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We study the interactions between the f0ð980Þ and a0ð980Þ scalar resonances and the lightest

pseudoscalar mesons. We first obtain the elementary interaction amplitudes, or interacting kernels,

without including any ad hoc free parameter. This is achieved by using previous results on the nature

of the lightest scalar resonances as dynamically generated from the rescattering of S-wave two-meson

pairs. Afterwards, the interaction kernels are unitarized and the final S-wave amplitudes result. We find

that these interactions are very rich and generate a large amount of pseudoscalar resonances that could be

associated with the Kð1460Þ, �ð1300Þ, �ð1800Þ, �ð1475Þ, and Xð1835Þ. We also consider the exotic

channels with isospin 3=2 and 1, the latter having positive G-parity. The former could also be resonant in

agreement with a previous prediction.
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I. INTRODUCTION

Because of the spontaneous chiral symmetry breaking of
strong interactions [1–4], strong constraints among the
interactions between the lightest pseudoscalars arise,
which are most efficiently derived in the framework of
chiral perturbation theory [5–8]. For the isospin (I) 0, 1,
and 1=2, the scattering of the pseudoscalars in S-wave is
strong enough to generate dynamically the lightest scalar
resonances, namely, the f0ð980Þ, a0ð980Þ, �, and �, as
shown in Refs. [9–13]. Still, one can make use of the
tightly constrained interactions among the lightest pseudo-
scalars in order to work out approximately the scattering
between the latter mesons and scalar resonances, as we
show in this paper. We concentrate here on the much
narrower resonances f0ð980Þ and a0ð980Þ and consider
their interactions with the pseudoscalars �, K, �, and �0.
If these interactions are strong enough, new pseudoscalar
resonances with JPC ¼ 0�þ would come up. This is the
case and the resulting pseudoscalar resonances have a mass
larger than 1 GeV (this energy limit is close to the masses
of the f0ð980Þ or a0ð980Þ), typically following the relevant
scalar-pseudoscalar thresholds.

The problem of the excited pseudoscalars above 1 GeV
is interesting in itself. These resonances are not typically
well known [14]. In I ¼ 1=2, one has the Kð1460Þ and
Kð1630Þ resonances. The I ¼ 1 resonances �ð1300Þ,
�ð1800Þ are somewhat better known [14]. They are broad
resonances with a large uncertainty in the width of the
former, which is reported to range between 200–600 MeV
in the Particle Data Group (PDG) [14]. Some controversy
exists for interpreting the decay channels of the �ð1800Þ
within a quarkonium picture [15,16]. It was suggested in
Ref. [15] that, together with the second radial excitation of
the pion, there would be a hybrid resonance somewhat
higher in mass [15,17]. Special mention should be made
regarding the I ¼ 0 channel, where the �ð1295Þ, �ð1405Þ,
�ð1475Þ have been the object of an intense theoretical and

experimental study. For an exhaustive review on the ex-
periments performed on these resonances and the nearby
1þþ axial-vector resonance f1ð1420Þ, see Ref. [18].
Experimentally, it has been established that, while the
�ð1405Þ decays mainly to a0�, the �ð1475Þ decays to
K� �K þ c:c [14,18]. In this way, the study of the ���
system is certainly the most adequate one for isolating
the �ð1405Þ resonance because both the f1ð1420Þ and
�ð1475Þ have a suppressed partial decay width to this
channel [14]. References [14,18] favor the interpretation
of considering the �ð1295Þ and �ð1475Þ as ideally mixed
states (because the �ð1295Þ and the �ð1300Þ are close in
mass) of the same nonet of pseudoscalar resonances, with
the other members being the �ð1300Þ and Kð1460Þ. All
these resonances would be the first radial excitation of the
lightest pseudoscalars [15]. The �ð1405Þ would then be an
extra state in this classification whose clear signal in a
gluon-rich process like p �p [19,20] or J=� radiative decays
[21,22], and its absence in a �� collision [23], would favor
its interpretation as a glueball in QCD [24,25]. However,
this interpretation opens a serious problem in turn because
current results from lattice QCD predict the lowest mass
for the pseudoscalar glueball at around 2.4 GeV [26–28].
Given the success of the lattice QCD prediction for the
lightest scalar glueball, with a mass at around 1.7 GeV
[29,30], this discrepancy for the pseudoscalar channel
would be quite exciting. QCD sum rules [31] give a mass
for the lightest pseudoscalar gluonium of 2:05� 0:19 GeV
and an upper bound of 2:34� 0:42 GeV. However, the
�ð1405Þ would fit as a 0�þ glueball if the latter is a closed
gluonic fluxtube [32]. On the other hand, it has also been
pointed out that the mass and properties of the �ð1405Þ are
consistent with predictions for a gluino-gluino bound
state [25,33,34]. The previous whole picture for classifying
the lightest pseudoscalar resonances has been challenged
in Ref. [16]. The authors question the existence of
the �ð1295Þ and argue that, due to a node in the 3P0

