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We construct a spectral representation for the baron to meson transition distribution amplitudes (TDAs),

i.e. matrix elements involving three quark correlators which arise in the description of baryon to meson

transitions within the factorization approach to hard exclusive reactions. We generalize for these quantities

the notion of double distributions introduced in the context of generalized parton distributions. We

propose the generalization of Radyushkin’s factorized ansatz for the case of baryon to meson TDAs. Our

construction opens the way to modeling of baryon to meson TDAs in their complete domain of definition

and quantitative estimates of cross sections for various hard exclusive reactions.
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I. INTRODUCTION

The concept of generalized parton distributions (GPDs)
[1–4], which in the simplest (leading twist) case are non-
diagonal matrix elements of quark-antiquark or gluon-
gluon nonlocal operators on the light cone, has recently
been extended [5,6] to baryon to meson (and baryon to
photon) transition distribution amplitudes (TDAs), non-
diagonal matrix elements of three quark operators between
two hadronic states of different baryon number (or between
a baryon state and a photon). Nucleon to meson TDAs are
conceptually much related to meson-nucleon generalized
distribution amplitudes [7,8] since they involve the same
nonlocal operators [9–12]. These objects are useful for the
description of exclusive processes characterized by a bar-
yonic exchange such as backward electroproduction of
mesons [13–15] or proton-antiproton hard exclusive anni-
hilation processes [16]. Nucleon to meson TDAs are also
considered to be a useful tool to quantify the pion cloud in
baryons [17].

Up to now TDAs between the states of unequal baryon
number lacked any suitable phenomenological parametri-
zation in the whole domain of their definition, as, for
example, in the framework of the quark model developed
in [18]. The complete parametrization should properly take
into account the fundamental requirement of Lorentz co-
variance which is manifest as the polynomiality property of
the Mellin moments in the relevant light-cone momentum
fraction on the complete domain of their definition. For the
case of the GPDs an elegant way to fulfill this requirement
consists in employing the spectral representation. The
corresponding spectral properties were established with
the help of the �-representation techniques [19,20].
Radyushkin’s factorized ansatz based on the double distri-
bution representation for GPDs [21–24] became the basis
for various successful phenomenological GPD models
(see [25–29]).

In this paper we address the problem of construction of
a spectral representation of baryon to meson transition

distribution amplitudes. We introduce the notion of qua-
druple distributions and generalize Radyushkin’s factor-
ized ansatz for this issue. This allows the modeling of
baryon to meson TDAs in the complete domain of their
definition and quantitative rate estimates in various hard
exclusive reactions.
Similarly as the nucleon to meson TDAs factorize in

backward meson electroproduction, nucleon to photon
TDAs may factorize in backward virtual Compton scatter-
ing [30]. The main part of the analysis performed in our
paper can be directly applied to the nucleon to photon
TDAs. But the modelling of the quadruple distribution
has to account for the anomalous nature of a photon. The
studies of the anomalous photon structure functions [31]
and of the photon GPDs [32] show that taking it into
account is a nontrivial task which deserves separate studies.

II. BASIC DEFINITIONS AND KINEMATICS

Nucleon to meson transition distribution amplitudes also
called in the literature as skewed DAs [5] and superskewed
parton distributions [6] which extend the concept of usual
generalized parton distributions arise e.g. in the description
of meson electroproduction on the nucleon target [13–15].
For definiteness below we consider the case of nucleon to
pion transition distribution amplitudes (�N TDAs for
brevity) although our analysis is general enough to be
applied to other baryon-meson and also baryon to photon
TDAs. �N TDAs arise in the description of backward pion
electroproduction

��ðqÞ þ Nðp1Þ ! N0ðp2Þ þ �ðp�Þ; (1)

in the generalized Bjorken regime (� q2 is large and
q2=ð2p1 � qÞ kept fixed �q2 � �u). The factorization
theorem was argued for the process Eq. (1) in [5,6] (see
Fig. 1). The appropriate kinematics is described as follows
[15]:
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P ¼ 1

2
ðp1 þ p�Þ; � ¼ p� � p1;

u ¼ �2; � ¼ � � � n
2P � n ;

(2)

where u denotes the transfer momentum squared between
the meson and the nucleon target and � is the skewness
parameter. n and p are the usual light-cone vectors occurring
in the Sudakov decomposition of momenta (n2 ¼ p2 ¼ 0,
n � p ¼ 1). The light-cone decomposition of the particular
vector v� is given by v� ¼ vþp� þ v�n� þ v

�
T .

The definition of �N TDAs can be symbolically written
as [5,6]

Z �Y3
i¼1

dz�i
2�

�
eix1ðP�z1Þþix2ðP�z2Þþix3ðP�z3Þ

� h�ðPþ �=2Þj�abcc a
j1
ðz1Þc b

j2
ðz2Þc c

j3
ðz3Þ

� jNðP� �=2Þijzþi ¼z?i ¼0

� �ð2�� x1 � x2 � x3ÞHj1j2j3ðx1; x2; x3; �; uÞ: (3)

Here j1;2;3 stand for spin-flavor indices and a, b, c are color
indices. The decomposition of the Fourier transform (3) of
the matrix element of the three-local light-cone quark op-
erator involves a set of independent spin-flavor structures
multiplied by corresponding invariant functions:�N TDAs.
It is worth to mention that in order to preserve gauge

invariance one has to insert the path-ordered gluonic ex-
ponentials ½zi; z0� along the straight line connecting an
arbitrary initial point z0n and a final one zin:

h�j�abcc a0
j1
ðz1Þ½z1; z0�a0;ac b0

j2
ðz2Þ½z2; z0�b0bc c0

j3
ðz3Þ

� ½z3; z0�c0cjNi: (4)

Throughout this paper we adopt the light-cone gauge
Aþ ¼ 0, so that the gauge link is equal to unity. Thus we
do not show it explicitly in the definition (3).
For the case of proton to�0 transition the decomposition

of (3) over the independent spinor structures at the leading
twist involves 8 independent terms. It reads1 [15]:

4F ðh�0ðp�Þj�abcua�ðz1nÞub�ðz2nÞdc�ðz3nÞjPðp1; s1ÞiÞ

¼ �ð2�� x1 � x2 � x3Þi fNf� ½Vp�0

1 ðpCÞ��ðNþÞ� þ Ap�0

1 ðp�5CÞ��ð�5NþÞ� þ Tp�0

1 ð	p�CÞ��ð��NþÞ�
þM�1Vp�0

2 ðpCÞ��ð�TN
þÞ� þM�1Ap�0

2 ðp�5CÞ��ð�5�TN
þÞ� þM�1Tp�0

2 ð	p�T
CÞ��ðNþÞ�

þM�1Tp�0

3 ð	p�CÞ��ð	��TNþÞ� þM�2Tp�0

4 ð	p�T
CÞ��ð�TN

þÞ��: (5)

Here p is the usual Dirac slash notation (p ¼ p��
�),

	�
 ¼ 1
2 ½��; �
� with 	p� ¼ p
	


�, C is the charge

conjugation matrix and Nþ is the large component of the
nucleon spinor (N ¼ ðpnþ npÞN ¼ N� þ Nþ with

Nþ �
ffiffiffiffiffiffiffi
pþ
1

q
and N� �

ffiffiffiffiffiffiffiffiffiffiffiffi
1=pþ

1

q
). M stands for the nucleon

mass, f� is the pion decay constant (f� ¼ 131 MeV) and
fN is a constant with the dimension of energy squared. All

the 8 p ! �0 TDAs Vi, Ai and Ti are dimensionless.
In this paper we concentrate on the dependence of the

invariant functions Vi, Ai, Ti multiplying the independent
spin-flavor structures in (5) on the longitudinal momentum
fractions x1, x2, x2 and skewness parameter �. Let us stress
that our subsequent analysis is completely general: all
invariant functions can be treated at the same footing.
For simplicity in what follows we employ the same nota-
tion for all the invariant functions

Hðx1; x2; x3; �; uÞ � fVi; Ai; Tigðx1; x2; x3; �; uÞ: (6)

A basic feature of model building cleverness is to
fulfill fundamental requirements of field theory, such as
general Lorentz covariance. In particular this requirement
leads to the so-called polynomiality property of the Mellin
moments in light-cone momentum fractions x1, x2, x3 of
�N TDAs:

Z
dx1dx2dx3�ð2�� x1 � x2 � x3Þxn11 xn22 x

n3
3

�Hðx1; x2; x3; �; uÞ �
�
i

d

dz�1

�
n1
�
i

d

dz�2

�
n2
�
i

d

dz�3

�
n3

� ½h�ðPþ �=2Þjc ðz1Þc ðz2Þc ðz3ÞjNðP��=2Þi�jzi¼0:

(7)

FIG. 1 (color online). The factorization of the process �� þ
P ! P0 þ �. The lower blob is the pion-nucleon transition
distribution amplitude, Mh denotes the hard subprocess ampli-
tude, DA is the nucleon distribution amplitude.

