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We investigate some aspects of the self-consistency in the Dyson-Schwinger approach to both the QED

and the self-interacting scalar field theories. We prove that the set of the Dyson-Schwinger equations,

together with the Green-Ward-Takahashi identity, is equivalent to the analogous set of integral equations

studied in condensed matter, namely, many-body perturbation theory, where it is solved self-consistently

and iteratively. In this framework, we compute the nonperturbative solution of the gap equation for the

self-interacting scalar field theory.
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I. INTRODUCTION

Nonperturbative approaches to quantum field theory
(QFT) allow for a better understanding of some general
properties of the exact scattering amplitudes. They histori-
cally pursued after the formulation of quantum electro-
dynamics (QED) to analyze the asymptotic behavior of
renormalized operators at short distance (see, for instance,
Ref. [1]).

Beyond that, they give considerable informations in de-
tailed studies of the structure of higher order approxima-
tions in theories where the perturbation expansion, along
with a strong coupling, fails in analyzing the short-distance
behavior of the relevant theory operators. This approach
(referred to as Dyson-Schwinger) has been historically
introduced by a number of authors [2–6].

Since then, it has inspired plenty of papers on the subject
(see, for instance, Refs. [7–15]). Among them we quote
those dealing with nonabelian theories [10–15], such as
quantum chromodynamics (QCD), where both the aymp-
totic freedom (large coupling values at low energy) and the
confinement of the Lagrangian fields within the asymptotic
ones intrinsically require a phenomenological analysis
beyond the naive perturbative expansion. In these pro-
cesses the short-distance contributions can be computed,
to some extent, by using the factorization approximation
for the local operators in the effective Hamiltonian, as
argued by Bjorken on the basis of color-transparency [16].

Large coupling and field confinement also characterize
solid state physics phenomenology, where a screened
many-body interaction occurs at about the Fermi energy
among a large number of electrons embedded in the crystal
lattice. In condensed matter singularities appear in the
perturbation series of the correlation energy of a fully
degenerate Fermi-Dirac system with Coulomb interaction,
otherwise named homogeneous electron gas (HEG); in
Ref. [17] the large divergent logarithms are resummed
according to the general scheme introduced by Feynman

in QFT [6]. In spite of its simplicity, HEG is fundamental
for computing the correlation energy of a wide class of
complex systems within the so-called local-density ap-
proximation [18].
Also within this context, a Green’s function theory

approach, called (improperly) many-body perturbation
theory (MBPT), based on a formalism of second quantiza-
tion of operators, has been considered [19,20]. The funda-
mental degree of freedom is the Green’s function or
propagator, which represents the probability amplitude
for the propagation of an electron. As in any other QFT,
the many-body system can be expanded in perturbation
theory, with the coupling being the many-body interaction
term. The Green’s function (as well as any other quantity of
the theory, such as the self-energy or the polarization) can
be calculated at a given order of perturbation theory. A
Feynman diagrammatic analysis is hence possible. The
theory at the first order is equivalent to the Hartree-Fock
theory. However the coupling is not small (compared, for
example, to the electron-ion interaction) and the expansion
does not converge. The second order is not necessarily
smaller than the first. Hence one needs to resort to more
complicated methods to solve the theory. Beyond partial
resummations of diagrams to all orders, iterative methods
have been preferred.
Historically a Dyson-Schwinger approach has been in-

troduced to account for such a nonperturbative phenome-
nology and to compute optical and electronic properties of
complex systems by means of iterative schemes. The alter-
native formulation in terms of functional derivatives re-
duces the many-body problem to the solution of a coupled
set of nonlinear integral equations, whose characteristic
feature is that, besides the single-particle Green’s function,
a whole hierarchy of equations involving higher order
Green’s functions is generated. A truncation of Feynman
diagrammatics corresponds to the custom of replacing this
hierarchy of equations by another coupled set of nonlinear
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equations connecting the single-particle Green’s function
to the mass, polarization and vertex operators, often re-
ferred to as the Hedin’s equations in condensed matter
[21], to be solved iteratively until self-consistency is
achieved.1 Here the higher order Green’s functions depen-
dence of the relevant quantities is recasted within the
functional derivative of the mass operator with respect to
the fermion single-particle Green’s function. The latter
quantity is proved to equate the Bethe-Salpeter kernel for
the two-body into two-body rescattering. Both the dia-
grammatic truncation and the nonlinear coupled set of
equations correspond to a nonperturbative approximation
to the solution of the many-body problem.