wave function of the �ð1475Þ [35], only one isoscalar
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pseudoscalar resonance exists in the 1.4–1.5 GeV region.
This node shifts the resonant peak position depending on
the channel, a0� or K� �K þ c:c. The BES Collaboration
have also recently observed the resonance Xð1835Þ with
quantum numbers favored as a pseudoscalar 0�þ reso-
nance both in J=� ! �p �p [36] and in J=� !
��þ���0 [37]. For the former decay, Ref. [38] offers an
alternative explanation in terms of the p �p final state
interactions.

We consider here the S-wave interactions between the
scalar resonances f0ð980Þ and a0ð980Þ with the pseudosca-
lar mesons �, K, �, and �0. The approach followed is an
extended version of the one that Refs. [39,40] applied to
study the S-wave interactions of the �ð1020Þ with the
f0ð980Þ and a0ð980Þ resonances, respectively. We show
that the interactions derived generate resonances dynami-
cally that can be associated with many of the previous
pseudoscalar resonances listed above, namely, with the
Kð1460Þ, �ð1300Þ, �ð1800Þ, �ð1475Þ, and Xð1835Þ. In
this way, new contributions to the physical resonant signals
result from this novel mechanism, which has not been
explored so far. In addition, we also study other exotic
channels and find that the I ¼ 3=2 a0K channel could also
be resonant.

After this Introduction, we present the formalism and
derive the S-wave scattering amplitudes for scalar-
pseudoscalar interactions in Sec. II. Section III is dedicated
to presenting and discussing the results. Conclusions are
given in Sec. IV.

II. FORMALISM: SETTING THE MODEL

Our approach is based on the triangle diagram shown in
Fig. 1 in which an incident scalar resonance S1 decays into
a virtual K �K pair. The filled dot in the vertex on the bottom
of the diagram corresponds to the interaction of the inci-
dent (anti)kaon in the loop with the pseudoscalar P1 giving
rise to the pseudoscalar P2 and the same (anti)kaon. The
outgoing scalar resonance is denoted by S2. The basic point
is that this diagram is enhanced because the masses of both
the f0ð980Þ and a0ð980Þ resonances are very close to the
K �K threshold. In this way, for scattering near the threshold
of the reaction, one of the kaon lines in the bottom of the
diagram is almost on shell. Indeed, at threshold and in the
limit for the mass of the scalar equal to twice the kaon
mass, this diagram becomes infinite. This fact is discussed
in detail in Ref. [39] where it was already applied for
successfully studying the �ð1020Þf0ð980Þ scattering and
the associated 1�� Yð2175Þ resonance. The BABAR [41]