1We make use of the notation F ð�Þ ¼ ðP � nÞ3 �R½Q3
i¼1

dzi
2��eix1ðP�z1Þþix2ðP�z2Þþix3ðP�z3Þð�Þ
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Indeed the x1, x2, x3- Mellin moments of �N TDA are the
form factors of the local twist-3 three quark operators
between nucleon and pion states. This leads to the appear-
ance of polynomials in � at the right hand side of (7).2

III. SUPPORT PROPERTIES OF �N TDAS

A. ERBL-like and DGLAP-like domains for �N TDAs

In order to specify the support properties of �N TDAs
let us first consider the case of the GPDs [see Fig. 2(a)]. Let
x1 and x2 be the fractions (defined with respect to average

nucleon momentum P ¼ p1þp2

2 ) of the light-cone momen-

tum carried by quark and antiquark inside nucleon (x1 þ
x2 ¼ 2�). In the so-called Efremov-Radyushkin-Brodsky-
Lepage (ERBL) region both x1 and x2 are positive. The
variable x is usually defined as

x ¼ x1 � x2
2

: (8)

In the ERBL region x1, x2 2 ½0; 2�� and thus x 2 ½��; ��.
In the so-called Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) region either x1 is positive x1 2 ½2�; 1þ
�� and x2 is negative x2 2 ½�1þ �; 0� or vice versa (x1 is
negative x1 2 ½�1þ �; 0� and x2 positive x2 2 ½2�; 1þ
��). These two DGLAP domains result in x 2 ½�; 1� and
x 2 ½�1;���, respectively.

Now let us turn to the case of �N TDAs. Let x1, x2 and
x3 satisfying the constraint x1 þ x2 þ x3 ¼ 2�, with � 	 0
be the light-cone momentum fractions carried by three
quarks. As usual the light-cone momentum fractions are
defined with respect to the average hadron momentum

P ¼ p1þp�

2 . The convenient way to depict the support

properties of �N TDAs is to employ barycentric coordi-
nates (Mandelstam plane).

First of all we identify the analogous of the ERBL
domain, in which three longitudinal momentum fraction
carried by three quarks are positive. In the barycentric
coordinates the ERBL-like region corresponds to the
interior of the equilateral triangle with the height 2� (see
Fig. 3). It is natural to assume that the DGLAP-like do-
mains are bounded by the lines

x1 ¼ �1þ �; x1 ¼ 0; x1 ¼ 1þ �;

x2 ¼ �1þ �; x2 ¼ 0; x2 ¼ 1þ �;

x3 ¼ �1þ �; x3 ¼ 0; x3 ¼ 1þ �:

(9)

We are guided by the following requirements.

(i) The complete domain of definition of �N TDA
should be symmetric in x1, x2, x3.

(ii) In the limiting case � ¼ 1 this domain should
reduce to the ERBL-like domain on which the
nucleon DA is defined. In the barycentric coordi-
nates the domain of definition of the nucleon DA is
equilateral triangle.

(iii) For any xi set to zero we should recover the usual
domain of definition of GPDs for the two remaining
variables.

Three small equilateral triangles correspond to DGLAP-
like type I domains, where only one longitudinal momen-
tum fractions is positive while two others are negative.
Three trapezoid domains correspond to DGLAP-like type
II, where two longitudinal momentum fractions are posi-
tive and one is negative.
The support properties (9) are invariant under the per-

mutation of the longitudinal momentum fractions xi. In
the limit � ! 1 the support of �N TDA is reduced to the
ERBL-like domain (the equilateral triangle) (see Fig. 4)
and coincide with that of the nucleon distribution ampli-
tude (DA). In fact this is natural since � ¼ 1 corresponds
to the soft pion limit in which �N TDA reduces to the
corresponding nucleon DA [15].
In the limiting case � ! 0 the support of�N TDA in the

barycentric coordinates is given by the regular hexagon.

FIG. 2. Longitudinal momentum flow in the ERBL regime for
GPDs (a) and �N TDAs (b).

x3

x1 x2

FIG. 3 (color online). Physical domains for �N TDAs in the
barycentric coordinates.

2Naive counting gives n1 þ n2 þ n3 for the order of this
polynomial. However, the problem of determination of the high-
est possible power of � in (7) still lacks some analysis. This is a
rather important question since it would allow to make the
conclusion on the necessity of adding of D-term like contribu-
tions [33] to the spectral representation of �N TDAs (see
discussion in Sec. VII).
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B. Quark-diquark coordinates

In order to describe �N TDA instead of x1, x2, x3 which
satisfy

x1 þ x2 þ x3 ¼ 2�; (10)

it is convenient to introduce the so-called quark-diquark
coordinates. Let us stress that we do not imply any dy-
namical meaning to the notion of ‘‘diquark.’’ There are
three different possible choices depending on which quarks
are supposed to form a ‘‘diquark system’’:

v1 ¼ x2 � x3
2

; w1 ¼ x1 � x2 � x3
2

;

v2 ¼ x3 � x1
2

; w2 ¼ x2 � x3 � x1
2

;

v3 ¼ x1 � x2
2

; w3 ¼ x3 � x1 � x2
2

:

(11)

We suggest to introduce the notations �0
1, �

0
2 and �0

3 for

the fraction of the longitudinal momentum carried by the
diquark:

x2 þ x3
2

¼ �� w1

2
� �0

1;
x1 þ x3

2
¼ �� w2

2
� �0

2;

x1 þ x2
2

¼ �� w3

2
� �0

3: (12)

The variables x1, x2, x3 are expressed through the new
variables (11) as follows:

x1 ¼ �þ w1; x2 ¼ v1 þ �0
1; x3 ¼ �v1 þ �0

1;

x1 ¼ �v2 þ �0
2; x2 ¼ �þ w2; x3 ¼ v2 þ �0

2;

x1 ¼ v3 þ �0
3; x2 ¼ �v3 þ �0

3; x3 ¼ �þ w3:

(13)

C. ERBL-like and DGLAP-like domains for �N TDA
in quark-diquark coordinates

Let us consider how the ERBL-like and DGLAP-like
domains for �N TDA look like in quark-diquark coordi-
nates. Throughout the rest of this section we employ the
particular choice of quark-diquark coordinates (11):

v � v3 ¼ x1 � x2
2

; w � w3 ¼ x3 � x1 � x2
2

;

�0 � �0
3 ¼

�� w3

2
: (14)

The generalization for the alternative cases is
straightforward.
The ERBL-like and DGLAP-like domains for �N TDA

in quark-diquark coordinates (14). are depicted on Fig. 5.
In these coordinates the ERBL-like region corresponds to
the central isosceles triangular domain. It is bounded by
the lines

v¼��0 ðx1¼0Þ; v¼�0 ðx2¼0Þ; w¼�� ðx3¼0Þ:
(15)

DGLAP-like type I regions correspond to three smaller
isosceles triangular domains. Finally, three trapezoid do-
mains correspond to DGLAP-like type II region.
For w 2 ½�1;��� DGLAP-like region is bounded by

v ¼ 1þ �� �0 ðx1 ¼ 1þ �Þ and

v ¼ �1� �þ �0 ðx2 ¼ 1þ �Þ: (16)

For w 2 ½��; �� DGLAP-like region is bounded by

v ¼ �1þ �� �0 ðx1 ¼ �1þ �Þ; v ¼ ��0;

v ¼ �0; v ¼ 1� �þ �0 ðx2 ¼ �1þ �Þ: (17)

For w 2 ½�; 1� DGLAP-like region is bounded by

v ¼ �1þ �� �0 ðx1 ¼ �1þ �Þ; v ¼ ��0;

v ¼ �0; v ¼ 1� �þ �0 ðx2 ¼ �1þ �Þ: (18)

One can easily check that for � 	 0 the following in-
equalities are valid:

x3

x1x2

x3

x1 x2

FIG. 4 (color online). Physical domains for �N TDAs in the
barycentric coordinates. Two limiting cases: � ¼ 0 (left) and
� ¼ 1 (right).

w

v

FIG. 5 (color online). ERBL-like and DGLAP-like domains
for �N TDA in quark-diquark coordinates (14). Three lines:
w ¼ �� and v ¼ 
�0 form the isosceles triangle which corre-
sponds to ERBL-like region. Three smaller isosceles triangles
correspond to DGLAP-like type I region. Three trapezoid do-
mains correspond to DGLAP-like type II region.
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�
w<��

�0 > �
; and

�
w>��
�0 < �

: (19)

�0 ¼ � occurs on the linew ¼ ��. Thus the whole domain
of definition of �N TDA in quark-diquark coordinates
depicted on Fig. 5 can parameterized as follows:

� 1 � w � 1; �1þ j�� �0j � v � 1� j�� �0j:
(20)

Let us briefly summarize our result.
(i) w 2 ½�1;��� with v 2 ½�0; 1� �0 þ �� or

v 2 ½�1þ �0 � �;��0� correspond to DGLAP-
like type I domains.

(ii) w 2 ½�1;��� and v 2 ½��0;�0� corresponds to
DGLAP-like type II domain.

(iii) w 2 ½��;�� with v 2 ½��0;�0� corresponds to
ERBL-like domain.

(iv) w 2 ½��;�� with v 2 ½�0; 1� �þ �0� or
v 2 ½�1þ �� �0;��0� correspond to DGLAP-
like type II domain.

(v) w 2 ½�; 1� with v 2 ½��0; 1� �þ �0� or
v 2 ½�1þ �� �0;�0� correspond to DGLAP-like
type II domain.

(vi) w 2 ½�; 1� with v 2 ½�0;��0� correspond to
DGLAP-like type I domain.

