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In a previous paper, Crater and Van Alstine applied the two-body Dirac equations of constraint dynamics

to quark-antiquark bound states using a relativistic extention of the Adler-Piran potential and compared

their spectral results to those from other approaches which also considered meson spectroscopy as a whole

and not in parts. In this paper, we explore in more detail the differences and similarities in an important

subset of those approaches, the quasipotential approach. In the earlier paper, the transformation properties

of the quark-antiquark potentials were limited to a scalar and an electromagnetic-like four-vector, with the

former accounting for the confining aspects of the overall potential, and the latter the short range portion.

The static Adler-Piran potential was first given an invariant form and then apportioned between those two

different types of potentials. Here, we make a change in this apportionment that leads to a substantial

improvement in the resultant spectroscopy by including a timelike confining vector potential over and

above the scalar confining one and the electromagnetic-like vector potential. Our fit includes 19 more

mesons than the earlier results and we modify the scalar portion of the potential in such a way that allows

this formalism to account for the isoscalar mesons � and �0 not included in the previous work. Continuing
the comparisons of formalisms and spectral results made in the previous paper with other approaches to

meson spectroscopy, we examine in this paper the quasipotential approach of Ebert, Faustov, and Galkin.
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I. INTRODUCTION

There are a number of strategies in computational treat-
ments of quantum chromodynamics that emerge in the
study of meson spectroscopy. One is to set up a discrete
lattice analog of the full quantum field theory. A second is
to first make analytic approximations which replace the
quantum field theoretic problem by a classical variational
problem involving an effective Lagrange function and
action. The latter approach has been exploited by Adler
and Piran [1], and in a previous paper Crater and
Van Alstine gave a detailed account of applications of the
two-body Dirac equations (TBDE) of constraint dynamics
to the meson quark-antiquark bound states [2] using a
relativistic extension of the Adler-Piran potential. That
paper also included a comparison of this approach to others
[3–6] who, like ours, considered the whole spectrum in-
stead of just selected parts.

Here we update the results presented in [2] in four ways.
First, we include 19 more mesons not included in the
previous work. Second, we obtain a substantial improve-
ment in our fit to most all of the mesons by allowing the
confining interaction, pure scalar in [2], to take on a timelike
vector portion. We still include the electromagnetic-like
vector potential used previously. Third, we extend the rela-
tivistic Schrödinger-like form of the TBDE to include
isoscalar mixing, thus incorporating the isoscalar mesons
� and�0. And finally, we critically examine, by comparison

with the TBDE, aspects of quasipotential approaches in-
cluding a recent one presented in [7] as well as in [6].
In Sec. II we give a short review of the relativistic two-

body constraint formalism, distinguishing between our
new approach used for confining given in this paper and
the one presented in [2] and including a discussion of the
closely related quasipotential approach. In Sec. III we
review the static Adler-Piran potential and how we appor-
tion it between the three invariant potential functions AðrÞ,
SðrÞ, and VðrÞ used in our TBDE. In Sec. IV we present
our main new results on meson spectroscopy. In Sec. V we
include our treatment of SU(3) mixing, and in Sec. VI we
discuss the meson spectral results of [7] including the
advantages and shortcomings of their quasipotentials
bound state formalism.

II. REVIEW OF RELATIVISTIC
TWO-BODY FORMALISMS

A. Two-body constraint approach

When the interaction and the masses are known, a com-
mon starting point in describing the relativistic two-body
bound state problem is the Bethe-Salpeter equation [8]. The
Bethe-Salpeter equation is, however, usually not considered
in its full four-dimensional form due to the difficulty of
treating the relative time coordinate [9]. Numerous trunca-
tions of the Bethe-Salpeter equation have been proposed for
the relativistic two-body problem [10,11]. Some of these
types of approximatemethods have previously been applied
with considerable success to the q �q meson spectrum*hcrater@utsi.edu
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[2,12–18]. The ladder approximation and the instantaneous
approximation of the Salpeter equation have been widely
used. It should be noted, however, that the simple ladder
approximation and the Salpeter equation do not lead to the
correct one-body limit [19], and do not respect gauge in-
variance [20]. Crossed-ladder diagramsmust be included to
insure gauge-invariant scattering amplitudes.

The two-body Dirac equations of constraint dynamics
provide a covariant three-dimensional truncation of the
Bethe-Salpeter equation. Sazdjian [21] has shown that
the Bethe-Salpeter equation can be algebraically trans-
formed into two independent equations. The first yields a
covariant three-dimensional eigenvalue equation which for
spinless particles takes the form

ðH 10 þH 20 þ 2�wÞ�ðx1; x2Þ ¼ 0; (1)

where H i0 ¼ p2
i þm2

i . The quasipotential �w is a modi-
fied geometric series in the Bethe-Salpeter kernel K such
that in lowest order in K

�w ¼ �iw�ðP � pÞK; (2)

where P ¼ p1 þ p2 is the total momentum, p ¼ �2p1 �
�1p2 is the relative momentum, w is the invariant total
center of momentum (c.m.) energy with P2 ¼ �w2. The
�i must be chosen so that the relative coordinate x ¼ x1 �
x2 and p are canonically conjugate, i.e. �1 þ �2 ¼ 1. The
second equation overcomes the difficulty of treating the
relative time in the center of momentum system by setting
an invariant condition on the relative momentum p,

ðH 10 �H 20Þ�ðx1; x2Þ ¼ 0 ¼ 2P � p�ðx1; x2Þ: (3)

Note that this implies p�� ¼ p
�
?� � ð��� þ

P̂�P̂�Þp�� in which P̂� ¼ P�=w is a timelike unit vector

(P̂2 ¼ �1) in the direction of the total momentum.
One can further combine the sum and the difference of

Eqs. (1) and (3) to obtain a set of two relativistic equations
one for each particle with each equation specifying two
generalized mass-shell constraints

H i�ðx1;x2Þ¼ ðp2
i þm2

i þ�wÞ�ðx1;x2Þ¼0; i¼1;2;

(4)

including the interaction with the other particle. These
constraint equations are just those of Dirac’s Hamiltonian
constraint dynamics1 [22,23]. In order for the two simul-
taneous wave equations of (4) to have solutions other than

zero, Dirac’s constraint dynamics stipulate that these two
constraints must be compatible among themselves,
½H 1;H 2�� ¼ 0, that is, they must be first class. With
no external potentials, the coordinate dependence of
the quasipotential �w would be through x and the
compatibility condition becomes ½p2

1 � p2
2;�w�� ¼

P�@�w=@x
� ¼ 0. In order for this to be true in general,

�w must depend on the relative coordinate x only through
its component, x?, perpendicular to P,

x
�
? ¼ ð��� þ P̂�P̂�Þðx1 � x2Þ�: (5)

Since the total momentum is conserved, the single compo-
nent wave function� in coordinate space is a product of a
plane wave eigenstate of P and an internal part c [24],
depending on this x?.

2

We find a plausible structure for the quasipotential�w by
observing that the one-body Klein-Gordon equation ðp2 þ
m2Þc ¼ ðp2 � "2 þm2Þc ¼ 0 takes the form ðp2�"2þ
m2þ2mSþS2þ2"A�A2Þc ¼0 when one introduces a
scalar interaction and timelike vector interaction via m !
mþ S and " ! "� A. In the two-body case, separate
classical [25] and quantum field theory [26] arguments
show that when one includes world scalar and vector inter-
actions, then�w depends on two underlying invariant func-
tions SðrÞ and AðrÞ through the two-body Klein-Gordon-like
potential form with the same general structure, that is

�w ¼ 2mwSþ S2 þ 2"wA� A2: (6)

Those field theories further yield the c.m. energy dependent
forms

mw ¼ m1m2=w; (7)

and

"w ¼ ðw2 �m2
1 �m2

2Þ=2w; (8)

ones that Tododov [23] introduced as the relativistic reduced
mass and effective particle energy for the two-body meson
system. Similar to what happens in the nonrelativistic two-
body problem, in the relativistic case we have the motion of
this effective particle taking place as if it were in an external
field (here generated by S and A). The two kinematical
variables (7) and (8) are related to one another by the
Einstein condition

"2w �m2
w ¼ b2ðwÞ; (9)

where the invariant

b2ðwÞ � ðw4 � 2w2ðm2
1 þm2

2Þ þ ðm2
1 �m2

2Þ2Þ=4w2;

(10)

is the c.m. value of the square of the relative momentum
expressed as a function of w. One also has

1These equations were originally proposed in the form of
classical generalized mass-shell first class constraints H i ¼ðp2

i þm2
i þ�iÞ � 0, and their quantization H i� ¼ 0 without

reference to a quantum field theory. For the classical H i to be
compatible, their Poisson bracket with one another must either
vanish strongly or depend on the constraints themselves,
fH 1;H 2g � 0. The simplest solution of this equation is �1 ¼
�2, a kind of relativistic third law condition, together with their
common transverse coordinate dependence �wðx?Þ, just as with
its quantum version.

2We use the same symbol P for the eigenvalue so that the w
dependence in Eq. (6) is regarded as an eigenvalue dependence.
The wave function � can be viewed either as a relativistic 2-
body wave function (similar in interpretation to the Dirac wave
function) or, if a close connection to field theory is required,
related directly to the Bethe-Salpeter wave function � by [21]
� ¼ ��i�ðP � pÞH 10� ¼ ��i�ðP � pÞH 20�.
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b2ðwÞ ¼ "21 �m2
1 ¼ "22 �m2

2; (11)

in which "1 and "2 are the invariant c.m. energies of the
individual particles satisfying

"1 þ "2 ¼ w; "1 � "2 ¼ ðm2
1 �m2

2Þ=w: (12)

In terms of these invariants, the relative momentum appear-
ing in Eq. (2) and (3) is given by

p� ¼ ð"2p�
1 � "1p

�
2 Þ=w; (13)

so that �1 þ �2 ¼ ð"1 þ "2Þ=w ¼ 1. In [27] the forms for
these two-body and effective particle variables are given
sound justifications based solely on relativistic kinematics,
supplementing the dynamical arguments of [25,26].

Originally, the two-body Dirac equations of constraint
dynamics arose from a supersymmetric treatment of
two pseudoclassical constraints (with Grassmann variables
in place of gamma matrices) which were then quantized
[28–31]. Sazdjian later derived [21] different forms of
these same equations, just as with their spinless counter-
parts above, as covariant and three-dimensional truncation
of the Bethe-Salpeter equation. The forms of the equations
are varied (see Appendix A), but the one that is the most
familiar is the ‘‘external potential’’ form similar in struc-
ture to the ordinary Dirac equation. For two particles
interacting through world scalar and vector interactions
they are

S1c � �51ð�1 � ðp1 � ~A1Þ þm1 þ ~S1Þ� ¼ 0;

S2c � �52ð�2 � ðp2 � ~A2Þ þm2 þ ~S2Þ� ¼ 0:
(14)

Here � is a 16 component wave function consisting of an
external plane wave part that is an eigenstate of P and an

internal part c ¼ c ðx?Þ. The vector potential ~A�
i was

taken to be an electromagnetic-like four-vector potential
with the time and spacelike portions both arising from a
single invariant function A.3 The tilde on these four-vector

potentials, as well as on the scalar ones ~Si, indicates that
they are not only position dependent but also spin-
dependent by way of the gamma matrices. In this paper,
we allow for the presence of a timelike portion arising from
an independent invariant function V.4 In either case, the
operators S1 and S2 must commute, or at the very least
½S1;S2�c ¼ 0, since they operate on the same wave func-
tion.5 This compatibility condition gives restrictions on the
spin dependence which the vector and scalar potentials

~A
�
i ¼ ~A�

i ðAðrÞ; VðrÞ; p?; P̂; w; �1; �2Þ;
~Si ¼ ~SiðSðrÞ; AðrÞ; p?; P̂; w; �1; �2Þ:

(15)

are allowed to have6 in addition to requiring that they

depend on the invariant separation r �
ffiffiffiffiffiffi
x2?

q
through the

invariants AðrÞ, VðrÞ, and SðrÞ. The covariant constraint (3)
can also be shown to follow from Eq. (14). We give the

explicit connections between ~A
�
i ,

~Si and the invariants
AðrÞ, VðrÞ, and SðrÞ in Appendix A. The Pauli reduction
of these coupled Dirac equations lead to a covariant
Schrödinger-like equation for the relative motion with an
explicit spin-dependent potential �w,

7

ðp2
? þ�wðAðrÞ; VðrÞ; SðrÞ; p?; P̂; w; �1; �2ÞÞcþ
¼ b2ðwÞcþ; (16)

with b2ðwÞ playing the role of the eigenvalue.8 This eigen-
value equation can then be solved for the four-component
effective particle spinor wave function cþ related to the 16
component spinor c ðx?Þ in Appendix A.
The set of Eq. (14) and the equivalent Schrödinger-like

Eq. (16) possesses a number of important and desirable
features. First, they reduce to the correct one-body Dirac
form when one of the two constituents becomes very mas-
sive. (The Salpeter equation does not have this important
property.) Second, the generalized three-dimensional
Schrödinger Eq. (16) is quite similar to the nonrelativistic
Schrödinger equation and it indeed goes over to the correct
nonrelativistic Schrödinger equation in the limit of weak
binding. One can thus employ familiar techniques to obtain
its solutions. Third, Eq. (16) can be solved nonperturba-
tively for both QED bound states (e.g. positronium and
muonium) andQCDbound states (i.e. bound states obtained
from two-body relativistic potential models for mesons)
since every term in �w is nonsingular in the sense that
they are less attractive than �1=4r2 (no delta functions or
attractive 1=r3 potentials, for example). Thus, unlike with
the 1=m nonrelativistic and semirelativistic expansions, the
covariant Dirac formalism itself introduces natural cutoff
factors that smooth out singular spin-dependent interac-
tions, there being no need to introduce them by hand
(- see [28,29,32,33] and Sec. VID) as in other approaches.

3In a perturbative context, i.e. for weak potentials, that would
mean that this aspect of ~A

�
i is regarded as arising from a

Feynman gauge vertex coupling of a form proportional to
�
�
1 �2�A (see Appendix A).
4In a perturbative or weak potential context, that would mean

that this aspect of ~A
�
i is regarded as arising from an additional

vertex coupling proportional to ��1 � P̂�2 � P̂V. Similarly, in a
perturbative or weak potential context, ~Si is regarded as arising
from a vertex coupling proportional to 1112S. (See Appendix A).

5The �5 matrices for each of the two particles are designated
by �5i i ¼ 1, 2. The reason for putting these matrices in front of
the whole expression is that including them facilitates the proof
of the compatibility condition, see [24,28].

6The dependence of the scalar potentials ~Si on the invariant
AðrÞ responsible for the electromagnetic-like potential is seen in
[24,26] to result from the way the scalar and vector fields
combine. That combination without the presence of the inde-
pendent timelike portion leads to a two-body Klein-Gordon-like
potential portion of �w to be of the form given in Eq. (6).

7In the presence of an additional and independent timelike
vector interaction V, we assume the scalar and vector fields
combine in such a way that leads to a two-body Klein-Gordon-
like potential portion of �w of the form 2mwSþ S2 þ 2"wA�
A2 þ 2"wV � V2 instead of that given in Eq. (6).

8Because of the dependence of �w on w, this is a nonlinear
eigenvalue equation.
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Fourth, the relativistic potentials appearing in these equa-
tions are directly related through Eq. (2) to the interactions
of perturbative quantum field theory, while for QCD bound
states they may be introduced semiphenomenologically
through AðrÞ and SðrÞ (and in this paper VðrÞ). Fifth, these
equations have been tested analytically [34] and numeri-
cally [29] against the known perturbative fine and hyperfine
structures of QED bound states and related field theoretic
bound states. The (nonperturbative) successes with these
QED bound states provide strong motivation for applying
the constrainedDirac formalism tomeson bound states as in
[2]. Sixth, these equations provide a covariant three-
dimensional framework in which the local potential ap-
proximation consistently fulfills the requirements of gauge
invariance in QED [35]. Finally, the same general structures
of the Darwin, spin-orbit, spin-spin and tensor terms in
�wðA; V; SÞ of Eqs. (16) and (35), responsible for the accu-
rate hyperfine structures of QED bound states arising natu-
rally from the TBDE formalism when A ¼ �	=r and
S ¼ V ¼ 0, are used with the only alteration in its applica-
tion to the QCD bound states being that A, V, and S are
apportioned appropriately from the Adler-Piran potential.

We emphasize the importance of the nonperturbative
QED bound state test. (See Appendix C for a review of
the application of the TBDE to QED.) Many of the wave
equations used in the standard approaches to QED bound
states have been modified to include QCD inspired poten-
tials and then applied to nonperturbative numerical calcu-
lations of QCD bound states without first testing those
approaches nonperturbatively in QED. By this we mean
that the accepted perturbative results of those equations
(QED spectral results correct through order 	4) have not
been replicated using numerical methods. Sommerer et al..
[4] have shown that the Blankenbecler-Sugar equation and
the Gross equations fail this test. This indicates a danger in
applying such three-dimensional truncations of the Bethe-
Salpeter equation: if failure occurs in their applications to
QED bound states this brings into question the spectral
results of similar nonperturbative (i.e. numerical) ap-
proaches based on the same truncations when applied to
QCD bound states. This would be true especially when the
only difference between the vector portions of the QED
and QCD potentials would be the replacing of the QED
�	=r by a similar AðrÞ from QCD.

In [2] we presented details of the application of this
formalism to meson spectroscopy using a covariant version
of the Adler-Piran static quark potential. Note espe-
cially that the equations used there displayed a single

�ðAðrÞ; SðrÞ; p?; P̂; w; �1; �2; Þ in Eq. (16). It depends on
the quark masses through factors such as those that appear
in Eq. (6). However, its dependence is the same for all
quark mass ratios—hence a single structure for all theQ �Q,
q �Q, and q �qmesons in a single overall fit. We found that the
fit provided by the TBDE for the entire meson spectrum
(from the pion to the excited bottomonium states) com-

petes with the best fits to partial spectra provided by other
approaches and does so with the smallest number of inter-
action functions (just AðrÞ and SðrÞ) without additional
cutoff parameters necessary to make those approaches
numerically tractable. We also found that the pion bound
state displays some characteristics of a Goldstone boson.
That is, as the quark mass tends to zero, the pion mass
(unlike the 
 and the excited �) vanishes, in contrast to
almost every other relativistic potential model. (For more
discussion on this see footnote 23 below).