So far, nobody has solved the Hedin’s equations for a
real system, since the nonlinearity of the equation involv-
ing the Bethe-Salpeter kernel is computationally demand-
ing. Approximations are required to simplify the problem.
Among the most widely used computation schemes it is
worth mentioning the so-calledGWapproximation,2 where
the vertex operator is simplified in the self-energy evalu-
ation at the beginning, and the Bethe-Salpeter equation
accounts for the vertex corrections within this approach
(see, for instance, the reviews in [18,22]).

The analogies between these two fields, spanning ultra-
high and ultralow energies, have been cross fertilizing
methodologies and approaches. Along with that, this paper
aims at spotting: i) the equivalence between the Hedin’s
equations set and the Dyson-Schwinger approach to QFT,
where the role played by the underlying gauge symmetry is
crucial in relating the Bethe-Salpeter kernel to the func-
tional derivative of the mass operator with respect to the
fermion Green’s function (throughout the Green-Ward-
Takahashi identity [23–25]); ii) the iterative scheme solu-
tion of the Dyson-Schwinger equations, in the spirit of the
condensed matter methods, by means of a S-matrix unitar-
ity inspired ansatz on the mass operator, accounting for the
nonlinearity of the present approach. Both points should be
regarded as aspects of the self-consistency of the Dyson-
Schwinger approach to the many-body quantum field the-
ory, with regard to the actual theory investigated, in the
context of the aforementioned S-matrix unitarity inspired
picture. Indeed, in QFT the S matrix satisfies the unitarity
condition, actually more fundamental than the concept of
Hamiltonian and wave functions (see, for instance,
Refs. [1,26–28] and references therein).

In that respect, we point out two examples (QED and the
self-interacting scalar field theory), different on the

physical basis but akin as to the solution scheme. The
QED example is intended to formally bridge the condensed
matter scenario to its underlying fundamental theory:
throughout the paper, a QFT analysis to the topics has
been preferred to the functional one, in order to spot this
idea. A functional approach is, of course, viable. On the
other hand, the gap equation arising in the self-interacting
scalar field theory is probably the simplest example to
show how to implement the iterative scheme to the
numerical solution of the Dyson-Schwinger equations.
The plan of the paper is as follows. In the next section we

discuss the general formalism of Dyson-Schwinger ap-
proach in QED. In Sec. III, the Green-Ward-Takahashi
identity is proved to be equivalent to the definition of the
Bethe-Salpeter kernel as the functional derivative of the
mass operator with respect to the Green’s function. Sec. IV
is devoted to the calculation of the Dyson-Schwinger
equations for the self-interacting scalar field theory.
Finally in Sec. V we compute the nonperturbative solution
to the gap equation arising for the latter case and draw our
conclusions.

II. THE SET OF DYSON-SCHWINGER
EQUATIONS IN QED

It is worth to recall the Dyson-Schwinger equations for
QED. Hereafter, Latin letters shall refer to noninteracting
quantities, while calligraphic symbols represent interacting
ones. Thus, c represents the free fermionic field, while �
is the exact fermionic field; analogously for the photonic
field A (A). Accordingly, G (G) is the free (exact) fermi-
onic Green’s function, while D (D) corresponds to the
free (exact) photon propagator. The electromagnetic cur-

rent j is defined according to Ref. [29], i.e. j�ðxÞ¼def
��ðxÞ���ðxÞ. They read

G�
�ðx; yÞ ¼def�ih0jTðc �ðxÞ �c �ðyÞÞj0i;

ði6@x �mIÞc ðxÞ ¼ 0; (1)

D��ðx; yÞ ¼defþih0jTðA�ðxÞAy�ðyÞÞj0i;
ð@�@� � @�@

�g��ÞA�ðxÞ ¼ 0; (2)

