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We discuss three possible ways of addressing quantum physics behind chiral magnetic effect and

electric charge fluctuation patterns in heavy-ion collisions. The first one makes use of P-parity violation

probed by local order parameters, the second considers the chiral magnetic effect in the quantum

measurement theory framework, and the third way is to study a product of two P-odd contributions. In

the latter approach, the relevant form factor is constructed and computed for a weak magnetic field in the

confinement region and for free quarks in a strong field. It is shown that the effect is negligible in the

former case. We also discuss the saturation effect—the charge fluctuation asymmetry for free fermions

reaches a constant value at asymptotically large fields.
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I. INTRODUCTION

One of the main theoretical challenges of modern quan-
tum chromodynamics (QCD) is to build a detailed theo-
retical picture of strong interaction physics relevant for
heavy-ion collisions. Currently running experimental pro-
grams have already brought lots of exciting results. Despite
tremendous progress in understanding, a rich pattern of
observed effects is still waiting to be placed into a coherent
theoretical picture based on QCD.

In the course of studies of hadronic matter at large
temperatures and/or densities one can make use of the
scale separation allowing us to neglect effects of weak
and electromagnetic interactions in most cases. A possible
interesting exception is pointed out in [1,2]. When relativ-
istic ions undergo noncentral collision, a strong magnetic
field is generated in the collision region. This field rapidly
changes with time and its typical magnitude is estimated

[3] as
ffiffiffiffiffiffi
eB

p ¼ 102�1 MeV, i.e., of the order of dynamical
QCD scale. Correspondingly, any studies of strongly inter-
acting matter in heavy-ion collisions have to take the
effects of this Abelian magnetic field into account. Of
particular interest in this respect is the so-called chiral
magnetic effect (CME). The physics behind it can be
explained in several different but complementary ways
[1–26]. Let us consider nonzero density of one flavor of
free massless quarks in an external magnetic field. Suppose
there are unequal chemical potentials for left- and right-
handed quarks: �L � �R. When it can be shown that a
nonzero classical electric current flows along the magnetic
field (see [9] and references therein, see also [27] for
another perspective):

j ¼ e2

2�2
�5B; (1)

where 2�5 ¼ �R ��L. The physical reason for this chiral
charge excess to electric charge current conversion is quark
magnetic moment interaction with the magnetic field
(which is of a different sign for positively and negatively

charged quarks) together with the correlation of spin and
momentum for chiral fermions. Both sides of (1) have of
course the same transformation properties under P- and
CP-parity conjugation. Many different aspects of CME
have been extensively discussed in the literature and there
is no doubt that CME is a robust theoretical effect.
However, it is not a simple task to apply this clear physical
picture to real processes described by nonperturbative
QCD. One of the most important questions on this way is
about the physical origin of the chiral chemical potential
�5, which is absent in the fundamental QCD Lagrangian.
In the original picture [8], the appearance of effective
�5 � 0 is a nonperturbative QCD effect, caused by the
interaction of quarks with topologically nontrivial gluon
field configurations above the phase transition. The physi-
cal explanation goes as follows. As is well known, the
topological charge in the QCD vacuum fluctuates as de-
scribed by Veneziano-Witten formula [28,29]

� ¼
Z

d4xhG ~GðxÞG ~Gð0Þi / f2�0m2
�0 ; (2)

where f�0 is meson decay constant and m�0 is �0 meson

mass. The nonperturbative parameter in the right-hand side
scales as �4

QCD which means that the topological charge

fluctuates over Euclidean 4-volumes of typical size deter-
mined by the nonperturbative QCD scale. It is worth
stressing that these fluctuations are quantum, i.e., the states
of the different topological charge are to be summed over
for whatever Euclidean 4-volume V and one always has

Z
V
d4xhG ~GðxÞi ¼ 0: (3)

In other words, (3) is valid because the integrand in the left-
hand side vanishes identically, at each point. There is no
special space-time fluctuation pattern in the problem other
than the correlator (2) (and higher ones).
The situation however may change at nonzero tempera-

ture/density. Since the Euclidean Oð4Þ invariance of the
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vacuum is broken in this case, one can think of different
fluctuation patterns in spatial and in temporal directions.
Moreover, since in real collision experiments external
conditions are time dependent they can play a dual role
of the background and of a measuring device. In other
words the meaning of averaging in (3) changes: one has
to integrate only over those field excitations which are
present at a given Minkowski 3-volume for a given time
period and the problem becomes essentially nonstationary
in this sense. One can say that the average over fields h::i
becomes V dependent. Such a quantity—physically corre-
sponding to a ‘‘single event’’—can, in principle, be non-
vanishing. Of course it is natural to expect that random
character of fluctuations leads to zero result for (3) after
averaging over many events.

The CME is often considered as a reasonable explana-
tion of outgoing particles electric charge asymmetry ob-
served at the relativistic heavy ion collider [30–41] inffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV Auþ Au and Cuþ Cu collisions. The

latter effect can be described as follows. For a noncentral
collision one can fix the reaction plane by two vectors:
beam momentum and impact parameter (without a loss of
generality this is always chosen as a 12 plane in the present
paper and no adjustment angle �RP is introduced). Thus,
the angular momentum of the beams (and the correspond-
ing magnetic field) is oriented along axis 3. The azimuthal
angle � 2 ½0; 2�Þ is defined in plane 23. With this nota-
tion, in any particular event one studies charged particles
distribution in� using the following conventional parame-
trization:

dN�
d�

/ 1þ 2v1;� cos�þ 2v2;� cos2�

þ 2a� sin�þ . . . : (4)

The coefficients v1;� and v2;� account for the so-called

directed and elliptic flow. They are believed to be universal
for positively and negatively charged particles with good
accuracy. The coefficients aþ and a� describe charge flow
along the third axis, i.e., normal to the reaction plane. This
P-parity forbidden correlation between a polar vector
(electric current) and the axial one (angular momentum)
is considered as a signature of P-parity violation in a given
event with a� � 0. On the other hand, the random nature
of the process dictates haþie ¼ ha�ie ¼ 0 (there the aver-
aging over events is taken).

Trying to construct a theory of the phenomenon one has
first to choose adequate language. Since at the end, the
heavy-ion collision is a scattering problem, the ultimate
framework would be the S-matrix and inelastic scattering
amplitudes’ formalism with two colliding ions as incoming
particles. Because of its extreme complexity this way
seems to be totally hopeless. Instead, one uses some effec-
tive theories like hydrodynamics to predict distribution of
outgoing particles. In the particular problem of a charge
fluctuation’ asymmetry, the crucial point distinguishing

different theoretical models is whether the currents of
interest are treated as classical or as quantum. In the former
case one makes use of the expression (1) as classical
equation. The quantum nature of the problem here is
hidden in a theory for �5 and corresponding correlators
and fluctuations for this effective chiral chemical potential.
In the later case one is to consider quantum averages like
h�jj�j�i, h�jj�j�j�i, etc. and to understand (1) as op-

erator relation. However, if one takes the diagonal matrix
element of (1) in the vacuum the answer is of course trivial:
h0jjj0i ¼ 0 even for a nonzero external magnetic field.
We discuss three basic complementary ways to address

the quantum nature of CME in this paper:
(1) To make use of P-parity violation probed by local

order parameters
(2) To consider CME in quantum measurement theory

framework
(3) To study a product of two P-odd contributions

We discuss all these approaches in the present paper and
start with the first one in the next section which is phenom-
enologically the simplest.

