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Positive-parity spin- 12 excitations of the nucleon are explored in lattice QCD. The variational method is

used in this investigation and several correlation matrices are employed. As our focus is on the utility and

methodology of the variational approach, we work in the quenched approximation to QCD. Various

sweeps of Gaussian fermion-field smearing are applied at the source and at the sink of �1 ��1 and �1�2

correlation functions to obtain a large basis of operators. Using several different approaches for

constructing basis interpolators, we demonstrate how improving the basis can split what otherwise might

be interpreted as a single state into multiple eigenstates. Consistency of the extracted excited energy states

are explored over various dimensions of the correlation matrices. The use of large correlation matrices is

emphasized for the reliable extraction of the excited eigenstates of QCD.
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I. INTRODUCTION

One of the long-standing puzzles in hadron spectroscopy
has been the low mass of the first positive parity, JP ¼ 1

2
þ,

excitation of the nucleon, known as the Roper resonance
N�(1440 MeV). In constituent or valence quark models
with harmonic oscillator potentials, the lowest-lying
odd parity state naturally occurs below the N ¼ 1

2
þ state

(with principal quantum number N ¼ 2) [1,2] whereas, in
Nature the Roper resonance is almost 100 MeV below
the N ¼ 1

2
�(1535 MeV) state. Similar difficulties in the

level orderings appear for the JP ¼ 3
2
þ��ð1600Þ and

1
2
þ��ð1690Þ resonances, which have led to the speculation

that the Roper resonance may be more appropriately
viewed as a hybrid baryon state with explicitly excited
glue field configurations [3,4] or as a breathing mode of
the ground state [5] or states which can be described in
terms of meson-baryon dynamics alone [6].

Lattice QCD is very successful in computing many
properties of hadrons from first principles. In particular,
in hadron spectroscopy, the ground states of the hadron
spectrum are now well understood [7]. However, the ex-
cited states still prove a significant challenge as they be-
long to the subleading exponential of the two-point
correlation function. Extracting excited-states masses
from these subleading exponents is difficult as the corre-
lation functions decay quickly and the signal-to-noise ratio
deteriorates more rapidly. In baryon spectroscopy, there are
many experimentally observed baryon resonances whose
physical properties are poorly understood. Lattice QCD
can provide theoretical input to solidify their identification.
The first detailed analysis of the positive-parity excitation
of the nucleon was performed in Ref. [8] using Wilson
fermions and an operator product expansion spectral
ansatz. Since then several attempts have been made to

address these issues in the lattice framework [9–20], but
in many cases no potential identification of the Roper
state has been made. Recently, however, in the analysis
of Refs. [14,15,21] a low-lying Roper state has been iden-
tified using Bayesian techniques.
Another state-of-the-art approach in hadron spectros-

copy is the ‘‘variational method’’ [22,23], which is based

on a correlation matrix analysis. The identification of the

Roper state with this method have been mixed. However,

recently, in Ref. [24] a low-lying Roper state has been

identified with this approach employing a diverse range

of smeared-smeared correlation functions. Our work there

motivates us to investigate the several positive-parity ex-

cited states using similar techniques but in a significantly

more comprehensive manner.
In this paper, the variational analysis used in

Refs. [24,25] is explored more extensively. In particular,

we consider 6� 6 and 8� 8 correlation matrices not only

built from the �1 interpolating field, but also incorporating

another nucleon interpolator, �2, to extend the set of basis

operators. 6� 6matrices are built up using �1 ��1 and �1�2

correlators, while the 8� 8 matrices use the �1�2 corre-

lation functions, as discussed in the text.
One of the goals of this paper is to investigate the high-

lying positive-parity spin- 12 excited states of the nucleon,

such as P11(1710 MeV) and P11(2100 MeV), using larger

correlation matrices. Incorporating the �2 interpolator with

various numbers of smearing sweeps enables us to explore

more deeply the overlapping of different interpolators with

the energy eigenstates. This will also prove the reliability

of the discovery of the Roper resonance [24]. We demon-

strate how improving the basis interpolating fields can split

what otherwise might be interpreted as a single state into

multiple eigenstates.
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This paper is arranged as follows: Sec. II contains the
general description of the extraction of masses with the
introduction of different nucleon interpolating fields. The
lattice details are given in Sec. III, the results are presented
in Sec. IV, and conclusions are made in Sec. V.

II. MASS OF HADRONS

The masses of hadrons are extracted from two-point
correlation functions using operators chosen to have over-
lap with desired states. Let us consider a baryon state B of
spin half, if we suppress Dirac indices a two-point function
can be written as

Gijðt; ~pÞ ¼
X

~x

e�i ~p: ~xh�jTf�iðxÞ ��jð0Þgj�i: (1)

The operator ��jð0Þ creates states from the vacuum at space-

time point 0 and, following the evolution of the states in
time t, the states are destroyed by the operator �iðxÞ at
point ~x, t. T stands for the time-ordered product of opera-
tors. A complete set of momentum eigenstates provides

X

B; ~p0;s
jB; ~p0; sihB; ~p0; sj ¼ I; (2)

where B can include multiparticle states. The substitution
of Eq. (2) into Eq. (1) yields

Gijðt; ~pÞ ¼
X

~x

X

B; ~p0;s
e�i ~p: ~xh�j�iðxÞjB; ~p0; si

� hB; ~p0; sj ��jð0Þj�i: (3)

We can express the operator �iðxÞ as
�iðxÞ ¼ eiP:x�ið0Þe�iP:x; (4)

where, P� ¼ P ¼ ðH; ~PÞ and ~P is the momentum operator
whose eigenvalue is the total momentum of the system.
Equation (3) can now be written as,