G �
�ðx; yÞ ¼def�ih0jTð��ðxÞ ���ðyÞÞj0i;

ði6@x �mIÞ�ðxÞ ¼ e��A�ðxÞ�ðxÞ;
(3)

D ��ðx; yÞ ¼defþih0jTðA�ðxÞAy�ðyÞÞj0i;
ð@�@� � @�@

�g��ÞA�ðxÞ ¼ �4�ej�ðxÞ;
(4)

h0jTðA�ðxÞ��ðyÞ ���ðzÞÞj0i ¼def

� e
ZZZ

d4x0d4y0d4z0fG�0
� ðz; z0Þ��0�0

�0 ðz0; y0; x0Þ
�G�

�0 ðy0; yÞD�
�0 ðx0; xÞg; (5)

1The approach described here is akin to the truncation proce-
dure of the infinite tower of Dyson-Schwinger equations in
particle physics (see, for instance, Ref. [7]).

2The name GW stands for the product of the G Green’s
function and the W dressed Coulomb interaction while comput-
ing the mass operator �GW, being � the vertex operator as it
appears in the Lagrangian (� � I when magnetic and relativistic
effects are neglected).

CASALBUONI, LADISA, AND OLEVANO PHYSICAL REVIEW D 82, 094023 (2010)

094023-2



M�
�ðx; yÞ ¼defG�1�

� ðx; yÞ � G�1�
� ðx; yÞ;

P��ðx; yÞ ¼defD�1��ðx; yÞ �D�1��ðx; yÞ; (6)

where a sum over repeated indices is understood. The
relevant equation for M operator is obtained by applying

G�1�
� ðx; yÞ

�
¼def �4ðx� yÞði6@y �mIÞ��

�
to G operator de-

fined in Eq. (3) and by using Eq. (5) for the vertex �.3 It
reads

M�
�ðx; yÞ ¼ �ie2

ZZ
d4x0d4y0��

�0�G
�0
�0 ðx; x0Þ

� ��0
��ðx0; y; y0ÞD��ðy0; xÞ; (7)

analogously for P operator one gets

P��ðx; yÞ ¼ 4�ie2
ZZ

d4x0d4y0���
�0 G�0

�0 ðx; x0Þ

� ��0�
�0 ðx0; y0; yÞG�0

� ðy0; xÞ: (8)

Beside these, another equation is needed for the
vertex �:

i�
��
� ðx; y; zÞ ¼def i���

� �4ðx� zÞ�4ðy� zÞ
þ i

ZZZZ
d4x0d4y0d4x00d4y00G�00

�0 ðx00; x0Þ��0�
�0 ðx0; y0; zÞ

�G�0
�00 ðy0; y00ÞK�00�

�00�ðy; y00; x; x00Þ; (9)

where K, the Bethe-Salpeter kernel, accounts for all the
possible contributions coming from the fermion-fermion
rescattering, except for those already embodied within the
exact propagators G, D and vertex �.4

Equations (6)–(9) are also reported in a diagrammatic
representation:

As a matter of fact, the set of five integral equations
depicted above depends on six unknowns, i.e. G, D, P ,
M, � and K. Thus, an additional equation is needed to
close the system and to approach a solution. Two schemes
have been assessed to accomplish with such an issue. In
condensed matter the Bethe-Salpeter kernel is written as
the functional derivative of the mass operator with respect

to the Green’s function:K ¼ �M=�G [18,21,22]. In QFT,
the same definition formally holds. Indeed, in the frame-
work of Cornwall-Jackiw-Tomboulis approach [30], it is
known that the second functional derivative of the action
with respect to the (bilocal) field equals the Bethe-Salpeter
kernel [31]. On the other hand, in Ref. [11] such a second
functional derivative is proved to be the functional deriva-
tive of the mass operator with respect to the fermion
Green’s function. While such a relation is crucial for the
self-consistency of the coupled set of nonlinear equations,
in order to avoid a hierarchy of higher order Green’s
functions, a functional derivative is computationally
demanding and a diagrammatic, although nonperturbative,
expansion of the Bethe-Salpeter kernel is usually
preferred5 [7–10,12–15].