II. P-PARITY VIOLATION PROBED
BY LOCAL ORDER PARAMETERS

As is well known, quantum field theoretical averages of
local operators have typically the following leading con-
tribution:

h�jOðxÞj�i / c ��dO ; (5)

where� is an ultraviolet cutoff and the numerical constant
c is generally nonvanishing if c ¼ 0 is not protected by
some symmetry. Therefore, the crucial step in the dis-
cussed problem is to model transition from a local micro-
scopic current j� to a nonlocal macroscopic one J�. It is

done by taking the matrix elements of the current j� over

the medium degrees of freedom j�i from a full state vector
j�i ¼ j�i � j�i:

j�ðxÞ ¼ �c��c ðxÞ $ J� / h�j
Z
dx�VðxÞj�ðxÞj�i: (6)

Here the function �VðxÞ defines the measure of integration
over the ‘‘physically infinitesimal volume,’’ as is usual in
condensed matter physics.
The second important ingredient is the existence of the

medium itself. For phenomenological purposes it is not
important what particular kind of microscopic description
for the medium is chosen. What does matter is Lorentz
symmetry breaking following from the existence of a dis-
tinguished frame—the medium rest frame. In the simplest
cases of a uniform medium characterized by nonzero tem-
perature/density it is usually parametrized by a unit vector
u�—the medium four velocity. The general answer for the

induced current in uniform electromagnetic field reads
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h�jJ�j�i ¼ cðþÞu�F�� þ cð�Þu� ~F��; (7)

where ~F�� ¼ 1
2 	��
�F


� and cðþÞ (cð�Þ) are parity-even

(parity-odd) functions. They may depend on invariant
combinations like F2, F ~F, etc. but, on the other hand, the
same functions encode microscopic properties of the me-

dium. In particular, for P-even medium cð�Þ ¼ 0, at least at
the lowest order in external field.

We say about local parity violation in a state j�iwhen a
local parity-odd operator OðxÞ ¼ �POðxÞPy has nonzero
expectation value in this state

h�jOðxÞj�i � 0; (8)

for example, hc y�5c i � 0. The condition of locality here
is important. Operationally it means that the operators and
their products are defined at the scale a���1 where � is
ultraviolet cutoff. For nonlocal averages, on the other hand,
it is not a problem to have nonzero P-odd matrix element,
e.g., hj0ðxÞj3ðyÞi. The medium, characterized by a finite
coherence length, brings physical meaning to this non-
locality. An expression analogous to (7) now reads

h�jJ�@J5j�i ¼ �cð�Þu�F�� þ �cðþÞu� ~F��; (9)

where �cðþÞ ( �cð�Þ) are another parity-even (parity-odd) func-
tions, (here and in the following text @J5 ¼ @�J5�). Again

for the P-even medium �cð�Þ should vanish at the lowest
order (notice that the P-odd invariant F ~F vanishes for the
particular case of the uniform magnetic field).

To feel the physical meaning of (9) let us imagine the
radial distribution of velocities v of the matter in a uniform
magnetic field B. If the divergence @J5 is also uniform in
the (’’fireball’’) volume, the charge density is to be of a
different sign above and below the reaction plane:

h�jJ0@J5j�i / v �B: (10)

In the medium rest frame characterized by u� ¼ ð1; 0; 0; 0Þ
for the uniformmagnetic background, the electric current J
flows along the magnetic field B.

It seems quite natural to interpret (9) in the following
way: as soon as the concept of a medium can be applied to
the discussed problem one can easily construct classical
nonzero local P-odd parameters without specifying any
particular ‘‘chiral microscopy.’’ The medium (manifested
by existence of the selected frame) is crucial in two
aspects: first, it allows us to consider meaningful local
objects and not badly divergent quantities like (5) and
second, by Lorentz-invariance breaking it provides invari-
ant meaning for the electric and magnetic fields, thus
making possible correlations between local (in macro-
scopic sense) operators of different parities. We also see
here the importance of the uniformity condition: if @J5 is
short-correlated, there is no net effect. This brings us back
to the question about dynamical scales hierarchy.

There is a deep question behind the above consideration:
if the (microscopic) current nonconservation is anomalous

[e.g. in (9)]—how is this fact encoded in equations for
macroscopic, effective currents? We leave aside the dis-
cussion of this important point and refer an interested
reader to [42] where this question is addressed in a hydro-
dynamic setup.
From a heavy ions collision point of view the P-parity

violating average (9) is not an observable by itself. The
reason is physically clear: instead of measuring compo-
nents of vector (electric) current and axial (chiral) current
and studying their correlation, only the quantities of the
former kind are being measured (in the form of final
particles electric charge distribution). As for the latter
quantities related to chiral charge—it is assumed that the
quark-gluon medium created after the collision of two
heavy ions plays a role in the measuring device performing
an effective measurement of the topological charge in the
corresponding space-time region. It should be mentioned
that this is a rather strong assumption: to say that one part
of some quantum system can measure (in classical sense)
the state of another part of the same systemmeans in fact to
address some scenario for decoherence of the subsystems
and information loss. To model this effect one has to adopt
the language of quantum measurement theory. This is done
in the next section.

III. CME IN QUANTUM MEASUREMENT
THEORY FRAMEWORK

It is possible to understand (1) as a correlation between
the preferred direction of an outgoing electric charge dis-
tribution asymmetry and the magnetic field in a particular
event. The sign of this P-parity–odd asymmetry is fixed by
the sign of effective �5 in this event (and of course varies
randomly from event to event due to the topological neu-
trality of the QCD vacuum). The quantitative theory would
require information about the distribution function of ef-
fective �5.
A simple quantum-mechanical analogy can be useful to

illustrate the point. In one-dimensional bound state prob-
lem with P-parity–even potential VðxÞ ¼ Vð�xÞ one has
hxi ¼ R

xdxjc 0ðx; tÞj2 ¼ 0 where c 0ðx; tÞ is the ground

state P-parity–even wave function. On the other hand,
performing particle position measurements on an ensemble
of N identical systems all in the ground state one gets a
sequence of positive and negative numbers x1; x2; . . . ; xN
(with some uncertainties determined by the measuring
device properties). Quantum mechanics does not predict
the result of a single measurement, but guarantees hxi ¼
limN!1 1

N

P
N
i¼1 xi ¼ 0. For each measurement with the

outcome xi � 0 one can say that P invariance is broken
in this particular experiment, ‘‘event-by-event.’’ In this
simple case ‘‘breaking’’ is clearly of statistical origin and
has nothing to do with dynamics—i.e., properties of the
potential VðxÞ. Therefore, it is common in quantum me-
chanics not to use such terminology and compute instead
nonzero P-parity–even observables, such as, e.g., hx2i ¼
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R
x2dxjc 0ðx; tÞj2 � 0, characterizing the pattern of quan-

tum fluctuations. What is, however, important is the text-
book average over events/average over probability density
equivalence.