Gijðt; ~pÞ ¼
X

~x

X

B; ~p0;s
e�i ~p: ~xh�jeiPx�ið0Þe�iPxjB; ~p0; si

� hB; ~p0; sj ��jð0Þj�i
¼ X

~x

X

B; ~p0;s
e�iEBte�i ~x:ð ~p� ~p0Þh�j�ið0ÞjB; ~p0; si

� hB; ~p0; sj ��jð0Þj�i: (5)

As we move from Minkowski space to Euclidean space,
the time t ! �it and the above equation then can be
written as

Gijðt; ~pÞ ¼
X

B; ~p0;s
e�EBt� ~p; ~p0 h�j�ið0ÞjB; ~p0; si

� hB; ~p0; sj ��jð0Þj�i
¼ X

B

X

s

e�EBth�j�ið0ÞjB; ~p; sihB; ~p; sj ��jð0Þj�i:

(6)

The overlap of the interpolating fields �ð0Þ and ��ð0Þ with
positive and negative parity baryon states jB�i can be
parametrized by a complex quantity called the coupling
strength, �B� , which can be defined for positive-parity
states by

h�j�ð0ÞjBþ; ~p; si ¼ �Bþ

ffiffiffiffiffiffiffiffiffiffi
MBþ

EBþ

s
uBþð ~p; sÞ; (7)

hBþ; ~p; sj ��ð0Þj�i ¼ ��Bþ

ffiffiffiffiffiffiffiffiffiffi
MBþ

EBþ

s
�uBþð ~p; sÞ: (8)

For the negative parity states one requires

h�j�ð0ÞjB�; ~p; si ¼ �B�

ffiffiffiffiffiffiffiffiffiffi
MB�

EB�

s
�5uB�ð ~p; sÞ; (9)

hB�; ~p; sj ��ð0Þj�i ¼ � ��B�

ffiffiffiffiffiffiffiffiffiffi
MB�

EB�

s
�uB�ð ~p; sÞ�5: (10)

Here, �B� and ��B� are the couplings of the interpolating
functions at the sink and the source, respectively, and
MB� is the mass of the state B�. EB� is the energy of the

state B�, where EB� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

B� þ ~p2
q

, and uB�ð ~p; sÞ and

�uB�ð ~p; sÞ are the Dirac spinors,
�u �
B�ð ~p; sÞu�B�ð ~p; sÞ ¼ ���: (11)

Thus, Eq. (6) contains a projection operator �� ¼
P

su
�
B�ð ~p; sÞ �u�B�ð ~p; sÞ, through which the contributions

to the even and odd parity states from the correlation
function can be obtained. For positive parity, this can be
expressed as

X

s

u�
Bþð ~p; sÞ �u�Bþð ~p; sÞ ¼ �:pþMBþ

2EBþ
; (12)

and for the negative parity,

�5

�X

s

u�B�ð ~p; sÞ �u�B�ð ~p; sÞ
�
�5 ¼ ��:pþMB�

2EB�
: (13)

By substituting the above equations, for the positive and
negative parity states in Eq. (6) we obtain

Gijðt; ~pÞ ¼
X

Bþ
�Bþ ��Bþe�EBþ t �:pBþ þMBþ

2EBþ

þX

B�
�B� ��B�e�EB� t ��:pB� þMB�

2EB�
: (14)

At momentum ~p ¼ ~0, EB� ¼ MB� , a parity projection
operator �� can be introduced,

�� ¼ 1

2
ð1� �0Þ: (15)

We can isolate the masses of the even and odd parity states
by taking the trace of G with the operators �þ and ��. The
positive-parity state propagates through the (1,1) and (2,2)
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elements of the Dirac matrix, whereas, the negative parity
state propagates through the (3,3) and (4,4) elements.

The correlation function for positive and negative parity
states can then be written as

G�
ij ðt; ~0Þ ¼ Trsp½��Gijðt; ~0Þ� ¼

X

B�
��
i
���
j e

�MB� t: (16)

The correlation function contains a superposition of
states. The mass of the lowest state, M0� can be extracted
at large t where the contributions from all other states are
suppressed,

G�
ij ðt; ~0Þ ¼t!1

��
i0
���
j0e

�M0� t: (17)

A. Source smearing

The spatial source smearing [26] technique is applied to
increase the overlap of the interpolators with the lower-
lying states. We employ a fixed boundary condition in the
time direction for the fermions by setting Utð ~x; NtÞ ¼ 08 ~x
in the hopping terms of the fermion action with periodic
boundary conditions imposed in the spatial directions.
Gauge invariant Gaussian smearing [26] in the spatial
dimensions is applied through an iterative process. The
smearing procedure is

c iðx; tÞ ¼
X

x0
Fðx; x0Þc i�1ðx0; tÞ; (18)

where

Fðx; x0Þ ¼ ð1� �Þ�x;x0

þ �

6

X3

�¼1

½U�ðxÞ�x0;xþ�̂ þUy
�ðx� �̂Þ�x0;x��̂�;

(19)

where the parameter � ¼ 0:7 is used in our calculation.
After repeating the procedures Nsm times on a point source
the resulting smeared fermion field is

c Nsm
ðx; tÞ ¼ X

x0
FNsmðx; x0Þc 0ðx0; tÞ: (20)

B. Variational method

The extraction of the ground state mass can be done
straightforwardly. However access to the excited state
masses requires additional effort. Here we consider the
variational method [22,23]. The variational method re-
quires the cross correlation of operators so that the operator
space can be diagonalized and the excited state masses
extracted from the exponential nature of the diagonalized
basis. To access N states of the spectrum, one requires a
minimum ofN interpolators. With the assumption that only
N states contribute significantly to Gij at time t, the parity

projected two-point correlation function matrix for ~p ¼ 0
can be written as

G�
ij ðtÞ ¼

�X

~x

Trspf��h�j�iðxÞ ��jð0Þj�ig
�

(21)

¼ XN�1

�¼0

��
i
���
j e

�m�t; (22)

where Dirac indices are implicit. Here, ��
i and ���

j are the

couplings of interpolators �i and ��j at the sink and source,

respectively, to eigenstates � ¼ 0; � � � ; ðN � 1Þ. m� is the
mass of the state �. The N interpolators have the same
quantum numbers and provide an N-dimensional basis
upon which to describe the states. Using this basis we
aim to construct N independent interpolating source and
sink fields which isolate N baryon states jB�i, i.e.