B. Two-body quasipotential approaches

Also presented in [2] was a detailed comparison between
the meson spectroscopy results of our model and those of
several other approaches: one based on the Breit equation
[5], two on truncated versions of the Bethe-Salpeter equa-
tion [3,4], and one on a quasipotential approach [6]. We
explore in this section, in more detail, the differences and
similarities between our approach and the quasipotential
approach. The quasipotential equation was first introduced
by Logunov and Tavkhelidze [10]. In its homogeneous
form, that equation describes a two-particle relativistic
composite system with its c.m. momentum space form
(in the notation used here p is the relative momentum
given in Eq. (13)) for spinless particles given by

ðw�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

1

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

2

q
Þ�wðpÞ

¼
Z

Vðp;q; wÞ�wðqÞ d3q

ð2�Þ3 ; (17)

where�wðpÞ is the quasipotential wave function projected
onto positive-frequency states and Vðp;q; wÞ is the quasi-
potential calculated by means of the off-energy shell scat-
tering amplitude (so that the respective c.m. energies of the
two particles are not given by the above square roots but by
Eq. (12)). The corresponding inhomogeneous quasipoten-
tial equation is of the general form

Tðp;q;wÞþVðp;q;wÞþ
Z
Vðp;k;wÞGwðkÞVðk;q;wÞ¼0;

(18)

a linear integral equation of the Lippmann-Schwinger type
relating the quasipotential to the off-energy shell extrapo-
lation of the Feynman scattering amplitude. The choice
of this equation and the accompanying homogeneous
equation is not unique [11]. For example, the Green func-
tion GwðkÞ has only its imaginary part determined by
requiring the condition of elastic unitarity on Eq. (18).9

Todorov [10] took advantage of this nonuniqueness to
write down a local version of the corresponding homoge-
neous equation of the form

9For Hermitian potentials, that condition has the symbolic
form of T � Ty ¼ TyðG�GyÞT.
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ðp2�b2Þ�ðpÞþ2"1"2
w

Z
Vwðp;kÞ�ðkÞ d3k

ð2�Þ3¼0; (19)

with �ðpÞ the wave function in momentum space. In [32],
Crater and Van Alstine showed that the spinless version of
Eq. (16) in the case of QED (V ¼ S ¼ 0) has, in the c.m.
frame, the form (see Eq. (66b) and discussion below
Eq. (73b) of that paper)

ðp2�ð"w�AÞ2þm2
wþ1

2
r2Gþ1

4
ðrGÞ2Þc ¼0; (20)

where

G ¼ lnG; G ¼ 1

ð1� 2A=wÞ1=2 : (21)

As was pointed out in that paper, for A ¼ �	=r, this
reduces for weak potentials to the minimal or gauge struc-
ture form postulated by Todorov,

½ðp�AÞ2 � ð"w � A0Þ2 þm2
w�c ¼ 0: (22)

Although not noticed at the time, Eq. (20) does in fact
additionally have this minimal structure not only for
arbitrary strength couplings but also for potentials not
restricted to Coulomb potentials, provided just that

A0 ¼ A; A ¼ � i

2
rGIs; (23)

where Is is the space reflection operator satisfying

IsfðrÞ ¼ fð�rÞ: (24)

Aneva, Karchev, and Rizov [36] developed the weak
potential version of this two-body Klein-Gordon equation
for two spin combinations: for one spin-zero and one spin-
one half particle and for a spin-one-half particle-
antiparticle pair. For the latter it has the form,

ðp2 � b2Þ��1�2
ðpÞ þ 2"1"2

w

Z
�u�0

1
ðpÞ �v�2

ð�kÞVwðp;kÞ

� v�0
2
ð�pÞu�1

ðkÞ��0
1
�0
2
ðkÞ d3k

ð2�Þ3 ¼ 0: (25)

Expressing the on shell free four-component Dirac spinors
in terms of two-component Pauli spinors and assuming the
local quasipotentials

Vwðp;kÞ ¼ Vwðp� kÞ
¼ Aðp� kÞ��

1 �2� þV ðp� kÞ12

þ Sðp� kÞ1112; (26)

Equation (25) can be brought to a four-component wave
equation form superficially similar to Eq. (16) in the c.m.
frame. We write it as

ðp2þV wðAðrÞ;VðrÞ;SðrÞ;p;w;�1;�2ÞÞ�ðrÞ¼b2ðwÞ�ðrÞ:
(27)

However, there are distinct differences. First of all, the spin
structure of �w is not identical to that of V w even if the

functions AðrÞ, VðrÞ, and SðrÞ are the same. The reason is
that the spin dependence of the vector and scalar potentials
~A�
i and ~Si and, in particular, the minimal type of context in

which they appear in Eqs. (14) arise from (nonlinear)
hyperbolic functions (see Appendix A and [37,38]) of
matrices such as appear in Eq. (26). Without that hyper-
bolic structure the external potential forms in which the
minimal structures appear would be absent. To reproduce
the effects of those nonlinear functions in Eq. (27) one
would have to supplement Eq. (26) with types of invariants
other than just scalar and vector [26,39,40] (a pseudovector
invariant, for example). Second, the desirable minimal
scalar structures as appear in the first line on the right
hand side of Eq. (35) below would not appear in V w

without including higher order diagrams that would again
require invariants other than just scalar and vector. These
minimal scalar structures are not only desirable, they arise
naturally and strictly from Oð1=c2Þ expansions of classical
and quantum field theoretic potentials [25,26] and from
gauge invariance considerations (see Todorov in [10], and
also [24,36,41]). In a later section we discuss the recent
work of [7], which uses a quasipotential equation similar to
Eq. (27) in meson spectroscopy calculations.

III. THE ADLER-PIRAN POTENTIAL FOR THE
TWO-BODY DIRAC EQUATIONS

In this section, we use the relativistic Schrödinger-like
Eq. (16) to construct a relativistic naive quark model by
choosing the three invariant functions A, V, and S to incor-
porate the Adler-Piran static quark potential [1]. This pot-
ential was originally obtained from the QCD field theory
through a nonlinear effective action model for heavy quark
statics. Adler and Piran used the renormalization group
approximation to obtain both total flux confinement and a
linear static potential at large distances. Their model uses
nonlinear electrostatics with displacement and electric
fields related through a nonlinear constitutive equation
with the effective dielectric constant given by a leading
log-log model which fixes all parameters in their model
apart from a mass scale �. Their static potential also
contains an unknown ‘‘integration constant’’U0 in the final
form of their potential (hereafter called VAPðrÞ). We insert
into Eq. (16) invariants A, V, and S with forms determined
so that the sum Aþ V þ S appearing as the potential in the
nonrelativistic limit of our equations becomes the Adler-
Piran nonrelativistic Q �Q potential (which depends on
two parameters � and U0) plus the Coulomb interaction
between the quark and antiquark. That is,

VAPðrÞ þ Vcoul ¼ �ðUð�rÞ þU0Þ þ e1e2
r

¼ Aþ V þ S:

(28)

As determined by Adler and Piran, the short and long
distance behaviors of Uð�rÞ generate known lattice and
continuum results through the explicit appearance of an
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effective running coupling constant in coordinate space.
That is, the Adler-Piran potential incorporates asymptotic
freedom through

�Uð�r � 1Þ � 1=ðr ln�rÞ; (29)

and linear confinement through

�Uð�r 	 1Þ ��2r: (30)

In addition to obtaining these leading behavior analytic
forms for short and long distances, they converted the
numerically obtained values of the potential at all distances
(short, intermediate, and long distances) to compact ana-
lytic expressions. The explicit closed form expressions [1]
forUð�rÞ are different for each of the four regions, and are
linked continuously. Letting x¼�r,

UðxÞ ¼ �ð16�=27Þð1þ a1x
a2ÞfðwpÞ=wp;

0< x 
 0:0125;

wp ¼ 1=ða3xÞ2;
UðxÞ ¼ K þ 	ðx=0:125ÞE; 0:0125 
 x 
 0:125;

E ¼ þ � lnð1=xÞ þ �ðlnð1=xÞÞ2 þ "ðlnð1:xÞÞ3
UðxÞ ¼ K0 þ 	0 lnxþ 0ðlnxÞ2 þ �0ðlnxÞ3 þ �0ðlnxÞ4

þ "0ðlnxÞ4; 0:125 
 �r 
 2;

UðxÞ ¼ �

�
c1xþ c2 lnxþ c3ffiffiffi

x
p þ c4

x
þ c5

�
;

2 
 �r <1: (31)

The function f is defined by wp ¼ fðlnfþ � lnlnfÞ; � ¼
2ð51� 19nf=3Þ=ð11� 2nf=3Þ2 ¼ 64=81 for nf ¼ 3. The

various constants a1 to a3, K, 	, , �, �, ", K
0, 	0, 0, �0,

�0, "0, and c1 to c5 are given by the Adler-Piran leading log-
log model [1] and are not adjustable parameters. We mod-
ify these closed forms so that the connections between
different regions are continuous in second derivatives.
The nonrelativistic analysis used by Adler and Piran,
however, does not determine the relativistic transformation
properties of the potential. How this potential is
apportioned between vector and scalar is therefore some-
what, although not completely, arbitrary.

In earlier work [13], we divided the potential in the
following way among three relativistic invariants A, V,
and S for all x ¼ �r. (In our former construction, the
additional invariant V was responsible for a possible inde-
pendent timelike vector interaction.)

S ¼ �

�
�ðc1xþ c2 lnðxÞ þ c3ffiffiffi

x
p þ c5 þU0

�
;

V ¼ ð1� �Þ�
�
c1xþ c2 lnðxÞ þ c3ffiffiffi

x
p þ c5 þU0

�
;

A ¼ UðxÞ ��

�
c1xþ c2 lnðxÞ þ c3ffiffiffi

x
p þ c5

�
;

(32)

in which � ¼ 1
2 . That is, we assumed that (with the ex-

ception of the Coulomb-like term (c4=x)) the long distance
part was equally divided between scalar and a proposed
timelike vector.
In the present investigation, we compute the best fit

meson spectrum for the following apportionment of the
Adler-Piran potential:

A ¼ expð��rÞ
�
VAP � c4

r

�
þ c4

r
þ e1e2

r
;

V þ S ¼ VAP þ e1e2
r

� A

¼
�
VAP � c4

r

�
ð1� expð��rÞÞ � U;

(33)

In order to covariantly incorporate the Adler-Piran poten-
tial into our equations, we treat the short distance portion as
purely electromagnetic-like (in the sense of the transfor-
mation properties of the potential). The attractive (c4 ¼
�0:58) QCD-Coulomb-like portion (not to be confused
with the electrostatic Vcoul ¼ e1e2=r) is assigned com-
pletely to the electromagnetic-like part A. That is, the
constant portion of the running coupling constant corre-
sponding to the exchange diagram is expected to be
electromagnetic-like (� �1��

�
2 ). Through the additional

parameter , the exponential factor gradually turns off the
electromagnetic-like contribution (i.e. A) to the potential at
long distance except for the 1=r portion mentioned above,
while the scalar and timelike portions (i.e. S and V) gradu-
ally turn on, becoming fully responsible for the linear
confining and subdominant terms at long distance. We
choose not to consider an apportionment function with a
large number of parameters as the simple exponential gives
a single length scale for the turning of the potential from
electromagnetic-like to scalar and timelike. Altogether our
three invariant potential functions depend on three parame-
ters: �, U0, and . We furthermore let a free parameter �
divide the relative portions of U as follows

S ¼ �U ¼ �

�
VAP � c4

r

�
ð1� expð��rÞÞ;

V ¼ U� S ¼ ð1� �Þ
�
VAP � c4

r

�
ð1� expð��rÞÞ:

(34)

This differs from the division in the earlier work [13]. Also,
the earlier work did not include the effects of the tensor
interaction or spin-orbit difference terms or the u� d
quark mass differences10 (see Eq. (35) below). In [2],

10In the present treatment, we treat the entire interaction present
in our equations, thereby keeping each of these effects. In our
former treatment [13], we also performed a decoupling between
the upper-upper and lower-lower components of the wave func-
tions for spin-triplet states which turned out to be defective but
which we subsequently corrected in our numerical test of our
formalism for QED [29].
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Crater and Van Alstine chose � ¼ 1 and thus assumed that
the scalar interaction is solely responsible for the long
distance confining terms.

When inserted into the constraint equations, V, S, and A
become relativistic invariant functions of the invariant sepa-

ration r ¼
ffiffiffiffiffiffi
x2?

q
. The covariant structures of the constraint

formalism then automatically determine the exact forms by
which the central static potential is supplemented with
accompanying relativistic spin-dependent and recoil terms.

IV. MESON SPECTROSCOPY FROM THE
SCHRÖDINGER-LIKE FORM OF THE

TWO-BODY DIRAC EQUATIONS

A. Center of momentum form of covariant
Pauli-Schrödinger reduction of the two-body

Dirac equations

In Appendix Awe outline the steps needed to obtain the
explicit c.m. form of Eq. (16). That form is [2,40,42],

fp2þ�ðr;m1;m2;w;�1;�2Þgcþ¼fp2þ2mwSþS2þ2"wA�A2þ2"wV�V2þ�D

þL � ð�1þ�2Þ�SOþ�1 � r̂�2 � r̂L � ð�1þ�2Þ�SOTþ�1 ��2�SS

þð3�1 � r̂�2 � r̂��1 ��2Þ�TþL � ð�1��2Þ�SODþ iL ��1��2�SOXgcþ
¼b2cþ: (35)

The detailed forms of the separate quasipotentials �i are
given in Appendix A together with their forms for weak
potential and in the static limit. In Appendix B we give the
radial forms of Eq. (35). The subscripts of most of the
quasipotentials are self explanatory.11 After the eigen-
value b2 of (35) is obtained, the invariant mass of the
composite two-body system w can then be obtained by
inverting Eq. (10). It is given explicitly by

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þm2

1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þm2

2

q
: (36)

The structure of the linear and quadratic terms in Eq. (35),
as well as the Darwin and spin-orbit terms, are plausible in
light of the discussion given above Eq. (6), and in light of
the static limit Dirac structures that come about from the
Pauli reduction of the Dirac equation (see Eq. (75) below
for the two-component Pauli reduction of the Dirac equa-
tion). Their appearances as well as that of the remaining
spin structures are direct outcomes of the Pauli reductions
of the simultaneous TBDE Eq. (14).

B. Spectral results

Theory 1 (abbreviated by Th1) has two invariant inter-
action functions: AðrÞ for the short distance behavior and
SðrÞ for scalar confinement. Theory 2 (abbreviated Th2)
has three invariant interaction functions including the pre-
vious two plus VðrÞ for timelike vector confinement. In

Appendix A 1 we outline how these invariant interaction
functions are related to what we call vertex invariants
(J ðrÞ, GðrÞ, LðrÞ), which define the covariant gamma
matrix interaction structures which enter into the hyper-
bolic form of the TBDE as seen in Eqs. (A2), (A3), and
(A7)–(A12), and the related energy and mass potentials
E1;2 and M1;2, which characterize the external potential

forms of the TBDE as seen in Eqs. (A13)–(A16). The
distinction between Th1 and Th2 includes more than
the partial cancellation S2 � V2 ¼ U2ð2�� 1Þ between
the quadratic scalar and timelike vector interactions. It
also includes their partial cancellations for the spin-orbit
and Darwin terms (see Appendix A 4). In this section, we
present spectral results with (Th2) and without (Th1) the
added timelike invariant function VðrÞ.
We display our results in Tables I, II, III, IV, V, VI, VII,

VIII, IX, X, XI, XII, XIII, XIV, XV, and XVI. The first
table lists the best fit values for the quark masses and the
potential parameters �, �U0,  for Th1 (scalar only
confinement) and Th2. The ratio that optimized the fit for
Th2 is � ¼ 0:704, (see Eq. (34)). In the first two columns

TABLE I. Parameters for Theory 1 and Theory 2. The 4
potential parameters �, �U0, 1=ð�Þ, and � are, respectively,
the QCD scale factor, the Adler-Piran integration constant, the
vector-scalar transition distance, and the S=ðSþ VÞ ratio.
Parameter Th1 Th2

mb 4:917 GeV 4:953 GeV
mc 1:546 GeV 1:585 GeV
ms 0:2874 GeV 0:3079 GeV
mu 0:0713 GeV 0:0985 GeV
md 0:0771 GeV 0:1045 GeV
� 0:2213 GeV 0:2255 GeV
�U0 1:815 GeV 1:770 GeV
 1:502 4:408
� 1 0:704

11The subscript on quasipotential �D refers to Darwin. It
consist of what are called Darwin terms, those that are the
two-body analogue of terms that accompany the spin-orbit
term in the one-body Pauli reduction of the ordinary one-body
Dirac equation, and ones related by canonical transformations to
Darwin interactions [25,43], momentum dependent terms arising
from retardation effects. The subscripts on the other quasipoten-
tials refer, respectively, to SO (spin-orbit), SOD (spin-orbit
difference), SOX (spin-orbit cross terms), SS (spin-spin), T
(tensor), SOT (spin-orbit-tensor)
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of Tables II, III, IV, V, VI, VII, VIII, and IX, we list
quantum numbers and experimental rest mass values
(in GeV) and experimental errors listed parenthetically
(in MeV) for 105 known mesons. We include all well

known and plausible candidates listed in the standard
reference ([44]). We omit only those mesons with substan-
tial flavor mixing, like the � and �0 mesons. In the tables,
the quantum numbers listed are those of the cþ part of the

TABLE II. u �d Mesons, Theory 1 and Theory 2—In this table and the ones below, the meson masses are in units of GeV, with
experimental errors given parenthetically in units of MeV.

u �d mesons Exp. Th1. Th2. Exp.-Th1. Exp.-Th2. �2 -Th1. �2 -Th2.