By way of another simple analogy consider a system of
massless quantum fields subject to boundary conditions at
a typical distance scale L characterized by a unit 3-vector
n. To be concrete, one can think of electromagnetic
Casimir vacuum between parallel plates at distance L
with n being normal to the planes. Let this vector smoothly
fluctuate in random directions with typical frequency !,
which is assumed to be much smaller than c=L. One
studies the quantum average of the energy-momentum
tensor for the fields, hT��ðxÞi. Since the problem is quasi-

stationary, the general answer is given by

hT��ðxÞi ¼ aðxÞg�� þ bðxÞn�n� þOð!L=cÞ: (11)

On the other hand, performing an average over time period
T � !�1 one should have

1

T

Z T

0
dthT��ðxÞi ¼ �aðxÞg�� (12)

since no memory has remained about the particular direc-
tion the vector n is pointing to. Thus, experiments with the
detector time resolution!T � 1 will observeOð3Þ violat-
ing local answer (11) while those over long time scales
!T � 1 will see Oð3Þ respecting answer (12). It is of
crucial importance that some physical process with the
typical life time scale comparable or larger than the plasma
life time does exist and it is responsible for the creation of
P- and CP-odd domains in the dense and hot matter in
Minkowski space-time. It seems to be a rather subtle point
in this case how a relation between Euclidean expression
(2) and Minkowskian dynamics should look. In any case,
the existence of scale separation between the process dy-
namical scales and the measuring device ones is necessary
for the whole picture to make sense.

Since a detailed picture of the discussed microscopic
quantum/classical interplay is beyond us, our attitude here
is purely phenomenological. We define the effective
�-dependent current J�ðx; �Þ as

J�ðx; �Þ ¼ h��jj�ðxÞj��i; (13)

where electric current j�ðxÞ ¼ �c ðxÞQ��c ðxÞ with a

quarks charge matrix Q ¼ diagð2=3;�1=3;�1=3Þ. The
state j��i is characterized by

h��j
Z
V
d4y@�j5�ðyÞj��i ¼ �; (14)

where j5� ¼ �c ����
5c and � is a matrix in flavor space

fixing the axial current flavor quantum numbers. It is
physically obvious that J�ðx; �Þ must be an odd function

in � and

Z 1

�1
d�J�ðx; �Þ ¼ 0: (15)

Since by assumption each event is characterized by some
value of �, positive or negative with equal probability, this
corresponds to ‘‘averaging to zero’’ over many events.
To proceed further it is convenient to use the formalism

of partial partition functions:

Z ¼
Z

D�expð�S½��ÞY
i

Z
d�i

~ð�i �Oi½��Þ; (16)

where S½�� is the standard Euclidean QCD action,� stays
for dynamical quark and gluon fields A, �c , c , andOi½�� is
a gauge-invariant operator made of these fields. We ap-
proximate the real detector with finite resolution by the

choice of the ‘‘detector function’’ ~ðxÞ in the Gaussian
form:

~ð�Þ ¼ 1

2�

Z 1

�1
d� expð��2l2=2þ i��Þ; (17)

so that
R1
�1 d� ~ð�Þ ¼ 1.

We are interested in a value of the electric current (13).
For an exactly conserved axial current @j5 ¼ 0 one would
have h�jj�ðxÞ � @j5ðyÞj�i ¼ 0. Because of the (electro-

magnetic) anomaly, however, the result reads

i
Z

dxeiqðx�yÞh�jj�ðxÞ � @j5ðyÞj�i

¼ �Trf½Q2��Trc1 �
�

1

2�2

�
� q� ~F��; (18)

where the traces Trf and Trc run over flavor and color

indices, respectively, and are normalized according to
Trf1 ¼ Nf and Trc1 ¼ Nc.

The anomalous divergence of the axial current is given
by the following general expression:

@j5 ¼ �Trf½Q2��Trc1 �
�

1

8�2

�
� F��

~F�� � Trf½��

�
�

1

8�2

�
� TrcG��

~G�� (19)

(notice that for uniform magnetic field F��
~F�� ¼ 0).

Since for singlet current � ¼ 1, computing

J�ð�; xÞ ¼ 1

Z

Z
D�j�ðxÞ~ð�� nVÞ expð�S½��Þ; (20)

where

nV ¼
Z
V
d4y@j5 ¼ � Nf

8�2

Z
V
d4yTrcG��

~G�� (21)

at the leading order of the cluster expansion

hA expBi 	 hABi expðhB2i=2Þ (22)

valid for hAi ¼ 0 and hBi ¼ 0, one gets in this
approximation:
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J�ðx; �Þ ¼ ��e��2=2L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�5L6

p �
�Z d4q

ð2�Þ4 e
iqxfVðqÞiq�

�
� ~F��:

(23)

Here L2 ¼ l2 þ hn2Vi and the form factor is given by
fVðqÞ ¼

R
V d

4y expð�iqyÞ. In the infinite volume limit

� ¼ limV!1hn2Vi=VN2
f where � is the standard topological

susceptibility.
The expression (23) deserves a few comments. First, the

right-hand side of (23) is an odd function of � as it should
be, and at small � the current is linear in �. If the point x is
far from y 2 V the current vanishes due to form-factor
fVðqÞ, i.e., the current flows only in the interaction volume
V. On the other hand, if x 2 V and V is large enough to
neglect surface terms, the current also vanishes as it should
for any finite-volume effect. The volume scaling hn2Vi � V
for the phase with finite correlation length is another
manifestation of the same fact.

It is worth mentioning that the maximal current is
reached at �� L and decreases as Jmax / B=�L2 (where

�� V1=4). This result seems to be counterintuitive. Indeed,
a naive picture would suggest that stronger fluctuations of
the topological charge hn2Vi are to correspond to stronger
currents J�ðx; �Þ. This, in fact, is not the case. A rough

physical explanation follows from (18): since the product
of j� and @j5 is fixed by electromagnetic anomaly (i.e. by

the magnitude of an external Abelian field F��) large @j
5

corresponds to small j� and vice versa. Let us recall that

according to the lattice data [43] the magnitude of topo-
logical charge fluctuations experience a rather sharp drop
above the deconfinement transition. According to the
above it means the effective enhancement of maximal
possible electric current fluctuations. Of course, at too
small hn2Vi the Gaussian approximation (neglect of higher
order correlators) we have used breaks down.