��� ¼ XN

i¼1

u�i ��i; (23)

�� ¼ XN

i¼1

v�
i �i; (24)

such that,

hB�; p; sj ���j�i ¼ ��� �z
� �uð�;p; sÞ; (25)

h�j��jB�; p; si ¼ ���z
�uð�;p; sÞ; (26)

where z� and �z� are the coupling strengths of�� and ��� to
the state jB�i. Consider a real eigenvector u�j which oper-

ates on the correlation matrixGijðtÞ from the right, one can

obtain [12],

GijðtÞu�j ¼
�X

~x

Trspf��h�j�i ��jj�ig
�
u�j ¼ ��

i �z
�e�m�t:

(27)

For notational convenience, in the remainder of the dis-
cussion the repeated indices i, j, k are to be understood
as being summed over, whereas, �, which stands for a
particular state, is not. Since the only t dependence comes
from the exponential term, we can write a recurrence
relation at time ðtþ4tÞ as,

Gijðtþ4tÞu�j ¼ e�m�4tGijðtÞu�j ; (28)

for sufficiently large t and tþ4t [25,27].
Multiplying the above equation by ½GijðtÞ��1 from the

left we get,

½ðGðtÞÞ�1Gðtþ4tÞ�u� ¼ e�m�4tu� ¼ c�u�: (29)

This is an eigenvalue equation for eigenvector u� with

eigenvalue c� ¼ e�m�4t. We can also solve the left eigen-
value equation to recover the v� eigenvector,

v�
i Gijðtþ4tÞ ¼ e�m�4tv�

i GijðtÞ: (30)

Similarly,
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v�½Gðtþ4tÞðGðtÞÞ�1� ¼ e�m�4tv�: (31)

The vectors u�j and v�
i diagonalize the correlation matrix at

time t and tþ4t making the projected correlation matrix,

v�
i GijðtÞu�j ¼ ���z� �z�e�m�t: (32)

The parity projected, eigenstate projected correlator,
v�
i G

�
ij ðtÞu�j � G�� is then used to obtain masses of differ-

ent states. We construct the effective mass

M�
effðtÞ ¼ ln

�
G��ðt; ~0Þ

G��ðtþ 1; ~0Þ
�
¼ M��; (33)

and apply standardized analysis techniques as described
in Ref. [25].

III. SIMULATION DETAILS

We use an ensemble of 200 quenched configurations
with a lattice volume of 163 � 32. Gauge field configura-
tions are generated by using the doubly blocked Wilson
action in two coupling space (DBW2) [28,29]. An
OðaÞ-improved fat link irrelevant clover (FLIC) fermion
action [30] is used to generate quark propagators. This
action has excellent scaling properties and provides near
continuum results at finite lattice spacing [31]. The lattice
spacing is a ¼ 0:127 fm, as determined by the static
quark potential, with the scale set with the Sommer scale,
ro ¼ 0:49 fm [32]. In the irrelevant operators of the fer-
mion action we apply four sweeps of stout-link smearing
to the gauge links to reduce the coupling with the high
frequency modes of the theory [33]. We use the same
method as in Ref. [34] to determine fixed boundary effects,
and the effects are significant only after time slice 25 in the
present analysis.

Eight different levels of gauge invariant Gaussian
smearing [26] (1, 3, 7, 12, 16, 26, 35, 48 sweeps corre-
sponding to rms radii, in lattice units, of 0.6897, 1.0459,
1.5831, 2.0639, 2.3792, 3.0284, 3.5237, 4.1868) are applied
at the source (at t ¼ 4) and at the sink. This is to ensure a
variety of overlaps of the interpolators with the lower-lying
states. The analysis is performed on nine different quark
masses providing pion masses of m	=f0.797, 0.729, 0.641,
0.541, 0.430, 0.380, 0.327, 0.295, 0.249} GeV. The error
analysis is performed using the jackknife method, where
the �2=dof is obtained via a covariance matrix analysis
method.

The nucleon interpolators we consider in this analysis
are

�1ðxÞ ¼ 
abcðuTaðxÞC�5d
bðxÞÞucðxÞ; (34)

�2ðxÞ ¼ 
abcðuTaðxÞCdbðxÞÞ�5u
cðxÞ: (35)

We use the Dirac representation of the gamma matrices in
our analysis.

Each of the 6� 6 correlation matrices of �1 ��1 correla-
tors corresponds to a particular selection of 6 levels of
smearing from the 8 that we have available. We considered
six different combinations of these to give six different
correlation matrices. Our selections are shown in Table I.
We note that 48 sweeps tends to be noisy and therefore
eliminate it from most of our considerations.
For the 6� 6 matrices of �1�2 correlators, a subset of

six bases is considered, as shown in Table II corresponding
to a choice of 3 smearings to �1 and the same 3 for �2. For
the 8� 8 matrices of �1�2 correlators, a subset of seven
bases are considered and are given in Table III correspond-
ing to a choice of 4 smearings to �1 and the same 4 for �2.
The correlation matrices for �1; �2 interpolators contain all
combinations of correlation functions of �1, �2, i.e. �1 ��1,
�1 ��2, �2 ��1 and �2 ��2.
It is noted that basis operators that are linearly dependent

will cause the eigenvalue analysis to fail as there will be a

TABLE I. The bases of 6� 6 correlation matrices of �1 ��1.