The Mellin moments of �N TDAs in x1, x2, x3 com-
puted with the weight

Z
dx1dx2dx3�ðx1 þ x2 þ x3 � 2�Þ (21)

are the quantities of major theoretical importance. In the
quark-diquark coordinates (14) the corresponding integrals
can be rewritten as

Z 1þ�

�1þ�
dx1dx2dx3�ðx1 þ x2 þ x3 � 2�Þ

� xn11 xn22 xn33 Hðx1; x2; x3 ¼ 2�� x1 � x2Þ
¼

Z 1

�1
dw

Z 1�j���0j

�1þj���0j
dvðvþ �0Þn1ð�vþ �0Þn2

� ðwþ �Þn3Hðw; v; �Þ: (22)

IV. SPECTRAL REPRESENTATION FOR �N TDAS
FROM THE SUPPORT PROPERTIES AND THE

POLYNOMIALITY CONDITION

The double distribution representation [21–24] was
found to be an elegant way to incorporate both the poly-
nomiality property of the Mellin moments and the support
properties of GPDs. In the framework of this representation
the GPD H is given as a one dimensional section of the
double distribution (DD) fð�;�Þ:

Hðx; �Þ ¼
Z 1

�1
d�

Z 1�j�j

�1þj�j
d��ðx� �� ��Þfð�;�Þ:

(23)

The spectral representation (23) was originally re-
covered in the diagrammatical analysis employing the
�-representation techniques [19,20]. The spectral condi-
tions j�j � 1 and j�j � 1� j�j ensure the support prop-
erty of GPD jxj � 1 for any j�j � 1.
The polynomiality property of the Mellin moments in x

which resides on the fundamental field theoretic require-
ments (Lorentz covariance) is ensured by the fact that the x
dependence of GPD in (23) is introduced solely through
the integration path. In [34] it was pointed out that the
relation between GPDs and DDs is the particular case of
the Radon transform. It is worth to mention that the poly-
nomiality property is well known in the framework of the
Radon transform theory as the Cavalieri conditions [35].
Now we propose to invert the logic. From the pure

mathematical point of view representing GPD as the
Radon transform of a certain spectral density is the most
natural way to ensure polynomiality property. Postulating
the polynomiality property of GPD and the support prop-
erty jxj � 1 one can put down the spectral representation
(23) and unambiguously recover the spectral conditions
j�j � 1 and j�j � 1� j�j. Let us stress that this does not
provide the alternative derivation of (23) since there is no
way to show independently the support property jxj � 1 of
GPD. However we think that this line of argumentation
justifies the use of the Radon transform (23) which is a
rather general representation for a function satisfying the
polynomiality condition with the restricted support in x as
the building block for the spectral representation of multi-
partonic generalizations of GPDs and, in particular, for�N
TDAs. In order to derive the form of the spectral represen-
tation for �N TDA let us first consider the simple example
of ordinary GPDs.

A. Test ground: Spectral representation for GPDs

We are going to treat the example of usual GPDs in a
slightly unusual way, which we find more suitable for
further generalization. Let us introduce the light-cone mo-
mentum fractions x1 and x2 of the average hadron momen-
tum carried by the quark and antiquark, respectively. The
variables x1 and x2 satisfy the condition x1 þ x2 ¼ 2�. The
support property in x1, x2 is known to be given by

� 1þ�� x1 � 1þ�; �1þ�� x2 � 1þ�: (24)

In order to write down the spectral representation
for GPD we introduce two sets of spectral parameters
�1;2, �1;2. The momentum fractions x1;2 are supposed to

have the following decomposition in terms of spectral
parameters:

x1 ¼ �þ �1 þ �1�; x2 ¼ �þ �2 þ �2�: (25)
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The condition x1 þ x2 ¼ 2� can be taken into account by
introducing two �-functions �ð�1 þ �2Þ�ð�1 þ �2Þ. This
allows us to write down the following spectral representa-
tion for GPD Hðx1; x2 ¼ 2�� x1; �Þ:
Hðx1; x2 ¼ 2�� x1; �Þ

¼
Z
�1

d�1d�1

Z
�2

d�2d�2�ðx1 � �� �1 � �1�Þ

� �ð�1 þ �2Þ�ð�1 þ �2ÞFð�1; �2; �1; �2Þ: (26)

Here by�1;2 we denote the usual domains in the parameter

space:

�1;2 ¼ fj�1;2j � 1; j�1;2j � 1� j�1;2jg; (27)

and Fð�1; �2; �1; �2Þ is a certain quadruple distribution.
The important advantage of the spectral representation

(26) is that it is symmetric under the interchange of the
longitudinal momentum fractions x1 and x2. Note that the
spectral conditions (27) ensure the support properties (24)
both in x1 and x2. The ðn1; n2Þ-th Mellin moments in x1, x2
of Hðx1; x2 ¼ 2�� x1; �Þ are polynomial of � of order
n1 þ n2:

Z 1þ�

�1þ�
dx1

Z 1þ�

�1þ�
dx2�ð2�� x1 � x2Þ

� xn11 xn22 Hðx1; x2 ¼ 2�� x1; �Þ
¼

Z
�1

d�1d�1

Z
�2

d�2d�2ð�þ �1 þ �1�Þn1

� ð�þ �2 þ �2�Þn2�ð�1 þ �2Þ�ð�1 þ �2Þ
� Fð�1; �2; �1; �2Þ

¼ Pn1þn2ð�Þ: (28)

Now we are about to show that the spectral representa-
tion (26) is equivalent to the usual Radyushkin’s represen-
tation (23) for GPDs in terms of double rather than
quadruple distributions. For this issue we can lift the two
superfluous integrations employing the two delta func-
tions. In order to perform this in the astute way let us
introduce the natural spectral variables �
, �
:

�
 ¼ �1 
 �2

2
; �
 ¼ �1 
 �2

2
: (29)

It is also useful to perform the related change of the
variables in the ðx1; x2Þ space in the initial spectral repre-
sentation (26). The corresponding natural variables are

x� ¼ x1 � x2
2

¼ �� þ ���; and

xþ ¼ x1 þ x2
2

¼ �þ �þ þ �þ�:
(30)

Thus instead of using (26) we switch to the natural varia-
bles and consider

Hðx1; x2 ¼ 2�� x1; �Þ
¼ 1

2

Z
�1

d�1d�1

Z
�2

d�2d�2�ðx� � �� � ���Þ

� �ð�þÞ�ð�þÞFð�1; �2; �1; �2Þ: (31)

The appropriate definition of the integration domain in
(31) after the change of the variables (29) require special
attention. In particular,

Z 1

�1
d�1

Z 1

�1
d�2 . . .¼ 2

Z 1

�1
d��

Z 1�j��j

�1þj��j
d�þ . . . : (32)

Now since 1� j��j 	 0 and hence �1þ j��j � 0 the
integral over �þ can be easily lifted with no influence on
the integration domain in �þ, ��. The problem of defini-
tion of the integration domain in �þ, �� in principle is
reduced to change of the variables in the integral

Z a

�a
d�1

Z b

�b
d�2�ð�1 þ �2Þ . . . ; (33)

where a ¼ 1� j�þ þ ��j, b ¼ 1� j�þ � ��j. It is
much simplified due to the fact that �þ ¼ 0 and thus a ¼
b � 1� j��j. This givesZ a

�a
d�1

Z a

�a
d�2�ð�1 þ �2Þ . . .

¼ 2
Z a

�a
d��

Z a�j��j

�aþj��j
d�þ�ð�þÞ . . . : (34)

Now the integral over �þ can be trivially performed with
the help of � function again producing no additional
restrictions for the integration domain in �� and ��.
The final result reads

Hðx1; x2 ¼ 2�� x1; �Þ
¼

Z 1

�1
d��

Z 1�j��j

�1þj��j
d���ðx� � �� � ���Þ

� 2Fð��;���; ��;���Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fð��;��Þ

: (35)

Certainly we just recovered the known Radyushkin’s result
for the double distribution representation of GPDs.
Let us just make a short summary of the crucial points.
(i) We started from the spectral representation for

Hðx1; x2 ¼ 2�� x1; �Þ as the function of the skew-
ness parameter � and of two longitudinal momentum
fractions x1, x2 satisfying the condition x1 þ x2 ¼
2�. The form of this spectral representation ensured
the proper support properties in x1, x2 as well as the
polynomiality property of the corresponding Mellin
moments in x1 and x2. The spectral density was a
certain quadruple rather than double distribution.

(ii) The constraint x1 þ x2 ¼ 2� was taken into account
by the introduction of two � functions restricting the
integration domain in the space of spectral variables.
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(iii) The two superfluous integrations can be lifted with
the help of two � functions. This requires the
special attention to the integration domain in the
space of spectral parameters. This problem can be
most easily solved by switching to the set of natural
variables both in the space of spectral parameters
and x1, x2 space.

(iv) In our toy exercise lifting the two integrations does
not lead to any special restrictions on the remaining
spectral parameters ��, �� and we just recover the
usual Radyushkin’s result for the double distribu-
tion representation of GPDs.

(v) We find the spectral representation (26) which is
symmetric under the exchange of x1 and x2 suitable
for the generalization to the multiparton case. The
analysis of �N TDAs with the help of the approach
discussed above is presented in the next subsection.