and BELLE [42] data on eþe� ! �ð1020Þf0ð980Þ were
reproduced accurately, where a strong peak for the latter
resonance arises. An important conclusion of [39] is that
the Yð2175Þ can be qualified as being a resonance dynami-
cally generated due to the interactions between the
�ð1020Þ and the f0ð980Þ resonances (see also Ref. [43]).
This work was extended to I ¼ 1 in [40] for studying the
�ð1020Þa0ð980Þ S-wave. That discussion remarked on the
interest of measuring the cross sections eþe� !
�ð1020Þ�0� because it is quite likely that an isovector
companion of the Yð2175Þ appears. In our present study, as
well as in Refs. [39,40], one takes advantage of the fact that
both the f0ð980Þ and a0ð980Þ resonances are dynamically
generated by the meson-meson self-interactions [9,13,44].
This conclusion is also shared with other approaches like
those in Refs. [45,46]. In this way, we can calculate the
couplings of the scalar resonances considered to two pseu-
doscalars, including their relative phase. The coupling of
the f0ð980Þ and a0ð980Þ resonances to a K �K pair in I ¼ 0
and 1, respectively, is denoted by gf0 and ga0 . These states

jK �KiI¼0 and jK �KiI¼1 are given by

jK �KiI¼0 ¼ � 1ffiffiffi
2

p jKþK� þ K0 �K0i;

jK �KiI¼1 ¼ � 1ffiffiffi
2

p jKþK� � K0 �K0i:
(2.1)

In this way, the f0ð980Þ couples to KþK�ðK0 �K0Þ as
� 1ffiffi

2
p ð� 1ffiffi

2
p Þgf0 while the a0ð980Þ couples as � 1ffiffi

2
p ð 1ffiffi

2
p Þga0 .

Let us indicate by P the total four-momentum P ¼ p1 þ
k1 ¼ p2 þ k2 in Fig. 1. This diagram is given by g1g2LK,
with g1 and g2 the coupling of the initial and
final scalar resonance to a K �K pair, respectively, and LK

is given by

LK ¼ i
Z d4l

ð2�Þ4
TððP� lÞ2Þ

ðl2 �m2
K þ i"Þððp1 � lÞ2 �m2

K þ i"Þððp2 � lÞ2 �m2
K þ i"Þ : (2.2)

l

l l

FIG. 1. Triangle loop for calculating the interacting kernel for
S1ðp1ÞP1ðk1Þ ! S2ðp2ÞP2ðk2Þ, where the four-momentum for
each particle is given in parentheses. S1;2 represents the initial,

final scalar resonances, and similarly for P1;2 regarding the

pseudoscalar mesons.
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In this equation TððP� lÞ2Þ represents the interaction am-
plitude between the kaons with the external pseudoscalars.
Here, we employ the meson-meson scattering amplitudes
obtained in Ref. [13] but now enlarged so that states with
the pseudoscalar �0 are included in the calculation of
TððP� lÞ2Þ, as detailed in Appendix A. Interestingly, these
amplitudes contain the poles corresponding to the scalar
resonances �, �, f0ð980Þ, a0ð980Þ, and other poles in the
region around 1.4 GeV [13].

In order to proceed further, we have to know the depen-
dence of TððP� lÞ2Þ on its argument that includes
the integration variable l. This can be done by writing
the dispersion relation satisfied by Tðq2Þ, which is of the
form

Tðq2Þ ¼ TðsAÞ þ
X
i

q2 � sA
q2 � si

Resi
si � sA

þ q2 � sA
�

�
Z 1

sth

ds0
ImTðs0Þ

ðs0 � q2Þðs0 � sAÞ
: (2.3)

One subtraction at sA has been taken because Tðq2Þ is
bound by a constant for q2 ! 1, with TðsAÞ the subtrac-
tion constant. Typically poles are also present deep in the
q2-complex plane located at si whose residues are Resi.
These poles appear on the first Riemann sheet and are an
artifact of the parametrization employed [13,47]. For q2

along the physical region they just give rise to soft extra
contributions that could be mimicked by a polynomial of
low degree in q2. Inserting Eq. (2.3) into Eq. (2.2), with
ðP� lÞ2 ¼ q2, one can write for LK