�: u �d11S0 0.140(0.0) 0.141 0.134 �0:002 0.006 0.0 0.3


: u �d13S1 0.775(0.4) 0.790 0.781 �0:015 �0:005 1.9 0.2

b1: u �d11P1 1.230(3.2) 1.283 1.243 �0:053 �0:014 2.5 0.2

a1: u �d13P1 1.230(40.) 1.425 1.320 �0:195 �0:090 0.2 0.1

�: u �d21S0 1.300(100) 1.493 1.435 �0:193 �0:135 0.0 0.0

a2: u �d13P2 1.318(0.6) 1.276 1.310 0.042 0.008 12.9 0.5


: u �d23S1 1.465(25.) 1.745 1.684 �0:280 �0:219 1.3 0.8

a0: u �d13P0 1.474(19.) 1.165 1.024 0.309 0.450 2.6 5.6

b2: u �d11D2 1.672(3.2) 1.815 1.763 �0:143 �0:090 18.2 7.2

a3: u �d13D3 1.689(2.1) 1.663 1.718 0.026 �0:029 1.2 1.5

a1: u �d13D1 1.720(20.) 1.944 1.847 �0:224 �0:127 1.2 0.4

a2: u �d23P2 1.732(16.) 2.025 2.009 �0:293 �0:277 3.3 3.0

�: u �d31S0 1.816(14.) 2.090 2.037 �0:274 �0:221 3.8 2.5

b2: u �d21D2 1.895(16.) 2.300 2.267 �0:405 �0:372 6.4 5.4

a4: u �d13F4 2.011(12.) 1.984 2.057 0.027 �0:046 0.1 0.1

b2: u �d31D2 2.090(29.) 2.704 2.700 �0:614 �0:610 4.5 4.4


: u �d33S1 2.149(17.) 2.281 2.326 �0:132 �0:177 0.6 1.1

a3: u �d23D3 2.250(45.) 2.275 2.290 �0:025 �0:040 0.0 0.0

a5: u �d13G5 2.330(35.0) 2.258 2.349 0.072 �0:019 0.0 0.0

a6: u �d13H6 2.450(130) 2.500 2.609 �0:050 �0:159 0.0 0.0

TABLE III. s �u and s �d Mesons, Theory 1 and Theory 2.

s �u, s �d Mesons Exp. Th1. Th2. Exp.-Th1. Exp.-Th2. �2 -Th1. �2 -Th2.

K�: s �u11S0 0.494(0.0) 0.485 0.519 0.008 �0:025 0.7 6.4

K0: s �d11S0 0.498(0.0) 0.488 0.520 0.010 �0:022 1.0 5.0

K��: s �u13S1 0.892(0.3) 0.917 0.896 �0:025 �0:004 6.0 0.2

K��: s �d13S1 0.896(0.3) 0.919 0.897 �0:023 �0:001 4.8 0.0

K�: s �u11P1 1.272(7.0) 1.356 1.339 �0:084 �0:067 1.4 0.9

K��: s �u13P1 1.403(7.0) 1.419 1.359 �0:016 0.044 0.1 0.4

K��: s �u23S1 1.414(15.) 1.759 1.706 �0:345 �0:292 5.3 3.8

K��: s �u13P0 1.425(50.) 1.132 1.079 0.293 0.346 0.3 0.5

K��: s �u13P2 1.426(50.) 1.379 1.404 0.047 0.022 6.8 1.4

K��: s �d13P2 1.432(1.3) 1.380 1.405 0.052 0.027 10.2 2.8

K�: s �u21S0 1.460(40.) 1.523 1.476 �0:063 �0:016 0.0 0.0

K��: s �u13D1 1.717(27.) 1.922 1.837 �0:205 �0:120 0.6 0.2

K�: s �u11D2 1.773(8.0) 1.835 1.803 �0:062 �0:030 0.6 0.1

K��: s �u13D3 1.776(7.0) 1.740 1.792 0.036 �0:016 0.3 0.0

K��: s �u13D2 1.816(13.) 1.824 1.795 �0:008 0.021 0.0 0.0

K�: s �u31S0 1.830(13.) 2.115 2.081 �0:285 �0:251 0.5 0.4

K��: s �u23P2 1.973(33.) 2.078 2.060 �0:105 �0:087 0.1 0.1

K��: s �u13F4 2.045(9.0) 2.045 2.117 0.000 �0:072 0.0 0.6

K��: s �u23D2 2.247(17.) 2.326 2.313 �0:079 �0:066 0.2 0.1

K��: s �u23F3 2.324(24.) 2.642 2.600 �0:318 �0:276 1.7 1.3

K��: s �u13G5 2.382(14.) 2.309 2.401 0.073 �0:019 0.3 0.0

K��: s �u23F4 2.490(20.) 2.555 2.600 �0:065 �0:110 0.1 0.3
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TABLE IV. s�s Mesons, Theory 1 and Theory 2.

s�s Mesons Exp. Th1. Th2. Exp.-Th1. Exp.-Th2. �2 -Th1. �2 -Th2.

�: s�s13S1 1.019(0.0) 1.050 1.013 �0:031 0.006 9.3 0.4

�: s�s13P0 1.370(100) 1.211 1.175 0.159 0.195 0.0 0.0

�: s�s13P1 1.518(5.0) 1.480 1.437 0.038 0.081 0.5 2.5

�: s�s13P2 1.525(5.0) 1.496 1.506 0.029 0.019 0.3 0.1

�: s�s23S1 1.680(20.) 1.811 1.875 �0:131 �0:195 0.4 0.9

�: s�s13D3 1.854(7.0) 1.839 1.879 0.015 �0:025 0.0 0.1

�: s�s23P2 2.011(70) 2.149 2.128 �0:138 �0:117 0.0 0.0

�: s�s33P2 2.297(28.) 2.612 2.603 �0:315 �0:306 1.3 1.2

TABLE V. c �u and c �d Mesons, Theory 1 and Theory 2.

c �u, c �d Mesons Exp. Th1. Th2. Exp.-Th1. Exp.-Th2. �2 -Th1. �2 -Th2.

D0: c �u11S0 1.865(0.2) 1.865 1.876 0.000 �0:011 0.0 1.1

Dþ: c �d11S0 1.870(0.2) 1.872 1.883 �0:003 �0:013 0.1 1.7

D�0: c �u13S1 2.007(0.2) 2.013 2.007 �0:006 0.000 0.4 0.0

D�þ: c �d13S1 2.010(0.2) 2.019 2.013 �0:008 �0:002 0.7 0.1

D�0: c �u13P0 2.352(50.) 2.224 2.221 0.128 0.131 0.1 0.1

D�þ: c �d13P0 2.403(14.) 2.232 2.230 0.171 0.173 1.5 1.5

Dþ: c �d13P2 2.460(3.0) 2.398 2.414 0.062 0.046 3.9 2.1

D�0: c �u13P2 2.461(1.6) 2.393 2.409 0.069 0.052 13.2 7.7

TABLE VI. c�s Mesons, Theory 1 and Theory 2.

c�s Mesons Exp. Th1. Th2. Exp.-Th1. Exp.-Th2. �2 -Th1. �2 -Th2.

Ds: c�s1
1S0 1.968(0.3) 1.972 1.974 �0:004 �0:006 0.1 0.3

D�
s : c�s1

3S1 2.112(0.5) 2.138 2.119 �0:026 �0:007 5.4 0.4

D�
s : c�s1

3P0 2.318(0.6) 2.348 2.340 �0:031 �0:022 6.9 3.5

Ds: c�s1
1P1 2.535(0.3) 2.505 2.499 0.030 0.036 8.3 11.6

D�
s : c�s1

3P2 2.573(0.9) 2.534 2.532 0.039 0.040 8.4 8.9

D�
s : c�s2

3S1 2.690(7.0) 2.714 2.702 �0:024 �0:012 0.1 0.0

TABLE VII. c �c Mesons, Theory 1 and Theory 2.

c �c Mesons Exp. Th1. Th2. Exp.-Th1. Exp.-Th2. �2 -Th1. �2 -Th2.

�c: c �c1
1S0 2.980(1.2) 2.965 2.973 0.015 0.007 1.0 0.2

J=c ð1SÞ: c �c13S1 3.097(0.0) 3.131 3.128 �0:034 �0:031 11.4 9.7

�0: c �c1
3P0 3.415(0.3) 3.395 3.397 0.020 0.018 3.7 3.0

�1: c �c1
3P1 3.511(0.1) 3.506 3.505 0.005 0.006 0.2 0.4

h1: c �c1
1P1 3.526(0.3) 3.522 3.523 0.004 0.003 0.2 0.1

�2: c �c1
3P2 3.556(0.1)) 3.562 3.557 �0:006 �0:001 0.4 0.0

�c: c �c2
1S0 3.637(4.0) 3.606 3.602 0.031 0.035 0.6 0.7

c ð2SÞ: c �c23S1 3.686(0.0) 3.688 3.689 �0:002 �0:002 0.0 0.1

c ð1DÞ: c �c13D1 3.773(0.4) 3.807 3.807 �0:034 �0:034 0.9 0.9

�2: c �c2
3P2 3.929(5.0) 3.980 3.983 �0:051 �0:054 1.0 1.1

c ð3SÞ: c �c33S1 4.039(10.) 4.086 4.092 �0:047 �0:053 0.2 0.3

c ð2DÞ: c �c23D1 4.153(3.0) 4.164 4.169 �0:011 �0:016 0.1 0.3

c ð4SÞ: c �c43S1 4.421(4.0) 4.410 4.426 0.011 �0:005 0.1 0.0

c ð3DÞ: c �c33D1 4.421(4.0) 4.467 4.483 �0:046 �0:062 1.2 2.3

c ð5SÞ: c �c53S1 4.800(100) 4.690 4.719 0.110 0.081 0.0 0.0

c ð4DÞ: c �c43D1 4.880(100) 4.735 4.764 0.145 0.116 0.0 0.0

c ð6SÞ: c �c63S1 5.180(100) 4.940 4.983 0.203 0.197 0.0 0.0

c ð5DÞ: c �c53D1 5.290(100) 4.977 5.020 0.350 0.270 0.1 0.1
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16-component wave function. In the third and fourth
columns are the theoretical values, with Th1 referring to
the results without the timelike vector interaction and Th2
with the timelike vector interaction. In the fifth and sixth
columns, we give the differences between our theoretical
results and the experimental, and in the last two columns
the contributions of each theoretically computed value to
the total �2 of 237 for Th1 and 173 for Th2.12

To generate the fits, in addition to varying the five quark
masses we vary the parameters �, U0, , and � in the
apportioned static Adler-Piran potential in A, V, and S.

Those invariants are put into our relativistic wave equa-
tions just as we have inserted the invariant Coulomb po-
tential A ¼ �	=r (but with V ¼ S ¼ 0) to obtain the
results of QED bound states [29,34]. Note especially that
we use a single�ðA; SÞ for Th1 and a single�ðA; V; SÞ for
Th2 for all quark mass ratios. Hence in each theory, we use
a single structure for all the Q �Q, q �Q, and q �q mesons in a
single overall fit. The entire confining part of the potential

TABLE VIII. b �u, b �d and b�s Mesons, Theory 1 and Theory 2.

b �u, b �d b �s Mesons Exp. Th1. Th2. Exp.-Th1. Exp.-Th2. �2 -Th1. �2 -Th2.

B�: b �u11S0 5.279(0.3) 5.281 5.283 �0:002 �0:004 0.0 0.2

B0: b �d11S0 5.280(0.3) 5.282 5.284 �0:003 �0:005 0.1 0.2

B��: b �u13S1 5.325(0.5) 5.335 5.333 �0:010 �0:008 0.8 0.5

B��: b �u13P2 5.747(2.9) 5.671 5.687 0.076 0.059 6.2 3.8

B0
s : b�s1

1S0 5.366(0.6) 5.373 5.367 �0:007 �0:001 0.3 0.0

B�0
s : b �s13S1 5.413(1.3) 5.441 5.430 �0:029 �0:017 3.0 1.0

B�0
s : b �s13P1 5.829(0.7) 5.789 5.792 0.040 0.037 10.9 9.4

B�0
s : b �s13P2 5.840(0.6) 5.805 5.805 0.035 0.035 8.9 9.0

B�
c : b �c1

1S0 6.276(21.) 6.249 6.251 0.027 0.025 0.4 0.4

TABLE IX. b �b Mesons, Theory 1 and Theory 2.

b �b Mesons Exp. Th1. Th2. Exp.-Th1. Exp.-Th2. �2 -Th1. �2 -Th2.

�b: b �b11S0 9.389(4.0) 9.337 9.330 0.052 0.059 1.6 2.0

�ð1SÞ: b �b13S1 9.460(0.3) 9.444 9.444 0.016 0.017 2.4 2.6

�b0: b �b13P0 9.859(0.4) 9.836 9.834 0.023 0.026 4.6 5.6

�b1: b �b13P1 9.893(0.3) 9.886 9.886 0.007 0.007 0.4 0.4

�b2: b �b13P2 9.912(0.3) 9.922 9.920 �0:010 �0:008 0.9 0.6

�ð2SÞ: b �b23S1 10.023(0.3) 10.022 10.022 0.001 0.002 0.0 0.0

�ðDÞ: b �b23D2 10.161(0.6) 10.178 10.179 �0:017 �0:018 2.1 2.3

�b0: b �b23P0 10.232(0.4) 10.230 10.229 0.002 0.003 0.1 0.1

�b1: b �b23P1 10.255(0.5) 10.261 10.262 �0:006 �0:007 0.3 0.4

�b2: b �b23P2 10.269(0.4) 10.284 10.286 �0:015 �0:017 1.9 2.5

�ð3SÞ: b �b33S1 10.355(0.6) 10.366 10.368 �0:011 �0:013 0.8 1.2

�ð4SÞ: b �b43S1 10.579(1.2) 10.626 10.633 �0:046 �0:053 8.8 11.7

�ð5SÞ: b �b53S1 10.865(8.0) 10.844 10.857 0.021 0.008 0.1 0.0

�ð6SÞ: b �b63S1 11.019(8.0) 11.036 11.055 �0:017 �0:036 0.0 0.2

TABLE X. �2 by Family for Theory 1 and Theory 2.

�2 Average �2

Meson Family Th1 Th2 # Mesons Th1 Th2

u �d 62.1 30.5 20 3.1 1.5

s �u, s �d 37.7 26.5 22 1.8 1.3

s�s 11.0 4.5 8 1.4 0.6

c �u, c �d 20.9 14.6 8 2.6 1.8

c�s 29.4 26.6 6 4.9 4.4

c �c 28.2 23.4 18 1.6 1.3

b �u, b �s, b �c 31.2 25.9 9 3.5 2.9

b �b 24.8 25.1 14 1.8 1.8

Total 245.3 177.1 105 2.4 1.7

12The reader of [2] may notice that the total �2 of the model
there of 101 (corresponding to Th1 here) was substantially lower
than the 237 that we found here. There are several reasons for this
difference. The main reason is that in this paper we do not include
a 5% addition to the calculational uncertainty based on the total
meson widths. Second, there are 19 more mesons in the present
model, many of which were difficult to fit. Third, the experimen-
tal errors changed. Fourth, many of the newer mesons (for
example the �b) not only added more to the �2 from their own
fit, but also indirectly to the older ones (e.g. the 13S1 � meson).
There is no difference in the parameter sets and potentials in Th1
and those used in [2] although the values are different.
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transforms as a world scalar for Th1 and combined time-
like and scalar for Th2. Since � > 0:5 in our equations, this
structure leads in both models to linear confinement at long
distances and quadratic confinement at extremely long
distances (where the quadratic contribution S2 outweighs
the linear term 2mwS in Th1 and S2 � V2 outweighing
the linear terms 2mwSþ 2"wV in Th2). At distances at
which expð��rÞ � 1, the corresponding fine and hyper-
fine structures producing spin-orbit, Thomas, Darwin,
spin-spin, and tensor terms (the last two are relatively small
in that domain) are dominated by the confining inter-
action, while at short distances ( expð��rÞ � 1Þ the
electromagnetic-like portion of the interaction gives the
dominant contribution to the fine and hyperfine structures.
Furthermore because the signs of each of the spin-orbit and
Darwin terms in the Pauli form of our TBDE are opposite
for the scalar and vector interactions (see Appendix A 4),
the spin-orbit contributions of those parts of the interaction
produce opposite effects with degrees of cancellation de-
pending on the size of the quarkonia atom. Another point to
make is that because of the various sizes of the quarkonia
atoms and the c.m. energy dependence the behavior of�w

is sharply different for the light mesons compared with the
heavy ones. This may possibly account for the ability of
our formalism to obtain good fits for the light meson
hyperfine splittings while at the same time giving good
overall fits to the heavy mesons.
We obtain the meson masses given in columns three and

four as the result of a least squares fit using the known
experimental masses and errors from the Particle Data
Group (PDG) tables [44] and an assumed calculational error
of 1.0 MeV. We employ the calculational error not to repre-
sent the uncertainty of our algorithm but more to prevent the
mesons that are stable with respect to the strong interaction
from being weighted too heavily. Our �2 is per datum (105)
minus parameters (8 or 9). In Table I, the value of  for Th1
implies that (in the best fit) as the quark separation increases,
our apportioned Adler-Piran potential switches from primar-
ily vector to scalar at about ð�Þ�1 � 0:60 fermi. This shift
is a relativistic effect since the effective nonrelativistic limit
of the potential (Aþ S) exhibits no such shift (i.e., by
construction  drops out). For Th2, this distance is substan-
tially less, ð�Þ�1 � 0:22 fermi.

TABLE XII. Spin-Orbit Splitting R Ratios.

Family Exp. Th1. Th2.

u �d �0:36 �0:57 �0:03
s �u �1:05 �0:14 0.16

s �s 0.05 0.06 0.26

c �c 0.47 0.50 0.48

b �b (13P2;1;0) 0.56 0.72 0.65

b �b (23P2;1;0) 0.61 0.74 0.73

TABLE XIII. Splitting Between 1P1 and weighted triplet
states (MeV).

Family Exp. Th1. Th2.

u �d 76 30 36

s �u 146 9 14

c �c �1 3 �1

TABLE XIV. Tensor Term Mixing Between Orbital D and
Radial S Excitations of the Spin-Triplet Ground States (in MeV).

Family Exp. Th1. Th2.

u �d (13D1 � 23S1) 255 199 163

s �u (13D1 � 23S1) 303 163 131

c �c (13D1 � 23S1) 87 119 118

c �c (23D1 � 33S1 114 78 77

TABLE XI. Ground State Singlet-Triplet Splittings (MeV).

Family Exp. Th1. Th2.

u �d 635 649 647

s �u 398 432 377

s �d 398 431 377

c �u 142 148 131

c �d 140 147 130

c�s 144 166 145

c �c 117 166 155

b �u 46 54 50

s �s 47 68 63

b �b 71 107 114

TABLE XV. Radial Excitations (MeV).

