering state. Along the way, we derive the
analytical conditions, which have to be satisfied so that

10The lowest scattering state P1ð0ÞP2ð0Þ in the attractive chan-
nel is expected to be below mP1

þmP2
if there is no bound state.
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the eigenvalues corresponding to the one-particle states
would have a simple time dependence proportional to

e�Ent þ e�EnðT�tÞ.
We explored the possibility whether the omission of the

disconnected contractions could lead to an ‘‘unphysical’’
light eigenstate with I ¼ 2 in the I ¼ 0 channel. We ex-
plicitly verified that the I ¼ 2 state cannot enter as an
intermediate state in our connected I ¼ 0 correlator.
Similarly, the I ¼ 3=2 state cannot enter as an intermediate
state in our connected I ¼ 1=2 correlator.

The ultimate method to study � and � on the lattice
would involve the study of the spectrum and couplings in
the presence of the disconnected contractions and the
�q �qqq $ �qq $ vac $ glue mixing, using interpolators
that cover these Fock components. The recently proposed
distillation method [35] could prove useful for determining

the correlators with P1ð ~kÞP2ð� ~kÞ interpolators or discon-
nected contractions. Such a study has to be done as a
function of lattice size L in order to extract the resonance
mass and width using Lüscher’s finite volume method
[17,18,21].
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APPENDIX A: EFFECT OF FINITE T ON
EIGENVALUES OF THE GENERALIZED

EIGENVALUE METHOD

Here we consider the effect of finite T on the eigenvalues
of the generalized eigenvalue problem. We take a simple
example with only two physical states of given quantum
numbers JPC and I: a one-particle state A (for example, �
or �) and a two-particle state P1P2 (for example, �� or
K�). Let us study two eigenvalues of the 2� 2 correlation
matrix [for example, using two interpolators from (3)]

CijðtÞ ¼ 1

ZT

Tr½e�HTOiðtÞOy
j ð0Þ�

¼ 1

ZT

X
m;n

hmje�HðT�tÞOijnihnje�HtOy
j jmi (A1)

and the relevant states n, m ¼ A, P1P2, P1, P2 giving [11]

CijðtÞ ¼ h0jOijAihAjOy
j j0ie�mAt

þ hAyjOij0ih0jOy
j jAyie�mAðT�tÞ

þ h0jOijP1P2ihP1P2jOy
j j0ie�EP1P2

t

þ hPy
1P

y
2 jOij0ih0jOy

j jPy
1P

y
2 ie�EP1P2

ðT�tÞ

þ hPy
1 jOijP2ihP2jOy

j jPy
1 ie�EP1

ðT�tÞe�EP2
t

þ hPy
2 jOijP1ihP1jOy

j jPy
2 ie�EP2

ðT�tÞe�EP1
t

¼ h0jOijAih0jOjjAi�½e�mAt � e�mAðT�tÞ�
þ h0jOijP1P2ih0jOjjP1P2i�
� ½e�EP1P2

t � e�EP1P2
ðT�tÞ�

þ hPy
1 jOijP2ihPy

1 jOjjP2i�
� ½e�EP1

ðT�tÞe�EP2
t � e�EP2

ðT�tÞe�EP1
t�: (A2)

The signs ‘‘�’’ depend on the symmetry properties of the
interpolators and states. We will assume the ‘‘þ’’ sign
everywhere, since all our diagonal and nondiagonal
correlators in the actual simulation are symmetric with
respect to t $ T � t (if the ‘‘�’’ sign occurs in some terms,
the ‘‘backward propagation’’ described in Section IIf of
[27] may occur).
If the coefficients in the third line were proportional to

the coefficients in the second line

hPy
1 jOijP2i ¼ Rih0jOijP1P2i with Ri ¼ R;

independent of i;
(A3)

the third line would depend linearly on the second line

CijðtÞ ¼
X

n¼1;2

Zn
i Z

n�
j fnðtÞ (A4)

with

Z1
i ¼ h0jOijAi;

f1ðtÞ ¼ e�mAt þ e�mAðT�tÞ;

Z2
i ¼ h0jOijP1P2i;

f2ðtÞ ¼ e�EP1P2
t þ e�EP1P2

ðT�tÞ

þ R½e�EP1
ðT�tÞe�EP2

t þ e�EP2
ðT�tÞe�EP1

t�:
(A5)

The eigenvalues of CðtÞ ~unðtÞ ¼ 	nðt; t0ÞCðt0Þ ~unðtÞ can be
obtained in this case following the same steps as in [36]

	nðtÞ ¼ fnðtÞ
fnðt0Þ : (A6)

So, only if the condition (A3) would be exactly satisfied,
the following applies:
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(i) the eigenvalue corresponding to the one-particle
state would have a time dependence proportional to
f1ðtÞ and

(ii) the eigenvalue corresponding to the two-particle
state would have a time dependence proportional
to f2ðtÞ.