LK ¼
�
TðsAÞ þ

X Resi
si � sA

�
C3 þ

X
i

C4ðsiÞResi

� 1

�

Z 1

sth

ds0ImTðs0Þ
�

C3

s0 � sA
þ C4ðs0Þ

�
: (2.4)

Here we have introduced the three- and four-point Green
functions C3 and C4ðM2

4Þ defined by

C3 ¼ i
Z d4l

ð2�Þ4
1

ðl2 �m2
K þ i"Þððp1 � lÞ2 �m2

K þ i"Þððp2 � lÞ2 �m2
K þ i"Þ ;

C4ðM2
4Þ ¼ i

Z d4l

ð2�Þ4
1

ðl2 �m2
K þ i"Þððp1 � lÞ2 �m2

K þ i"Þððp2 � lÞ2 �m2
K þ i"ÞððP� lÞ2 �M2

4 þ i"
:

(2.5)

Notice that M2
4 can be real positive (when M2

4 ¼ s0 in the
dispersion relation), but it could also be negative or even
complex when M2

4 ¼ si from the poles. One has still to
perform the angular projection for C3 and C4ðM2

4Þ. Once
this is done, Eq. (2.4) can still be used but with C3 and
C4ðM2

4Þ projected in S-wave, as we take for granted in the
following. These functions and their S-wave projection
are discussed in Appendix B. For S1ðp1ÞP1ðk1Þ !
S2ðp2ÞP2ðk2Þ we have the usual Mandelstam variables
s ¼ ðp1 þ k1Þ2 ¼ ðp2 þ k2Þ2, t¼ðp1�p2Þ2¼ðk1�k2Þ2,
and u ¼ ðp1 � k2Þ2 ¼ ðp2 � k1Þ2 ¼ M2

S1
þM2

S2
þM2

P1
þ

M2
P2

� s� t, with the masses of the particles indicated by
M with the subscript distinguishing between them. The
dependence on the relative angle � enters in t as t ¼ ðp0

1 �
k01Þ2 � ðp� p0Þ2 ¼ ðp0

1 � k01Þ2 � p2 � p02 þ 2jpjjp0j cos�
with p and p0 the CM three-momentum of the initial and
final particles, respectively.

Equation (2.4) is our basic equation for evaluating the
interaction kernels. One has only to specify the pseudosca-
lars actually involved in the amplitude Tðq2Þ according to
the specific reaction under consideration. We now list all
the channels involved for the different quantum numbers
and indicate the actual pseudoscalar-pseudoscalar ampli-
tudes required as the argument of LK:

(i) I ¼ 0, G ¼ þ1

TLða0� ! a0�Þ ¼
2g2a0
3

LK½4TI¼3=2
�K!�K � TI¼1=2

�K!�K�;
TLða0� ! f0�Þ ¼ 2gf0ga0LK½TI¼1=2

�K!�K�;
TLðf0� ! f0�Þ ¼ 2g2f0LK½TI¼1=2

�K!�K�;
TLða0� ! f0�

0Þ ¼ 2gf0ga0LK½TI¼1=2
�0K!�K

�;
TLðf0� ! f0�

0Þ ¼ 2g2f0LK½TI¼1=2
�K!�0K�;

TLðf0�0 ! f0�
0Þ ¼ 2g2f0LK½TI¼1=2

�0K!�0K�: (2.6)

(ii) I ¼ 1=2

TLðf0K!f0KÞ¼g2f0
2
LK½3TI¼1

K �K!K �K
þTI¼0

K �K!K �K
�;

TLðf0K!a0KÞ¼
ffiffiffi
3

p
gf0ga0
2

LK½TI¼1
K �K!K �K

�TI¼0
K �K!K �K

�;

TLða0K!a0KÞ¼g2a0
2
LK½3TI¼0

K �K!K �K
þTI¼1

K �K!K �K
�:
(2.7)
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(iii) I ¼ 1, G ¼ �1