III. THE GREEN-WARD-TAKAHASHI IDENTITY

Under a small phase (gauge) shift on the � operators,
��, the Gðx; x0Þ operator is shifted by ieGðx; x0Þ½��ðxÞ �
��ðx0Þ�, according to the definition of Eq. (3). On the other
hand, �Gðx; x0Þ can be directly computed as the coupling
of the (small) gauge field �@��� to the fermionic cur-

rent.6 By equating the former and the latter quantities, one
gets the Green’s equation [24] either in its integral formu-
lation, i.e.

ieG�
�ðx; x0Þ½��ðxÞ � ��ðx0Þ�
¼ e

ZZZ
d4yd4y0d4zG�

�0 ðx; yÞ@�z ��0
�0�ðy; y0; zÞ

� G�0
� ðy0; x0Þ��ðzÞ; (10)

or in its differential one�ieG�1ðx; x0Þ½��ðxÞ � ��ðx0Þ� ¼
e
R
d4z@�z ��ðx; x0; zÞ��ðzÞ. We will need both forms in the

sequel. The Ward-Takahashi identity corresponds to the
soft photon limit in momentum space [23,25].
To accomplish with the task of completing the set of

Dyson-Schwinger equations, we replace G�1 in the differ-
ential form of Green-Ward-Takahashi equation, according
to the mass operator definition of Eq. (6), and we notice
that the noninteracting propagator G is gauge invariant,
therefore

iG�1ðx; x0Þ½��ðxÞ � ��ðx0Þ�
¼

Z
d4z��ðzÞ@�z ½���

4ðx� zÞ�4ðx0 � zÞ� ¼ 0: (11)

Thus,

3Details on this calculation are carefully reported in Ref. [29].
4In a functional approach they are named irreducible

diagrams.

5In particle physics, this approach is usually referred to as
truncation of Dyson-Schwinger equations.

6Polarization does not affect the gauge field, since the former
is a transverse tensor while the latter is longitudinal. Once again,
details can be found in Ref. [29].
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ieMðx;x0Þ½��ðxÞ���ðx0Þ�
¼e

Z
d4z��ðzÞ@�z ½����

4ðx�zÞ�4ðx0�zÞþ��ðx;x0;zÞ�

¼e
Z
d4z��ðzÞ

ZZZZ
d4x̂0d4ŷ0d4x̂00d4x̂00Gðx̂0;x̂00Þ@�z

��ðx̂00;ŷ00;zÞGðŷ00;ŷ0ÞKðŷ0;x0;x̂0;xÞ
¼
ZZ

d4x̂0d4ŷ0�Gðx̂0;ŷ0ÞKðŷ0;x0;x̂0;xÞ; (12)

where in the latter equations we used the vertex definition
of Eq. (9) and the integral form of Green-Ward-Takahashi
relation of Eq. (10). It can be easily seen that the l.h.s. of
Eq. (12) is the shift of the mass operator under a gauge
transform,7 i.e. �Mðx; x0Þ.

In conclusion

�Mðx; x0Þ ¼
ZZ

d4x̂0d4ŷ0�Gðx̂0; ŷ0ÞKðŷ0; x0; x̂0; xÞ: (13)

The meaning of this equation is twofold. It states that: i) the
gauge shift on the mass operator is linearly dependent on
the gauge shift of the fermion propagator throughout the
Bethe-Salpeter kernel; ii) for the same reason, the Bethe-
Salpeter kernel is gauge invariant. Moreover, the equation
written above completes the set of Dyson-Schwinger equa-
tions and makes finding a solution a viable problem.