B. Spectral representation for �N TDAs

We are now about to apply the ideas described in the
previous section to the case of �N TDAs. Let us consider
�N TDA Hðx1; x2; x3 ¼ 2�� x1 � x2; �Þ as a function of
light-cone momentum fractions x1, x2 and x3 carried by
three quarks. The three light-cone momentum fractions
satisfy the condition x1 þ x2 þ x3 ¼ 2�. The support
property in x1, x2, x3 is given by

�1þ � � x1 � 1þ �;

�1þ � � x2 � 1þ �;

�1þ � � x3 � 1þ �:

(36)

In order to write down the spectral representation for
Hðx1; x2; x3 ¼ 2�� x1 � x2; �Þ we introduce three sets of
spectral parameters �1;2;3, �1;2;3. The momentum fractions

x1;2;3 are supposed to have the following decomposition in

terms of spectral parameters:

x1 ¼ �þ �1 þ �1�;

x2 ¼ �þ �2 þ �2�;

x3 ¼ �þ �3 þ �3�:

(37)

In order to satisfy this constrain we require that

�1 þ �2 þ �3 ¼ 0; �1 þ �2 þ �3 ¼ �1: (38)

This allows to write down the following spectral repre-
sentation for �N TDAs:

Hðx1; x2; x3 ¼ 2�� x1 � x2; �Þ

¼
�Y3
i¼1

Z
�i

d�id�i

�
�ðx1 � �� �1 � �1�Þ

� �ðx2 � �� �2 � �2�Þ�ð�1 þ �2 þ �3Þ
� �ð�1 þ �2 þ �3 þ 1ÞFð�1; �2; �3; �1; �2; �3Þ:

(39)

By �i, i ¼ f1; 2; 3g we denote the usual domains in the
parameter space:

�i ¼ fj�ij � 1; j�ij � 1� j�ijg; (40)

and Fð�1; �2; �3; �1; �2; �3Þ is now a sextuple distribu-
tion. The spectral conditions (40) ensure the support prop-
erties (36). Obviously, the ðn1; n2; n3Þ-th Mellin moment
in ðx1; x2; x3Þ of �N TDA is a polynomial of order n1 þ
n2 þ n3 of �:

�Y3
i¼1

Z 1þ�

�1þ�
dxi

�
�ðx1 þ x2 þ x3 � 2�Þxn11 xn22 xn33

�Hðx1; x2; x3 ¼ 2�� x1 � x2; �Þ ¼ Pn1þn2þn3ð�Þ: (41)

In complete analogy with the previously considered case
of usual GPDs in order to properly reduce the spectral
representation in terms of sextuple distribution for �N
TDA to that in terms of quadruple distribution we need
to perform two integrations in

�Y3
i¼1

Z
�i

d�id�i

�
�ð�1þ�2þ�3Þ�ð�1þ�2þ�3þ1Þ . . .

(42)

employing � functions and specify the integration limits in
the remaining four integrals. This problem can be solved
by introducing the appropriate natural variables.
Let us start with the integral

Z 1

�1
d�1

Z 1

�1
d�2

Z 1

�1
d�3�ð�1 þ �2 þ �3Þ: (43)

In order to visualize the integration domain (43) it is natural
to employ the barycentric coordinates. In these co-
ordinates the domain selected by the conditions j�ij � 1
(i 2 f1; 2; 3g) and �1 þ �2 þ �3 ¼ 0 is represented by a
regular hexagon (confer Fig. 4). It is convenient to single
out three domains inside this hexagon:

D1: f�1 	 0;�2 � 0;�3 � 0g [ f�1 � 0;�2 	 0;�3 	 0g;
D2: f�2 	 0;�1 � 0;�3 � 0g [ f�2 � 0;�1 	 0;�3 	 0g;
D3: f�3 	 0;�1 � 0;�2 � 0g [ f�3 � 0;�1 	 0;�2 	 0g:

(44)

Obviously,

Z 1

�1
d�1

Z 1

�1
d�2

Z 1

�1
d�3�ð�1 þ �2 þ �3Þ

¼ X3
i¼1

Z
Di

d�1d�2d�3�ð�1 þ �2 þ �3Þ: (45)
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Now in order to get rid of one of three integrations in
(45) we should switch to the natural coordinates. There are
three possible choices of the natural coordinates in (45).
For the moment we are going to adopt the coordinates

�3 ¼ �1 � �2

2
; 	3 ¼ �3 � �1 � �2

2
: (46)

The constrained triple integral (43) can be then rewritten as

Z 1

�1
d	3

Z 1�j	3j=2

�1þj	3j=2
d�3 . . . : (47)

In principle in a completely analogous way one may also
employ the coordinates

�1 ¼ �2 � �3

2
; 	1 ¼ �1 � �2 � �3

2
;

�2 ¼ �3 � �1

2
; 	2 ¼ �2 � �3 � �1

2

(48)

yielding the result

Z 1

�1
d	i

Z 1�ðj	ij=2Þ

�1þðj	ij=2Þ
d�i . . . : (49)

Now let us address the problem of computation of the
constrained triple integral over �i in (39):

Z a

�a
d�1

Z b

�b
d�2

Z c

�c
d�3�ð�1 þ �2 þ �3 þ 1Þ . . . ;

(50)

where we introduced the notations

a � 1� j�1j; b � 1� j�2j; c � 1� j�3j;
(51)

(a 	 0;a � 1, b 	 0; b � 1, c 	 0; c � 1).

Introducing the natural coordinates3

!3 ¼ �3; 
3 ¼ �1 � �2

2
(52)

and employing the results of Appendix Awe conclude that
for �i 2 D1 [D2 [D3 the constrained integral (50) can
be rewritten as

Z 1�j�1j�j�2j

�1þj�3j
d!3

Z 1�j�2j�ð1þ!3Þ=2

�1þj�1jþð1þ!3Þ=2
d
3 . . . : (53)

Now let us put all together and write down the spectral
representation for �N TDAs in terms of quadruple distri-
butions. The important observation is that once we have
chosen the variables 	3, �3 and !3, 
3 to perform the
constrained integration in �1, �2, �3 and �1, �2, �3

respectively the natural variables on which �N TDAs
depends are

w3 ¼ x3 � x1 � x2
2

; v3 ¼ x1 � x2
2

: (54)

Expressing the �i and �i through 	3, �3, !3, 
3 the two
delta functions in the definition (39) can be traded for

�ðx1 � �� �1 � �1�Þ�ðx2 � �� �2 � �2�Þjx1þx2þx3¼2�

¼ �ðw3 � 	3 �!3�Þ�ðv3 � �3 � 
3�Þ: (55)

Note that at the level of delta functions we achieved the
‘‘factorization’’ of w3 and v3 dependencies on the spectral
parameters.
Thus in the natural spectral parameters (46) and (52) and

quark-diquark coordinates (54) we recovered the form of
the spectral representation of �N TDAs in terms of qua-
druple distributions:

Hðw3; v3; �Þ ¼
Z 1

�1
d�1d�2d�3�ð�1 þ �2 þ �3Þ

Z 1�j�1j

�1þj�1j
d�1

Z 1�j�2j

�1þj�2j
d�2

Z 1�j�3j

�1þj�3j
d�3�ð�1 þ �2 þ �3 þ 1Þ

� �ðx1 � �� �1 � �1�Þ�ðx2 � �� �2 � �2�ÞFð�1; �2; �3; �1; �2; �3Þ
¼

Z 1

�1
d	3

Z 1�ðj	3j=2Þ

�1þðj	3j=2Þ
d�3

Z 1�j�3�ð	3=2Þj�j�3þð	3=2Þj

�1þj	3j
d!3

Z ð1=2Þ�j�3þð	3=2Þj�ð!3=2Þ

�ð1=2Þþj�3�ð	3=2Þjþð!3=2Þ
d
3�ðw3 � 	3 �!3�Þ

� �ðv3 � �3 � 
3�ÞF3ð	3; �3; !3; 
3Þ; (56)

where

F3ð	3;�3;!3;
3Þ �F

�
�3�	3

2
;��3�	3

2
;	3;
3�1þ!3

2
;�
3�1þ!3

2
;!3

�
: (57)

Employing three possible sets of natural spectral parameters one can write down three equivalent spectral representa-
tions in terms of three sets of quark-diquark coordinates wi, vi with i ¼ 1, 2, 3 defined in (11):

3There are two additional possible choices: !1 ¼ �1; 
1 ¼ �2��3

2 and !2 ¼ �2; 
2 ¼ �3��1

2 .
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Hðwi; vi; �Þ ¼
Z 1

�1
d	i

Z 1�ðj	ij=2Þ

�1þðj	ij=2Þ
d�i

Z 1�j�i�ð	i=2Þj�j�iþð	i=2Þj

�1þj	ij
d!i

Z ð1=2Þ�j�iþð	i=2Þj�ð!i=2Þ

�ð1=2Þþj�i�ð	i=2Þjþð!i=2Þ
d
i�ðwi � 	i �!i�Þ

� �ðvi � �i � 
i�ÞFið	i; �i; !i; 
iÞ; (58)

where F3ð	3; �3; !3; 
3Þ is defined in (57) and

F1ð	1; �1; !1; 
1Þ � F

�
	1; �1 � 	1

2
;��1 � 	1

2
; !1; 
1 � 1þ!1

2
;�
1 � 1þ!1

2

�
;

F2ð	2; �2; !2; 
2Þ � F

�
��2 � 	2

2
; 	2; �2 � 	2

2
;�
2 � 1þ!2

2
; !2; 
2 � 1þ!2

2

�
:

(59)

The spectral representation (58) for�N TDA in terms of
quadruple distribution is the main result of our paper.
However this form of the result is still not very convenient
for practical applications. In the next section we demon-
strate that the spectral representation (58) satisfies the
support properties of �N TDAs established in Sec. III.
We also derive the explicit expressions for�N TDAs in the
ERBL-like and DGLAP-like type I and II domains.