Sweeps ! 1 3 7 12 16 26 35 48

Basis No. # Bases

1 1 3 7 12 16 26 � � � � � �
2 1 3 7 12 16 � � � 35 � � �
3 1 3 7 � � � 16 26 35 � � �
4 1 3 � � � 12 16 26 � � � 48

5 1 � � � 7 12 16 26 35 � � �
6 � � � 3 7 12 16 26 35 � � �

TABLE II. The bases of 6� 6 correlation matrices of �1�2.

Sweeps ! 1 3 7 12 16 26 35 48

Basis No. # Bases

1 1 � � � � � � � � � 16 � � � � � � 48

2 � � � 3 � � � 12 � � � 26 � � � � � �
3 � � � 3 � � � � � � 16 � � � � � � 48

4 � � � � � � 7 � � � 16 � � � 35 � � �
5 � � � � � � � � � 12 16 26 � � � � � �
6 � � � � � � � � � � � � 16 26 35 � � �

TABLE III. The bases of 8� 8 correlation matrices of �1�2.

Sweeps ! 1 3 7 12 16 26 35 48

Basis No. # Bases

1 1 � � � 7 � � � 16 � � � 35 � � �
2 � � � � � � 7 12 16 26 � � � � � �
3 � � � 3 � � � 12 � � � 26 � � � 48

4 � � � � � � 7 12 � � � 26 35 � � �
5 � � � � � � 7 � � � 16 26 35 � � �
6 � � � � � � 7 � � � 16 � � � 35 48

7 � � � � � � � � � 12 16 26 35 � � �
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singularity in the correlation matrix. The fact that our
analysis (�1 ��1 and �1�2) succeeds indicates that our
choices of operators access an equal number of dimensions
in the Hilbert space. Thus it is interesting to examine the
stability of the masses to different choices of bases to
ascertain whether one has reliably isolated single eigen-
states of QCD. The relevant issues are: (i) whether or not
the operators are sufficiently far from collinear that nu-
merical errors do not prevent diagonalization of the corre-
lation matrix and, (ii) whether or not the states of interest
have significant overlap with the subspace spanned by our
chosen sets of operators. Since our correlation matrix
diagonalization succeeded, except at large Euclidean times
where statistical errors dominate, we conclude that our
operators are sufficiently far from collinear.

IV. RESULTS

A. Variational analysis

We begin by considering the 6� 6 correlation matrices
of �1 ��1 correlators. In Fig. 1, masses from the projected
correlation functions and eigenvalues for the 3rd basis of
Table I are presented. The basis elements for the 6� 6
matrices are highly linearly dependent, and this means the
analysis is more complicated than for the 4� 4matrices of
Ref. [24]. While the masses from the eigenvalues again
display larger dependency on the variational parameters,
as observed in Refs. [24,25], masses from the projected
correlation functions are very consistent on tstart ( � t) and

4t. Notably, the masses for the ground and first excited
states are as robust as in Ref. [24]. For the fifth excited
state at the heaviest pion mass with the variational
parameters ðtstart;4tÞ ¼ ð6; 1Þ, (6,2) and (7,1), (top left
graph of Fig. 1), acceptable fits [25] were unobtainable.
Nonetheless, the consistency of the calculated masses
over the significant sets of variational parameters is self
evident, as is how a mass can be exposed using one set of
tstart and 4t.
From a series of tstart and4t, a single mass is selected for

one set of tstart and4t by the selection criteria discussed in
Ref. [25], where we prefer a larger value of tstart þ4t [27].
In cases where a larger tstart þ4t provides a poor signal-
to-noise ratio, for example ðtstart;4tÞ ¼ ð7; 3Þ (top left
figure), we prefer a little lower tstart þ4t value, for ex-
ample ðtstart;4tÞ ¼ ð7; 2Þ, and we follow this procedure for
each quark mass.
In Fig. 2, the masses for all the 6� 6 correlation matri-

ces of �1 ��1 correlators are presented. Straight lines are
drawn to illustrate the invariance of the masses over the
bases. Since the 1st basis contains all the consecutive
smearing sweep counts, i.e. 1, 3, 7, 12, 16, 26 sweeps, it
may not span the space as well as other choices. This basis
exposes higher first and second excited states and this
remains true for the 2nd basis where it contains consecu-
tive five lower smearing sweeps (left figure). These are
therefore less reliable bases for extracting excited state
masses. It is noted that masses from the third excited state
onwards contain higher fluctuations than the lower states,

FIG. 1 (color online). Masses of the nucleon, Nð1=2Þþ states, from the projected correlation functions as shown in Eq. (32) (left) and
from the eigenvalues (right) for the 3rd combination (1, 3, 7, 16, 26, 35 sweeps) of 6� 6 correlation matrices of �1 ��1 correlation
functions. The figure corresponds to pion masses of 797 MeV (top row) and 249 MeV (bottom row). Each pair of ground and excited
state masses corresponds to the diagonalization of the correlation matrix for each set of variational parameters tstart (shown in major
tick marks) and 4t (shown in minor tick marks). Here, tstart � t, as shown in Eqs. (29) and (31).
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independent of the choice of basis. A basis dependence is
also evident for the third excited state (right figure).
However, the bases from the 3rd to the 6th sets are more
consistent, and, in particular, the lower three states are
stable over these four bases. Therefore, the bases from
3rd to 6th are used to perform a systematic analysis
to calculate the systematic errors associated with the

choice of basis, using �b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Nb�1