It is seen that the discussed effect is a result of the subtle
interplay between strong and electromagnetic anomalies
(see related remarks in [9]). While the later one is respon-
sible for the correlation between vector and axial currents,
the former anomaly provides nonconservation of an axial
charge due to topological nonperturbative gluon fluctua-
tions. The question about �5 distribution addressed in the
introduction is translated here into the question about �
distribution for experimental events.

IV. CHARGE FLUCTUATIONS ASYMMETRY
AND POLARIZATION OPERATOR

Perhaps the most logically consistent way is to study
transition matrix elements of (1) between states of opposite
P-parity. This corresponds to

h�jjijkj�i ! X
A

h�jjijAihAjjkj�i; (24)

where the states j�i and jAi have opposite P-parities and
hAj�i ¼ 0. Of course, the expression (24) is nothing but

the electromagnetic polarization operator in the state j�i
saturated by particular states in spectral expansion.
This line of reasoning has been addressed in the litera-

ture before. Local averages like hj2�ðxÞi were computed in

pioneering studies of CME on the lattice [44,45] and many
interesting patterns were found. Later nonlocal averages
hj�ðxÞj�ðyÞi are computed [46,47]. We find it worth recall-

ing once again that since the typical correlators we are
interested in are given by dimension six operators, their
local matrix elements are strongly UV-singular

hj2�ðxÞiF / �6 þ F2�2 þ UV-finite; (25)

where � is an UV cutoff and F-external field strength.
Even subtracted average hj2�ðxÞiF � hj2�ðxÞi0 is divergent.

In actual numerical calculations on the lattice [44,45] this
F2�2 term is not seen. This could be a consequence of the
specific structure of UV cuts used in [44,45]. Anyway, this
problem presents an analytical challenge for any attempt to
describe CME in terms of local matrix elements. To our
view this is a clear signal about the intrinsic nonlocal
nature of the discussed phenomenon.
The polarization operator in the CME context is studied

in [23]. There are two main differences between our ap-
proach and that of the cited paper. First, the regular con-
tribution (given by the polarization operator in magnetic
field) and CME contribution (proportional to �5) are sepa-
rated from the beginning in [23] [in some sense, quantum
currents are superimposed on top of the classical current
(1)]. We follow another logic and consider the polarization
operator as the only source of asymmetric charge fluctua-
tions, but extract a particular form factor from it, which
corresponds to negative parity intermediate states. Second,
the expression for charge fluctuations observable as a func-
tional depending on a polarization operator is different in
our paper from that of [23]. We will make more comments
on that below.
In this section we discuss a P-even observable which is a

product of two P-odd contributions. The role of the former
is played by the current correlator hj�j�i. It seems physi-

cally clear that this object should contain some information
about charge distribution (4). The exact form of this cor-
respondence is, however, far from trivial. One could think
of several ways to relate these quantities. Before presenting
our approach to this problem let us mention other methods
used in the literature. First, we notice that the current in the
� direction is given by

e zj3 þ eyj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j23 þ j22

q
ðez sin�þ ey cos�Þ; (26)

and the corresponding charge difference from (4) is

�Z dðNþ � N�Þ
d�

d�
Z dðN0þ � N0�Þ

d�0 d�0
�
e
; (27)

where by the brackets h. . .ie we denote the average over
events. One has hðaþ � a�Þ2ie / hj23 þ j22i, where the
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current product is assumed to be local. This is very close
(but different) to the definition used in [44]. It is natural to
expect that positive-definite hðaþ � a�Þ2ie should be non-
zero even without any magnetic field.

Another relation is suggested in [23]. It is written in
terms of event average of the cosine, where 
;� ¼ þ;�
and N� is the total number of outgoing particles of a given
charge:

hcosð�
 þ�0
�Þie /


�

N
N�

ðj22 � j23Þ; (28)

where, up to some background terms

hcosð�
 þ�0
�Þie ¼ hv1;
v1;�ie � ha
a�ie: (29)

Assuming charge independence of v1;
 and equal numbers

of particle species Nþ ¼ N� ¼ N one gets hðaþ �
a�Þ2ie / hj23 � j22i if one neglects the v1;
 term with re-

spect to the a
 term. In fact, the leading term, which is
always contained in the j3 component, coincides for both
expressions, while the procedure of taking into account
fluctuations in the reaction plane is different.

In this paper we use an alternative signature provided
by charge density fluctuations and not spatial components
of the currents. An attractive feature of this quantity is that
it is well defined even in the static limit. To this end
consider the electric charge in some spatial volume V at
temperature T:

eQV ¼ e
Z
V
dxj0ðxÞ: (30)

Since we work in the zero density approximation the
quantum average of this object vanishes:

hQVi ¼ 0: (31)

This is not the case for its square:

hQ2
Vi ¼ ��̂

Z
V
dx

Z
V
dx0�44ðx; x0Þ; (32)

where �44ðx; x0Þ is Euclidean polarization operator in the
constant external field F�� and at temperature T Wick-

rotated from the standard Minkowski expression

�ðMÞ
00 ðx; x0Þ:

�ðMÞ
�� ðx; x0Þ ¼ ihTfj�ðxÞj�ðx0ÞgiF;T; (33)

with j� ¼ �cQ��c ; �ðMÞ
�� $ �ðEÞ

��, notice the sign con-

vention (32) corresponding to positive-definite hQ2
Vi in the

static limit. In the standard way we denote

���ðqÞ ¼
Z

d4xe�iqðx�x0Þ���ðx; x0Þ; (34)

with �, � ¼ 1, 2, 3, 4, and q ¼ ðq1; q2; q3Þ, q? ¼ ðq1; q2Þ.
The operator �̂ in (32) accounts for the temporal profile

of the process. In terms of momentum space components,
(32) takes the following form:

hQ2
Vi ¼�

Z dq4
2�

�ðq4Þ
Z dq

ð2�Þ3 jFVðqÞj2�44ðq;q4Þ; (35)

where the form factor FVðqÞ ¼
R
V dx expðiqxÞ keeps in-

formation about the spatial profile of the volume V, while
the temporal factor �ðq4Þ ¼

R
d�gð�Þ expðiq4�Þ encodes a

temporal (in the Euclidean sense) profile. For the finite
temperature case we consider here the standard Matsubara
replacements q4 ! !n ¼ 2�nT and ð2�Þ�1 
R
dq4 ! T

P
n that are to be performed. The choice gð�Þ ¼

T we will adopt in the rest of the paper physically corre-
sponds to the static limit where only the lowest Matsubara
frequency n ¼ 0 contributes:

hQ2
Vist ¼ �T

Z dq

ð2�Þ3 jFVðqÞj2�44ðq; 0Þ: (36)