Family Exp. Difference Th1. Difference Th2. Difference

u �d, �: 1, 2, 31S0 1160, 516 1352, 597 1301, 602

u �d 
: 1, 2, 33S1 690, 684 955, 536 903, 642

s �u K�: 1, 2, 31S0 966, 370 1038, 592 957, 605

s �u K��: 1, 22S1 522 842 810

s �s �: 1, 22S1 661 761 862

c �c �c: 1, 2
1S0 657 641 629

c �c c : 1, 2, 33S1 589, 353 557, 398 561, 403

b �b �: 1, 2, 3, 4, 5,63S1 563, 332, 224, 286, 154 578, 344, 260, 218, 192 578, 346, 265, 224 198
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Table X lists the 8 meson families, their respective �2

contributions and their averages. The most striking feature
is that as the quark masses increase from the lightest to the
heaviest, the differences of the respective �2 shifts from
about a factor of 2 to almost even. The heaviest mesons are
also the smallest in mean radius. This means that they are
less likely to experience the effects of the S2 and �V2

portions of the confining interactions. As the mesons be-
come large, they experience more of the effects of these
parts of the potentials. The most dramatic improvement
from the inclusion of the timelike vector confining poten-
tial VðrÞ (Th2) is with the light quark u �d family. Referring
now to Tables II, III, IV, V, VI, VII, VIII, and IXmost of the
improvement comes from that of the fits to the a2, b2 and
b1 mesons. For the s �u, s �d family the largest improvement
comes from the lowest lying 3P2 mesons. The ground state
singlet-triplet splitting changes from an overestimation to
an underestimation. For the s�s family the most significant
improvement is in the ground state, although somewhat
off-balanced by a worse fit for the lowest lying 3P1 state. In
the case of the c �u, c �d family the main improvement is from
the 3P2 mesons. For the c�s mesons there is a slight overall

improvement for Th2 with offsetting changes for the 3P0

and 1P1 mesons. There is only a very slight improvement
for the c �c mesons. For both Th1 and Th2 the worst fit is to
the J=c meson with a mass too large by about 30 MeV. It
cannot be adjusted downward by lowering the charm mass
due to the fact that other mesons in this family would be
pushed further from the data. With the heavy-light family,
a single b quark, there again is not much overall change
and even less in the b �b family although another significant
improvement is in the 3P2 b �u state. An oddity with the b �b
is the sudden increase in �2 at the 43S1 meson, the worst fit
of all the mesons in terms of the incremental �2. Since that
meson is closest to threshold, its mass will be most affected
by it, whereas our theoretical model does not take thresh-
old effects into account.

A possible explanation of why most improvements come
for the 3P2 states is that the effect on the spin-orbit cou-
pling due to the Thomas terms is opposite in sign for the
timelike vector and scalar mesons. Without the balancing
effect of the timelike vector confining interaction, the

scalar interaction enforces an inversion of the spin-orbit
splittings of the light mesons that are far too distorted for
the u �d and s �umultiplets.13 Also, the long range scalar parts
contribute oppositely in sign from the short range vector
part attributable to the AðrÞ potential.
We now examine another important feature of our

method: the goodness with which our equations account
for spin-dependent effects (both fine- and hyperfine- split-
tings). Table XI shows the best fit vs experimental ground
state singlet-triplet splittings and six vs four of the ten
hyperfine splittings are improved using Th2 over Th1.
Both give good fits for all hyperfine ground state splittings
except for the �c � c system and �b �� system
which for the latter over estimate the splittings by about
50%.14 One problem with the fit for the c �c system of
mesons may be due to the fact that the D�3P2,

1P1 and
D�

s
3P2 fits are significantly low while the J=c fit is sig-

nificantly high. Lowering the c quark mass corrects the
J=c mass while raising the D�, D�

s P state masses would
require raising the c quark mass. Reducing one discrep-
ancy would worsen the other, at least in our three invariant
function approach.
For the spin-orbit splittings Table XII gives the R ratios

ð3P2 � 3P1Þ=ð3P1 � 3P0Þ. Both sets of fits are very poor for
the two lightest multiplets. The fact that Th1 has the same
sign for the u �d as the experiment values is not an indication
that it gives reasonable results since the negative sign
originates from the numerator instead of the denominator.
Of the four remaining multiplets, Th2 gives a better fit on 3.
It must be said, however, that none of the better fits are very
good except for the c �c. From the experimental point of view
the poor R value for the u �d and u�s may be the uncertain
status of the 3P0 light quark meson bound states, or, theo-

retically, our low 3P0 theoretical meson masses. Also, the

lack of any mechanism in our model to account for the
effects of decay rates on level shifts undoubtedly has an
effect. Another likely cause for the poorer performance of
Th1 as one goes from heavier to light mesons is that the
radial size of the meson grows so that the long distance
interactions, in which the scalar interaction becomes

TABLE XVI. Isospin Splitting (MeV).

Family Exp Theory 1 Theory 2

s �d� s �u: 11S0 4 3 0

s �d� s �u: 13S1 4 2 1

s �d� s �u: 13P2 6 1 1

c �d� c �u: 11S0 5 7 7

c �d� c �u: 13S1 3 6 6

c �d� c �u: 13P0 51 8 9

c �d� c �u: 13P2 1 �5 �5
b �d� b �u: 11S0 1 2 1

d� u mass 5.8 6.0

13Another possible source of the strange multiplet inversion, is
that the observed 3P0 states of 1450 for the u �d and 1430 for the
u�s systems are, in fact not zero node states, but rather one node
excited states. This may, in our formalism, give room to an
interpretation of the u �dð980Þ and the �ð700–900Þ mesons as
possible candidates for the zero node states. Our tables support
that more than the identification of a zero node 1474 for the u �d
and 1425 for the u �s systems. However, using the parameters on
our model, we would obtain the 23P0 values of 1800 and 1850
for those one node states, well above the 1474 and 1425
experimental values. So this does not appear to be a plausible
alternative for either Th1 or Th2.
14We point out, however, that our model does much better in
simultaneously working with heavy and light q �q hyperfine
splittings than that obtained by typical constituent (nonchiral)
quark models (a major exception discussed here in detail is the
quasipotential model of [7])
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dominant, play a more important role. This effect is blunted
by Th2 as seen in the u �d numbers. In Table II The spin-orbit
terms due to scalar interactions are opposite in sign and tend
(at long distance) to dominate the spin-orbit terms due to
vector interactions for Th1, but less so in Th2. This results
in partial to full multiplet inversions as we proceed from the
s�s to the u �d mesons. This inversion mechanism is less for
Th2 than for Th1 because of the value of �.

The hyperfine structure of our equations also influences
the splitting between the 1P1 and the weighted sum

½5ð3P2Þ þ 3ð3P1Þ þ 1ð3P0Þ�=9 of bound states. Table XIII

indicates the agreement of the theoretical and experimental
mass differences is excellent for the c �c system, too small
but of the right sign for the u�s and u �d systems. The
agreement, however, for the light systems is nevertheless
considerably better than that in the case of the fine structure
splitting R ratios. Note that in the case of unequal mass P
states, our calculations of the two values incorporate the
effects of L � ð�1 � �2Þ and L � �1 � �2 which mix spin.

Next consider the mixing due to the tensor term between
orbital D and radial S excitations of the spin-triplet ground
states. This mixing occurs most notably in the c �c, u�s and
u �d systems. Table XIV shows that Th1 is better than Th2
although both are pretty far off the mark. For the charmo-
nium system, the lower doublet results are high, whereas
the higher doublet results are low.

Next we consider the effects of the change from Th1 to
Th2 on the radial excitations. Table XV shows that, for the
most part, Th1 gives slightly better results for the radially
excited states, although where both theories are furthest off
(the u �d states) Th2 gives better results. The radially excited
u �d mesons have a larger mean radius than for the heavier
meson and thus the temporizing effects of the �V2 term
tends to counteract more the increased confining potential
for large r from linear to quadratic due to the S2 terms.

Finally we comment on the isospin splittings shown in
Table XVI. There are two effects wemust consider here: the
positive d� u mass differences of about 6 MeV for both
theories and the Coulomb interaction between the quarks on
the order of 	� 197 MeV or less depending on the meson
sizes. The Coulomb interaction is counter to the d� umass
difference for the s �d� s �u and b �d� b �u splittings while
enhancing the d� u mass difference for the c �d� c �u split-
tings. These alternatively competing and enhancing effects
are seen in the sizes of the splittings for both theories as you
read down the table from the s �d� s �u through the c �d� c �u
to the b �d� b �u splitting. For the K � K� family the values
for the isospin splittings are 3 and 0 MeV for Th1 and 2 vs
the experimental value 4 MeV for the singlet ground states
while for the triplet the isospin splittings are 2 and 1 MeV
vs the experimental value 4 MeV. The experimental split-
ting grows for the orbital excitation (K�

2) to 6 MeV. The

probable reason for the increase is that at the larger dis-
tances, the influence of the Coulomb differences becomes
small so that only the d� u mass difference influences the

result. Our theories do not show a similar increase for the
orbital excitations. In the case of theDþ �D0 splitting our
mass differences for Th1 and Th2 are 7 and 7 MeV, re-
spectively, vs the experimental mass difference of just
5 MeV. Here we see the opposite overall effect between
the combined effects of the d� u mass difference and the
slightly increased electromagnetic binding present in the
case of theD0 and the slightly decreased binding in the case
of the Dþ. Whereas in the kaon system the results are too
small, for the D the results are too large. This can be
partially understood since the Coulomb and d� u mass
differences work in concert with the Coulomb potential for
these doublets. These effects work in the same way for the
spin-triplet splitting resulting in the theoretical values of 6
and 6 MeV for the two theories compared with the experi-
mental value 3 MeV. For the 3P2 isodoublet we obtain �5
and �5 MeV vs about 1 for the experimental value again
showing the expected opposite trend from that of the kaon
system. The experimental splitting between the 3P0 iso-

doublet of 51 MeV appears incomprehensibly large. Our
two values are 8 and 9 MeV. The isospin splittings that we
obtain for the spin singlet Bmeson system are 2 and 1 MeV
for Th1 and Th2 vs 1 MeV. Here the competing effects
cancel as in the kaon system only more so since the mesons
are smaller and thus the Coulomb parts play a stronger role
than for the kaon.

V. THE EFFECTIVE RELATIVISTIC
SCHRÖDINGER EQUATION WITH FLAVOR

MIXING FOR SPIN-ZERO ISOSCALAR MESONS

Consider the general eigenvalue Eq. (35) for an isoscalar
meson, one with quark structure q �q. As seen in
Appendix A the mass dependence appearing in�w directly
or indirectly throughmw, "w, "1, "2, is of four types:m1m2,
m2

1 and m2
2, m

2
1 þm2

2 and m2
1 �m2

2. The actual isoscalar
mesons consist of mixtures of three equal mass quark-
antiquark pairs. We write the three separate equal mass
versions of (35), using Eq. (10), together in shorthand as

½p2 þ�wðr; m1 ¼ m2; w;�1;�2Þ�
c u �u

c d �d

c s�s

2
64

3
75

� ½p2 þ�wðr;MÞ�
c u �u

c d �d

c s�s

2
64

3
75

¼ 1

4
ðw2 � 4M2Þ

c u �u

c d �d

c s�s

2
64

3
75: (37)

in which

M ¼
mu 0 0
0 md 0
0 0 ms

2
64

3
75: (38)

APPLICATIONS OF TWO-BODY DIRAC EQUATIONS TO . . . PHYSICAL REVIEW D 82, 094020 (2010)

094020-13



Equation (37) does not include mixing between the pairs.
Motivated by ideas presented by Brayshaw15 [5], we model
the effects of qi �qi ! qj �qj via two-gluon annihilation and

creation as an effective scalar potential by postulating a
symmetric matrix M that is not diagonal,

mu 0 0
0 md 0
0 0 ms

2
64

3
75 ! M ¼

mu 0 0
0 md 0
0 0 ms

2
64

3
75

þ
�mu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mu�md

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mu�ms

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mu�md

p
�md

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�md�ms

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mu�ms

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�md�ms

p
�ms

2
64

3
75:

(39)

Suppose that an orthogonal matrix R diagonalizes M16

RMR�1 ¼ MD: (40)

Then Eq. (37) becomes

½p2 þ�wðr;MDÞ�c ¼ 1

4
ðw2 � 4M2

DÞc :

This gives us, in essence, three new effective families of
equal quark-anti-quark mesons, like ones that contain b, c,
s, u, d except that mixtures are involved. In this paper we
see if this idea is successful for the ground state pseudo-
scalar isoscalar family of mesons alone. With the three
parameters, one obtains three different effective quark
masses, one for each isoscalar family. The three �mi are
adjusted to give the best fit to the correct �0, �, �0
masses.17 Table XVII gives the values of �mu, �md, �ms

together with the three effective quark masses, the eigen-
values of M which we call mqð�0Þ, mqð�Þ, mqð�0Þ.

Paralleling the earlier Tables II, III, IV, V, VI, VII, VIII,
and IX, Table XVIII gives the best fit values for the �0, �,
and �0 mesons. The predicted quark content becomes a
further test of our model.
The corresponding eigenvectors are quite close to the

mixtures

j�0i ¼ 1ffiffiffi
2

p
1

�1

0

2
664

3
775� j�3i;

j�i ¼ cos�ffiffiffi
6

p
1

1

�2

2
664

3
775� sin�ffiffiffi

3
p

1

1

1

2
664

3
775� cos�j�8i� sin�j�1i;

j�0i ¼ sin�ffiffiffi
6

p
1

1

�2

2
664

3
775þ cos�ffiffiffi

3
p

1

1

1

2
664

3
775� sin�j�8iþ cos�j�1i;

(41)

With the three eigenvectors in matrix form we find

j�0 j�i j�0i� �¼ 0:770 0:470 0:431
�0:638 0:574 0:514
�0:006 �0:671 0:742

2
64

3
75; (42)

corresponding to � ¼ �12:6 degrees for Th1 and

j�0 j�i j�0i� �¼ 0:717 0:542 0:438
�0:697 0:565 0:442
�0:008 �0:622 0:783

2
64

3
75; (43)

corresponding to � ¼ �16:3 degrees for Th2. The Th2
value is consistent with chiral perturbation theory results
corresponding to using the formula [44].

tan 2�½quad� ¼
4m2

K �m2
� � 3m2

�

m2
� þ 3m2

�0 � 4m2
K

: (44)

With the meson masses listed in Tables II and III for Th2
we obtain �½quad� ¼ �17:2 degrees, reasonably close to our

TABLE XVII. Mixing Parameters for Theory 1 and Theory
2 (GeV).

Parameter Th1 Th2

�mu 0.1004 0.1070

�md 0.1378 0.1055

�ms 0.0468 0.0578

mqð�0Þ 0.0737 0.1015

mqð�Þ 0.2175 0.2261

mqð�0Þ 0.4297 0.4536

15Brayshaw considered the modification of the meson mass by
w1 ! w1þ jGiZhGj with Z a fixed parameter and jGi in the ns
subspace. This is equivalent to the mixing matrix

T ¼ Z
hn �njGihGjn �ni hn �njGihGjs �si
hs�sjGihGjn �ni hs �sjGihGjs �si

� �
� t11 t12

t21 t22

� �
;

with the property that (for real matrix elements)

t11t22 ¼ t12t21 ¼ jt12j2 ¼ t212;

just as with the choice of Eq. (39).
16We ignore here the coupling that would result from this
diagonalization that would be brought on by the Coulomb
interactions between the equal mass q �q pairs.
17These fits are simultaneous with the fits of the earlier 105
mesons, with the same quark masses and potential parameters
used in the generation of Tables (II, III, IV, V, VI, VII, VIII, and
IX). Oddly, a precise fit to the �0 was not possible in either
theory, in spite of the three extra parameters �mu, �md, and �ms
available.
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Th2 result of �16:3 degrees. On the other hand, using the
values listed there for Th1 gives �½quad� ¼ �7:3 degrees

which is significantly different from�12:6 degrees. Using
the experimental masses gives �½quad� ¼ �11:5 degrees.

Radiative vector meson decays give an angle between
�10 and �20 degrees while fits to tensor decay widths
give �17 degrees. Note that even though the chiral sym-
metry and its breaking are not built into our model as in, for
example, it is in [45], it is of interest that the use of Eq. (44)
does produce a consistent result by use of our theoretically
computed masses.18

VI. THE QUASIPOTENTIAL EQUATION OF
EBERT, FAUSTOVAND GALKIN

A. The model and comparisons with TBDE

The model which we critically examine here gives ex-
cellent fits to the meson spectrum as well as numerous
meson decay rates. The quasipotential approach of Ebert,
Faustov and Galkin (EFG)[7] is a local one very similar to
that of Todorov [10] and Aneva, Karchev, and Rizov [36],
discussed in Sec. II (see Eq. (25)). Insofar as our discussion
given in that section is concerned, the main difference
between the TBDE and EFG approach is the replacement
of the timelike vector confining interaction in Eq. (26) with
a different confining vector interaction:

V ðp� kÞ12 ! V ðp� kÞ�1��
�
2 ;

�i� ¼ �i� � i�ðp� kÞ��i��

2mi

; i ¼ 1; 2:
(45)

They include as do we a scalar confining potential. In
coordinate space their choice is

VðrÞ ¼ ð1� "ÞðArþ BÞ; SðrÞ ¼ "ðArþ BÞ: (46)

For their electromagnetic-like vector interaction they use
the Coulomb gauge (instead of the Feynman gauge used in
the TBDE).

4

3
	sD��ðp� kÞ��

1 �
�
2 :

Its momentum space form is

D00ðp� kÞ ¼ � 4�

ðp� kÞ2 ;

Dij ¼ � 4�

ðp� kÞ2
�
�ij � ðp� kÞiðp� kÞj

ðp� kÞ2
�
:

(47)

The addition of the Pauli term with their value � ¼ �1 has
the effect of cancelling the lowest order spin-dependent
contributions in each factor of �i� when sandwiched

between on energy shell spinors. In the nonrelativistic limit
their scalar and vector confining interactions combine to
(Arþ B) with A ¼ 0:18 GeV2, B ¼ �0:3 GeV. In es-
sence, their approach embodies a modified version of the
Cornell potential into the local quasipotential approach.
Their choice of � was fixed by an analysis of the fine
structure splitting of heavy quarkonia 3PJ states [46] and
their choice of " ¼ �1 is determined from considerations
of charmonium radiative decay.
We compare in Tables XIX and XX their results to our

Th2 by listing the deviations from the experimental results
and respective �2. Of the 86 common mesons fit to the
respective models, the collected results of quasipotential
approach of [7,46–50] (EFG) are more accurate in 69 of
the fits (61 when comparing�2).19 This includes the difficult
singlet-triplet splittings for the ground and excited states of
charmonium and the ground state of bottomonium, as well
as good fits tomost of the radial and orbital excitations of the
ground states of the light mesons. Particularly interesting
examples for the �� 
 family are the 3P1 � 1P1 splitting
and the radial excitation of the singlet and triplet S states,
and for the K-K� families the 3P1 � 1P1 splitting and the
3P0 mass. These three areas of their spectrum are note-

worthy improvements over the TBDE approach. It is hard,
however, to give an even theoretical comparison between

TABLE XVIII. c�s Mesons, Theory 1 and Theory 2 (GeV).