IV. THE SET OF DYSON-SCHWINGER
EQUATIONS IN THE �ð�?�Þ2 THEORY

The set of Dyson-Schwinger equations for self-
interacting scalar field theory is simpler than the analogous
in QED. Hereafter ’ (	) represents the free (exact) bo-
sonic field and, accordingly, D (D) is the free (exact)
boson Green’s function. It reads

Dðx; yÞ ¼defþih0jTð’ðxÞ’?ðyÞÞj0i;
ðhx þm2Þ’ðxÞ ¼ 0; (14)

Dðx; yÞ ¼def:þih0jTð	ðxÞ	?ðyÞÞj0i;
ðhx þm2Þ	ðxÞ ¼ 


2!
	?ðxÞ	2ðxÞ; (15)

h0jTð	ðxÞ	ðyÞ	?ðzÞ	?ðwÞÞj0i ¼def�i


�
ZZZZ

d4x0d4y0d4z0d4w0fDðw;w0ÞDðz; z0Þ
��ðw0; z0; y0; x0ÞDðy0; yÞDðx0; xÞg; (16)

M ðx; yÞ ¼def: D�1ðx; yÞ �D�1ðx; yÞ; (17)

being hx ¼def @
@x�

@
@x�

. The latter and the former sets are

akin as to the derivation. Let us consider, for instance, the
mass operator equation. By applying D�1 to D (Eqs. (14)
and (15)) one gets

Z
d4yD�1ðx; yÞDðy; x0Þ ¼ �4ðx� x0Þ

þ i



2!
h0jTð	ðxÞ2	?ðxÞ	?ðx0ÞÞj0i: (18)

Finally, by using Eq. (16), the mass operator is computed:

Mðx; x0Þ ¼ 
2

2!

ZZZ
d4ŷ0d4ŷ00d4x̂00Dðx; ŷ00Þ

�Dðx; x̂00Þ�ðŷ00; x̂00; ŷ0; x0ÞDðŷ0; xÞ: (19)

The vertex equation introduces a Bethe-Salpeter kernel for
the two-body rescattering:

�ðy0; x0; y; xÞ ¼ �4ðy0 � x0Þ�4ðy0 � yÞ�4ðy0 � xÞ
þ

ZZZZ
d4x̂0d4x̂00d4ŷ0d4ŷ00�ðy0; x0; ŷ00; x̂00ÞDðŷ00; ŷ0Þ

�Dðx̂00; x̂0ÞKðŷ0; x̂0; y; xÞ: (20)

Although the self-interacting scalar field theory is not a
gauge theory, the gauge shifts of mass operator and propa-
gator (under a phase shift of 	 operator) are related in the
same fashion of QED case8

�Mðx; x0Þ ¼
ZZ

d4x̂0d4ŷ0�Dðx̂0; ŷ0ÞKðŷ0; x0; x̂0; xÞ: (21)

The latter equation completes the set of Dyson-
Schwinger ones, Eqs. (17), (19), and (20) for the self-
interacting scalar field theory. They can be recapitulated
in the following diagrammatics where �½� � �� means the
gauge shift of the quantity within brackets:

7Indeed under a gauge shift: �fR d4yGðx; yÞG�1ðy; x0Þg ¼ 0.
By expanding the latter gauge variation and by noticing that the
noninteracting propagator G (unlike G and M) is gauge invari-
ant, we achieve the result.

8For a strictly neutral 	 field, i.e. 	? ¼ 	, an additional
(Schwinger) term arises. The absence of a global gauge symme-
try for this case has been also pointed out in [32].
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V. RESULTS AND DISCUSSION

Hereafter we shall assume that the space-time is homogeneous. Therefore the energy-momentum conservation law
holds in momentum space, where the relevant quantities defined in the previous section simplify accordingly.9 Thus the set
of Dyson-Schwinger equations reduces to

~MðpÞ ¼def ~D�1ðpÞ � ~D�1ðpÞ;
~MðpÞ ¼ 
2

2!

ZZ d4�

ð2�Þ4
d4�

ð2�Þ4
~Dð�Þ ~Dð�Þ ~�ð��;��; p� �� �;�pÞ ~Dð�þ �� pÞ;

~�ðpþ �; q� �;p; qÞ ¼def Iþ
Z d4k

ð2�Þ4
~�ðpþ �; q� �;pþ k; q� kÞ ~Dðq� kÞ ~Dðpþ kÞ ~Kðpþ k; q� k; p; qÞ;

~Mðpþ qÞ � ~MðpÞ ¼
Z d4k

ð2�Þ4 ½
~DðkÞ � ~Dðk� qÞ� ~Kðk� q; pþ q; k; pÞ: (22)