However, we believe that condition (A3) is not exactly
satisfied, as argued after (12) in the main text. We have
not rigorously derived the eigenvalues for this case. Based
on the numerical example illustrated below, we, however,
expect that eigenvalues have the form

	nðtÞ ¼ wn½e�Ent þ e�EnðT�tÞ�
þ ~wn½e�mP1

te�mP2
ðT�tÞ þ e�mP2

te�mP1
ðT�tÞ� (A7)

for two-particle states as well as for one-particle states.
Let us demonstrate that on a specific example with

mA ¼ 0:6, mP1
¼ 0:3, mP2

¼ 0:4, mP1P2
¼ 0:7, Z1

1 ¼
Z2
2 ¼ cosð0:2Þ, Z2

1 ¼ �Z1
2 ¼ sinð0:2Þ, T ¼ 30, R1 ¼ 2,

R2 ¼ 0:4, and t0 ¼ 4. We find the two eigenvalues for
this case. Figure 12 shows the corresponding cosh-type
effective masses, defined in (15). The effective masses for
the two-particle state P1P2 as well as for the one-particle

state A drop near t ’ T=2. So none of them has the time

dependence e�Et þ e�EðT�tÞ, but a more complicated time
dependence (A7). The eigenvalue corresponding to the

state A is proportional to e�mAt þ e�mAðT�tÞ only in the
special case R1 ¼ R2. To demonstrate that the time depen-
dence of 	nðtÞ is of the form (A7) to a very good approxi-
mation, we fit the resulting 	nðtÞ to (A7) with three free
parameters En, w

n, ~wn. The resulting En agree with input
mA or EP1P2

almost exactly, and the resulting �2 of the fit11

is extremely small.

APPENDIX B: DISCUSSION CONCERNING
OMISSION OF DISCONNECTED

DIAGRAMS IN I ¼ 0; 1=2 CORRELATORS

In this appendix we show that the scattering state
jI ¼ 2; I3 ¼ 0i cannot enter as an intermediate state in
the connected correlation function hOI¼0jOyI¼0i, while
the scattering state jI ¼ 3

2 ; I3 ¼ 1
2i cannot enter in

hOI¼1=2jOyI¼1=2i.

1. I ¼ 0

The interpolators OI¼0
1;::;3 (3)

O I¼0
1;...;3 ¼ � 1ffiffi

3
p ½2ð �d�uÞð �u�dÞ þ 1

2ð �u�uÞð �u�uÞ þ 1
2ð �d�dÞ

� ð �d�dÞ � ð �u�uÞð �d�dÞ�
are jI ¼ 0; I3 ¼ 0i Clebsh-Gordon combinations of two
I ¼ 1 fields: j0; 0i ¼ 1ffiffi

3
p f2j1; 1ij1;�1i � j1; 0ij1; 0ig ¼

1ffiffi
3

p f�2ð �d�uÞð �u�dÞ � 1
2 ½ð �d�dÞ � ð �u�uÞ�2g, where we used

fields �q�q0 with definite jI; I3i from Table V. The
jI ¼ 2; I3 ¼ 0i state has flavor structure

j2; 0i ¼ 1ffiffi
6

p f2j1; 1ij1;�1i þ 2j1; 0ij1; 0ig
¼ 1ffiffi

6
p f�2ð �d�0uÞð �u�0dÞ þ ½ð �d�0dÞ � ð �u�0uÞ�2g:

We need to find out whether the state j2; 0i can enter as an
intermediate state in the connected part of the I ¼ 0 cor-
relation function; therefore we evaluate the connected part
of the matrix element

h2; 0jOyI¼0
1;...;3 icon ¼ 1ffiffiffiffi

18
p h2ð �d�0uÞð �u�0dÞ � ð �u�0uÞð �u�0uÞ � ð �d�0dÞð �d�0dÞ þ 2ð �u�0uÞð �d�0dÞj