TLðf0�! f0�Þ ¼
2g2f0
3

LK½2TI¼3=2
�K!�K þTI¼1=2

�K!�K�;

TLðf0�! a0�Þ ¼
2gf0ga0ffiffiffi

3
p LK½T1=2

�K!�K�;

TLða0�! a0�Þ ¼ 2g2a0LK½TI¼1=2
�K!�K�;

TLðf0�! a0�
0Þ ¼ 2gf0ga0ffiffiffi

3
p LK½TI¼1=2

�K!�0K�;

TLða0�! a0�
0Þ ¼ 2g2a0LK½TI¼1=2

�K!�0K�;
TLða0�0 ! a0�

0Þ ¼ 2g2a0LK½TI¼1=2
�0K!�0K�: (2.8)

(iv) I ¼ 1, G ¼ þ1

TLða0�! a0�Þ ¼
2g2a0
3

LK½4TI¼1=2
�K!�K �TI¼3=2

�K!�K�:
(2.9)

(v) I ¼ 3=2

TLða0K ! a0KÞ ¼ 2g2a0LK½TI¼1
K �K!K �K

�: (2.10)

In the previous equations, the different scalar-
pseudoscalar states are pure isospin ones corresponding
to the isospin I indicated for each item. This also applies to
the pseudoscalar-pseudoscalar states, with I as indicated in
the superscript of T. The symbol G refers to G-parity. On
the other hand, the I ¼ 3=2 �K amplitude, being much
smaller than the I ¼ 1=2 one, has negligible effects,
although it has been kept in the previous expressions.

For each set of quantum numbers specified by the iso-
spin I and G-parity G (if the latter is not defined this label
should be omitted), we join in a symmetric matrixT IG the
different TLði ! jÞ calculated above. Then, in order to
resum the unitarity loops, as indicated in Fig. 2, and obtain
the final S-wave scalar-pseudoscalar T-matrix, TIG, we
make use of the equation

TIG ¼ ½I þT IG � gIGðsÞ��1 �T IG: (2.11)

For a general derivation of this equation, based on the N=D
method [48], see Refs. [13,49] and Ref. [9], where it is
connected with the Bethe-Salpeter equation. In Eq. (2.11),
gIGðsÞ is a diagonal matrix whose elements are the scalar
unitarity loop function with a scalar-pseudoscalar inter-
mediate state. For the calculation of gIGðsÞi, corresponding

to the ith state with the quantum numbers IG and made up
by the scalar resonance Si and the pseudoscalar Pi, we
make use of a once-subtracted dispersion relation [13]. The
result is

gIGðsÞi¼ 1

ð4�Þ2
�
a1þ log

M2
Si

�2
�M2

Pi
�M2

Si
þs

2s
log

M2
Si

M2
Pi

þjpjffiffiffi
s

p ½logðs��þ2
ffiffiffi
s

p jpjÞþ logðsþ�þ2
ffiffiffi
s

p jpjÞ

� logð�sþ�þ2
ffiffiffi
s

p jpjÞ
� logð�s��þ2

ffiffiffi
s

p jpjÞ�
�

(2.12)

with jpj the three-momentum of the channel SiPi for a
given s and � ¼ M2

Pi
�M2

Si
. The subtraction a1 is re-

stricted to have natural values so that the unitarity scale

[39] 4�f�=
ffiffiffiffiffiffiffiffija1j

p
becomes not too small (e.g., below the

	-mass) so that ja1j & 3. In addition, we require the sign of
a1 to be negative so that resonances could be generated
when the interaction kernel is positive (attractive).
As already indicated in Ref. [40], to ensure a continuous

limit to zero a0ð980Þ width, one has to evaluate T IG at the
a0ð980Þ pole position with a positive imaginary part so that
p2
1;2 ! Re½Ma0�2 þ i", in agreement with Eq. (2.2).