Using the expressions from the Appendix it can be checked
that in the thermodynamic limit V ! 1 without an exter-
nal field one reproduces the standard Stefan-Boltzmann
answer for elementary fermions limV!1he2Q2

Vist=V ¼
e2T3=3. In case of quarks one should of course understand
eB as qfeB and introduce additional trace over flavors with

the factor NcQ
2:�eB;T

44 ! Nc

P
fq

2
f�

qfeB;T

44 . For the sake of

brevity we will use the simple notation as for elementary
fermions of the unit electric charge having in mind the
necessity to make the replacement discussed above in the
final answers.
In the limiting case of no background B ¼ 0, T ¼ 0 one

has �44ðq; q4Þ ¼ q2�ðq2Þ and, at the leading order, for
large 4-volumes V4:

hQ2
ViB¼0;T¼0 / �0ð0Þ � V�1=2

4 ; (37)

where the condition of gauge invariance �ð0Þ ¼ 0 has
been taken into account and the volume V4 ¼ R3 
 t is
assumed to be uniform: R� t. Thus, the expression (32) is
UV safe and vacuum charge fluctuations in a given space-
time region are a purely finite-volume effect.
We can now come back to the definition (32) and rewrite

the coordinate integration in cylinder coordinates with axis
1 as the polar axis and angle� defined in the 23 plane. This
is the same notation as in (4); notice that in the standard
setup the azimuthal angle is usually defined in plane 12.
This allows us to represent the form factor FVðqÞ as

FVðqÞ ¼
Z

dx1e
iq1x1

Z
0
�d�

Z 2�

0
d�ei �q�; (38)

where �q� ¼ q2x2 þ q3x3 ¼ q2� cos�þ q3� sin� and the
structure of the integration upper limit is determined by the
chosen model for spatial distribution (the sharp boundary,
smoothed boundary, Gaussian shape, exponential shape
etc.). The sin� mode in the Fourier expansion of (38) is
multiplied by the following coefficient:

c1 ¼ ð1=�Þ
Z 2�

0
d� sin�ei �q� ¼ 2iq3

q̂
J1ðq̂�Þ; (39)
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where q̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q22 þ q23

q
. Thus, we have for the expansion of

(36) in harmonics:

hQ2
Vi ¼ . . .þ

Z 2�

0
d� sin�

Z 2�

0
d�0 sin�0hðqaVÞ2i þ . . . ;

(40)

where hðqaVÞ2i is given by the same expression (36) with the
change FVðqÞ ! fVðq1; q2; q3Þ where

fVðq1; q2; q3Þ ¼ 2iq3
q̂

Z
dx1e

iq1x1
Z
0
�J1ðq̂�Þd�: (41)

In the same way hðqv1

V Þ2i corresponds to the exchange
q3 $ q2 and sin� $ cos�. Making use of (4), (27), and
(40) we obtain the following relation for the asymmetry:

hq2Vi ¼ hðqaVÞ2i � hðqv1

V Þ2i ¼ � X

;�¼�


� cosð�
 þ�0
�Þ;

(42)

hq2Vi ¼ N2 � ðhðaþ � a�Þ2ie � hðv1;þ � v1;�Þ2ieÞ

¼ T
Z dq

ð2�Þ3
q23 � q22
q23 þ q22



��������
Z

dx1e
iq1x1

Z
0
�J1ðq̂�Þd�

��������
2

�44ðq; 0Þ: (43)

It is obvious that the above expression has to be propor-
tional to the magnetic field since there are no other
Oð3Þ-violating factors in the problem. The effect we are
looking for corresponds to the strong enhancement of (43)
in an external magnetic field and hence, from experimental
point of view, strong dependence of (43) on centrality. It is
to be stressed that the multiplicity factor N2 is by itself
strongly centrality dependent. This dependence is kine-
matical and has nothing to do with the magnetic field
dependence of hq2Vi. Only the latter lies at the heart of CME.

V. GENERAL STRUCTURE OF
POLARIZATION OPERATOR

In this section we analyze the general structure of the
polarization operator in the background of the nonzero
temperature and magnetic field. As is clear from the above
discussion, this is a necessary prerequisite before one can
compute the charge fluctuation asymmetry (43).

First, let us make a few general comments about the
space-time dependence of the current-current correlator. In
the confinement phase (i.e. at sufficiently low tempera-
tures) the polarization operator is saturated by the lowest
lying meson states allowed by quantum numbers. For a
correlator of vector currents it is of course � meson at the
zero field/temperature. The situation changes, however, at
the nonzero external field since quantum numbers can be
exchanged between currents and the background in this
case. For example, absorbing one quantum of the electro-
magnetic field from the background � meson can be

converted to pion (the hVVPi correlation). At large dis-
tances the lightest resonance will always dominate, so (for
the weak magnetic field) one expects the general structure
of Euclidean polarization operator of the following form,
motivated by perturbation theory in the external field B:

hjðxÞjðx0Þi / e�m�jx�x0j þ CðBÞ � e�m�jx�x0j; (44)

with CðBÞ / B2. This interesting effect of different parity
states mixing in an external field is similar to the one
observed a long time ago in [48] at finite temperature. In
that case the existence of a thermal bath of pions makes it
possible to convert the vector current to the pseudoscalar
one by absorbing one pion from the bath (the hVPPi
correlation) and the amplitude of this process is propor-
tional to T in the chiral limit. Of course this physical
analogy between finite B and finite T cases is not precise,
for example, the tensor structure is absolutely different.
Thus, the long-distance correlations are saturated by

the lightest degrees of freedom (i.e. pions in the confine-
ment phase). On the other hand, in the deconfinement
phase at strong fields, if the Larmor radius is much smaller
than ��1

QCD no quarks can propagate in the transverse

direction at all:

hjðxÞjðx0Þi / e�eBðx�x0Þ2?=2: (45)

Large-Nc suppressed transverse correlations are possible
only due to the gluon degrees of freedom.
We confine our attention in what follows to a particular

case of a purely magnetic constant Abelian background
fieldF�� in the thermal bath rest frame at nonzero tempera-

tureT.We have chosenF12 ¼ �F21 ¼ B, i.e., themagnetic
field is directed along the third axis. The temperature effects
break Lorentz invariance and the physical answers depend
on a 4-vector u� which represents four velocity of the

thermal bath. It is normalized as u�u
� ¼ 1. In the present

paper we take zero chemical potential � ¼ 0. It is to be
noticed thatmany general conclusions concerning the struc-
ture of polarization operator stay intact for� � 0 since the
latter is associated with the same four vector u� given by

u� ¼ ð1; 0; 0; 0Þ in the medium rest frame.