Mesons Exp. Th1. Th2. Exp.-Th1. Exp.-Th2. �2 -Th1. �2 -Th2.

�0: 11S0 0.135(0.0) 0.139 0.134 �0:004 0.001 0.2 0.0

�: 11S0 0.548(0.0) 0.548 0.548 0.000 0.000 0.0 0.0

�0: 11S0 0.958(0.2) 0.958 0.958 0.000 0.000 0.0 0.0

18There are at least three other additional hints of a possible
emergent chiral symmetry and its breaking in the TBDE model.
a) the relatively small quark u, d, masses �60–100 MeV com-
pared with �300 MeV with most other quark models b) Our �
mass decreases toward zero as mq ! 0, c) the matrix element of
the divergence of the axial vector current being proportional to
the quark mass [13,39].

19Because of their large descrepancy on the (controversial) 3P0
Dsð2370Þ meson, their �2 of 389 is actually larger than our 255
(our fit here is altered to include less mesons and mu ¼ md so
there are slight differences from the previous tables). If one
eliminates that meson from the fit our �2 reduces to 251 while
their �2 reduces to 69. It should be pointed out that their fit did
not appear to be a least �2 one like our fit. It also was not an
overall fit like ours.
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the two approaches for a number of different reasons. It is
worthwhile, however, to point out the differences in the two
approaches, summarized in Table XXI. First of all, in our
approach, we give an overall fit to the entire spectrum. The
approach of EFG to the spectrum is spread over several

papers and it is not clear that a uniform parametrization
would yield the same results as given in the tables (summa-
rized here) from their separate papers. They do use the same
values for the constants A, B, �, and " as well as the quark
masses in the various papers. However, the� parameter they

TABLE XIX. Comparison of Theory 2 (A, S, V) Fits with Ebert et al. [7], [46–50].

Old Mesons Exp. TBDE EFG Exp.- TBDE Exp.—EFG. �2 (TBDE) �2 (EFG).

�: u �d11S0 0.140 0.134 0.154 0.005 �0:014 0.4 2.5


: u �d13S1 0.775 0.779 0.776 �0:003 �0:001 0.1 0.0

b1: u �d11P1 1.230 1.237 1.258 �0:007 �0:028 0.1 0.9

a1: u �d13P1 1.230 1.311 1.254 �0:081 �0:024 0.0 0.0

�: u �d21S0 1.300 1.426 1.292 �0:126 0.008 0.0 0.0

a2: u �d13P2 1.318 1.303 1.317 0.015 0.001 2.0 0.0


: u �d23S1 1.465 1.674 1.486 �0:209 �0:021 0.8 0.0

a0: u �d13P0 1.474 1.015 1.176 0.459 0.298 7.0 3.0

b2: u �d11D2 1.672 1.752 1.643 �0:080 0.029 6.8 0.9

a3: u �d13D3 1.689 1.706 1.714 �0:017 �0:025 0.7 1.4

a1: u �d13D1 1.720 1.836 1.742 �0:116 �0:022 0.4 0.0

a2: u �d23P2 1.732 1.997 1.779 �0:265 �0:047 3.3 0.1

�: u �d31S0 1.816 2.022 1.788 �0:206 0.028 2.6 0.0

b2: u �d21D2 1.895 2.252 1.960 �0:357 �0:065 6.0 0.2

a4: u �d13F4 2.011 2.042 2.018 �0:031 �0:007 0.1 0.0

b2: u �d31D2 2.090 2.682 2.216 �0:592 �0:126 5.0 0.2


: u �d33S1 2.149 2.309 1.921 �0:160 0.228 1.1 2.2

a6: u �d13H6 2.450 2.590 2.475 �0:140 �0:025 0.0 0.0

K�: s �u11S0 0.494 0.528 0.482 �0:034 0.012 14.2 1.6

K��: s �u13S1 0.892 0.898 0.897 �0:007 �0:005 0.5 0.3

K�: s �u11P1 1.272 1.336 1.294 �0:064 �0:022 1.0 0.1

K��: s �u13P1 1.403 1.354 1.412 0.049 �0:009 0.6 0.0

K��: s �u23S1 1.414 1.698 1.675 �0:284 �0:261 4.3 3.6

K��: s �u13P0 1.425 1.075 1.362 0.350 0.063 0.6 0.0

K��: s �u13P2 1.426 1.401 1.424 0.025 0.002 0.0 0.0

K�: s �u21S0 1.460 1.414 1.538 0.046 �0:078 0.0 0.0

K��: s �u13D1 1.717 1.828 1.699 �0:111 0.018 0.2 0.0

K�: s �u11D2 1.773 1.795 1.709 �0:022 0.064 0.1 0.8

K��: s �u13D3 1.776 1.784 1.789 �0:008 �0:013 0.0 0.0

K��: s �u13D2 1.816 1.787 1.824 0.029 �0:008 0.1 0.0

K�: s �u31S0 1.830 2.069 2.065 �0:239 �0:235 4.1 3.9

K��: s �u23P2 1.973 2.050 1.896 �0:077 0.077 0.1 0.1

K��: s �u13F4 2.045 2.106 2.096 �0:061 �0:051 0.5 0.4

K��: s �u23D2 2.247 2.301 2.163 �0:054 0.084 0.1 0.3

K��: s �u23F3 2.324 2.585 2.348 �0:261 �0:024 1.4 0.0

K��: s �u13G5 2.382 2.387 2.356 �0:005 0.026 0.0 0.0

K��: s �u23F4 2.490 2.585 2.436 �0:095 0.054 0.3 0.1

�: s�s13S1 1.019 1.017 1.038 0.002 �0:019 0.1 4.1

�: s�s13P0 1.370 1.175 1.420 0.195 �0:050 0.0 0.0

�: s�s13P1 1.518 1.436 1.464 0.082 0.054 3.1 1.4

�: s�s13P2 1.525 1.505 1.529 0.020 �0:004 0.2 0.0

�: s�s23S1 1.680 1.868 1.698 �0:188 �0:018 1.1 0.0

�: s�s13D3 1.854 1.874 1.950 �0:020 �0:096 0.1 2.2

�: s�s23P2 2.011 2.120 2.030 �0:109 �0:019 0.0 0.0

�: s�s33P2 2.297 2.590 2.412 �0:293 �0:115 1.3 0.2
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TABLE XX. Comparison of Th2(A, S, V) Fits with Ebert et al. [7], [46–50].

New Mesons Exp. TBDE. EFG Exp.-TBDE Exp.-EFG �2 -TBDE �2 -EFG

Dþ: c �d11S0 1.870 1.881 1.871 �0:012 �0:001 1.5 0.0

D�þ: c �d13S1 2.010 2.010 2.010 0.000 0.000 0.0 0.0

D�þ: c �d13P0 2.403 2.224 2.406 0.179 �0:003 2.0 0.0

D�0: c �u13P2 2.460 2.408 2.460 0.052 0.000 3.3 0.0

Ds: c �s1
1S0 1.968 1.976 1.969 �0:007 �0:001 0.5 0.0

D�
s : c�s1

3S1 2.112 2.120 2.111 �0:008 0.001 0.7 0.0

D�
s : c�s1

3P0 2.318 2.338 2.509 �0:020 �0:191 3.7 320

Ds: c �s1
1P1 2.535 2.498 2.536 0.038 �0:001 15.4 0.0

D�
s : c�s1

3P2 2.573 2.531 2.571 0.042 0.002 11.8 0.0

D�
s : c�s2

3S1 2.690 2.698 2.731 �0:008 �0:041 0.0 0.4

�c: c �c1
1S0 2.980 2.972 2.978 0.008 0.002 0.3 0.0

J=c ð1SÞ: c �c13S1 3.097 3.126 3.097 �0:029 0.000 10.3 0.0

�0: c �c1
3P0 3.415 3.393 3.423 0.022 �0:008 5.2 0.7

�1: c �c1
3P1 3.511 3.500 3.509 0.010 0.002 1.3 0.0

h1: c �c1
1P1 3.526 3.519 3.525 0.007 0.001 0.6 0.0

�2: c �c1
3P2 3.556 3.553 3.556 0.004 0.000 0.1 0.0

�c: c �c2
1S0 3.637 3.597 3.663 0.040 �0:026 1.1 0.5

c ð2SÞ: c �c23S1 3.686 3.683 3.684 0.004 0.002 0.1 0.1

c ð1DÞ: c �c13D1 3.773 3.801 3.795 �0:028 �0:022 8.4 5.2

�2: c �c2
3P2 3.929 3.975 3.972 �0:046 �0:043 1.0 0.9

c ð3SÞ: c �c33S1 4.039 4.083 4.088 �0:044 �0:049 0.2 0.3

c ð2DÞ: c �c23D1 4.153 4.160 4.194 �0:007 �0:041 0.1 2.0

B�: b �u11S0 5.279 5.285 5.280 �0:006 �0:001 0.4 0.0

B0: b �d11S0 0.000 0.000 0.000 0.000 0.000 0.0 0.0

B��: b �u13S1 5.325 5.334 5.326 �0:009 �0:001 0.8 0.0

B��: b �u13P2 5.747 5.687 5.741 0.060 0.006 4.7 0.0

B0
s : b�s1

1S0 5.366 5.370 5.372 �0:004 �0:006 0.1 0.3

B�0
s : b �s13S1 5.413 5.432 5.414 �0:019 �0:001 1.7 0.0

B�0
s : b �s13P1 5.829 5.793 5.831 0.037 �0:002 11.0 0.0

B�0
s : b �s13P2 5.840 5.805 5.842 0.034 �0:002 10.5 0.0

�b: b �b11S0 9.389 9.334 9.400 0.055 �0:011 2.1 0.1

�ð1SÞ: b �b13S1 9.460 9.447 9.460 0.014 0.000 2.1 0.0

�b0: b �b13P0 9.859 9.835 9.864 0.024 �0:005 6.1 0.2

�b1: b �b13P1 9.893 9.887 9.892 0.006 0.001 0.4 0.0

�b2: b �b13P2 9.912 9.921 9.912 �0:009 0.000 0.8 0.0

�ð2SÞ: b �b23S1 10.023 10.021 10.020 0.002 0.003 0.0 0.1

�ð1DÞ: b �b13D2 10.161 10.178 10.157 �0:017 0.004 2.4 0.1

�b0: b �b23P0 10.232 10.228 10.232 0.005 0.001 0.2 0.0

�b1: b �b23P1 10.255 10.261 10.253 �0:005 0.002 0.3 0.1

�b2: b �b23P2 10.269 10.284 10.267 �0:015 0.002 2.4 0.0

�ð3SÞ: b �b33S1 10.355 10.366 10.355 �0:011 0.000 1.0 0.0

�ð4SÞ: b �b43S1 10.579 10.628 10.604 �0:049 �0:025 11.7 3.0
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use in the parametrization of the short distance QCD-
Coulomb part of the potential is different.20 Another differ-
ence is that the static QCD potential in the Adler-Piran
model displays explicitly the asymptotic freedom behavior
by its radial dependence 21 whereas in the Coulomb potential
used by EFG, the asymptotic freedom behavior is displayed
indirectly in their 	s by the quark mass dependence as seen
in footnote 20. On the other hand, for their heavy quark
bound states a radial modification displaying short distance
QCD asymptotic freedom corrections was used but was not
for the light quark bound states. Both the quasipotential
approach of EFG and the TBDE used here, extending earlier
work of Crater and Van Alstine, have three invariant inter-
action functions. Both use electromagnetic-like four-vector
interactions, in the Feynman gauge for the TBDE and the
Coulomb gauge for the quasipotential approach. In the EFG
quasipotential approach, the third interaction is a Pauli-
modified vector interaction whereas in our approach it is a
timelike vector interaction. The potentials used in each of the
three parts are of course different in the two approaches. The
spin dependence, although similar for the most part have
distinctly different origins. In the 16 component TBDE the
kinematics and dynamics and spinors are tied together in one
wave equation (see. e.g. Eq. (16)). Its off-shell dependence is
fixed by thewave equation and the spinors are all interacting.
In the quasipotential approach the potential is constructed in
part from the actions of free particle spinors. This leaves
substantial leeway in how the off-shell behavior is fixed.

Both approaches have exact relativistic kinematics (from
the use of b2ðwÞ) and do not use either v=c or 1=mq

expansions. Both approaches lead to nonlinear eigenvalue
equations and give good values of the pion and kaon masses.
Both approaches avoid singular effective potentials that
would otherwise prevent nonperturbative spectral calcula-
tions. In the quasipotential approach of EFG, those singu-
larities are avoided in an ad hoc though plausible fashion
(see Eq. (12) in [7]). In the case of the TBDE, natural
smoothing mechanisms appear in the Dirac formalism al-
lowing one to avoid these ad hoc assumptions [28,29].22 In
addition, in the approach of the TBDE, strictly nonperturba-
tive (i.e. numerical techniques) are used for the spectral
evaluations. This does not appear to be the case for the
work of EFG, particularly for the heavy mesons, where
use of perturbation theory is required because of singular
potentials. It may very well be that their ad hoc substitutions
used in the later paper [7] will render the use of perturbation
theory unnecessary for those mesons. In that case, clear tests
must ensure that not only do the ad hoc substitutions give the
same results as the perturbative treatments, but that this
holds in the sensitive testing grounds of QED [4,29] ground
states and those of related field theories. Both approaches
display chiral symmetry breaking through the appearance of
quark masses. It has been demonstrated in the TBDE, how-
ever, that the pion mass vanishes in the limit in which the
quark mass vanishes [2]. That is not demonstrated in the
EFG formalism nor for any other potential model formalism
that we know of for the mesons (In an exception, Sazdjian

TABLE XXI. Comparison of TBDE with EFG.

Properties TBDE Quasipotential Approach of EFG

Invariant Interactions 3- A (EM-like vector), S (scalar),

V (timelike vector)

3- A (EM-like vector), S (scalar),

V (Pauli-modified vector)

QCD Coupling Coordinate Space Dependent Quark Mass Dependent

Meson Fits Overall Spectrum, Same Parametrizations Spectrum in Parts with Different Parametrizations

Spin- Dependence Fixed by the TBDE given A, S, V Fixed by the Quasipotential and A, S, V
Kinematics Exact Exact

Singular potentials Avoided by Dirac Equation Formalism Avoided by Ad hoc Substitutions

Numerical evaluations Yes Not for Heavy Mesons

Chiral Symmetry Zero Pion Mass for mq ! 0 Not Tested

QED Spectral Tests Both Perturbative and Nonperturbative Perturbative Only

Static Limit (m2 ! 1) Reduces to One-Body Dirac Eq. Does Not Reduce to One-Body Dirac Eq.

20In their earlier papers where the fits to the heavier mesons are
given they use 	s ¼ 4�=ð0 lnð�2=�2ÞÞ where � is the reduced
mass and in the recent papers where the fits to lighter mesons are
given they use 	s ¼ 4�=ð0 lnðð�2 þM2

BÞ=�2ÞÞ. In the former
papers they use� ¼ 169 or 178 MeVand in the recent ones� ¼
413 MeV. It is not clear how using just one form for all the
mesons would affect the overall fit.
21In [33], the Adler-Piran potential was replaced by a form that
displays asymptotic freedom in the QCD coupling via
ð8�=27Þ= lnðK þ B=ð�rÞ2Þ. Although the model used there
does not give as good a fit to the meson spectrum as the
Adler-Piran model it does display asymptotic freedom in a
simpler form.

22In [33], Crater, Yoon, and Wong described some unusual
singularity structures of the effective potentials and wave func-
tions that show up in Eq. (17) for singlet and triplet states, in both
QED and QCD. In these cases, the TBDE lead to effective
potentials and wave functions that are nevertheless not singular.
The most noteworthy case was for the coupled 3S1-

3D1 triplet
system, when the tensor coupling is properly taken into account.
There it was shown that including the tensor coupling is essential
in order that the effective potentials and wave functions are well
behaved at short distances, with the S state and D state wave
functions becoming simply proportional to each other at short
distance (see Appendix C).
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has demonstrated this using pseudoscalar interactions for the
TBDE [39]).23

The final point we want to make about the differences is
that the wave equation arising from the TBDE has been
tested in perturbative QED and related field theories.
Todorov, and others [10,36,51] showed using perturbative
methods how their local version of the quasipotential
equation displays the accepted QED spectral results
through order 	4 for two oppositely charged particles
with arbitrary mass ratios. The works by Crater and
Van Alstine [34] and others [29] go beyond this and
show that not only do the TBDE display the correct fine
and hyperfine spectral results when treated perturbatively,
but those same results can be recovered when the equations
are treated nonperturbatively. In [52], a local quasipotential
equation closely related to that used by EFG in the meson
spectrum was shown to also reproduce perturbatively the
spectral results through order 	4 of QED for two oppo-
sitely charged particles with arbitrary mass ratios.
However, the important nonperturbative tests as done in
[29] of the bound state formalism for QED have not been
carried out with the local quasipotential equation of EFG.

It is our contention that any relativistic potential model
that includes four-vector interactions should, when the
vector interaction is replaced by its QED counterpart,
and confining potentials are set ¼ 0, reproduce the stan-
dard QED spectral results. There are two models for which
we carry out this test. We limit our test to the singlet
positronium ground state. The fundamental question we
ask is, do these two approaches, [6,7], which are used quite
successfully for meson spectroscopy, give the correct spec-
tral results when restricted to QED. The first one we
examine is that of Ebert, Faustov and Galkin [7].

B. Positronium ground state spectral test of the quasi-
potential equation of Ebert, Faustov and Galkin

The effective Schrödinger equation of this approach,
restricted to an equal mass bound system for vector
interactions, is given in Eqs. (1–4) and (13–22) of [7].