Instead, in gIGðsÞa0P, with P one of the lightest pseudosca-

lars, Ma0 should appear with a negative imaginary part to

guarantee that, in the zero-width limit, the sign of the
imaginary part is the same as dictated by the�i" prescrip-
tion for masses squared of the intermediate states. Such
analytical extrapolations in the masses of external particles
are discussed in Refs. [50–52]. The same applies of course
to the case of the f0ð980Þ resonance.

III. RESULTS

In this section we show the results that follow by apply-
ing Eq. (2.11) to the different channels characterized by the
quantum numbers IG, as given in the list from Eq. (2.6) to
Eq. (2.10). As discussed after Eq. (2.12), we consider
values for the subtraction constant such that they are
negative and not very large in modulus (ja1j & 3). In this
way, the resonances generated might be qualified as dy-
namically generated due to the iteration of the unitarity
loops. The pole positions and couplings of the f0ð980Þ
and a0ð980Þ resonances are given in Tables III and IV,
respectively, and they correspond to those obtained in the
meson-meson S-wave amplitudes used (see Appendix A).
In this section, we present the results separately for each of
the channels with definite IG.

A. I ¼ 1=2

First we show the results for the I ¼ 1=2 sector that
couples together the channels f0ð980ÞK and a0ð980ÞK.

FIG. 2. Iteration of the interaction kernels (denoted by the
triangles) by inserting scalar-pseudoscalar (double lines-dashed
lines, respectively) intermediate states.
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We show the modulus squared of the f0K ! f0K and
a0K ! a0K S-wave amplitudes in the left and right panels
of Fig. 3, respectively. We obtain a clear resonant peak with
its maximum at 1460 MeV for a1 around �0:5, that
corresponds to the nominal mass of the Kð1460Þ resonance
[14]. The results are not very sensitive to the actual value of
a1 but the position of the peak displaces to lower values
for decreasing a1 and the width somewhat increases.
The visual width of the peak is around 100 MeV,
although it appears wider in a0K ! a0K scattering.
References [53,54] refer to a larger width of around
250 MeV. One has to take into account that the channel
K�ð892Þ� is not included, and it seems to couple strongly
with the Kð1460Þ resonance [14]. It is also clear from the
figure that the peak is asymmetric due to the opening of the
f0K and a0K thresholds involved. Taking into account the
relative sizes of the peaks in the left and right panels of
Fig. 3, one infers that theKð1460Þ couples more strongly to
f0K than to a0K, with the ratio of couplings as

jgf0K=ga0Kj ’ ð20:25:7 Þ1=4 ’ 1:4.

B. I ¼ 1

We now consider the I ¼ 1 case. As said in the
Introduction, two broad resonances are mentioned in the
PDG: the �ð1300Þ and the �ð1800Þ. In our amplitudes,
we find quite independent of the value of a1 that the
a0ð980Þ�0 channel is almost elastic. This is because the
interaction kernels T ða0�0 ! a0�Þ and T ða0�0 ! f0�Þ
are much smaller than the rest of the kernels, typically
by an order of magnitude. This happens because the
kernels are dominated by the threshold region. However,
the threshold for a0ð980Þ�0 is much higher than the

thresholds for the other two channels. In this way, for
the inelastic processes involving the a0�

0 channel, even at
threshold for one of the channels, there is always a large
three-momentum for the other channel and the kernel is
suppressed. Of course, this does not apply to the a0�

0
elastic case where the kernel has a standard size and
produces, at around 1.8 GeV, a strong resonant signal
that could be associated with the �ð1800Þ resonance. To
reproduce the mass value given in the PDG [14] for this
resonance, 1816� 14 MeV, one takes a1 for a0�

0 around
�1:3. The visual width of the peak is around 200 MeV,
close to the width quoted in the PDG [14] of 208�
12 MeV. The other two channels couple quite strongly
between each other and typically give rise to an enhance-
ment between 1.2–1.4 GeV when varying a1 equally for
each of them, which could be associated with the
�ð1300Þ. However, for ja1j between 1 and 1.8, a too
strong signal originates in the a0� threshold. For ja1j
below 1, the resonant peak in the jTða0� ! a0�Þj2 lies
around 1.4–1.5 GeV, somewhat too high for the �ð1300Þ
resonance [14]. This is why we show in Fig. 4 the
modulus squared of a0� ! a0� for a1 ¼ �2 (right
panel), where a peak close to 1.2 GeV is seen with a
width of around 200 MeV. One can also see the strong
effect of the a0� threshold at around 1.52 GeV. Its size is
rather sensitive to the actual value of ja1j when this lies
between 1 and 1.8. There is the interesting fact, which is
independent of the value of a1, that there is no signal for
�ð1800Þ in the a0� system nor signal of the peak at
1.2 GeV in the a0�

0. We have checked that this is also
the case for the f0� state, that is, it does not couple with
the �ð1800Þ. This is another reflection of the fact that the
a0�

0 tends to decouple from the other states.

FIG. 3 (color online). Modulus squared of the f0K ! f0K (left) and a0K ! a0K (right) S-wave amplitudes for a1 ¼ �0:5.
The points correspond to the energies where the amplitudes have actually been calculated.
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C. I ¼ 0

We move next to the I ¼ 0 system, where the f0�, a0�,
and f0�

0 couple. The results here occur similar to I ¼ 1, so
that the much higher f0�

0 channel mostly decouples from
the other two channels. We then proceed similarly and
distinguish between the subtraction constant a1 attached
to a0�

0 and to the other two channels a0� and f0�. For a1
around �1:2, one obtains a resonance of the a0�

0 channel
at a mass of 1835 MeV, in agreement with that quoted in
the PDG for the Xð1835Þ, 1833:7� 6:1� 2:7 MeV. This
is shown in the left panel of Fig. 5, where the modulus
squared of the f0ð980Þ�0 ! f0ð980Þ�0 S-wave amplitude

is shown. The width of the peak at half its maximum
value is around 70 MeV, in good agreement with the
width given in the PDG for the Xð1835Þ of 67:7� 20:3�
7:7 MeV.
We consider next the other two coupled channels,

a0ð980Þ� and f0ð980Þ�. We obtain a clear resonant signal
with mass around 1.45 GeV for ja1j & 1. This is shown in
the right panel of Fig. 5, where the modulus squared of the
f0ð980Þ� ! f0ð980Þ� is given for a1 ¼ �0:8. It is not
possible to increase further the mass of this peak by
varying a1. An important fact of this resonance is that it
does not couple to the a0� channel. For example, the

FIG. 4 (color online). Modulus squared of the a0�
0 ! a0�

0 (left) and a0� ! a0� (right) S-wave amplitudes. For the former,
a1 ¼ �1:3, and for the latter, a1 ¼ �2:0 (see the text for details). The notation is the same as in Fig. 3.

FIG. 5 (color online). Modulus squared of the f0�
0 ! f0�

0 (left) and f0� ! f0� (right) S-wave amplitudes. For the former,
a1 ¼ �1:25, and for the latter, a1 ¼ �0:8 (see the text for details). The notation is the same as in Fig. 3.
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analogous curve for the modulus squared of the
a0ð980Þ� ! a0ð980Þ� S-wave in the 1.4 GeV region is
absolutely flat. By considering the inelastic process
f0ð980Þ� ! a0ð980Þ�, we estimate a coupling to the latter
channel more than 14 times smaller than to f0ð980Þ�.
Because the �ð1405Þ resonance couples mostly to
a0ð980Þ� [14], we then conclude that the generated reso-
nant signal around 1.45 GeV should correspond to the
�ð1475Þ. Its form is rather asymmetric due to the opening
of the f0ð980Þ� threshold, with a width at half the maxi-
mum of its peak of around 150 MeV. The width quoted in
the PDG [14] is 85� 9 MeV. It is also known that the
�ð1475Þ couples strongly toK�ð892Þ �K þ c:c, a channel not
included in our study. The threshold for this channel, at
around 1.39 GeV at the decreasing slope of our present
signal, should certainly modify its shape. For higher values
of ja1j, the peak tends to become too light in mass com-
pared with the �ð1475Þ. For the a0ð980Þ� ! a0ð980Þ�
reaction, one also appreciates a strong a0ð980Þ� threshold
effect at around 1.16 GeV. No resonance is observed
around the mass of the �ð1295Þ.