The polarization operator (34) is a rank two tensor
depending on two polar vectors q� and u� and antisym-

metric tensor F��. The general decomposition of (34) in

terms of independent tensors was extensively studied in the
literature starting from [49,50], see [51] for a recent ex-
position and [52] for a useful collection of references.
Generally, one is to deal with 4
 4 ¼ 16 independent
tensor structures, built by multiplying the four independent

base vectors q�, u�, q

F
�, q


F�

F��. It can be shown,

however, that general requirements of being transversal

q����ðqÞ ¼ q����ðqÞ ¼ 0 (46)

and Bose symmetric ���ðqÞ ¼ ���ð�qÞ together with

generalized Furry’s theorem [49]
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���ðq; u; FÞ ¼ ���ðq;�u;�FÞ (47)

reduce the number of independent tensor structures to six.
Two of them are field independent, the other two depend on
F�� linearly, and the last two—quadratically (notice that

our numeration of the tensors is different from the one
adopted in [49]). Their explicit form reads

�ð1Þ
�� ¼ q2�� � q�q�;

�ð2Þ
�� ¼ ðq2u� � q�ðuqÞÞðq2u� � q�ðuqÞÞ;

�ð3Þ
�� ¼ ðuqÞðq�F��q

� � q�F��q
� þ q2F��Þ;

�ð4Þ
�� ¼ ðu�F��q

� � u�F��q
� þ ðuqÞF��Þ;

�ð5Þ
�� ¼ F��q

�F��q
�;

�ð6Þ
�� ¼ ðq2�� � q�q�ÞF�


F
�ðq2�� � q�q�Þ:

(48)

The coefficient functions of the decomposition

���ðq; u; FÞ ¼
X6
i¼1

�ðiÞ ��ðiÞ
�� (49)

depend on q2, mixed invariants ðuqÞ2, ðqFÞ2, ðuFÞ2,
ðqFuÞ2, pure field invariants F2, F ~F, and also the tempera-
ture T and particle data, encoded in matricesQ andM. The
expression (49) allows us to discuss the current correla-
tions’ asymmetries in an invariant way in any theory where
the expression for polarization operator can be obtained.

Having these general prerequisites let us come back to
the analysis of the correlation patterns. For our choice
F12 ¼ B the invariants ðuFÞ2, ðqFuÞ2, and F ~F are equal
to zero. In what follows we will be especially interested in
a particular type of contribution to ���ðqÞ proportional to
the tensor structure �ð7Þ

�� given by the product of two axial
vectors

�ð7Þ
�� ¼ ~F��q

� ~F��q
�: (50)

It is not independent and one easily checks that�ð7Þ
�� can be

expressed as a linear combination of (48)

q2�ð7Þ
�� ¼ ðq2F2=2� ðqFÞ2Þ�ð1Þ

�� þ q2�ð5Þ
�� þ�ð6Þ

��: (51)

Let us consider the tensor structure of the polarization
operator inmore detail. First, sincewe are interested only in
diagonal 11, 22, 33, 44, and also 34 components in this

paper, we have no contributions from �ð3Þ and �ð4Þ because
the tensors�ð3Þ

�� and�
ð4Þ
�� are antisymmetric and also vanish

for � ¼ 3, � ¼ 4 in the chosen background field. Second,
we notice that for �, � equal to 3 or 4, one has identically

�ð5Þ
�� ¼ 0. Adopting conventional notation: q? ¼ ðq1; q2Þ,

qk ¼ ðq3; q4Þ we can rewrite (49) using (51) as
�kðqÞ ¼ �ðQÞ ��ð1Þ

k þ �ðTÞ ��ð2Þ
k þ ~�ðFÞ ��ð7Þ

k ; (52)

where the new invariant functions are given by

�ðQÞ ¼ �ð1Þ � ðq2F2=2� ðqFÞ2Þ�ð6Þ;

�ðTÞ ¼ �ð2Þ; ~�ðFÞ ¼ q2�ð6Þ: (53)

As for the diagonal correlators in the 12 plane, one has

�?ðqÞ ¼ �ðQÞ ��ð1Þ
? þ �ðTÞ ��ð2Þ

? þ �ðFÞ ��ð5Þ
? ; (54)

where �ðQÞ and �ðTÞ are defined by the same expressions

(53) while the �ðFÞ form factor reads

�ðFÞ ¼ �ð5Þ � q2�ð6Þ: (55)

It is seen that the correlators of our interest can be
decomposed into just three independent structures. The

first, �ðQÞ, corresponds to purely quantum fluctuations. It
has a nonzero limit at both B ! 0 and T ! 0, which
coincides in this case with the textbook expression for

polarization operator. The second structure,�ðTÞ, is respon-
sible for thermal fluctuations. It vanishes at T ! 0. It is

worth mentioning that both functions�ðQÞ and �ðTÞ depend
on the temperature and external field (since the pattern of
both quantum and thermal fluctuations is sensitive to the
external conditions) and our notation corresponds, rather,
to the limiting form of these functions.

We notice that the terms proportional to �ðQÞ and �ðTÞ
are identical in (52) and (54) up to an obvious change of
notation k ⇆?. This is to be expected since quantum and
thermal fluctuation are Oð3Þ isotropic. The only noniso-
tropic terms (and the most interesting for us here) are the

last terms ~�ðFÞ in (52) and �ðFÞ in (54). The former
one takes into account charge (and also the current com-
ponent j3) fluctuations induced by the external magnetic
field. The P-parity structure of this term is given by

Bhj3j3i ¼ ~�ðFÞ 
 ~F3�p
� 
 ~F3�p

�;

P-even ¼ P-even
 axial
 axial:

It is to be compared with the thermal contribution propor-

tional to �ð2Þ
k

Thj3j3i ¼ �ðTÞ 
 p3ðupÞ 
 p3ðupÞ;
P-even ¼ P-even
 vector
 vector:

This directly corresponds to our discussion in the introduc-
tion: in the latter case the thermal fluctuations are distrib-
uted isotropically in the thermal bath rest frame, while in
the former one there are electric currents fluctuating along
the magnetic field. The magnitude of these fluctuations is

measured by the function ~�ðFÞ, and no physical principle
forces it to vanish either below or abovethe critical tem-

perature. Physically, ~�ðFÞ corresponds to P-odd intermedi-
ate states in the polarization operator.

The function �ðFÞ entering (54) is a sum of two terms
according to (55). This also is to be expected. Charged
particles flowing in the plane perpendicular to the magnetic
field are deflected by the Lorentz force, and this
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diamagnetic effect is taken into account by the form factor

�ð5Þ. It is absent in�k. But the particle’s spin interacts with
the field by means of a �
�F


� term in �k as well as in
�?, which results in the factor q2�ð6Þ in both expressions
(52) and (54). It is worth noting that according to our
general logic the electric charge asymmetry is computed
for the full expression for �44, not just from some part of

it, proportional to ~�ðFÞ. Thus, it is legitimate to speak about
the CME interpretation of the answer (43) only in the

limiting case when ~�ðFÞ provides the dominant contribu-
tion. We discuss that in more detail below.