For that restriction we have, in the notation of the present
paper,�
p2

2�R

þ VðrÞ
�
�w ¼ b2ðwÞ

2�R

�w;

�R ¼ "1"2
w

¼ w

4
;

b2ðwÞ ¼ 1

4
ðw2 � 4m2Þ;

VðrÞ ¼ AðrÞ
�
1þ

�
w� 2m

w

�
2
�

þ
�

2

wðwþ 2mÞ þ
8

3w2
S1 � S2

�
r2A;

A ¼ �	

r
: (48)

The unperturbed effective Hamiltonian is

H0 ¼ p2

2�R

� 	

r
; (49)

and the perturbation is for singlet states

H1 ¼ �
�
w� 2m

w

�
2 	

r
�

�
8�	

wðwþ 2mÞ �
8�	

w2

�
�3ðrÞ:

(50)

Comparing the nonrelativistic hydrogenic Schrödinger
equation �

p2

2�
� 	

r

�
c ¼ Ec w; (51)

with ground state energy

E ¼ ��	2

2
; (52)

we see that for the eigenvalue Eq. (48), the total c.m.
invariant energy from H0 is determined by analogy with
Eqs. (51) and (52) from

b2ðwÞ
2�R

¼ ��R	
2

2
: (53)

Thus, with

w2 � 4m2 ¼ �4�2
R	

2 ¼ �w2

4
	2 (54)

we find that

w ¼ 2m�m	2

4
þ 3m	4

64
: (55)

Substituting this into Eq. (50) at the appropriate order gives

H1 ¼ �
�
m	2

8m

�
2 	

r
þ �	

m2
�3ðrÞ ! �	

m2
�3ðrÞ; (56)

with their spin-spin terms partially canceling their spin-
independent contact (Darwin) term while the first term is

23H. Sazdjian has considered chiral symmetry and its breaking
in the context of a closely related version of the TBDE. This was
later discussed by Crater and Van Alstine, [13]. In particular, it is
found that the matrix element of the divergence of the axial
vector current is proportional to the quark mass. This demson-
strates that the quark masses in the TBDE play the same role as
the quark masses in QFT. In addition, Sazdjian shows that the
pion decay constant in the context of the TBDE does not vanish
in the limit of mq ! 0. Sazdjian shows analytically, in the
context of a pseudoscalar confining potential, the existence of
a massless pseudoscalar meson when mq ! 0. These are two of
the main effects of the spontaneous breakdown of chiral sym-
metry. In our earlier work with Van Alstine [13], we showed
numerically for the case of scalar confinining intereractions that
the calculated pion mass tends to zero asmq ! 0. In a later work
([2]) we showed, however, that the behavior is not of the square-
root relation (m� � ffiffiffiffiffiffiffi

mq
p

=F�). The same behavior appears to
hold with the present calculations.
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of higher order. The ground state unperturbed wave func-
tion is

�w ¼ expð�r=aeffÞ
ð�a3effÞ1=2

; aeff ¼ 1

�R	
! 2

m	
: (57)

The expectation value is

hH1i ¼ 	

m2ð 2
m	Þ3

¼ m	4

8
; (58)

and so Eq. (53), including hH1i then becomes, to the
appropriate order

b2ðwÞ
2�R

¼ ��R	
2

2
þm	4

8
;

w2 � 4m2 ¼ �w2

4
	2 þm2	4

2
;

(59)

so that

w ¼ 2m�m	2

4
þ 3m	4

64
þm	4

8

¼ 2m�m	2

4
þ 11m	4

64
: (60)

This result is in disagreement with the accepted fine
structure result of

w ¼ 2m�m	2

4
� 21m	4

64
: (61)

In the two-body Dirac equation, this spectrum results from
an exact solution of the Schrödinger-like form [29,34,41]24

ðp2 þ 2"wA� A2Þc ¼ b2c ; (62)

which yields

w ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 	2

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4 � 	2

q
� 1

2Þ2

vuuut
vuuuut

¼ 2m�m	2

4
� 21m	4

64
þ . . . ; (63)

obtained by steps similar to those outlined in Eq. (60).
The local quasipotential approach of [7] does not in-

clude the term �A2 ¼ �	2=r2 which gauge invariance
considerations would demand. It is of interest that if their
approach includes this term, then the added contribution
from this potential is

1

2�

	
�	2

r2



¼ 1

m

	
�	2

r2



¼ �m	4

2
: (64)

This, together with the fact that combining this with the
earlier results gives the correct added Oð	4Þ correction,

11m	4

64
�m	4

2
¼ � 21m	4

64
; (65)

points strongly to the lack of this term as being the cause of
the incorrect QED spectral prediction in this approach.
We should emphasize that the closely related formalism

of [52] does produce the correct � 21m	4

64 relativistic cor-

rection. The difference between the formalism of EFG and
that of [52] is that the former does not include two loop and
iterated Born diagrams25 contained in the latter. Those
combined diagrams to lowest order in 	 do produce the
�A2 ¼ �	2=r2 term which would account for the spectral
difference seen in Eq. (65) (see also [51]). Since that �A2

term is not included in the EFG meson spectral formalism,
it is likely that possibly important relativistic corrections
for their meson spectrum will be missing. In a private
communication, Faustov stated that the reason they did
not include the contributions of two and more gluon ex-
change diagrams within QCD in calculations of the meson
spectra, is that the effects of these diagrams would be
contained in the confining, long range potential, the origin
of which is not known and which is thus added phenom-
enologically. However, the �A2 contribution from those
two-gluon exchange diagrams due to the Coulomb-like
potential A is short range and therefore would not by itself
contribute to the confining potential. In other words, we
claim that since its effects are short range, it should be
considered apart from the phenomenologically added con-
fining interaction.

C. Positronium test of the approach of Godfrey
and Isgur

Although Crater and Van Alstine carried out an earlier
comparison [2] with this approach [6], in light of the
problem with the above quasipotential approach it is in-
structive to include a parallel perturbative treatment on
their different quasipotential equation. Their relativistic
Schrödinger equation (see their Eqs. (1–4)) relevant for
the case considered here has the Hamiltonian which in-
cludes the spin-spin term in addition to the modified
Coulomb term (see their Eq. (A15)26). Their equation
was of the quasipotential type given in Eq. (18) extended

24This equation and its gauge structure can also be seen to
result from the equal mass singlet equation version of (35) for
S ¼ V ¼ 0, A ¼ �	=r or its radial version given by Eq. (B1).
(It is noted that under these conditions, �D ¼ 3�SS, and
�SOD ¼ �SOX ¼ 0).

25The authors are grateful to Professor R. N. Faustov for
pointing out to us the results of [52] and for their reason that
the bound state equation used in [7] did not include the �A2

term.
26In their Appendix A, Godfrey and Isgur modify the Coulomb
and contact spin-spin term used here with smearing functions
and extra nonlocal parts in order to account for the off mass-shell
effects not present in the on shell scattering amplitudes from
which they extract their potentials. We do not include the effects
of the Gaussian smoothing factors in the determination of the
modification of the Coulomb term from their Eq. (A15).
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to include spin. Here we consider its semirelativistic ex-
pansion.

H ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
� 	

r
þ 2

3m2
S1 � S2r2A� 	

2m2

�
p2;

1

r

�

! 2mþH0 þH1;

H0 ¼ p2

m
� 	

r
;

H1 ¼ �ðp2Þ2
4m3

þ 2�	

m2
�3ðrÞ � 	

2m2

�
p2;

1

r

�
: (66)

The ground state unperturbed wave function is

� ¼ expð�r=aÞ
ð�a3Þ1=2 ; a ¼ 2

m	
: (67)

We find that

hH1i ¼ � 1

4m

	
�

p2

m

p2

m
�



þ

	
�

2�	

m2
�3ðrÞ�




� 	

2m2

	
�

�
p2;

1

r

�
�



(68)

¼� 1
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�
Eþ	

r

�
2
�



þm	4

4
� 	

2m2

	
�

�
p2;

1

r

�
�



;

(69)

and with E ¼ � m	2

4 we have

� 1

4m
E2 ¼ �m	4

64
;

� E
2m

	
�

	

r
�



¼ 	2

8
ð�2EÞ ¼ m	4

16
;

� 1

4m

	
�

	2

r2
�



¼ � 1

4m

	2

�a3
4�

Z 1

0
dr expð�2r=aÞ

¼ �m	4

8
; (70)

and using

� 	

2m2

	
�

�
p2;

1

r

�
�



¼ � 2ð2�Þ	

2m2

	
�

1

r

�
E þ 	

r

�
�




¼ � E
m

	
�

	

r
�



� 1

m

	
�

	2

r2
�




¼ m	4

8
�m	4

2
(71)

and find that

hH1i ¼ m	4

4

�
� 1

16
þ 1

4
� 1

2
þ 1þ 1

2
� 2

�
; (72)

and so

w ¼ 2mþ hH0i þ hH1i ¼ 2m�m	2

4
� 13m	4

64
: (73)

This also does not agreewith the accepted result of Eq. (61).
Since the addition of the �	2=r2 term would drive this to

the other side of the accepted value it is not clear where the
error is in this approach.

D. Comparison of two approaches to Dirac
equation in the static limit

The dynamics of the heavy-light q �Q bound states, par-
ticularly the u �b and d �b, should be well approximated by
the ordinary one-body Dirac equation. In the limit when,
say, m2 ! 1, details outlined in Appendix A 5 show that
our TBDE reduce to the single particle Dirac equation for a
spin-one-half particle in an external scalar and vector
potential,

ð� � p� ð"� AÞ þmþ SÞc ¼ 0; (74)

in which " is the total energy of the single particle of mass
m. In this same limit, Eq. (35) (see Appendix A 5) becomes�
p2 þ 2mSþ S2 þ 2"A� A2 þ 1

2

r2A�r2S

mþ Sþ "� A

þ 3

4

�
S0 � A0

mþ Sþ "� A

�
2 þ A0 � S0

mþ Sþ "� A

L � �1

r

�
cþ

¼ ð"2 �m2Þcþ; (75)

which agrees with the Pauli reduction of the Dirac Eq. (74)
for a single particle in an external scalar and vector poten-
tial when the first order momentum terms are scaled away
(see for example [33]). The wave function cþ is the upper
two-component spinor. From the point of view of the single
particle Dirac equation the quadratic S2 and �A2 terms
above are not put in by hand but arise naturally from the
Pauli reduction.
We compare Eq. (75) with the corresponding equations

from the two quasipotential approaches, including scalar
and vector interactions.27 Referring to Eqs. (1–4) and
(13–22) of [7], we have the m2 ! 1 limit of�

p2 þ 2"ðAþ SÞ þ 1

2

r2A

mþ "
þ A0 � S0

mþ "

L � �1

r

�
c

¼ ð"2 �m2Þc ; (76)

in which we have used �R ! ". It is evident that for the
vector interaction alone (S ¼ 0), this equation will not
yield a spectrum perturbatively equivalent to the Dirac
spectrum for A ¼ �	=r and for the same reason as with
positronium, that is, the lacking of the �A2 term. This

27In [53], the static limit Dirac equation was recovered from a
two-body quasipotential equation by techniques with some simi-
larity to the Gross equation [54]. In that equation the relative
energy is constrained by restricting one of the spin-one half
particles to its positive energy mass-shell. This differs from the
TBDE which treats both particles off-shell but yet constraining
the relative energy covariantly through P � pc ¼ 0. The EFG
equation also has this constraint, but unlike the equation derived
in [53], the Gross equation and the TBDE, it does not have the
Dirac equation as a static limit as seen by a comparison of
Eq. (76) with Eq. (75).
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would result in incorrect fine structure for hydrogenlike
atoms (see discussions and footnotes below Eq. (65) for the
reason for this omission). Also, there are three parts for the
scalar potential interaction that differ from the Dirac equa-
tion: the appearance of 2"S instead of the expected 2mS,
the lacking of the S2 term, and the absence of any scalar
Darwin term. The appearance of " instead of m can be
traced to the use of a common reduced mass for multi-
plying both vector and scalar interactions. Beyond that is
the absence of the potential energy terms in the denomi-
nators of the spin-orbit and Darwin terms. The authors
correct this by hand, but their correction does not match
the forms in the Dirac equation. On the other hand those
potential energy terms in the denominators of the Darwin
and spin-orbit terms of Eq. (75) provide a natural smooth-
ing mechanism that eliminates such singular potentials as
delta functions and 1=r3 potentials. For example take the
case of S ¼ 0, A ¼ �	=r. The Laplacian term would
produce 4��3ðrÞ. However, the A term in the denominator
would then be evaluated at the origin and completely
cancel the effects of the delta function. Its perturbative
effects are reproduced by the adjacent 3=4 term.
Similarly, the 1=r3 behavior of the spin-orbit weak poten-
tial form in which the A in the denominator is ignored is
modified to very near the origin to a less singular 1=r2

potential by the effect of the A term in the denominator as
well as the 3=4 term. Similar smoothing mechanics natu-
rally built in to the Pauli structure of the Dirac equation
occur in the Pauli reduction of the TBDE (see
[28,29,32,33]).

Referring to A-15, 16 of [6], we have the m2 ! 1
limit of� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
q

þ Aþ Sþ A0 � S0

4m2

L � �1

r

�
c ¼ wc : (77)

This Hamiltonian form is missing Darwin terms for not
only scalar interactions, but also for vector interactions as
well. Those are as important for spectral studies as the
spin-orbit terms and their lack is a serious defect in both
these equations. The lack of the vector Darwin term would
result in incorrect fine structure for L ¼ 0 hydrogen levels.

VII. CONCLUSION AND FUTURE DIRECTIONS

The application of Dirac’s constraint dynamics applied to
the relativistic two-body problem leads quite naturally to
the two-body Dirac equations of constraint dynamics when
both particles have spin-one-half. This paper follows many
earlier ones analyzing the structures and applications of
those equations. It has several sets of aims and results.
First, we showed that when the interaction structure used
in these equations is extended from two invariant functions
(generated by what we have called AðrÞ and SðrÞ) to three
(not only the two that generate an electromagnetic-like
interaction and a confining world scalar interaction but
also the VðrÞ that generates a confining timelike vector

interaction), that the fit to the meson spectrum is improved
substantially. However, there is still a considerable amount
of improvement that is needed, primarily in the radial and
orbital excitations of the singlet and triplet ground states.
Work in progress seeks to extend invariant functions to ones
that generate covariant pseudoscalar, pseudovector, and
tensor interactions. Second, this paper also included 19
mesons not included in earlier work [2] where only two
invariant functions were used. Among those 19 were the
isoscalar� and�0 mesons. Here, we developed an approach
motivated by some work of Brayshaw [5] which introduces
a constant symmetric but nondiagonal mass matrix that
couples isoscalar q �q channels. The three parameters intro-
duced are adjusted (when possible) to fit the �0, �, and �0
meson masses and then used to predict accurately, at least in
Th2, the SUð3Þ pseudoscalar mixing angle. Missing is an
attempt to connect this mass matrix to the compatibility
condition between the constraints S1 and S2.
A glance at Ref. [11] shows that there are no shortages of

attempts to stake claims of which relativistic two-body
truncation of the Bethe-Salpeter equation is most success-
ful. One of the purposes of [2] was to clarify some guide-
lines and important benchmarks that such equations should
have when applied to any relativistic two-body problem be
it for QED bound states, QCD bound states, or nucleon-
nucleon scattering. This clarification continues in this pa-
per with a fairly detailed analysis of the local quasipoten-
tial approach of Ebert, Faustov, and Galikin. This approach
was chosen among numerous others for two reasons:
(a) the close connection between the minimal dynamical
structure of the constraint approach and the early work
done on the local quasipotential approach by Todorov and
his coauthors and (b) the extensive phenomenological
studies by the local quasipotential approach of EFG in
meson spectral and decay studies.
The two quasipotential methods that we discussed have

three weaknesses. Neither method uses a wave equation to
uncover their respective spin-dependent corrections.
Rather, they use an on shell version of the scattering am-
plitude and the quasipotential equation for the potential.
However, as discussed in both papers, they each must make
assumptions that allow them to include expected off-shell
effects. In contrast, the TBDE of constraint dynamics in-
clude automatically by their mathematically consistent
construction, off mass-shell effects. The second weakness,
is that both quasipotential approaches, when applied to
QED, do not produce the correct hyperfine structure.
This, in our opinion, is a serious but easily correctable
drawback in both approaches. Let us be precise here about
our concerns. In both of these two quasipotential ap-
proaches to the relativistic QCD potential model, if one
turns off the confining interaction and replaces the non-
confining vector potential by the Coulomb potential their
resultant QED spectrum will be incorrect whether com-
puted perturbatively or numerically. This calls into question
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their QCD spectral results since the resultant relativistic
corrections which the omitted term �A2 would have con-
tributed is of the same order as the spin-dependent correc-
tions (dependent on A0 and r2A) which, of course, are not
omitted. Even if that correction is made, the wave equation
should be shown to have (just as can be shownwith the one-
body Dirac equation) the same spectral results whether
treated perturbatively or nonperturbatively. In addition,
their modeling of the scalar interactions does not conform
with the approach of the classical and quantum field theo-
ries used by Crater, Van Alstine, Yang, Sazdjian and Jolluli
which supports our choice of vector interaction struc-
tures.28 The third weakness is the lack of agreement in the
m2 ! 1 limit with the Pauli form of the one-body Dirac
equation. In particular, the lack of scalar Darwin terms in
both approaches and vector Darwin terms in the approach
of [6] is a serious weakness.

The constraint approach has been tested against both
classical and quantum field theories for both scalar and
vector interactions. In our construction of the vector po-
tential [24,29,32], three primary guideposts were used
beyond that of a minimal structure. The first is the use of
just the barest (lowest order) input from field theory, the
nonrelativistic Coulomb potential in QED.