PNb

i¼1ðMi � �MÞ2
q

, where

Nb ¼ 4 in this case.
In Fig. 3, the final results for the 6� 6 correlation matrix

analysis of �1 ��1 correlators are shown. As the highest
excited state accommodates remaining spectral strength,
this state may not be an eigenstate and is not shown in the
figure. Masses are averaged over the four bases (from the
3rd to 6th), whereas the errors shown are a combination of
average statistical errors ( ��s) over the four bases and
systematic errors due to the basis choice (�b). As expected

from the 4� 4 analysis [24], a similar lower-lying Roper
state is also revealed in this 6� 6 correlation matrix analy-
sis, which also has a tendency to approach the physical
state. This analysis presents six distinct energy states,
where the ground and first excited states are extremely
robust, emphasizing the utility of the analysis technique
presented in Ref. [24]. From this figure it is also evident
that the second excited state remains high and an unnatural
ordering of the error bars is manifest. Hence there are
concerns as to whether this state is a true energy state.
In Ref. [35] addressing negative parity nucleons, a whole

new set of nearby states is observed upon introducing �2.
Thus, it is important to explore the role of �2 in the
positive-parity sector. In Fig. 4, masses from the projected
correlation functions and eigenvalues for the 6� 6 corre-
lation matrix analysis of �1�2 correlators are presented.
The diagonalization is only successful for the heavier four
quarks, which again proves that a variational analysis with
�2 interpolator is always a challenge [25]. This interpolator
vanishes in the nonrelativistic limit [8,36] and is renowned
for providing noisier correlation functions [11,12] espe-
cially for the lighter quark masses, where one otherwise
might expect the relativistic nature of the quarks to be of
benefit. The Euclidean-time correlation functions of the �2

interpolator decay more rapidly, and the signal-to-noise
ratio also deteriorates more quickly with time. In
Refs. [24,25], a rise from below of excited state masses
from the projected correlation functions was observed for
the linearly dependent operators. This is also manifest in
the 6� 6 analysis of �1 ��1, shown in Fig. 1, but for the 6�
6 analysis of �1�2 correlators, these effects are reduced.
This is expected because the basis elements of these bases
are likely to be more orthogonal, improving the isolation
of states.
In Fig. 5, projected masses from all the 6� 6 correlation

matrices of �1�2 are presented. Again the ground state
is robust in this analysis. As the 6th combination contains
a consecutively higher number of smearing sweeps

FIG. 2 (color online). Masses of the nucleon, Nð1=2Þþ states, from the projected correlation functions for the 6� 6 correlation
matrices of �1 ��1 correlators, for pion masses of 797 MeV (left) and 295 MeV (right). Numbers on the horizontal scale correspond to
each basis of 6� 6 matrices, for instance, 1 and 2 correspond to the bases of (1, 3, 7, 12, 16, 26 sweeps) and (1, 3, 7, 12, 16, 35
sweeps), respectively, and so on. Masses are extracted according to the selection criteria described in the text and in Ref. [25] from all
the combinations of 6� 6 correlation matrices as shown in Table I. Straight lines are drawn to illustrate the invariance of the masses
over the bases.

FIG. 3 (color online). Masses of the nucleon, Nð1=2Þþ states, for
the ground (g.s) and the excited (e.s) states from the 6� 6
correlation matrices of �1 ��1 correlators over four bases (from
the 3rd to the 6th of Fig. 2). The errors shown in the figure are a
combination of average statistical errors over these four bases
and systematic errors due to basis choices. Errors are combined
in quadrature. The black filled symbols are the experimental
values of the ground and the Roper states obtained from
Ref. [37]. Masses are given in Table IV.
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(16, 26, 35), this basis is not as reliable as the other sets.
The first excited state extracted with this basis sits some-
what lower than the other five bases. A careful analysis of
Figs. 5 and 2 reveals that in the vicinity of the second
excited state from the 6� 6 analysis of �1 ��1 correlators
(Fig. 2), three excited states appear in the 6� 6 analysis of
�1�2 (Fig. 5). A completely new excited state, the second

excited state, is extracted in the �1�2 analysis. This second
excited state is robust for all bases (left figure). The signal-
to-noise ratio for this state deteriorates more rapidly for the
light quark (right figure). Interestingly, the fifth excited
state extracted from the �1�2 matrices sits at a significantly
lower energy state than those from the �1 ��1 matrices,
reflecting the fact that two new low-lying states have

FIG. 5 (color online). Masses of the nucleon, Nð1=2Þþ states, from the projected correlation functions for the 6� 6 correlation
matrices of �1�2 correlators, for pion masses of 797 MeV (left) and 541 MeV (right). Numbers on the horizontal scale correspond to
each basis of 6� 6 matrices, for instance, 1 and 2 correspond to the bases of (1, 16, 48 sweeps) and (3, 12, 26 sweeps), respectively,
and so on. Masses are extracted according to the selection criteria described in the text and in Ref. [25] from all the combinations of
6� 6 matrices as shown in Table II. Straight lines are drawn to illustrate the invariance of the masses over the bases.

FIG. 4 (color online). Masses of the nucleon, Nð1=2Þþ states, from the projected correlation functions as shown in Eq. (32) (left) and
from the eigenvalues (right) for the 3rd combination (3, 16, 48 sweeps) of 6� 6 correlation matrices of �1�2 correlation functions.
The figure corresponds to the pion mass of 797 MeV. Each pair of ground and excited states mass corresponds to the diagonalization of
the correlation matrix for each set of variational parameters tstart (shown in major tick marks) and 4t (shown in minor tick marks).