V. SUPPORT PROPERTIES OF �N TDAS AND
THE SPECTRAL REPRESENTATION

In order to make our formulas more compact, in what
follows we omit the indice i for the quark-diquark coor-
dinates wi and vi and spectral parameters	i, �i,!i, 
i and
the spectral densities Fi. Our subsequent analysis equally
applies for all i ¼ 1, 2, 3.

It is extremely instructive to check that each contribution
into �N TDA in (58) satisfies the support properties which
were established in Sec. III:

� 1 � w � 1; �1þ j�� �0j � v � 1� j�� �0j
(60)

with �0 defined in (12). In particular this allows to check
that ðN � n; nÞ-th (N 	 n 	 0) Mellin moments of �N
TDA in ðw; vÞ indeed satisfy the polynomiality property:

Z 1

�1
dw

Z 1�j���0j

�1þj���0j
dvwN�nvnHðw; v; �Þ ¼ PNð�Þ; (61)

where PNð�Þ is a polynomial of order N in �.
Let us first consider the case � ¼ 0. Employing the first

delta function we get 	 ¼ w for�1 � w � 1 and 0 other-
wise. This obviously ensures the first condition (60) for
� ¼ 0. Once the integral over 	 is performed the depen-
dence on v is introduced through

Z 1�ðjwj=2Þ

�1þðjwj=2Þ
d��ðv� �Þ . . . : (62)

The result of this integral is nonzero only for

� 1þ jwj
2

� v � 1� jwj
2

; (63)

that is precisely the second condition (60) for � ¼ 0.
Let us now show that the spectral representation (56)

possesses the desired support properties for arbitrary value
of � 2 ð0; 1�.4
First of all it is easy to see that the first one of the two

conditions (60) is respected. Indeed the w dependence in
(58) is introduced through the expression

Z 1

�1
d	

Z 1�j��ð	=2Þj�j�þð	=2Þj

�1þj	j
d!�ðw� 	�!�Þ . . . :

(64)

From the inequalities (A8), (A11), and (A14) it follows that

� 1þ j	j � 1�
���������� 	

2

���������
���������þ 	

2

��������� 1� j	j:
(65)

Thus in (64) we are integrating only over some part of the
familiar ‘‘GPD square’’ j�j � 1� j	j. This guarantees the
vanishing of �N TDA for jwj> 1. One can in the usual
way perform the integration over ! introducing the addi-
tional �-function to take into the account the unusual upper
limit in the integral over !:

�

�
1�

���������� 	

2

���������
���������þ 	

2

���������
w� 	

�

�
� �ð� � �Þ: (66)

For � > 0 we get

4The final result for � 2 ½�1; 0Þ is presented in Appendix B.
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For w 2 ð�1;�1Þ: Hðw; v; �Þ ¼ 0; For w 2 ½�1;���:
Hðw; v; �Þ ¼ 1

�

Z ððwþ�Þ=ð1��ÞÞ

ððw��Þ=ð1þ�ÞÞ
d	

Z 1�ðj	j=2Þ

�1þðj	j=2Þ
d�

Z ð1=2Þ�j�þð	=2Þj�ððw�	Þ=ð2�ÞÞ

�ð1=2Þþj��ð	=2Þjþððw�	Þ=ð2�ÞÞ
d
�ðv� �� 
�Þ�ð� � �ÞF

�
	;�;

w� 	

�
; 


�
;

For w 2 ½��;��:
Hðw; v; �Þ ¼ 1

�

Z ððwþ�Þ=ð1þ�ÞÞ

ððw��Þ=ð1þ�ÞÞ
d	

Z 1�ðj	j=2Þ

�1þðj	j=2Þ
d�

Z ð1=2Þ�j�þð	=2Þj�ððw�	Þ=ð2�ÞÞ

�ð1=2Þþj��ð	=2Þjþððw�	Þ=ð2�ÞÞ
d
�ðv� �� 
�Þ�ð� � �ÞF

�
	;�;

w� 	

�
; 


�
;

For w 2 ½�; 1�:
Hðw; v; �Þ ¼ 1

�

Z ððwþ�Þ=ð1þ�ÞÞ

ððw��Þ=ð1��ÞÞ
d	

Z 1�ðj	j=2Þ

�1þðj	j=2Þ
d�

Z ð1=2Þ�j�þð	=2Þj�ððw�	Þ=ð2�ÞÞ

�ð1=2Þþj��ð	=2Þjþððw�	Þ=ð2�ÞÞ
d
�ðv� �� 
�Þ�ð� � �ÞF

�
	;�;

w� 	

�
; 


�
;

For w 2 ð1;1Þ: Hðw; v; �Þ ¼ 0: (67)

Now we are about to perform the integration over 
with
the help of the last remaining � function. The resulting
domain of integration in 	 and � is defined by the
inequalities

� 1þ j	j
2

� � � 1� j	j
2

; (68)

� 1

2
þ

���������� 	

2

��������þ
w� 	

2�
� v� �

�
� 1

2
�

���������þ 	

2

��������
� w� 	

2�
; (69)

1�
���������� 	

2

���������
���������þ 	

2

��������	 w� 	

�
; (70)

as well as the integration limits in	 depending on the value
of w (see (67)).

It can be shown that for � 	 0 the two inequalities (69)
are equivalent to

� � 	

2
þ vþ �0

1þ �
for v 	 ��0;

� � 	

2
þ vþ �0

1� �
for v � ��0

(71)

together with

� 	 �	

2
þ v� �0

1� �
for v 	 �0;

� 	 �	

2
þ v� �0

1þ �
for v � �0:

(72)

Analogously the inequality (70) for � 	 0 is equivalent
to

� � 	

2�
þ �0

�
for v 	 j�0j;

� 	 � 	

2�
� �0

�
for v � �j�0j;

	 	 w� �

1þ �
for

�
v 	 ��0
v � �0 ;

	 	 w� �

1� �
for

�
v � ��0
v 	 �0 :

(73)

The last step is to match the integration domain defined
by the inequalities (68) and (71)–(73) with the explicit
w-dependent limits of integration in 	 (67). There are
nine possibilities:

fw 2 ½�1;���; w 2 ½��;���; w 2 ½�; 1�g
� fv 2 ð�1;�j�0j�; v 2 ½�j�0j; j�0j�; v 2 ½j�0j;1Þg:

(74)

Let us consider in details the case

w 2 ½�1;���; v 2 ½�0;1Þ: (75)

The integration domain in ð	; �Þ plane is defined by the
intersection of a domain specified by the inequalities (68)
and (71)–(73):

� 	 �	

2
þ v� �0

1� �
; � � 	

2
þ vþ �0

1þ �
;

� � 	

2�
þ �0

�
; j�j � 1� j	j

2

(76)

with the strip

w� �

1þ �
� 	 � wþ �

1� �
: (77)

The domain defined by the inequalities (76) and (77) is
presented on Fig. 6. By the thick solid lines we show the
borders of the domain defined by the first two inequalities
(76). The thin solid line is the border of the domain defined
by the inequality � � 1� 	

2 . The dashed line is the border
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of the domain defined by the inequality (73): � � 	
2� þ �0

� .

The shaded area corresponds to the resulting domain of
integration in (67) for �1 � w � �� and �0 � v � 1�
�0 þ �.

The abscissa of the apex of this triangular domain is

	 ¼ 2ðv�� �0Þ
1� �2

: (78)

One may check that for v ¼ �0 the abscissa of the apex
coincides with the left boundary of the strip (77):

2ðv�� �0Þ
1� �2

��������v¼�0
¼ w� �

1þ �
; (79)

while for v ¼ 1� �0 þ � it coincides with the right
boundary of the strip (77):

2ðv�� �0Þ
1� �2

��������v¼1��0þ�
¼ wþ �

1� �
: (80)

For v > 1� �0 þ � the apex of the triangular domain lies
on the right of the strip (77) and hence has empty inter-
section with it. This makes the double integral (67) vanish
for v 	 1� �0 þ � and ensures the desired support prop-
erty of Hðw; v; �Þ.

The third inequality in (76) does not further restrict the
domain since the apex of the triangular domain belongs to

the line � ¼ 	
2� þ �0

� and the triangular domain lies to the

right of this line for 0 � � � 1. The two inequalities (68)
also do not impose additional restriction for the domain.

Indeed one may check that the � ¼ 	
2� þ �0

� intersects with

� ¼ 1� j	j
2 at 	 ¼ wþ�

1�� .

The eight remaining cases (74) can be considered ac-
cording to this pattern in a completely analogous way. One
may check that the quadruple integral (58) for Hðw; v; �Þ
for � 	 0 reduces to the following expressions:
(i) For w and v outside the domain �1 � w � 1 and

�1þ j�� �0j � v � 1� j�� �0j the integral
vanishes.