VI. MODEL EXAMPLES

We analyze in this section two limiting cases where one

can construct ~�ðFÞ in an explicit way. The first one corre-
sponds toweakmagnetic fields in the confinement phase. In
this case the intermediate states are hadron resonances of
negative P-parity (see a closely related discussion in [53]).
However, to select explicitly physical states making domi-
nant contribution is far from trivial and the answer strongly
depends on kinematics. We confine ourselves in this paper
to the simplest case keeping only three neutral 0�þ inter-
mediate states:�0,�,�0. Technically, it is more convenient
to consider from the very beginning matrix elements of
vector currents between vacuum and these states in external
fields. Making use of the definition of the off-shell vector-
vector-axial form factor F � � F �0����� ðq2; q21; q22Þ (see,

e.g., [54]) with q ¼ q1 þ q2,Z
dx

Z
dyeiq1xþiq2yh0jTrfj�ðxÞj�ðyÞgj�0ðqÞi

¼ 	��
�q


1 q

�
2F �ðq2; q21; q22Þ; (56)

one gets at the leading order in the constant external field:

h0jj�ð�qÞj�0ðqÞiF ¼ ieq� ~F��F �ðq2; q2; 0Þ: (57)

The expressions for � and �0 contributions are completely
analogous with the replacement of F � by F � and F �0 .

Thus, the q2 dependence of the polarization operator in
an external field is determined in this approximation by the
form factors F �ðq2; q2; 0Þ with one on-shell leg (corre-

sponding to external field vertex). These form factors are
essentially nonperturbative QCD objects. Let us recall that
on-shell [i.e. at the point F �ðm2

�; 0; 0Þ] they are fixed by

the triangle anomaly, for example, for pion:

F �ðm2
�; 0; 0Þ ¼ � Nc

12�2F�

: (58)

Another important case is the large q2 ! 1 limit where
one has (for chiral fermions) F �ðq2; q2; 0Þ ! �FF�=3

where �F is a QCD quark condensate magnetic suscepti-
bility, defined by h0j �q���qj0iF ¼ eq�Fh �qqiF��. Different

approximation schemes valid at intermediate momenta are
discussed in the literature (see, e.g., [55]).

Having written the field-dependent matrix element (57)

one is able to express the invariant function ~�ðFÞðq2Þ as
follows:

~� ðFÞðq2Þ ¼ X
�¼�;�;�0

jF �ðq2; q2; 0Þj2
q2 �m2

�

: (59)

From the point of view of expression (43) the dominant
contribution to asymmetry is this phase that comes from
the lightest degree of freedom, i.e., massless in the chiral
limit pion (to be more precise, we assume the limitm�R �
1). Choosing for concreteness the Gaussian boundary con-
dition [i.e. introducing the factors expð�q2i R

2=2Þ into (43)]
one obtains

hq2Vi ¼ �

�
eB

F�

�
2
TR3; (60)

where the numerical factor � ¼ 1:6
 10�4 is of course
specific for this boundary choice. Certainly the result trivi-
ally follows from dimensional considerations. We see
hq2Vi � 1 for a phenomenologically reasonable choice of
parameters. Contributions ofmass gapped states bring addi-
tional suppression (and, in particular, break �R3 scaling).
As the second example we consider free fermions in the

strong field limit. This regime would correspond to the
deconfinement phase where proper dynamical degrees of
freedom are quarks and gluons with perturbatively weak
interaction between each other. To compute the polariza-
tion operator under external conditions in perturbation
theory one usually makes use of the Schwinger proper-
time technique and there is extensive literature on the
subject [56–60] where different kinds of external back-
grounds were studied. The polarization operator in a con-
stant magnetic field and at nonzero temperature was
calculated in [61] in an imaginary time formalism. Our
aim here is to put these results in a charge fluctuations
asymmetry perspective. For the reader’s convenience we
reproduce the explicit one-loop expressions for the polar-
ization operator �k given by [61] in the Appendix of the

present paper.
It is convenient to present the Euclidean polarization

operator in the following form:

���ðq?; q3; nÞ ¼
X

A��ðqÞe��ðqÞ þQ��ðqÞ; (61)

where the sum includes integration over proper times and
summation over Matsubara frequencies [see expression
(A3) in the Appendix], the functions A��½q� polynomially

depend on momenta components q, and the universal
Euclidean phase �ðqÞ is given by expression (A4). The
contact terms Q��ðqÞ have no sensitivity to infrared pa-

rameters (like temperature or external field) and provide
the correct limit of ��� at vanishing background.

One can notice that ~�ðFÞ can be simply related to the
polarization operator components. Namely, solving the
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system of three linear equations (52) for the choices
ð��Þ ¼ 44, 33, and 34 one finds all three invariant form

factors, including ~�ðFÞ:

B2 ~�ðFÞ ¼ � q3q4�44 þ ðq2? þ q23Þ�34

q2?q3q4
; (62)

where q2? ¼ q21 þ q22 and q4 � !n ¼ 2�Tn.
Thus, the chiral magnetic form factor is a nontrivial

linear combination of �34 and �44. First, we are to check
that at B ! 0 the right-hand side of (62) vanishes. This is
obvious at zero temperature since in this case there is the

only tensor structure given by �ð1Þ
�� and

q3q4�
ð1Þ
44 þ ðq2? þ q23Þ�ð1Þ

34 ¼ 0: (63)

For temperature dependent parts it is rather nontrivial, the
proof that this is indeed the case can be found in the
Appendix.

The explicit expression for ~�ðFÞ looks especially simple
in the small T regime. It reads

~�ðFÞ ¼ � 1

ð4�Þ2
1

eB

Z 1

	
du

Z þ1

�1
dvðð1� v2Þ coth �u

þ f?ð �u; vÞÞ expð��ð0ÞÞ; (64)

where �u ¼ ueB and the functions �ð0Þ and f?ð �u; vÞ are
given in the Appendix. Notice that such a form factor was
discussed in a different context in [50].

In the weak field limit one has

lim
B!0

~�ðFÞ ¼ 1

6�2

Z 1

�1
dv

ð1� v2Þð3� v2Þ
ð4m2 þ ð1� v2Þq2Þ2 : (65)

In the strong field limit (still at small T) the situation

becomes more interesting—the form factor ~�ðFÞ provides
the dominant contribution to the polarization operator:

�44 ! q23ðeBÞ2 ~�ðFÞ

! � eB

4�2
e�q2?=ð2jeBjÞ

Z 1

�1
dv

ð1� v2Þq23
4m2 þ ð1� v2Þq23

(66)

up to the termsOðq2?=eBÞ. One can say that all asymmetry

of charge fluctuations is due to a CME-like form factor in
this limit.