The second is the gaugelike minimal coupling structure in
Eq. (22) of the potential which Todorov postulated and was
later confirmed in three independent ways: (a) Rizov,
Todorov, and Aneva [51] demonstrated how the gauge
structure (particularly the form ð"w � AÞ2 �m2

w) arises in
perturbation theory at a higher order than the Born approxi-
mation,29 (b) by a comparison of the Fokker-Tetrode clas-
sical field theory Oð1=c2Þ expansion for the Hamiltonian
with the general quasipotential structure of p2 þ�ðr; wÞ ¼
ð"2w �m2

wÞ [25],30 and (c) Jollouli and Sazdjian [26] who
found a similar structure from nonperturbative quantum
field theoretic arguments both for scalar and vector inter-
actions. These three arguments demonstrate that the Born
approximation structures (particularly the first term of (26)
used to model the QCD potentials in [6]) cannot possibly
yield that gauge structure and thus cannot yield the correct
positronium spectrum when applied to QED. The higher
order structures in [26,51] as well as the nonlinear hyper-
bolic structures in Eqs. (A2), (A3), (A7), and (A22)–(A25)

argue that the Born structure of the first term in (26) are
insufficient and must be supplemented by other invariant
couplings. The papers by Sazdjian and collaborators
[26,39,40] demonstrate this explicitly, showing that pseudo-
vector coupling is essential if done perturbatively in order to
get the Dirac equation into an external field form in which
the minimal structure can be demonstrated. The work in
[37,38] as well as by Sazdjian and collaborators shows that
the vector coupling (see Eq. (A10)) alone will, when placed
in the nonlinear context of the hyperbolic parametrization
given in Eqs. (A2) and (A3), yield that external field form in
which the minimal structure can be demonstrated.
The third guidepost is the use of the relativistic reduced

mass mw and energy "w (see Eqs. (7) and (8)). In addition
to the discussions given in [27], their appearance in the
forms 2mwSþ 2"wA as part of the minimal structure is
also dictated by the same field theory mechanisms dis-
cussed in item (b) and (c) above. Note that even though
in Eq. (19) there is the appearance of another relativistic
reduced mass ("1"2=w), in working out the quasipotential
using the spinors as in Eq. (25) that reduced mass is
replaced by mw in the scalar and "w in the vector case.
This replacement does not appear in the work of [7].
So, while the works of Ebert, Faustov, and Galkin, and

Godfrey and Isgur are quite impressive in terms of spectral
and decay agreements, it would be of value for adherents of
those approaches to consider the criticisms presented in
this paper, related to the ability of those equations to
reproduce the static limit Dirac equation structures (which
would include the �A2 term) and general short range
structure related to the �A2 gauge term. These criticisms
are not about their choice of QCD inspired potentials, but
rather about how their relativistic wave equations translate
the physics of those potentials into spectral results. Thus,
these concern the impact on their QCD meson spectral
results those two approaches would have based on their
field theory connections to QED bound states.
Finally, a few words about future direction lines of

research related to this paper. The approach given in our
paper views the meson as a two-body bound state in a first
quantized formalism. In place of the nonrelativistic
Schrödinger equation for two interacting particles, we
use the TBDE of constraint dynamics. There are systematic
corrections that should follow the completion of this first
step which would end with the inclusion of covariant
pseudoscalar, pseudovector, and tensor interactions, in ad-
dition to the scalar and vector interactions we have in-
cluded in this paper. First is a second quantized version of
the TBDE similar to what has been accomplished for
nonrelativistic second quantized formalisms by the
Cornell group [55], Tornqvist [56], and more recently by
Barnes and Swanson [57]. The latter includes a micro-
scopic theory [58] of the 3P0 model which includes pair

production. The aim, as in their recent paper, would be to
gain a measure of the effects of two-body meson decays on

28In particular, their approach does not include the quadratic
structure 2mwSþ S2 implied by the those authors’ approaches to
scalar field theories.
29In particular, the quasipotential equation Eq. (18) for the
potential to be used in Eq. (19) must be iterated to second order
(Vð2Þ ¼ T1GT1 � T2). It is remarkable that this gaugelike struc-
ture postulate Eq. (22) anticipates the systematic inclusion of
higher order terms by the quasipotential formalism.
30In this, not only does the gaugelike minimal structure ð"w �
AÞ2 appear to be a natural outgrowth of classical Oð1=c2Þ
expansion to at least order 1=c4, but also a minimal scalar
interaction structure appears so that combined they yield ð"w �
AÞ2 � ðmw þ SÞ2, again, at least through order 1=c4.
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the observed rest mass of the decaying meson. Beyond that
would be many body formalisms which view the meson
more generally as a linear combination of q �qþ q �qgþ . . . .

The primary weakness in our results of this paper are:
(1) the radial and orbital excitations of the old meson
spectroscopy; (2) the less than good hyperfine splittings
of the c �c and b �b families compared with the good splitting
results we obtained with all the other families, including
the lightest and most highly relativistic u �d; (3) the failure
to account for the light (3P0) scalar mesons; (4) Failure to

reproduce the square-root Gell-Mann-Oakes-Renner rela-
tion. It is too early to say whether the completion of the first
quantization program will rectify any of these problems.
We point out, however, that should the weakness of our
model, relating to the radial excitations of the light q �q
bound states be substantially improved by including pseu-
doscalar, pseudovector, and tensor interactions, this would
offer the opportunity of allowing the hypothesis discussed
in footnote 13 to be actively considered. Whether including
these other interactions leads to substantial improvements
or not, it will be essential to follow in parallel with our
relativistic formalism, the second quantized nonrelativistic
formalisms developed earlier.
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APPENDIX A: RELATIVISTIC SCHRÖDINGER
EQUATION DETAILS

1. Connections between the TBDE and Eq. (35) and
forms for ~A

�
i ,

~Si in terms of the
invariants AðrÞ, VðrÞ, and SðrÞ

Here we present an outline of some details of Eq. (14)
and its Pauli-Schrödinger reduction given in full elsewhere
(see [24,37,38,42]). Each of the two Dirac equations in
(14) has a form similar to a single particle Dirac equation in
an external four-vector and scalar potential but here acting
on a 16 component wave function � which is the product
of an external part (being a plane wave eigenstate of P)
multiplying the internal wave function c

c ¼
c 1

c 2

c 3

c 4

2
6664

3
7775: (A1)

The four c i are each four-component spinor wave func-
tions. To obtain the actual general spin-dependent forms of

those ~A
�
i ;

~Si potentials which were required by the com-
patibility condition ½S1;S2�c ¼ 0 was a most perplexing
problem, involving the discovery of underlying supersym-
metries in the case of scalar and timelike vector interac-
tions [24,28]. Extending those external potential forms to

more general covariant interactions necessitated an en-
tirely different approach leading to what is called the
hyperbolic form of the TBDE. The most general hyper-
bolic form for compatible TBDE is

S 1c ¼ ðcoshð�ÞS1 þ sinhð�ÞS2Þc ¼ 0;

S2c ¼ ðcoshð�ÞS2 þ sinhð�ÞS1Þc ¼ 0;
(A2)

where � represents any invariant interaction singly or in
combination. It has a matrix structure in addition to coor-
dinate dependence. Depending on that matrix structure we
have either vector, scalar or more general tensor interac-
tions [37]. The operators S1 and S2 are auxiliary con-
straints satisfying

S1c � ðS10 coshð�Þ þ S20 sinhð�ÞÞc ¼ 0;

S2c � ðS20 coshð�Þ þ S10 sinhð�ÞÞc ¼ 0;
(A3)

in which the Si0 are the free Dirac operators

S i0 ¼ iffiffiffi
2

p �5ið�i � pi þmiÞ: (A4)

This, in turn leads to the two compatibility conditions
[31,37,39]

½S1;S2�c ¼ 0; (A5)

and

½S1;S2�c ¼ 0; (A6)

provided that �ðxÞ ¼ �ðx?Þ. These compatibility condi-
tions do not restrict the gamma matrix structure of �. That
matrix structure is determined by the type of vertex-vertex
structure we wish to incorporate in the interaction. The
three types of invariant interactions � that we use in this
paper are

�Lðx?Þ ¼�1112
Lðx?Þ

2
O1;

O1 ¼��51�52; scalar;

�J ðx?Þ ¼12

J ðx?Þ
2

O1; time-like vector;

�Gðx?Þ ¼ �1? ��2?
Gðx?Þ

2
O1; space-like vector;

(A7)

where

��
i? ¼ ð��� þ P̂�P̂�Þ��i; �5i ¼ �0

i �
1
i �

2
i �

3
i ;

i ¼ ��i � P̂; i ¼ 1; 2:
(A8)

For general independent scalar, timelike vector, and space-
like vector interactions we have

�ðx?Þ ¼ �L þ �J þ�G: (A9)
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The special case of an electromagnetic-like interaction (in
the Feynman gauge) corresponds to J ¼ �G or

�J þ �G � �EM

¼ ð��1 � P̂�2 � P̂þ �1? � �2?ÞGðx?Þ
2

O1

¼ �1 � �2

Gðx?Þ
2

O1: (A10)

Our Th1 corresponds to a scalar and electromagnetic in-
teraction,

�ðx?Þ ¼ �L þ �EM: (A11)

Our Th2 corresponds to a modification of the timelike
portion of �EM to

�ðx?Þ ¼ �L þ�J þ�G

¼ ð�1112Lðx?Þ þ 12J ðx?Þ

þ �1? � �2?Gðx?ÞÞO1

2
;

J � �G:

(A12)

This leads to31 [37,38] ð@� ¼ @=@x�Þ

S1c ¼ ð�G1�1 � P 2 þ E11�51 þM1�51

�G
i

2
�2 � @ðL2 � J1Þ�51�52Þc ¼ 0;

S2c ¼ ðG2�2 � P 1 þ E22�52 þM2�52

þG
i

2
�1 � @ðL1 � J2Þ�51�52Þc ¼ 0;

(A13)

with

G ¼ expG; P i � p? � i

2
�i � @G�i: (A14)

The connections between what we call the vertex invari-
ants, L, J , G, and the mass and energy potentials, Mi, Ei,
are found to be

M1 ¼ m1 coshLþm2 sinhL;

M2 ¼ m2 coshLþm1 sinhL;

E1 ¼ "1 coshJ þ "2 sinhJ ;

E2 ¼ "2 coshJ þ "1 sinhJ :

(A15)

Equation (A13) depends on the standard Pauli-Dirac rep-
resentation of gamma matrices in block forms (see
Eq. (2.28) in [2] for their explicit forms) and where32

�i ¼ �5ii�?i: (A16)

Comparing Eq. (A13) with Eq. (14) we find that the spin-
dependent vector interactions of Eq. (14) are [24,29]

~A�
1 ¼ ðð"1 � E1Þ � i

G

2
ð�2 � @J Þ�2 � P̂ÞP̂� þ ð1�GÞp�

?

� i

2
@G � �2�

�
2?;

A�
2 ¼ ðð"2 � E2Þ þ i

G

2
ð�1 � @J ÞÞ�1 � P̂ÞP̂� � ð1�GÞp�

?

þ i

2
@G � �1�

�
1?: (A17)

Note that the first portion of the vector potentials is time-

like (parallel to P̂�) while the next portion is spacelike

(perpendicular to P̂�). The spin-dependent scalar poten-

tials ~Si are

~S1 ¼ M1 �m1 � i

2
G�2 � @L;

~S2 ¼ M2 �m2 þ i

2
G�1 � @L:

(A18)

Equation (A17) simplifies to

~A
�
1 ¼ðð"1�E1ÞÞP̂�þð1�GÞp�

?� i

2
@G ��2�

�
2 ;

A�
2 ¼ðð"2�E2ÞÞP̂��ð1�GÞp�

?þ i

2
@G ��1�

�
1 ; (A19)

for electromagnetic-like interactions.
We have chosen a parametrization for L, J , and G that

takes advantage of the Todorov effective external potential
forms and at the same time will display the correct static
limit form for the Pauli reduction (see Eq. (75)). The
choice for these parametrizations is fixed due to the fact
that for classical [25] or quantum field theories [26]
for separate scalar and vector interactions the

31In short, one inserts Eq. (A3) into (A2) and brings the free
Dirac operator (A4) to the right of the matrix hyperbolic func-
tions. Using commutators and cosh2�� sinh2� ¼ 1 one arrives
at Eq. (A13). The structure of these equations are very much the
same as that of a Dirac equation for each of the two particles,
with Mi and Ei playing the roles that mþ S and "� A do in the
single particle Dirac Eq. (74). Over and above the usual kinetic
part, the spin-dependent modifications involving GP i and the
last set of derivative terms are two-body recoil effects essential
for the compatibility (consistency) of the two equations.

32Just as x� is a four-vector, so are �� (in the sense of Dirac)
and P�. Thus, the matrix structures of the timelike and spacelike
interactions in Eq. (A7) are �0

1�
0
2 and �1 � �2 only in the c.m.

system due to the fact that from Eq. (A8), i ¼ �0
i only in the

c.m. frame. Likewise, �
�
i ¼ ð0;�Þ only in the c.m. frame just as

is x
�
? ¼ ð0; rÞ in that frame only.
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spin-independent part of the quasipotential �w involves
the difference of squares of the invariant mass and energy
potentials (Mi and Ei respectively)

M2
i ¼m2

i þ2mwSþS2; E2
i ¼"2i �2"wVþV2; (A20)

so that

M2
i � E2

i ¼ 2mwSþ S2 þ 2"wV � V2 � b2ðwÞ: (A21)

Strictly speaking, the forms in Eqs. (A20) and (A21) are
for scalar and timelike vector interactions. Equations (A14)
and (A13) involve combined scalar, electromagnetic-like,

and separate timelike vector interactions. Without the sepa-
rate timelike interactions this amounts to working in the
Feynman gauge with the simplest relation between space-
like and timelike parts, (see Eqs. (A10) and (A11), and
[2,13]). In the general case the mass and energy potentials
in place of Eq. (A20) are respectively

M2
i ¼ m2

i þ expð2GÞð2mwSþ S2Þ; (A22)

E2
i ¼ expð2GðAÞÞðð"i � AÞ2 � 2"wV þ V2Þ; (A23)

so that from Eq. (A15),

expðLÞ ¼ expðLðS; AÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ expð2GÞð2mwSþ S2Þ
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ expð2GÞð2mwSþ S2Þ
q

m1 þm2

;

expðJ Þ ¼ expðJ ðV; AÞÞ ¼ expðGÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið"1 � AÞ2 � 2"wV þ V2

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið"2 � AÞ2 � 2"wV þ V2
p

"1 þ "2
;

(A24)

with

expð2GðAÞÞ ¼ 1

ð1� 2A=wÞ � G2: (A25)

Below we present, the consequent connections to the
invariant interaction functions A, V, and S.

(a) (a) In the case of electromagnetic interactions
(V ¼ 0) with scalar confinement (Th1), we have

J ¼ �G ¼ 1

2
logð1� 2A=wÞ ¼ log

E1 þ E2

w
;

E2
i ¼ expð2GÞð"i � AÞ2;

M2
i ¼ m2

i þ expð2GÞð2mwSþ S2Þ; (A26)

and the spin-independent (SI) minimal coupling
comes from

expð2GÞp2þM2
i �E2

i !p2þexpð�2GÞðM2
i �E2

i Þ
¼p2þ�SI�b2 (A27)

and appears as

�SI�b2¼2mwSþS2þm2
i ð1�2A=wÞ�ð"i�AÞ2

¼2mwSþS2þ2"wA�A2�b2: (A28)

(b) (b) In the case of pure timelike vector interactions
and scalar interactions (with no electromagnetic-
like interactions, this model is not appropriate for
meson spectroscopy) we have

J ¼ J 0 � log
E10 þ E20

w
;

E2
i0 � "2i � 2"wV þ V2; G ¼ 0;

(A29)

and the spin-independent minimal coupling
appears as

�SI ¼ 2mwSþ S2 þ 2"wV � V2: (A30)

(c) (c) When we include independent timelike and
electromagnetic-like simultaneously together with
scalar interactions (Th2) then we have

�G ¼ 1

2
logð1� 2A=wÞ;

J ¼ log
E1 þ E2

w
;

E2
i ¼ expð2GÞðð"i � AÞ2 � 2"wV þ V2Þ
¼ expð2GÞðE2

i0 � 2"iAþ A2Þ

(A31)

and the spin-independent minimal coupling appears
like

�SI ¼ 2mwSþ S2 þ 2"wA� A2 þ 2"wV � V2:

(A32)

2. Details on Eq. (35)

The Klein-Gordon like potential energy terms appearing
at the beginning of the Pauli form (35) arise from

M2
i � E2

i ¼ expð2GÞ½2mwSþ S2 þ 2"wA� A2 þ 2"wV

� V2 � b2ðwÞ�:
To obtain the symbolic Pauli form of Eq. (16) and the
subsequent detailed form in Eq. (35) involves steps similar
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to those used in the Pauli reduction of the single particle
Dirac equation [33] but with the combinations �� ¼
c 1 � c 4 and �� ¼ c 2 � c 3 instead of the individual
single particle wave function. This reduces the Pauli forms
to 4 uncoupled four-component relativistic Schrödinger
equations [2,16,38,40,42]. We work in the c.m. frame in

which P̂ ¼ ð1; 0Þ and r̂ ¼ ð0; r̂Þ. The final four-component
wave functions c�, �� that appear in Eq. (35) are defined
by [42]

�� ¼ expðF þK�1 � r̂�2 � r̂Þc�
¼ ðexpF ÞðcoshKþ sinhK�1 � r̂�2 � r̂Þc�;

�� ¼ expðF þK�1 � r̂�2 � r̂Þ��
¼ ðexpF ÞðcoshKþ sinhK�1 � r̂�2 � r̂Þ��;

(A33)

in which

F ¼ 1

2
log

D
"2m1 þ "1m2

�G;

D ¼ E2M1 þ E1M2;

K ¼ ðL� J Þ
2

:

(A34)

In analogy to what occurs in the decoupled form of the
Schrödinger equation for the individual single particle
wave function, this substitution has the convenient
property that in the resultant bound state equation, the
coefficients of the first order relative momentum terms
vanish.
Using the results in [33,42], we obtain for the general

case of unequal masses the relativistic Schrödinger
Eq. (35) that is a detailed c.m. form of Eq. (16). In that
equation we have introduced the abbreviations

�D ¼ � 2ðF 0 þ 1=rÞðcosh2K� 1Þ
r

þF 02 þK02 þ 2K0 sinh2K
r

� r2F þmðrÞ;

�SO ¼ �F 0

r
� ðF 0 þ 1=rÞðcosh2K� 1Þ

r
þK0 sinh2K

r
;

�SOD ¼ ðl0 cosh2K� q0 sinh2KÞ;
�SOX ¼ ðq0 cosh2K� l0 sinh2KÞ;

�SS ¼ kðrÞ þ 2K0 sinh2K
3r

� 2ðF 0 þ 1=rÞðcosh2K� 1Þ
3r

þ 2F 0K0

3
� r2K

3
;

�T ¼ 1

3

�
nðrÞ þ ð3F 0 �K0 þ 3=rÞ sinh2K

r
þ ðF 0 � 3K0 þ 1=rÞðcosh2K� 1Þ

r
þ 2F 0K0 � r2K

�
;

�SOT ¼ �K0 cosh2K� 1

r
�K0

r
þ ðF 0 þ 1=rÞ sinh2K

r
; (A35)

where

kðrÞ¼1

3
r2ðKþGÞ�2F 0ðG0 þK0Þ

3
�1

2
G02;

nðrÞ¼1

3

�
r2K�1

2
r2Gþ3ðG0 �2K0Þ

2r
þF 0ðG0 �2K0Þ

�
;

mðrÞ¼�1

2
r2Gþ3

4
G02þG0F 0�K02; (A36)

and

l0ðrÞ ¼ � 1

2r

E2M2 � E1M1

E2M1 þ E1M2

ðL0 þ J 0Þ;

q0ðrÞ ¼ 1

2r

E2M1 � E1M2

E2M1 þ E1M2

ðL0 þ J 0Þ:
(A37)

(The prime symbol stands for d=dr, and the explicit forms
of the derivatives are given in Eq. (A38) below). For L ¼ J

states, the hyperbolic terms cancel and the spin-orbit
difference terms in general produce spin mixing except
for equal masses or J ¼ 0. For ease of use we have listed in
Appendix A 3 the explicit forms that appear in the above
�’s in Eqs. (A35) and (A36) in terms of the general
invariant potentials AðrÞ, VðrÞ, and SðrÞ. The radial com-
ponents of Eq. (35) are given in Appendix B.