(ii) For w 2 ½�1;��� and �0 � v � 1� �0 þ �
(DGLAP-like type I domain):

Hðw; v; �Þ ¼ 1

�2

Z ððwþ�Þ=ð1��ÞÞ

ðð2ðv���0ÞÞ=ð1��2ÞÞ
d	

�
Z ð	=2Þþððvþ�0Þ=ð1þ�ÞÞ

�ð	=2Þþððv��0Þ=ð1��ÞÞ
d�

� F

�
	; �;

w� 	

�
;
v� �

�

�
: (81)

(iii) For w 2 ½�1;��� and ��0 � v � �0 (DGLAP-
like type II domain):

Hðw; v; �Þ ¼ 1

�2

Z ððwþ�Þ=ð1��ÞÞ

ððw��Þ=ð1þ�ÞÞ
d	

�
Z ð	=2Þþððvþ�0Þ=ð1þ�ÞÞ

�ð	=2Þþððv��0Þ=ð1þ�ÞÞ
d�

� F

�
	; �;

w� 	

�
;
v� �

�

�
: (82)

(iv) For w 2 ½�1;��� and �1þ �0 � � � v � ��0
(DGLAP-like type I domain):

Hðw; v; �Þ ¼ 1

�2

Z ððwþ�Þ=ð1��ÞÞ

�ðð2ðv�þ�0ÞÞ=ð1��2ÞÞ
d	

�
Z ð	=2Þþððvþ�0Þ=ð1��ÞÞ

�ð	=2Þþððv��0Þ=ð1þ�ÞÞ
d�

� F

�
	;�;

w� 	

�
;
v� �

�

�
: (83)

(v) For w 2 ½��;�� and �0 � v � 1� �þ �0
(DGLAP-like type II domain):

Hðw; v; �Þ ¼ 1

�2

Z ððwþ�Þ=ð1þ�ÞÞ

ðð2ðv���0ÞÞ=ð1��2ÞÞ
d	

�
Z ð	=2Þþððvþ�0Þ=ð1þ�ÞÞ

�ð	=2Þþððv��0Þ=ð1��ÞÞ
d�

� F

�
	;�;

w� 	

�
;
v� �

�

�
: (84)

(vi) w 2 ½��;�� and ��0 � v � �0 (ERBL-like
domain):

w
1

2 v ’

1 2

w
1

FIG. 6 (color online). The domain of integration in ð	;�Þ
plane in Eq. (67) for �1 � w � �� and �0 � v � 1� �0 þ �
defined by the inequalities (76) and (77). See explanations in the
text.
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Hðw; v; �Þ ¼ 1

�2

Z ððwþ�Þ=ð1þ�ÞÞ

ððw��Þ=ð1þ�ÞÞ
d	

�
Z ð	=2Þþððvþ�0Þ=ð1þ�ÞÞ

�ð	=2Þþððv��0Þ=ð1þ�ÞÞ
d�

� F

�
	; �;

w� 	

�
;
v� �

�

�
: (85)

(vii) w 2 ½��;�� and �1þ �� �0 � v � ��0
(DGLAP-like type II domain):

Hðw; v; �Þ ¼ 1

�2

Z ððwþ�Þ=ð1þ�ÞÞ

�ðð2ðv�þ�0ÞÞ=ð1��2ÞÞ
d	

�
Z ð	=2Þþððvþ�0Þ=ð1��ÞÞ

�ð	=2Þþððv��0Þ=ð1þ�ÞÞ
d�

� F

�
	; �;

w� 	

�
;
v� �

�

�
: (86)

(viii) w 2 ½�; 1� and v 2 ½��0; 1� �þ �0�: the result
coincides with (84) as it certainly should be since
this is the part of the same DGLAP type II do-
main. Note that this makes Hðw; v; �Þ a smooth
function for w ¼ � as it should be since this line
(wi ¼ � , xi ¼ 2�) does not correspond to any
change of evolution properties of Hðw; v; �Þ.

(ix) w 2 ½�; 1� and v 2 ½�0;��0� (DGLAP-like type I
domain):

Hðw; v; �Þ ¼ 1

�2

Z ððwþ�Þ=ð1þ�ÞÞ

ððw��Þ=ð1��ÞÞ
d	

�
Z ð	=2Þþððvþ�0Þ=ð1��ÞÞ

�ð	=2Þþððv��0Þ=ð1��ÞÞ
d�

� F

�
	; �;

w� 	

�
;
v� �

�

�
: (87)

(x) w 2 ½�; 1� and v 2 ½�1þ �� �0;�0�: the result
again coincides with (86) since this is the part of
the same DGLAP-like type II domain.

VI. RADYUSHKIN TYPE ANSATZ FOR �N TDAS

In this section we discuss what could be a possible
approach for modelling of quadruple distributions
Fð	;�;!; 
Þ occurring in the spectral representation (58).

Employing the analogy with the case of usual GPDs one
may assume that the profile of Fð	;�;!; 
Þ in ð	;�Þ space
is determined by the shape of the function fð	;�Þ to which
�N TDA is reduced in the limit � ! 0. For the moment we
put aside the complicated and interesting problem of the
rigorous physical meaning of this limit. It will be discussed
elsewhere. Thus, we suggest to employ the following
factorized ansatz for quadruple distributions:

Fð	; �;!; 
Þ ¼ fð	;�Þhð	;�;!; 
Þ; (88)

where hð	;�;!; 
Þ is a profile function normalized
according to

Z 1�j��ð	=2Þj�j�þð	=2Þj

�1þj	j
d!

�
Z 1�j�þð	=2Þj�ðð1þ!Þ=ð2ÞÞ

�1þj��ð	=2Þjþðð1þ!Þ=ð2ÞÞ
d
hð	; �;!; 
Þ ¼ 1: (89)

A possible model is to exploit further the analogy with
the standard Radyushkin ansatz for the double distributions
[24] and to assume that the ð!; 
Þ profile of hð	;�;!; 
Þ is
determined by the shape of the asymptotic form of the
nucleon distribution amplitude:

�asðy1; y2; y3Þ ¼ 15

4
y1y2y3: (90)

The DA (90) is defined for y1;2;3 2 ½0; 2� such that y1 þ
y2 þ y3 ¼ 2.
In terms of quark-diquark variables ~! ¼ 1� y1 � y2

and ~
 ¼ y1�y2
2 �as reads

�asð ~!; ~
Þ ¼ 15

4
ð ~!þ 1Þ

�
~
þ 1� ~!

2

��
�~
þ 1� ~!

2

�
:

(91)

Note that

Z 2

0
dy1dy2dy3�ð2� y1 � y2 � y3Þ�asðy1; y2; y3Þ

�
Z 1

�1
d ~!

Z ðð1� ~!Þ=ð2ÞÞ

�ðð1� ~!Þ=ð2ÞÞ
d~
�asð ~!; ~
Þ ¼ 1: (92)

�asð ~!; ~
Þ is defined for

� 1 � ~! � 1; and � 1� ~!

2
� ~
 � 1� ~!

2
; (93)

while hð	; �;!; 
Þ is defined for

� 1þ j	j � ! � 1�
���������� 	

2

���������
���������þ 	

2

��������;
� 1�!

2
þ

���������� 	

2

��������� 
 � 1�!

2
�

���������þ 	

2

��������:
(94)

Thus it makes sense to employ the following substitution
of the variables:

~! ¼ !þ 1
2 ðj�� 	

2 j þ j�þ 	
2 j � j	jÞ

1� 1
2 ðj�� 	

2 j þ j�þ 	
2 j þ j	jÞ ;

~
 ¼ ð1� ~!Þ
2

2
� j�� 	
2 j þ j�þ 	

2 j
1�!� j�� 	

2 j � j�þ 	
2 j

:

(95)

This results in the following expression for the profile
function hð	;�;!; 
Þ:
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hð	;�;!; 
Þ ¼ 15

16

ð1þ 2
�!� 2j�� 	
2 jÞð1� 2
�!� 2j�þ 	

2 jÞð1� j	j þ!Þ
ð1� 1

2 ðj�� 	
2 j þ j�þ 	

2 j þ j	jÞÞ5 : (96)

One may check that the profile function (96) satisfies the
normalization condition (89). It is extremely interesting to
note that in terms of the initial spectral parameters �1, �2,
�3 and �1, �2, �3 satisfying �1 þ �2 þ �3 ¼ �1 and
�1 þ �2 þ �3 ¼ 0 the profile function (96) can be rewrit-
ten in the very symmetric form:

hð�1; �2; �3;�1; �2; �3Þj �1þ�2þ�3¼0
�1þ�2þ�3¼�1

¼ 15

4

ð1þ �1 � j�1jÞð1þ �2 � j�2jÞð1þ �3 � j�3jÞ
ð1� 1

2 ðj�1j þ j�2j þ j�3jÞÞ5
:

(97)

The inverse transformation (95) reads

! ¼ ~!