We see another interesting effect. In the chiral limit (66)
does not depend on q3 at all, while the dependence on q? is
suppressed by the field B. On the other hand, the essence of
the asymmetry of interest is just different dependence of
the polarization operator on different components of mo-
mentum. Since the polarization operator itself linearly rises
with B for the strong field it is not a priori clear which
effect is to win. Detailed calculations show that in fact they
balance each other and the asymmetry (43) is not asymp-
totically rising with B—there is an effect of saturation. It is
reasonable to separate different regimes depending on
ratios between basic parameters such as B, m, T, and R

where the latter one stays for the typical 3-dimensional size
of the volume V3. For two light flavors one can safely
neglect quark masses m. Three other parameters are in
the ballpark of 100 MeV (for a large fireball one can think
of phenomenologically realistic eBR2 ¼ 5 10). Without
the intention to cook up numerical factors but just to get
feeling of the numbers, plugging (66) into (43) we get

hq2Vi ¼ �0 � RT; (67)

where again the numerical factor �0 ¼ 4:1
 10�2 corre-
sponds to the Gaussian boundary shape. Thus, for asymp-
totically large B one reaches the ‘‘kinematical limit’’ for
the asymmetry in our picture, despite the fact that numeri-
cally it is still very small.

VII. CONCLUSIONS

We have discussed three possible ways to study quantum
physics behind the chiral magnetic effect and electric
charge fluctuation asymmetry observed in heavy-ion colli-
sions. For all approaches the importance of scale separa-
tion is stressed—there should be a hierarchy of dynamical
scales characterizing the life of the quark-gluon phase after
the collision and intrinsic QCD scales (perhaps field/tem-
perature shifted) characterizing the non-Abelian topologi-
cal charge fluctuation pattern. The physical essence of
CME as we tried to present it here is that the quark-gluon
medium plays the role of a measuring device with respect
to the topological QCD vacuum with the final particle’s
electric charge asymmetry as an outcome. This is most
clearly illustrated by the expression (23).
The third approach we have considered is somewhat

different because it provides nonzero results even for free
fermions in the magnetic field, i.e., without any ‘‘topologi-
cal origin.’’ We believe that this can be considered as a
particular case of CME as well. Just the nonzero matrix
element of the vector current between the vacuum and J�þ
states in external magnetic field leads to an asymmetric
charge/current pattern as if there is a fluctuating vector
current collinear to B. Of course the detailed picture
depends on the actual quantum dynamics of these J�þ
degrees of freedom, and we have shown that, indeed,
it is strongly suppressed in the confinement phase.
Nevertheless we find it legitimate to interpret this dynam-
ics using the same CME-like language since, namely, this
anomaly-driven vector-axial correlation is at the heart of
the effect, while the concrete way of life of the axial
degrees of freedom (distribution function for �5 in the
standard CME analysis) is of secondary importance.
We have left without attention all aspects of temperature

dynamics in this paper. Despite the fact that no drastic
qualitative effects are expected it is interesting to study the
asymmetry in the whole parameter space spanned by
ðB; T;m; RÞ. This could clearly have phenomenological
applications to heavy-ion collision physics whose under-
standing is the main challenge for modern QCD.

V.D. ORLOVSKYAND V. I. SHEVCHENKO PHYSICAL REVIEW D 82, 094032 (2010)

094032-10



ACKNOWLEDGMENTS

The authors acknowledge useful discussions with P.
Buividovich, A. Gorsky, D. Harzeev, A. Kaidalov, M.
Polikarpov, Yu. Simonov, and V. Zakharov. The work of
one of the authors (V. O.) is supported by the Dynasty
foundation personal grant.

APPENDIX

For the reader’s convenience we present explicit expres-
sions for the one-loop polarization operator as computed in
[61]. It reads

���ðq; q4Þ ¼ �T
Z dp

ð2�Þ3
X1

l¼�1

 Trf��SlðpÞ��Sl�nðp� qÞg þQ��ðqÞ;

(A1)

where SlðpÞ is a fermion propagator in an external constant
magnetic field and Q��ðqÞ is the ‘‘contact term’’ needed to

cancel the ultraviolet divergencies. It has no dependence
on soft backgrounds like temperature or external field. The
sum goes over fermionic Matsubara frequencies !̂l ¼
ð2lþ 1Þ�T, while the bosonic one is q4 ¼ !n ¼ 2n�T.

Thus, the general structure of Euclidean polarization
operator is given by

���ðq?; q3; nÞ ¼
X

A��ðqÞe��ðqÞ þQ��ðqÞ: (A2)

The sum is given by the following expression:

X ¼ T

4�

eBffiffiffiffi
�

p
Z 1

	
du

ffiffiffi
u

p Z 1

�1
dv

X1
l¼�1

: (A3)

The universal phase �ðqÞ has the form
�ðqÞ ¼ �ð0ÞðqÞ þ uW2

l

¼ q2?
eB

cosh �u� cosh �uv

2 sinh �u

þ u

�
m2 þW2

l þ
1� v2

4
ðq24 þ q23Þ

�
; (A4)

where Wl ¼ !̂l � 1�v
2 !n and �u ¼ ueB. The contact term

is given by

Q�� ¼ 1

12�2

Z 1

	

du

u
e�um2ðq2�� � q�q�Þ: (A5)

The function A��ðqÞ polynomially depends on momenta

components q and for 3, 4 components reads

A44ðqÞ ¼ coth �u

�
1

u
� 2W2

l þ q4vWl � 1� v2

2
q23

�

þ q2?
2

f?ð �u; vÞ; (A6)

A34ðqÞ ¼ q3

�
vWl þ 1� v2

2
q4

�
coth �u; (A7)

A33ðqÞ ¼ � coth �u

�
q24

1� v2

2
þ q4vWl

�
þ q2?

2
f?ð �u; vÞ;

(A8)

where

f?ð �u; vÞ ¼ v coth �u sinh �uv� cosh �uv

sinh �u
: (A9)

To get the zero temperature limit of the above expres-
sions, the Poisson summation formula is useful

X1
l¼�1

e�aðl�zÞ2 ¼
�
�

a

�
1=2 X1

k¼�1
e�ð�2k2=aÞ�2�izk: (A10)

In particular one gets

lim
T!0

T
X1

l¼�1
e�uW2

l ¼ 1

2
ffiffiffiffiffiffiffi
u�

p : (A11)

Another necessary demonstration of self-consistency is

proof of vanishing of B2 ~�ðFÞ defined by (62) at B ¼ 0 for
any T. One has, at B ! 0,

q3q4A44þq2A34¼q3
u

�
q4

�
1

u
�2W2

l

�
þvWlq

2

�

¼ q3
2u2

d

dv
ðWle

�uðW2
l
þ½ð1�v2Þ=4�q2ÞÞ: (A12)

It is easy to check that the latter expression gives zero
result when integrated from �1 to 1.
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