TABLE IV. Masses of the nucleon, Nð1=2Þþ states, averaged over the four bases (from the 3rd to
6th). The errors shown here are a combination of average statistical errors over four bases and
systematic errors for the choice of basis, combined in quadrature.

aM	 aMg:s aM1ste:s(Roper) aM2nde:s aM3rde:s aM4the:s

0.5141(19) 1.0414(68) 1.451(40) 1.784(93) 2.447(60) 2.813(76)

0.4705(20) 0.9933(78) 1.409(41) 1.892(98) 2.459(49) 2.856(78)

0.4134(22) 0.9286(80) 1.357(43) 1.875(54) 2.451(54) 2.838(90)

0.3490(24) 0.8588(88) 1.305(45) 1.857(61) 2.436(41) 2.849(59)

0.2776(24) 0.781(10) 1.250(53) 1.886(65) 2.427(39) 2.845(54)

0.2452(24) 0.752(11) 1.229(60) 1.903(38) 2.423(42) 2.846(58)

0.2110(27) 0.722(14) 1.204(75) 1.894(42) 2.417(45) 2.850(72)

0.1905(31) 0.711(12) 1.180(89) 1.892(46) 2.414(47) 2.840(74)

0.1607(35) 0.682(14) 1.142(11) 1.891(51) 2.410(55) 2.837(72)
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been revealed. The third and fourth excited states are
nearly degenerate in this analysis. As the results for the
lower three states are consistent over five basis choices
(from 1st to 5th) of the 6� 6 matrices, we perform a
systematic analysis over these five bases, as discussed
previously.

In Fig. 6, a summary of the 6� 6 correlation matrix
analysis of �1�2 correlators is presented. Masses are aver-
aged over the five bases, while errors are a combination of
average statistical and systematic errors due to basis
choices. Apart from the ground and the first excited states,
this analysis presents a distinct second excited state for the
three heavier quark masses. The signal for the light quark
mass for this state is poor. This analysis reveals new nearly
degenerate third and fourth excited states, that the 6� 6
bases of �1 ��1 correlation functions are unable to resolve.

In Fig. 7, masses from the projected correlation func-
tions and eigenvalues for the 8� 8 correlation matrix of
�1�2 correlators are presented. Similar to the 6� 6 analy-
sis of �1�2, this analysis is also successful for the heavier
four quark masses. The enhanced dimension of the matri-
ces means the numerical diagonalization is less stable, and
so the variational analysis is only successful for a few sets
of variational parameters, tstart and 4t. However, in Fig. 7,

there is sufficient consistency between the masses from the
projected correlation functions for each set of tstart and4t.
As before, the 8� 8 analysis gives a projected mass which
is highly independent of the variational parameters. Here
we have selected tstart ¼ 6, 4t ¼ 2.
In Fig. 8, masses from the projected correlation func-

tions for all combinations of 8� 8 correlation matrices are
shown. All the bases reveal a very consistent ground state
mass. A systematic basis dependency of the excited states
(from third excited state onwards) is noticed for the 1st
and 2nd combinations. As the 1st combination consists of
1 and 7 smearing sweeps, it provides a higher mass from
the third excited state onwards, in comparison with the
other bases. The 2nd basis contains consecutive smearing
sweep counts, starting with 7 sweeps, and ending with a
moderate sweep count of 26. This provides less diversity in
this basis for the higher excited states and also provides
a higher mass from the third excited state onwards.
Therefore, the 1st and 2nd bases are not as reliable as other
sets. The fifth and sixth excited states sit a little high for the
7th basis which has a narrow cluster of smearing sweeps
and is therefore likely to be less reliable in spanning the
space. Bases from the 3rd to 6th sets have more smearing
diversity being well spread over the range of smearing
sweep counts starting from 3 and 7 sweeps. It is also
evident from Fig. 8 that the 3rd to 6th combinations of
smearing sweeps are successful in providing highly con-
sistent lower energy states. As before, we will therefore
perform a systematic analysis over these four bases. It is
interesting to note that in the vicinity of the fifth excited
state from the 6� 6 analysis of �1�2, the 8� 8 correlation
matrix presents three excited states.
In Fig. 9, a summary of the 8� 8 correlation matrix

results are presented. As in Fig. 6, a distinct second excited
state is also obtained in this 8� 8 analysis, for the two
heavier quark masses. However, increased separation of
the third and fourth excited states appears here with the
enlarged basis. A careful examination reveals that the first
excited state extracted in this analysis is a little lower than
in the 6� 6 analysis of �1�2 (see Fig. 6). In accord with
the principle of the variational method, our analysis signi-
fies the importance of using larger correlation matrices to
reliably isolate the higher energy eigenstates of QCD.

FIG. 6 (color online). Masses of the nucleon, Nð1=2Þþ states, for
the ground (g.s) and the excited (e.s) states from the 6� 6
correlation matrices of �1�2 correlators over five bases (from
the 1st to 5th of Fig. 5). The errors shown in the figure are a
combination of average statistical errors over these five bases
and systematic errors due to basis choices. Errors are combined
in quadrature. Masses are given in Table V.

TABLE V. Masses of the nucleon, Nð1=2Þþ states, averaged over the five bases (from the 1st to
5th). The errors shown here are a combination of average statistical errors over these bases and
systematic errors for the choice of basis, combined in quadrature.

aM	 aMg:s aM1ste:s(Roper) aM2nde:s aM3rde:s aM4the:s

0.5141(19) 1.0419(65) 1.526(28) 1.669(37) 1.960(64) 1.85(12)

0.4705(20) 0.9927(69) 1.474(39) 1.638(45) 1.920(72) 1.84(12)

0.4134(22) 0.9295(75) 1.432(33) 1.617(66) 1.875(79) 1.82(12)

0.3490(24) 0.8612(84) 1.377(39) 1.63(11) 1.81(12) 1.74(17)
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B. Splitting of excited states

In Fig. 10, we show how the excited energy states
depend on the choice of correlation functions and the
dimension of the correlation matrix. The ground state is

clearly independent of the dimension of the matrices and
choice of interpolating fields. The excited state extracted
from the 2� 2 correlation matrix splits into two excited
states with the 3� 3 matrix. The central value of the first
excited state, extracted with the 3� 3 matrix, is a little
lower than that of the 2� 2 case. Interestingly, the second
excited state from the 3� 3 matrix is in very good
agreement with the excited state number of the 2� 2
analysis.
The 4� 4 analysis of �1 ��1 correlation functions reveals

a lower first excited state (Roper state) [24] and two other
heavier excited states. Therefore, the 4� 4 basis of
�1 ��1 correlation functions is able to resolve and isolate
the superposition of eigenstates in the 3� 3 matrix. The
6� 6 and 4� 4 correlation matrices of �1 ��1 correlators
provide very consistent results for the lower four energy
states, and the 6� 6 analysis is able to extract two new
higher energy states. The larger error bar of the third
(highest) excited state extracted with the 4� 4 correlation
matrix compared to the 6� 6 result of �1 ��1 is a manifes-
tation of accommodating remaining spectral strength in
this (third excited) state in the 4� 4 analysis and hence
is unreliable [24].