2ð �d�uÞð �u�dÞ þ 1
2ð �u�uÞð �u�uÞ þ 1

2ð �d�dÞð �d�dÞ � ð �u�uÞð �d�dÞi
¼ 1ffiffiffiffi

18
p f4DðtÞ þ ½CðtÞ �DðtÞ� þ ½CðtÞ �DðtÞ� � 2DðtÞ þ 2CðtÞ � 4CðtÞg ¼ 0: (B1)

Here DðtÞ and CðtÞ denote the ‘‘direct’’ and ‘‘crossed’’
connected contractions in the notation of [12], while six
terms in the third line of (B1) refer to nonzero contractions
of separate terms aa0, bb0, cc0, dd0, ad0, and da0; here abcd
refer to terms in the first row (B1) and a0b0c0d0 refer to the
second row. So we find that the j2; 0i state cannot couple to
OI¼0

1;...;3 via connected contractions.

It is straightforward to show that h2; 0jOyI¼0
4;5 icon ¼ 0

also for the diquark anti-diquark interpolators OI¼0
4;5 (3).

This is due to the cancellation between results from two

5 6 7 8 9 10 11 12 13 14
t
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ef
fa

m
eff

  for λ1
(t)  [state A]

m
eff

 for λ2
(t) [state P

1
P

2
]

FIG. 12. Cosh-type effective masses (15) for two eigenvalues
of the generalized eigenvalue problem with 2� 2 correlation
matrix (A2) and (A3) and R1 � R2. A specific choice of the
parameters is given in the text.

11We attribute artificial error bars �nðtÞ ¼ 	nðtÞ=10 to the
values of 	nðtÞ, which enter uncorrelated �2.
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terms in j2; 0i / ð �d�0uÞð �u�0dÞ þ ð �d�0dÞð �u�0uÞ þ 	 	 	 ,
which have the flavor structure of OI¼0

4;5 ’ �u �dud.

So, the connected part of h2; 0jOyI¼0i vanishes for
all our interpolators and the jI ¼ 2; I3 ¼ 0i state cannot
enter as an intermediate state in our connected I ¼ 0
correlator.

2. I ¼ 1=2

Now let us see whether state jI ¼ 3
2 ; I3 ¼ 1

2i

j32; 12i ¼ 1ffiffi
3

p fj12;�1
2ij1; 1i þ

ffiffiffi
2

p j12; 12ij1; 0ig
¼ 1ffiffi

3
p fð�s�0dÞð �d�0uÞ þ ð �s�0uÞ½ð �d�0dÞ � ð �u�0uÞ�g

can enter as an intermediate state of the connected I ¼ 1=2

correlator with OI¼1=2
1;...;3 (3)

O I¼1=2
1;...;3 ¼ X

q¼u;d;s

ð �s�qÞð �q�uÞ

¼ ð �s�uÞð �u�uÞ þ ð �s�dÞð �d�uÞ þ ð �s�sÞð�s�uÞ:

The corresponding connected part of the matrix element is

h32; 12jOyI¼1=2
1;...;3 icon ¼ 1ffiffi

3
p hð�s�0dÞð �d�0uÞ � ð �s�0uÞð �u�0uÞ
þ ð �s�0uÞð �d�0dÞjð �d�sÞð �u�dÞ
þ ð �u�sÞð �u�uÞ þ ð�s�sÞð �u�sÞi

¼ 1ffiffi
3

p fDðtÞ þ ½CðtÞ �DðtÞ� � CðtÞg ¼ 0;

where three terms refer to nonzero contractions of separate
terms aa0, bb0, and ca0. So the j 32 ; 12i state cannot couple to
OI¼1=2

1;...;3 via connected contractions.

We also find that h32 ; 12 jOyI¼1=2
4;5 icon ¼ 0 for diquark

anti-diquark interpolators OI¼1=2
4;5 (3). This is due to the

cancellation between results from two terms in h32 ; 12 j /ð�s�0dÞð �d�0uÞ þ ð �s�0uÞð �d�0dÞ þ 	 	 	 , which have the flavor
structure of OI¼1=2

4;5 ’ �s �ddu.

So, the connected part of h32 ; 12 jOyI¼1=2i vanishes for all
our interpolators, and the jI ¼ 3

2 ; I3 ¼ 1
2i state cannot enter

as an intermediate state in our connected I ¼ 1=2 correlator.
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