For the sake of clarity, we prove the last equation in (22). We start from the last equation in (12) for the self-interacting
scalar field theory:

�Mðx;x0Þ ¼
ZZ

d4x̂0d4ŷ0�Dðx̂0; ŷ0ÞKðŷ0;x0; x̂0;xÞ()ðmomentum spaceÞ()

� ~Mðk;k0Þ ¼
ZZ d4k̂

ð2�Þ4
d4k̂0

ð2�Þ4�
~Dðk̂; k̂0Þ ~Kðk̂0;k0; k̂;kÞ()ð�~� is the gauge shiftÞ()

ie
Z
d4q=ð2�Þ4�~�ðqÞ

�
~Mðkþq;k0Þ� ~Mðk;k0 �qÞ

�
¼ ie

Z
d4q=ð2�Þ4�~�ðqÞ

�
ZZ d4k̂

ð2�Þ4
d4k̂0

ð2�Þ4
�
~Dðk̂þq; k̂0Þ� ~Dðk̂; k̂0 �qÞ

�
~Kðk̂0;k0; k̂;kÞ()ðhomogeneous space-time9Þ()

ie�~�ðk0 �kÞ
�
~Mðk0Þ� ~MðkÞ

�
¼ ie�~�ðk�k0Þ

Z d4k̂

ð2�Þ4
�
~Dðkþ k̂�k0Þ� ~Dðk̂Þ

�
~Kðkþ k̂�k0;k0; k̂;kÞ; (23)

after a variable shift ðk0 ! pþ q; k ! p; k̂ ! kÞ, and ac-
counting for the �~� oddness,10 the proof is completed.

The S-matrix unitarity naturally leads to physical con-
ditions for the propagator structure, i.e. a pole term times a
multiplicative constant (renormalization residue) [29].
Within this context, although not needed,11 we shall in-
troduce the following ansatz on the mass operator:
~Mðp2Þ ¼ �� ~D�1ðp2Þ þ�2, being � a (real) constant to
be determined, while � is a mass scale (renormalization
point). By this choice, the interacting propagator reads

~D�1ðp2Þ ¼ ð1þ�Þ ~D�1ðp2Þ��2 ¼ 1þ�
�

�
�2

1þ�� ~Mðp2Þ
�
,

and the pole is located at ~D�1ðp2
poleÞ � �2

1þ� . Moreover, by

using this S-matrix unitarity inspired ansatz, the Bethe-

Salpeter kernel ~K is promptly evaluated by means of the
last equation in (22)

~Kðk� q; pþ q; k; pÞ ¼ �

1þ �
~D�1ðk� qÞ ~D�1ðkÞ

� ð2�Þ4�4ðp� kþ qÞ; (24)

by which the vertex ~� is shortened to ð1þ �ÞI (vertex
renormalization) by direct substitution in the third equation
of (22).
Finally, the mass operator equation in (22) accounts for

the self-consistency of the Dyson-Schwinger approach:

~Mðp2Þ ¼ ð1þ �Þ

2

2!

Z
d4x expði pxÞ½DðxÞ�3; (25)

where DðxÞ is the interacting propagator in space-time
(configuration space), while the implicit dependence

upon � in both ~M, D is understood.12 Equation (25)
describes a setting sun Feynman diagram; it provides either

9For instance, the propagator in the momentum space reads
~Dðk; k0Þ; it reduces to ð2�Þ4 ~DðkÞ�4ðk� k0Þ. On the same foot-
ing, the gauge shift � ~Dðp; p0Þ ¼ ie

R
d4q=ð2�Þ4�~�ðqÞ½ ~Dðpþ

q; p0Þ � ~Dðp; p0 � qÞ� is shortened to �~�ðp0 � pÞ½ ~Dðp0Þ�
~DðpÞ�, analogously for the mass operator. The Bethe-Salpeter
kernel is also simplified: ~Kðp; q; p0; q0Þ ¼ ð2�Þ4�4ðpþ q�
p0 � q0Þ ~Kðp; q; p0; q0Þ.
10The phase (gauge) shift oddness stems from the Green’s
function definition: Dðx0; xÞ ¼ �Dðx; x0Þ?.
11In principle, the set of Eqs. (22) accounts for an even number
of unknowns ( ~M, ~D, ~� and ~K): it can be numerically solved
self-consistently.