FIG. 8 (color online). Masses of the nucleon, Nð1=2Þþ states, from the projected correlation functions for the 8� 8 correlation
matrices of �1 ��2 correlators, for pion masses of 797 MeV (left) and 541 MeV (right). Numbers on the horizontal scale correspond to
each basis of 8� 8 matrices, for instance, 1 and 2 correspond to the bases of (1, 7, 16, 35 sweeps) and (7, 12, 16, 26 sweeps),
respectively, and so on. Masses are extracted according to the selection criteria described in the text and in Ref. [25] from all the
combinations of 8� 8 matrices as shown in Table III. Straight lines are drawn to illustrate the invariance of the masses over the bases.

FIG. 7 (color online). Masses of the nucleon, Nð1=2Þþ states, from the projected correlation functions as shown in Eq. (32) (left) and
from the eigenvalues (right) for the 3rd combination (3, 16, 48 sweeps) of 8� 8 correlation matrices of �1�2 correlation functions.
The figure corresponds to the pion mass of 797 MeV. Each pair of ground and excited states mass corresponds to the diagonalization of
the correlation matrix for each set of variational parameters tstart (shown in major tick marks) and 4t (shown in minor tick marks).

FIG. 9 (color online). Masses of the nucleon, Nð1=2Þþ states, for
the ground (g.s) and the excited (e.s) states from the 8� 8
correlation matrices of �1�2 correlators over four bases (from
the 3rd to 6th of Fig. 8). The errors shown in the figure are a
combination of average statistical errors over these four bases
and systematic errors due to basis choices, combined in quad-
rature. Masses are given in Table VI.
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The 6� 6 analysis of �1�2 correlation functions ex-
tracts different excited states than those of the 6� 6 analy-
sis of �1 ��1 alone. The first excited state extracted with
this basis sits high in comparison with the Roper state.
Thus, a basis of four different smearings with �1 ��1 is
essential to isolating the single eigenstate associated with
the Roper resonance. Another interesting feature is the
splitting of the ‘‘second excited state’’ of the �1 ��1 analysis
into three nearby states with the new �2 spin-flavor
combinations.

The final very interesting outcomes are revealed from
the 8� 8 correlation matrix analysis of �1�2. This analy-
sis provides a first excited state which is in excellent
agreement with the Roper state revealed by �1 ��1 correla-
tors alone. This present investigation reveals that �2 plays
a subtle role for the Roper. We note however that a new
nearby second excited state is revealed in the �1�2 analysis
and a future high-statistics analysis may reveal it is essen-
tial to resolve this state correctly to obtain the first excited
state accurately. This basis also provides second, third and
fourth excited states consistent with the 6� 6 analysis of
�1�2. However, the fifth excited state coming from this
analysis is a little lower than that of the 6� 6 matrix of
�1�2. There the fifth state accommodates all remaining

spectral strength. This state wasn’t identified in the �1 ��1

analysis. The sixth excited state provided by this analysis is
consistent with the third excited state extracted with the
6� 6 analysis of �1 ��1. It is worth noting that the basis of
�1 ��1 correlation functions is insufficient to isolate the
second excited state of the nucleon.
While this analysis is able to provide some evidence

that the first five energy-states are reasonably robust
through comparisons of 6� 6 and 8� 8, only a more
comprehensive higher dimension correlation matrix
analysis can assess the reliability of the sixth and seventh
states.
In Fig. 11, a summary of results for the positive-parity

excited states of the nucleon is presented. In Ref. [37], the
quality of the P11 (1710) MeV state is characterized by
three stars (***) and P11 (2100 MeV) state by one star (*).
These resonance states decay through theN ! N		 chan-
nel with positive parity. Therefore, looking at both the
S-wave N þ 	þ 	 and P-wave N þ 	 decay channels
provides information related to these resonances. The sec-
ond excited state is very close to the threshold N þ 	 state
but has a different slope. It is also evident that this state
is significantly different and lower than the N þ 	þ 	
state for the heavier three quark masses providing evidence

FIG. 11 (color online). Masses of the nucleon, Nð1=2Þþ states,
from the 8� 8 correlation matrices of �1�2, and 4� 4 correla-
tion matrices of �1 ��1 as a function of the squared pion mass, for
the ground (g.s), first through sixth excited states (e.s). The
experimental values are taken from Ref. [37], where the relia-
bility of the ground and Roper states are signified by four stars
(****), P11 (1710 MeV) state by three stars (***) and P11
(2100 MeV) state by one star (*).