�
1� 1

2

����������� 	

2

��������þ
���������þ 	

2

��������þj	j
��

� 1

2

����������� 	

2

��������þ
���������þ 	

2

���������j	j
�
;


 ¼ ~


�
1� 1

2

����������� 	

2

��������þ
���������þ 	

2

��������þj	j
��

þ 1

2

����������� 	

2

���������
���������þ 	

2

��������
�
: (98)

This allows to easily compute the integrals occurring in the
calculation of ðN � n; nÞ-th Mellin moments (N 	 n 	 0)
in ðw; vÞ of �N TDAs:

Z 1�j��ð	=2Þj�j�þð	=2Þj

�1þj	j
d!

�
Z 1�j�þð	=2Þj�ðð1þ!Þ=ð2ÞÞ

�1þj��ð	=2Þjþðð1þ!Þ=ð2ÞÞ
d
!N�n
nhð	;�;!;
Þ: (99)

In principle one may also think of a more intricate
profile function. In fact any particular function �ð ~!; ~
Þ
normalized according to

Z 1

�1
d ~!

Z ðð1� ~!Þ=ð2ÞÞ

�ðð1� ~!Þ=ð2ÞÞ
d~
�ð ~!; ~
Þ ¼ 1 (100)

will define some profile function hð	;�;!; 
Þ after the
substitution (95).5 E.g. taking �ð ~!; ~
Þ � ð ~!þ 1Þb1 �
ð~
þ 1� ~!

2 Þb2ð�~
þ 1� ~!
2 Þb3 would lead to the natural gener-

alization of the b parameter dependent Radyushkin’s pro-
file familiar for usual GPDs.

It is interesting also to consider the most simple possible
profile with no distortion in ð!; 
Þ directions:

�ð ~!; ~
Þ ¼ �ð ~!Þ�ð~
Þ: (101)

Contrary to the case of usual GPDs for which the counter-
part of the profile (101) leads to �-independent ansatz the
resulting TDA preserves the minimal necessary � depen-
dence. Indeed ~! ¼ 0 and ~
 ¼ 0 does not imply! ¼ 0 and

 ¼ 0 and hence the �-dependence introduced through two
�-functions in (58) is preserved and generates the proper
�-dependent domain of definition for the resulting �N
TDA (20). Unfortunately, the model with the profile
(101) turns out to be pathological since it leads to �N
TDAs which are not continuous at the crossover lines
v ¼ 
�0 and w ¼ �� separating ERBL-like and
DGLAP-like type I, II domains. This makes impossible
the calculation of the amplitude of the hard exclusive
process in question given by convolution of �N TDA
with the appropriate hard part (see [15]). Indeed the imagi-
nary part of the corresponding amplitude is given by the
values of �N TDA at the crossover lines v ¼ 
�0 and
w ¼ ��.
For the moment as a toy model we are going to employ

the factorized ansatz (88) with the profile function (96). It
is a good point now to discuss a possible model for the
function fð	;�Þ that is the second ingredient of the fac-
torized ansatz (88). In the limit � ! 0 �N TDA reduces to
this function:

Hðw; v; � ¼ 0Þ ¼ fðw; vÞ: (102)

The requirements of convergence of integrals (81)–(87)
for �N TDA impose some restriction on the behavior of
the function fð	; �Þ on the border of its domain of defini-
tion. It turns out that fð	; �Þ should vanish at least as a
certain power of the relevant variables at the borders of its
domain of definition. Thus for the function fð	; �Þ we
suggest the following simple form:

fð	;�Þ ¼ �ð�1�	� 1Þ�
�
�1þ j	j

2
� �� 1�j	j

2

�

� 40

47
ð1�	2Þ

�
ð�� 1Þ2 �	2

4

��
ð�þ 1Þ2 �	2

4

�
:

(103)

In terms of the initial spectral parameters �1, �2, �3

satisfying �1 þ �2;þ�3 ¼ 0 (103) can be rewritten as

fð�1; �2; �3Þj�1þ�2þ�3¼0 ¼ 40

47

Y3
i¼1

�ðj�ij � 1Þð1� �2
i Þ:

(104)

The function fð	;�Þ vanishes on the border of its domain
of definition and is normalized according to

Z 1

�1
d	

Z 1�ðj	j=2Þ

�1þðj	j=2Þ
fð	; �Þ ¼ 1: (105)

5However, one has to make certain assumptions on the end-
point behavior of the function fð	; �Þ to which �N TDA is
reduced in the limit � ! 0.
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Let us stress that we employ the normalization (105) only
for our toy model. Advanced modelling of �N TDAs
aiming the quantitative description of the physical observ-
ables would certainly require more complicated form of
fð	;�Þ.

The normalization for the nucleon to pion TDAs can be
derived either from the soft pion limit or from the lattice
calculations of several first Mellin moments of �N TDAs
or from the comparison with the results of [18]. On the
other hand it can be computed considering the light baryon
exchange contributions into the Mellin moments of �N
TDAs using the phenomenological values say of g�NN and
g�N� couplings. The normalization can also in principle be
established directly form the experimental measurements
of the cross-section once the scaling behavior would be
found reasonable.

On Fig. 7 we show the results of the calculation of the
contribution Hðw3; v3; �Þ � Hðw; v; �Þ as a function of w
and v for different values of � computed with the help of
the factorized ansatz (88) with the profile (96) and fð	; �Þ
given by the toy model (103).

Note that for � ¼ 1 the TDA Hðw; v; �Þ does not vanish
at the corners of its domain of definition. This is potentially
dangerous since this may lead to the break up of the
factorization property of the hard exclusive process in

question. Fortunately this problem is an artefact of our
oversimplified toy model (104) for the forward limit of
�N TDA. It was checked that taking fð	;�Þ that vanishes
quadratically at the borders of the domain of definition

FIG. 7 (color online). The contribution into �N TDA Hðw3; v3; �Þ � Hðw; v; �Þ as a function of w and v for different values of �
computed using the factorized ansatz (88) with the profile function (96) and fð	; �Þ given by (103).

FIG. 8 (color online). �N TDAHðx1; x2; x3; �Þ as a function of
x1, x2 and x3 (x1 þ x2 þ x3 ¼ 2�) for � ¼ 0:5 in barycentric
coordinates. By thick solid lines we show the continuation of the
edges of the equilateral triangle that border the ERBL-like
domain cf. Fig. 3.
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fð�1; �2; �3Þj�1þ�2þ�3¼0

¼ 4410

3167

Y3
i¼1

�ðj�ij � 1Þð1� �2
i Þ2 (106)

leads to a vanishing �N TDA at the corners of its domain
of definition for � ¼ 1.

On Fig. 8 we show �N TDAHðx1; x2; x3; �Þ for � ¼ 0:5
as a function of three dependent light-cone momentum
fractions x1, x2 and x3 (x1 þ x2 þ x3 ¼ 2�) in the bary-
centric coordinates. By thick solid lines we show the
continuation of the edges of the equilateral triangle which
form the ERBL-like domain cf. Fig. 3.

VII. CONCLUSIONS

The nonperturbative part of hard processes involving
hadrons is encoded in various universal partonic distribu-
tions (parton distribution functions, fragmentation func-
tions, distribution amplitudes and their generalizations).
Waiting for a complete understanding of the dynamics of
quark and gluon confinement in hadrons, one should model
these distributions in agreement with general requirements
of the underlying field theory such as Lorentz invariance and
causality. Spectral representation of hadronic matrix ele-
ments offers an elegant way to address this program. The
double distribution representation for GPDs became the
basis for various successful phenomenological GPDmodels.

In this paper we introduced the notion of quadruple
distributions and constructed the spectral representation
for the transition distribution amplitudes involving three
parton correlators which arise in the description of baryon
to meson transitions. We also generalized Radyushkin’s
factorized ansatz for the case of quadruple distributions
and provided an explicit expression for the corresponding
profile function. Analogously to the case of GPDs the
shape of the corresponding profile function is supposed
to be fixed by the asymptotic form of the nucleon distri-
bution amplitude. Our model also requires the knowledge
of nucleon to meson TDAs in the forward limit as input
quantities. Contrarily to the GPD case, the nucleon to
meson TDAs suffer from the fact that there is no illuminat-
ing forward limit. This problem requires further investiga-
tion. For a moment, we suggest to employ a simple shape
of nucleon to meson TDAs in the forward limit assuming
that they are fixed by their behavior at the borders of their
domain of definition. Our construction opens the way to
quantitative modeling of baryon-meson and baryon-photon
TDAs in their complete domain of definition.