12In Euclidean four-dimensional space the interacting propa-
gator, together with the mass operator ansatz, reads Dðx;mÞ ¼
mx
1þ�

K1ðmxÞ
ð2�Þ2x2 , m ¼ �ffiffiffiffiffiffiffiffi

1þ�
p , x ¼ ffiffiffiffiffiffiffiffiffiffiffi

x�x
�p
, being K1 the first order

modified Bessel function of second kind, while ~Mðp2Þ ¼
�p2 þ�2.

ASPECTS OF SELF-CONSISTENCY IN THE DYSON- . . . PHYSICAL REVIEW D 82, 094023 (2010)

094023-5



the broken symmetry solution or the symmetric one. To
accomplish with the task, the mass operator of Eq. (25)
satisfies a dispersion relation (DR) with one subtraction

[33–35] (in p variable)13: ~Msubðp2Þ ¼ p2
Rþ1
0

dt
�

Imð ~MðtÞÞ
tðt�p2Þ .

We evaluate the subtracted version of Eq. (25) on the mass
pole, resembling the mass/gap equation of [36,37]. In
Euclidean space it reads [38]:

m2 ¼m2 
2
R

2!ð2�Þ4
Z þ1

0
dxm

�
1

2
�J1ðmxÞ

mx

�
K1ðmxÞ3F ðx;�Þ

(26)

where J1 is the first order Bessel function of first kind,

R ¼ 
=ð1þ �Þ andF ðx;�Þ is an ultraviolet cutoff factor
[36]. The integral of Eq. (26) has to be regularized at some
point (1=�) since it exhibits a (logarithmic) divergence for
small x (� ! 1) (the variable x behaves like the inverse
four-momentum p, thus at the origin x� 1=�).

After rescaling the variable x ! 
=m and normalizing
the parameter m to the cutoff � (m ! ��), Eq. (26)
reduces to14

�2 ¼ �2 
2
R

2!ð2�Þ4
Z þ1

�
d


�
1

2
� J1ð
Þ




�
K1ð
Þ3: (27)

For vanishing � the mild divergence of the integral on the
r.h.s. of Eq. (27) is compensated by the �2 term and the
trivial solution (� ¼ 0) is achieved.

The importance of Eq. (27) is twofold. On one hand, a
mapping between 
R and � can be obtained beyond the
perturbative regime of the coupling constant, helpful while
investigating the cohexistence of the triviality (namely

R ! 0 when � ! 1) and the spontaneous symmetry
breaking (SSB) of the theory (crucial, for instance, for
the self-consistency of the standard model in particle phys-
ics [39]).

On the other hand, a renormalization group equation
(RGE) for the �-evolution of the coupling constant 
R

can be promptly assessed from Eq. (27):


2
Rð�Þ ¼


2
Rð�0Þ

1þ 
2
Rð�0Þ

2!ð2�Þ4
R
�0
� dx�ðxÞ

��!0; �0=� fixed 
2
Rð�0Þ

1þ 
2
Rð�0Þ

2!ð4�Þ4 lnð�0

� Þ
; (28)

being �ðxÞ the integrand function of Eq. (27). While the
latter equation corresponds to the perturbative region for
the coupling 
R, the former one holds in nonperturbative
regime too.

Beyond the trivial solution (� ¼ 0), corresponding to
the unbroken symmetry [40], Eq. (27) gives the broken

symmetry solution, once the renormalized coupling 
R is
replaced according to the SSB mechanism. Indeed bothm2

and 
R depend upon the renormalization constant � in the

same fashion

�
/ 1

1þ�

�
; thus, by eliminating it, we get the

formula m2 ¼ �2


 
R, accounting for the not vanishing

vacuum expectation value of the field which minimizes

the Hamiltonian

�
h0j	?	j0i¼def �2 � 0; �

2


 ¼ �2

2

�
. It reads

a typical fixed point problem for the parameter m̂�
m̂¼def m� ; �̂¼def ��

�
[41,42]:

m̂ ¼ 4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

2 lnðm̂Þ
4

r
; (29)

being �¼def
�

Rðm̂=�̂Þ

Rð1=�̂Þ

�
2
. Here the parameter � can be com-

puted by means of Eq. (27). In the limit �̂ ! 1 it ap-
proaches the unity regardless of the actual value for m̂:
for instance, we find � 2 ½1:019; 1:072� for m̂ 2 ½2; 12�
(at �̂ ’ 4� 1018).
Implementing Eq. (29) is straightforward and computa-

tionally not demanding. In spite of its simplicity, it clearly
exhibits the iterative solution scheme, following the spirit
of the typical condensed matter approach to the solution of
the Dyson-Schwinger equations original sets (22).
We find m̂ ¼ 8:88� 0:10, where the error comes from

the parameter � ranging in the aforementioned interval.

Our finding is in agreement with the value of m̂ ¼ 2
ffiffiffi
2

p
� ’

8:88577 predicted by the classically scale invariant (CSI)
theory and computed on the lattice [43]. Indeed, in CSI
theory an effective potential is computed starting from the
Euclidean action of a massless self-interacting scalar field
and integrating out the field fluctuations around its vacuum
expectation value (VEV). Different schemes are possible:
in Ref. [43], for instance, two different renormalization
constants are introduced for the field VEV and for the
fluctuations. Another possibility is to add a mass term in
the Euclidean action and to describe the broken-to-
symmetric phase as a phase transition. In order to account
for different phenomenological approaches, the effective
potential depends on a parameter ranging between 1 (CSI
case) and 3 (classical quartic potential), while the value 2 is
a phase transition signature. The effective potential is then
expanded up to the third power around its minimum and
the three coefficients of the expansion, related to the afore-
mentioned parameter, are fitted by the lattice simulation
data. The lattice data fitted central value is 1.14, although
the resulting uncertainty is large (see Ref. [43] and refer-
ences therein for details). While the latter statement signals
the need for more statistics in lattice calculations, the
former result points at the CSI theory as the preferred
scenario.

13Otherwise ~Msubðp2Þ ¼ ~Mðp2Þ � ~Mð0Þ, being ~Mðp2Þ ¼Rþ1
0

dt
�

Imð ~MðtÞÞ
t�p2 the mass unsubtracted DR.

14Hereafter we implement F ðx;�Þ ¼ �½x� 1=��, being � the
Heaviside function.
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In conclusion, we believe that the Dyson-Schwinger
equations in QED, together with the Green-Ward-
Takahashi identity, we investigate in this paper, are equiva-
lent to the analogous set of integral equations studied in
condensed matter, often referred to as the Hedin’s equa-
tions. They account for the self-consistency of the method,
corresponding to the truncation of the perturbative/
diagrammatic expansion in particle physics. Within the
scheme proposed, the approach seems to be capable of
producing the nonperturbative solution of the self-
interacting scalar field theory, as suggested in the CSI
theory, within theoretical errors. This method could be
straightforwardly applied to other abelian (as well as non-
abelian) theories, for instance the self-interacting fermion
field theory, as an effective theory for describing the gap
opening (mass generation) mechanism in condensed mat-
ter. We only mention here a result for the graphene, a
system composed by sp2-hybridized carbon atoms placed
on a plane. Such a system is interesting both on experi-
mental and theoretical side, due to its peculiar electronic
properties (see, for instance, Ref. [44] and references
therein). While from the former point of view the gap

opening is still under investigation, it is not theoretically
understood yet whether or not its spatial dimensionality is
two (as assumed in all the theoretical works) or three (as
suggested by the role played by the off plane pz orbitals).
Both issues (gap and dimensions) could be addressed by a
Dyson-Schwinger approach together with a similar mass
operator ansatz. Indeed the mass/gap equation, as it ap-
pears in the Eq. (25), actually depends on the space-time
dimension [38]. Therefore, if a gap opens, it will depend on
the actual spatial dimension (probably between two and
three). The details of this work will be given elsewhere
together with the results.
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