TABLE VI. Masses of the nucleon, Nð1=2Þþ states, averaged over four bases (from the 3rd to
6th). The errors shown here are a combination of average statistical errors over these four bases
and systematic errors for the choice of basis, combined in quadrature.

aM	 aMg:s aM1ste:s(R) aM2nde:s aM3rde:s aM4the:s aM5the:s aM6the:s

0.5141(19) 1.0412(66) 1.470(33) 1.669(33) 1.874(78) 1.843(90) 2.300(67) 2.478(58)

0.4705(20) 0.9912(71) 1.427(35) 1.642(38) 1.825(79) 1.888(80) 2.309(54) 2.475(46)

0.4134(22) 0.9277(77) 1.372(38) 1.619(52) 1.758(77) 1.896(48) 2.304(45) 2.462(47)

0.3490(24) 0.8588(86) 1.311(42) 1.623(92) 1.779(80) 1.895(57) 2.269(52) 2.475(41)

FIG. 10 (color online). Masses of the nucleon, Nð1=2Þþ states,
for the various dimensions of correlation matrices, as labeled on
the upper horizontal axis. The 2� 2 and 3� 3 results for the
smeared-smeared correlation functions with 26 sweeps of smear-
ing are taken from Ref. [25], while the 4� 4 results are from
Ref. [24]. The 6� 6 and 8� 8 results correspond to the analyses
presented in this paper. Dotted lines are drawn to aid in illustrat-
ing the consistency of the results. Figure corresponds to the pion
mass of 797 MeV.
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that this state is best described as a single particle state. It is
also noted that the third and fourth excited states have a
mass dependence different from the multiparticle states.
This suggests that these two energy states revealed here
are more likely to be single particle resonance states.
Simulations on larger lattice volumes and at lighter quark
masses are necessary to resolve this issue.

Figure 12 provides a comparison of the nucleon spec-
trum revealed in this comprehensive analysis with state-of-
the-art results from Refs. [17,38] in quenched QCD. The
results from the BGR Collaboration [38] follow from an
analysis similar to ours where fermion source smearing is
key to providing a basis which enables the isolation of
excited states. However, they use only two levels of source
smearing and use different smearings for each quark flavor
within a given interpolator. The fact that their Roper state
sits high relative to our result is consistent with our obser-
vation that a minimum of four different smearing levels is
required to obtain a stable low-lying state. Whereas our
6� 6 analysis with six different smearing levels did not
change the mass of the Roper state from our 4� 4 analysis,
the consideration of only three smearing levels did lead to a
higher mass Roper state.

Results from the LHP Collaboration [17] are illustrated
at m	 ¼ 490 MeV. Here we have reported all states that
may have spin-1/2 quantum numbers. The Roper state in
their analysis sits higher than both the present analysis and
the results of Ref. [38]. As their scale determination pro-
vides a low nucleon mass, the excited state masses will
become higher again if one sets the scale to reproduce the
nucleon mass of this analysis or that of Ref. [38]. It
suggests that their consideration of a single level of source
smearing may be insufficient to provide a basis suitable
to resolve the Roper state. Our expectation is that the
introduction of a variety of source smearings into their
basis operators may be beneficial. It would be interesting
to expand their basis to include several levels of source

smearing to explore the extent to which the excited state
masses change.

V. CONCLUSIONS

In this paper, we have presented a comprehensive corre-
lation matrix analysis of the positive-parity spin- 12 excita-

tions of the nucleon. We have considered large dimensions
of correlation matrices, built from smeared-smeared corre-
lation functions of �1 ��1 and �1�2 correlators. The results
of this paper, for the ground and Roper states of the
nucleon, are very consistent with the discovery of the
Roper in Ref. [24] from a 4� 4 correlation matrix of
�1 ��1 alone. Thus, the most important conclusion is that
the earlier first result for the Roper [24] is robust under the
comprehensive analysis presented herein.
This paper signifies the importance of using a variety of

smearings in making an operator basis and the importance
of comparing the results across a range of choices of basis
for the correlation matrix. In particular, it emphasizes the
use of at least four different smearing levels to isolate the
elusive Roper state.
In addition, we have reported new second, third, fourth,

fifth and sixth excited-states of the nucleon. While both the
�1 ��1 and �1�2 correlation matrices provide excellent
agreement for the ground and the Roper states, only the
�1�2 analysis provides access to a completely new (sec-
ond) excited eigenstate. All the correlation matrix analyses
provide a very consistent third excited state, see Fig. 10.
Simulations on larger lattice volumes at lighter quark
masses with higher statistics will be interesting to inves-
tigate the propagation of these states towards light quark
masses.
Another interesting result of this paper is delineating the

nature of the splitting of the excited states of the nucleon,
as seen in Fig. 10, for the variational method. While the
ground state is independent of any basis choice, and the
dimension of the matrix used, extracting a particular ex-
cited state can depend on the interpolators making the
correlation functions. For example, a variational analysis
of �1 ��1 correlation functions does not provide the second
excited state, indicating that the �1 interpolator either
does not couple or only has a very small coupling to this
state. We emphasize the importance of using a large corre-
lation matrix for a reliable extraction of excited states’
energies.
Because of the difficulties in ascertaining that a given set

of basis interpolators is sufficient to isolate all the eigen-
states of QCD in the mass range of interest, we believe
that it is essential to resolve the nucleon spectrum using a
wide variety of approaches. For example, it is now appar-
ent that the consideration of a single level of fermion
source smearing is unlikely to be sufficient to resolve the
low-lying Roper state. Future investigations should explore
the role of fermion source smearing in providing a suite

FIG. 12 (color online). Masses of low-lying nucleon states
from this work (legend at top right), from Ref. [17] (legend at
top left) and Ref. [38] (legend at bottom right). The results from
Ref. [17] correspond to m	 ¼ 490 MeV, where the nearly
degenerate fourth energy state has been shifted a little to the
right for clarity.
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of basis operators that span the space in an effective
manner.

To test the robustness of the spectrum revealed in this
analysis it will be important for future studies to carefully
examine a wide variety of different interpolators in order to
test whether or not other low-lying states will appear in the
spectrum. For example, we anticipate that five-quark op-
erators will be essential in accessing the relevant low-lying
meson-baryon scattering states.
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