Let us emphasize that for the moment we have not
included any D-term like contributions to the spectral
representation of the nucleon to meson TDAs in terms of
quadruple distributions. Indeed the results of [36] and of
Chapter 3.8 of [27] give us confidence that the eventual
D-term like contributions to TDAs can be included by
means of complementing the spectral density in (39) with

additional terms proportional to powers of �. The subse-
quent analysis can be performed according to the same
pattern.
Let us also point out that our method can be generalized

for the case of 4-quark correlators important for the de-
scription of higher twist contributions.
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APPENDIX A: A USEFUL CONSTRAINED
INTEGRAL

Let us consider the constrained triple integral

Iða;b;cÞ ¼
Z a

�a
d�1

Z b

�b
d�2

Z c

�c
d�3�ð�1 þ�2 þ�3 þ 1Þ

� fð�1;�2;�3Þ; (A1)

where a 	 0;a � 1, b 	 0; b � 1, c 	 0; c � 1. We in-
troduce the natural coordinates !3 and 
3:

�1¼
3þ�1�!3

2
; �2¼�
3þ�1�!3

2
; �3¼!3:

(A2)

In the natural coordinates!3 and 
3 the integration in (A1)
is over the intersection of three stripes:

� c � !3 � c; �aþ 1þ!3

2
� 
3 � aþ 1þ!3

2
;

� b� 1þ!3

2
� 
3 � b� 1þ!3

2
: (A3)

One may check that for a 	 b the integral (A1) can be
rewritten as

Iða; b; cÞ ¼
Z �1�aþb

�1�a�b
d!3�ð!3 þ cÞ�ðc�!3Þ

�
Z aþðð1þ!3Þ=ð2ÞÞ

�b�ðð1þ!3Þ=ð2ÞÞ
d
3fð!3; 
3Þ

þ
Z �1þa�b

�1�aþb
d!3�ð!3 þ cÞ�ðc�!3Þ

�
Z b�ðð1þ!3Þ=ð2ÞÞ

�b�ðð1þ!3Þ=ð2ÞÞ
d
3fð!3; 
3Þ

þ
Z �1þaþb

�1þa�b
d!3�ð!3 þ cÞ�ðc�!3Þ

�
Z b�ðð1þ!3Þ=ð2ÞÞ

�aþðð1þ!3Þ=ð2ÞÞ
d
3fð!3; 
3Þ: (A4)
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Analogously for b 	 a the integral (A1) can be rewritten
as

Iða; b; cÞ ¼
Z �1þa�b

�1�a�b
d!3�ð!3 þ cÞ�ðc�!3Þ

�
Z aþðð1þ!3Þ=ð2ÞÞ

�b�ðð1þ!3Þ=ð2ÞÞ
d
3fð!3; 
3Þ

þ
Z �1þb�a

�1�bþa
d!3�ð!3 þ cÞ�ðc�!3Þ

�
Z aþðð1þ!3Þ=ð2ÞÞ

�aþðð1þ!3Þ=ð2ÞÞ
d
3fð!3; 
3Þ

þ
Z �1þaþb

�1þb�a
d!3�ð!3 þ cÞ�ðc�!3Þ

�
Z b�ðð1þ!3Þ=ð2ÞÞ

�aþðð1þ!3Þ=ð2ÞÞ
d
3fð!3; 
3Þ: (A5)

In order to be able to perform the integral (A1) we need
to specify the intersection of three stripes (A3). The results
(A4) and (A5) are obtained for arbitrary positive a, b and c.
Let us now take into the account that

a¼ 1�j�1j; b¼ 1�j�2j; c¼ 1� j�3j (A6)

with j�ij � 1 and �1 þ �2 þ �3 ¼ 0.
(i) Let us first consider the case when �is belong to

the domain D1 (44). In this domain we have j�1j ¼
j�2j þ j�3j and thus a ¼ bþ c� 1. So in the
domain D1 the following inequalities are respected:

0� a� 1; 0� b� 1; 0� a�bþ 1� 1:

(A7)

One may check that these inequalities result in

c	�1þaþb; �c¼�1þb�a; and b	a:

(A8)

Thus employing (A5) we get

Iða; b; cÞjD1
¼

Z �1þaþb

�c
d!3

�
Z b�ðð1þ!3Þ=ð2ÞÞ

�aþðð1þ!3Þ=ð2ÞÞ
d
3fð!3; 
3Þ: (A9)

(ii) Analogously, in the domain D2 we have j�2j ¼
j�1j þ j�3j and thus b ¼ aþ c� 1. The
inequalities

0� a� 1; 0� b� 1; 0� b�aþ 1� 1

(A10)

result in

c	�1þaþb; �c¼�1þa�b; and a	b:

(A11)

Employing (A4) we get

Iða; b; cÞjD2
¼

Z �1þaþb

�c
d!3

�
Z b�ðð1þ!3Þ=ð2ÞÞ

�aþðð1þ!3Þ=ð2ÞÞ
d
3fð!3; 
3Þ: (A12)

(iii) Finally, let us consider the case when �i belong to
the domain D3. In this domain we have j�3j ¼
j�1j þ j�2j and hence c ¼ aþ b� 1. Thus in
the domain D3 the following inequalities are
respected:

0�a�1; 0�b�1; 0�aþb�1� 1:

(A13)

One may check that in this domain

� c 	 �1þ b� a; �c 	 �1þ a� b;

c ¼ �1þ aþ b: (A14)

Thus independently of a 	 b or a � b the integral
over the intersection of three stripes (A4) or (A5) is
again reduced to

Iða; b; cÞjD3
¼

Z �1þaþb

�c
d!3

�
Z b�ðð1þ!3Þ=ð2ÞÞ

�aþðð1þ!3Þ=ð2ÞÞ
d
3fð!3; 
3Þ: (A15)

APPENDIX B: CASE � < 0

For completeness in this Appendix we present the
result for �N TDA Hðw; v; �Þ in the ERBL-like
and DGLAP-like type I and II domains for the case �1 �
� < 0 which is useful e.g. for �NN ! ��� in the forward
region [16].
(i) For w and v outside the domain �1 � w � 1 and

�1þ j�� �0j � v � 1� j�� �0j the integral
vanishes.

(ii) For w 2 ½�1;�� and �0 � v � 1� �0 þ �
(DGLAP-like type II domain):

Hðw; v; �Þ ¼ 1

�2

Z ðð2ðv���0ÞÞ=ð1��2ÞÞ

ððwþ�Þ=ð1��ÞÞ
d	

�
Z �ð	=2Þþððv��0Þ=ð1��ÞÞ

ð	=2Þþððvþ�0Þ=ð1þ�ÞÞ
d�

� F

�
	; �;

w� 	

�
;
v� �

�

�
: (B1)

B. PIRE, K. SEMENOV-TIAN-SHANSKY, AND L. SZYMANOWSKI PHYSICAL REVIEW D 82, 094030 (2010)

094030-16



(iii) For w 2 ½�1;�� and ��0 � v � �0 (DGLAP-like
type I domain):

Hðw; v; �Þ ¼ 1

�2

Z ððw��Þ=ð1þ�ÞÞ

ððwþ�Þ=ð1��ÞÞ
d	

�
Z �ð	=2Þþððv��0Þ=ð1þ�ÞÞ

ð	=2Þþððvþ�0Þ=ð1þ�ÞÞ
d�

� F

�
	;�;

w� 	

�
;
v� �

�

�
: (B2)

(iv) For w 2 ½�1;�� and �1þ �0 � � � v � ��0
(DGLAP-like type II domain):

Hðw; v; �Þ ¼ 1

�2

Z �ðð2ðv�þ�0ÞÞ=ð1��2ÞÞ

ððwþ�Þ=ð1��ÞÞ
d	

�
Z �ð	=2Þþððv��0Þ=ð1þ�ÞÞ

ð	=2Þþððvþ�0Þ=ð1��ÞÞ
d�

� F

�
	;�;

w� 	

�
;
v� �

�

�
: (B3)

(v) For w 2 ½�;��� and ��0 � v � 1� �0 þ �
(DGLAP-like type II domain) the result coincides
with (B1).

(vi) w 2 ½�;��� and �0 � v � ��0 (ERBL-like
domain):

Hðw; v; �Þ ¼ 1

�2

Z ððw��Þ=ð1��ÞÞ

ððwþ�Þ=ð1��ÞÞ
d	

�
Z �ð	=2Þþððv��0Þ=ð1��ÞÞ

ð	=2Þþððvþ�0Þ=ð1��ÞÞ
d�

� F

�
	; �;

w� 	

�
;
v� �

�

�
: (B4)

(vii) w 2 ½�;��� and �1þ �0 � � � v � �0
(DGLAP-like type II domain): the result coincides
with (B3).

(viii) w 2 ½��; 1� and v2 ½��0; 1��þ�0�
(DGLAP-like type I domain):

Hðw; v; �Þ ¼ 1

�2

Z ðð2ðv���0ÞÞ=ð1��2ÞÞ

ððwþ�Þ=ð1þ�ÞÞ
d	

�
Z �ð	=2Þþððv��0Þ=ð1��ÞÞ

ð	=2Þþððvþ�0Þ=ð1þ�ÞÞ
d�

� F

�
	; �;

w� 	

�
;
v� �

�

�
: (B5)

(ix) w 2 ½��; 1� and v 2 ½�0;��0� (DGLAP-like type
II domain):

Hðw; v; �Þ ¼ 1

�2

Z �ðð2ðv�þ�0ÞÞ=ð1��2ÞÞ

ððwþ�Þ=ð1þ�ÞÞ
d	

�
Z �ð	=2Þþððv��0Þ=ð1��ÞÞ

ð	=2Þþððvþ�0Þ=ð1��ÞÞ
d�

� F

�
	;�;

w� 	

�
;
v� �

�

�
: (B6)

(x) w 2 ½�; 1� and v 2 ½�1þ �� �0;�0� (DGLAP-
like type I domain):

Hðw; v; �Þ ¼ 1

�2

Z ððw��Þ=ð1��ÞÞ

ððwþ�Þ=ð1þ�ÞÞ
d	

�
Z �ð	=2Þþððv��0Þ=ð1þ�ÞÞ

ð	=2Þþððvþ�0Þ=ð1��ÞÞ
d�

� F

�
	;�;

w� 	

�
;
v� �

�

�
: (B7)
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