3. Explicit expressions for terms in the relativistic
Schrödinger Eq. (35) from AðrÞ, VðrÞ and SðrÞ

Given the functions AðrÞ, VðrÞ, and SðrÞ for the interac-
tion, users of the relativistic Schrödinger Eq. (35) will find
it convenient to have an explicit expression in an order that
would be useful for programing the terms in the associated
Eqs. (A35)–(A37). We use the definitions above given in
Eqs. (A22)–(A25) and (A34). In order that the terms in
Eq. (A35) be reduced to expressions involving just AðrÞ,
VðrÞ, SðrÞ and their derivatives, we list the following
formulae
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F 0 ¼ ðL0 þ J 0ÞðE2M2 þ E1M1Þ
2ðE2M1 þ E1M2Þ � G0;

G0 ¼ A0

w� 2A
;

L0 ¼ M0
1

M2

¼ M0
2

M1

¼ w

M1M2

�
S0ðmw þ SÞ
w� 2A

þ ð2mwSþ S2ÞA0

ðw� 2AÞ2
�
;

J 0 ¼ E0
1

E2

¼ E0
2

E1

¼ �ðG0½ð"1 � AÞð"2 � AÞ þ 2"wV � V2� þ ð"w � VÞV0Þ
E1E2ðw� 2AÞ=w ;

K0 ¼ ðL0 � J 0Þ
2

: (A38)

Also needed are

cosh2K ¼ 1

2

�ð"1 þ "2ÞðM1 þM2Þ
ðm1 þm2ÞðE1 þ E2Þ þ

ðm1 þm2ÞðE1 þ E2Þ
ð"1 þ "2ÞðM1 þM2Þ

�
;

sinh2K ¼ 1

2

�ð"1 þ "2ÞðM1 þM2Þ
ðm1 þm2ÞðE1 þ E2Þ �

ðm1 þm2ÞðE1 þ E2Þ
ð"1 þ "2ÞðM1 þM2Þ

�
;

(A39)

and

r2F ¼ ðr2Lþ r2J ÞðE2M2 þ E1M1Þ
2ðE2M1 þ E1M2Þ � ðL0 þ J 0Þ2 ðm2

1 �m2
2Þ2

2ðE2M1 þ E1M2Þ2
� r2G;

r2L ¼ �L02ðM2
1 þM2

2Þ
M1M2

þ w

M1M2

�r2Sðmw þ SÞ þ S02

w� 2A
þ 4S0ðmw þ SÞA0 þ ð2mwSþ S2Þr2A

ðw� 2AÞ2 þ 4ð2mwSþ S2ÞA02

ðw� 2AÞ3
�
;

r2J ¼ �
��

E2
1 þ E2

2

E1E2

�
J 0 � 2G0

�
J 0 � expð2GÞ

E1E2

fr2G½ð"1 � AÞð"2 � AÞ þ 2"wV � V2� þ ð"w � VÞr2V

� G02ðw� 2AÞ2 � V 02 þ 2V0G0ð"w � VÞg

r2G ¼ r2A

w� 2A
þ 2G02: (A40)

The expressions for kðrÞ, mðrÞ, and nðrÞ that appear in Eq.
(A35)) are given in Eq. (A36). They can be evaluated using
the above expressions plus

r 2K ¼ r2L� r2J
2

: (A41)

The only remaining parts of Eq. (A35) that need expressing
are those for l0 and q0 given in Eq. (A37) Using Eq. (A34)
they can be obtained in terms of the above formulae.

4. Weak potential limits of quasipotentials

The weak potential forms of the quasipotentials are
needed for working out perturbative spectral corrections.
For weak potentials, we take "i ¼ mi wherever they appear

in the potentials and assume jAj, jVj, jSj � mi. Thus

L ! mwS

m1m2

! S

m1 þm2

;

J ! � A

w
� "wV

"1"2
! � Aþ V

m1 þm2

;

G ! A

w
! A

m1 þm2

:

(A42)

Among other results, this will allow us to see how the
scalar interaction contributes oppositely to the spin-orbit
and Darwin terms from both vector interactions to lowest
order. In that same limit, the dominant portions of �’s in
Eq. (35) are
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�D ! �r2F ! � 1

4rðm1 þm2Þ
�r2ðS � A� VÞðm2

2 þm2
1Þ

m2m1

�r2A

�
;

�SO ! �F 0

r
! � 1

4rðm1 þm2Þ
�ðS0 � A0 � V 0Þðm2

2 þm2
1Þ

m2m1

� A0
�

�SOD ! l0 ! � 1

4rðm1 þm2Þ
ðS0 � A0 � V 0Þðm2

2 �m2
1Þ

m1m2

�SOX ! q0 ! 0

�SS ! 1

3
r2G ! 1

6ðm1 þm2Þ r
2A;

�T ! �r2 ðSþ Aþ VÞ
9ðm1 þm2Þ ;

�SOT ! �K0

r
! �ðS0 þ A0 þ V 0Þ

2rðm1 þm2Þ :

(A43)

Note how in the Darwin and spin-orbit terms the S0 � V 0
dependence shows how the scalar and timelike confining
effects tend to cancel for � < 1. As anticipated, only the
Darwin and spin-orbit terms survive in the static limit
when one of the two particles becomes very massive. In
that limit (say m2 ! 1), the two spin-orbit terms�SO and
�SOD combine to

�L � ð�1 þ �2ÞS
0 � A0 � V 0

4r
�L � ð�1 � �2Þ

� S0 � A0 � V0

4r

¼ �L � �1

S0 � A0 � V0

2r
: (A44)

5. Single particle limit (m2 ! 1) of the TBDE

In addition to using p2 ! ðm2; 0Þ, p1 ¼ ð"1;pÞ, the
single particle limit of the TBDE is obtained by substitut-
ing m2 ! 1 in the expressions for the various potentials
listed in Appendices A1, A2, and A3. To determine that
limit, we use that the total c.m. energy w ¼ "2 þ "1 !
m2 þ "1. In that case using the expressions for mw and "w
in Eqs. (7) and (8) we find

mw ! m1 � m; "w ! "1 � ";

G ¼ ð1� 2A=ðm2 þ "ÞÞ�1=2 ! 1;
(A45)

and thus for the quantities related to the mass potentials, we
have

M1 !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ SÞ2

q
¼ mþ S;

M2 �m2 !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ 2mSþ S2
q

�m2 ! 0;

expðLÞ ¼ exp

�
M1 þM2

m1 þm2

�
! 1; ~S1 ! S;

~S2 ! 0:

(A46)

For the energy potentials we have, since P̂ ! ð1; 0Þ that

E1 !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"2 � 2"ðAþ VÞ þ A2 þ V2

q
� "�U;

"2 � E2 ! "2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"22 � 2"2A� 2"V þ A2 þ V2

q

! "2 � "2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2A="2

q
! A;

expðJ Þ ¼ exp

�
E1 þ E2

"1 þ "2

�
! 1;

~A
�
1 ! Uð1; 0Þ;
~A�
2 ! Að1; 0Þ: (A47)

The TBDE (14) thus reduce to

ð�1 � p� 1ð"�UÞ þmþ SÞc ¼ 0;

ð�2ðm2 � AÞ þm2Þc ! �m2ð2 � 1Þc ¼ 0;
(A48)

effectively to a single ordinary one-body Dirac Eq. (74) for
a particle in combined external scalar and time only com-
ponent vector potential. Note thatU � Aþ V.33 Doing the
usual Pauli reduction yields for the upper component wave

33Strictly speaking, in the static limit, the square roots forms
obtained from Eq. (A22) implyM1 ! jmþ Sj> 0. For for large
distances, A ! 0, and so Eq. (A23) implies E1 ! j"� Vj and
for short distances V ! 0, E1 ! j"� Aj. These could possibly
be in opposition to the forms with indefinite sign of mþ S and
"� V or " �A that would appear in the one-body Dirac
equation. In our applications to meson spectroscopy, S is always
positive so we need not worry about the use of the square-root
form of Mi in the computation of Mi. Since V is positive and
increasing with distance, it is possible that at large enough
distances "� V < 0. In that case, use of the positive root for
the square root would not agree with the sign of "� V. We
found that for the 1S0, b �u, and b �d mesons, that does occur near
the very end of the integration cutoff distance of about 1.92
Fermis. That is so close to the end, however, that use of the
positive square root is unlikely to have any effect on the spectral
results (for the 3P2, b �u, and b

�dmesons, "� V remained positive
throughout the integration region.) Future work may address the
theoretical problem of how to make the approach to the static
limit of the square-root forms smooth and exact.
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function the Schrödinger-like form which is the same as
the m2 ! 1 limit of Eq. (35). That limit can be readily
seen from Eqs. (A34) and (A45)–(A47) which shows

F ! 1

2
log

mþ Sþ "�U

mþ "
;

F 0 ¼ 1

2

S0 �U0

mþSþ"�A
;

r2F ¼ 1

2

r2S�r2U

mþSþ"�U
� 1

2

�
S0 �U0

mþSþ "�U

�
2
;

L0;J 0;G0;K0 ! 0;

�D !F 02 �r2F ;

�SO !�F 0

r
;

�SOD ! l0 ¼ � 1

2r

E2M2 �E1M1

E2M1 þE1M2

ðL0 þJ 0Þ

!� 1

2r

E2M2

E2M1 þE1M2

ðL0 þJ 0Þ !�F 0

r
:

(A49)

From the last line we obtain

�SOL � ð�1 þ �2Þ þ�SODL � ð�1 � �2Þ

¼ � 2F 0

r
L � �1 ¼ � S0 �U0

mþ Sþ "�U
L � �1: (A50)

and hence Eq. (35) reduces to Eq. (75). In Sec. VID we
display our static limit equations for Th1.

APPENDIX B: RADIAL EQUATIONS

The following are radial eigenvalue equations, [33,42],
corresponding to Eq. (35). For a general singlet 1JJ wave
function vLSJ ¼ vJ0J � v0 coupled to a general triplet

3JJ
wave function vJ1J � v1, the wave equation

�
� d2

dr2
þ JðJþ 1Þ

r2
þ 2mwSþ S2 þ 2"wA�A2 þ 2"wV

�V2 þ�D � 3�SS

�
v0 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJþ 1Þp ð�SOD ��SOXÞv1

¼ b2v0; (B1)

is coupled to

�
� d2

dr2
þ JðJ þ 1Þ

r2
þ 2mwSþ S2 þ 2"wA� A2 þ 2"wV

� V2 þ�D � 2�SO þ�SS þ 2�T � 2�SOT

�
v1

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þ

p
ð�SOD þ�SOXÞv0

¼ b2v1: (B2)

For a general S ¼ 1, J ¼ Lþ 1 wave function vJ�11J �
vþ coupled to a general S ¼ 1, J ¼ L� 1 wave function
vJþ11J � v� the equation

�
� d2

dr2
þ JðJ � 1Þ

r2
þ 2mwSþ S2 þ 2"wA� A2 þ 2"wV

� V2 þ�D þ 2ðJ � 1Þ�SO þ�SS

þ 2ðJ � 1Þ
2J þ 1

ð�SOT ��TÞ
�
vþ

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þp
2J þ 1

f3�T � 2ðJ þ 2Þ�SOTgv�

¼ b2vþ; (B3)

is coupled to

�
� d2

dr2
þ ðJ þ 1ÞðJ þ 2Þ

r2
þ 2mwSþ S2 þ 2"wA� A2

þ 2"wV � V2 þ�D � 2ðJ þ 2Þ�SO þ�SS

þ 2ðJ þ 2Þ
2J þ 1

ð�SOT ��TÞ
�
v�

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þp
2J þ 1

f3�T þ 2ðJ � 1Þ�SOTgvþ

¼ b2v�: (B4)

For the uncoupled 3P0 states the single equation is

�
� d2

dr2
þ 2

r2
þ 2mwSþ S2 þ 2"wA� A2 þ 2"wV � V2

þ�D � 4�SO þ�SS þ 4ð�SOT ��TÞ
�
v�

¼ b2v�: (B5)

APPENDIX C: TWO-BODY DIRAC EQUATIONS
FOR QED

The Schrödinger-like form Eq. (35) of the TBDE given in
Eq. (14) can be used for QCD bound state (meson spectros-
copy) and for QED bound states (positronium, muonium,
and hydrogenlike systems). In our meson spectroscopy work
presented in this paper we use the three invariant functions
SðrÞ, AðrÞ, and VðrÞ specified in Sec. III. Once these are
specified then so are the three vertex invariants LðrÞ, GðrÞ,
and J ðrÞ. They, in turn, fix the quasipotentials given in
Eq. (A35) and below to (A41) that appear in Eq. (35) and
its radial forms of Appendix B. To make the transition from
QCD meson bound states to QED bound states we simply
take SðrÞ ¼ VðrÞ ¼ 0 and AðrÞ ¼ �	=r (we remind the

reader that only in the c.m. system is the invariant r ¼
ffiffiffiffiffiffi
x2?

q
equal to jrj). Our QED spectral results then follow from
solving nonperturbatively (i.e. numerically or analytically)
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the radial eigenvalue equations of Appendix B. For example,
since �D ¼ 3�SS for S ¼ V ¼ 0, the equal mass spin
singlet Eq. (B1) collapses to

�
� d2

dr2
þ JðJ þ 1Þ

r2
� 2"w	

r
� 	2

r2

�
v0 ¼ b2v0; (C1)

which has the analytic spectral solution given in Eq. (63) for
J ¼ 0. As long as JðJ þ 1Þ � 	2 >�1=4, since the above
equation takes the limiting form of

�
� d2

dr2
þ JðJ þ 1Þ

r2
� 	2

r2

�
v0 ¼ 0; (C2)

it is clear that the effective potential is nonsingular, thus
allowing a well defined eigenvalue solution.34 The paper
[33] demonstrated that the corresponding short distance
behavior of the potentials in the other radial equations of
Appendix B for the other QED bound states also allow well
defined eigenvalue solutions.35 Beyond that, numerical so-
lutions of these eigenvalue equations yield spectra (not
limited just to the singlet ground states) in agreement
with standard perturbative Oð	4Þ results [29]. In electron
volts the numerical binding energy for the singlet ground
state of positronium from Eq. (B1) is �6:8033256279 vs
the perturbative result of Eq. (61) or mð�	2=4�
21	4=64Þ ¼ �6:8033256719. The difference in units of
m	4=2 is �6:08E� 05 which is on the order of 	2, so
that, as expected from (61) the difference is on the order of
m	6. The corresponding numerical binding energy in elec-
tron volts for the triplet ground state from the coupled

equations Eqs. (B3) and (B4) is �6:8028426132 vs the
perturbative result [29] of mð�	2=4þ 	4=192Þ ¼
�6:8028426636. These results do not include the effects
of the annihilation diagram. The difference in units of
m	4=2 is 6:97E� 05 which is on the order of 	2, so that
the difference is also on the order of m	6. These results
(from a very extensive list of numerically computed spec-
tral results in [29]) taken together, represent crucial tests of
this formalism, ones that have not been demonstrated in any
other relativistic bound state formalism. In fact, the authors
of [4] have found a particular quasipotential formalism that
does give such agreement, but only for the ground state.
They also demonstrate that several well know two-body
relativistic bound state formalisms (including the
Blankenbecler-Sugar formalism and the formalism of
Gross) fail this test. Let us be explicit about the implications
of either the failure of this test or the lack of performing this
test. When one proposes a new bound state formalism such
as Dirac did in 1928, it was essential that at the very least it
reproduce the nonrelativistic hydrogenic spectrum. Beyond
that it provides two other remarkable results. First of all,
by way of an order 1=c2 expansion, it gave an order 	4

perturbative correction to the nonrelativistic spectral re-
sults. Remarkably, an exact solution of the same equation
later by Darwin gave spectral results which when truncated
to order 	4 agreed precisely with the perturbative treat-
ment, and, at the time, with experimental fine structure
measurements. Breit, in the development of his two-body
equation gave us an equation with interactions beyond the
Coulomb potential that ultimately reproduced, when treated
perturbatively, spectral results for two-body systems that
agreed through terms of order 	4 with experiment. Unlike
the one-body Dirac equation which has an exact spectral
solution which agrees, at order 	4, with its perturbative
solution, the Breit equation has no exact or for that matter
numerical solution which agrees, at order 	4, with its
perturbative solution. The same could be said for most all
other two-body relativistic treatments proposed since then,
with the two exceptions ([4,29]) noted above. One’s two-
body formalism having an agreement of its nonperturbative
treatment with its perturbative treatment of the spectra in a
well established field theory such as QED, in our opinion,
should be regarded as a necessary hurdle to pass before
going on to apply these formalisms to potential models for
meson spectroscopy.
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