D. Exotic channels

Regarding the exotic channel with I ¼ 3=2, we find an
interesting result. Our amplitude gives rise to a clear reso-
nant structure at around 1.4 GeV for ja1j & 1:5. We show
in Fig. 6 the modulus squared of Tða�0 K� ! a�0 K�Þ,
because the a�0 K� states are purely I ¼ 3=2, for a1 ¼
�0:5 (the same value we used earlier, in Fig. 3, studying
the I ¼ 1=2 case). One also observes that the shape of the
resonance peak is asymmetric with a clear impact of the

a0K threshold. Our results for ja1j & 1 tend to confirm the
predictions of Longacre [55] who studied the K �K� and
K �KK system and concluded that the exotic I ¼ 3=2 JP ¼
0� K �KK system was resonant around its threshold due to
the successive interactions between a K, �K, and �. For
ja1j * 1, we find that the resonance shape in jTða�0 K� !
a�0 K�Þj2 is progressively distorted, becoming lighter and

flatter. Let us notice also that the a0K system was not
isolated in the two experiments quoted in the PDG where
the I ¼ 1=2 Kð1460Þ was observed [53,54].
The other exotic channel with I ¼ 1 and G ¼ þ1 in-

volves the isovector a0� state. Whether a resonance be-
havior stems at around 1.4 GeV depends on the actual
value of a1. For ja1j & 1, the enhancement near 1.4 GeV
is much weaker and is overcome by the cusp effect at the
a0� threshold. For larger values of ja1j, the resonant signal
is much more prominent. No such resonance has been
found experimentally, e.g., in peripheral hadron production
[56], so that ja1j & 1 should be finally taken.
In Table I, we collect all the resonances found in our

study for the different quantum numbers discussed.

IV. SUMMARYAND CONCLUSIONS

In summary, we have presented a study of the S-wave
interactions between the scalar resonances f0ð980Þ and
a0ð980Þ with the lightest pseudoscalars (�, K, �, and �0)
in the region between 1 and 2 GeV. The different channels
studied comprise those like the �, K and �, and also the
exotic ones with isospin 3=2 and 1, the latter having
positive G-parity. First, interaction kernels have been de-
rived by considering the interactions of the external pseu-
doscalars involved in the reaction with those making the
scalar resonance. We take advantage here of previous
studies that establish the f0ð980Þ and a0ð980Þ as dynami-
cally generated from the interactions of two pseudoscalars,
so that no free parameters are introduced in their calcula-
tion. Afterwards, the final S-wave amplitudes are deter-
mined by employing techniques borrowed from unitary
chiral perturbation theory. Interestingly, we have obtained
resonant peaks that for the nonexotic channels could be
associated with the pseudoscalar resonances Kð1460Þ,
�ð1300Þ, �ð1800Þ, �ð1475Þ, and Xð1835Þ, following the

FIG. 6 (color online). Modulus squared of the I ¼ 3=2 a0K !
a0K S-wave amplitude with a1 ¼ �0:5. The notation is the same
as in Fig. 3.

TABLE I. Resonances resulting from our study. For more de-
tails, see the discussions of the results in the text.

Resonance IðGÞ Width (MeV) Comments

Kð1460Þ I ¼ 1
2 � * 100 jgf0K=ga0Kj ’ 1:4

�ð1800Þ IG ¼ 1� � ’ 200 a0�
0 elastic

�ð1300Þ IG ¼ 1� � * 200 a0�, f0� coupled channels

Xð1835Þ IG ¼ 0þ � ’ 70 f0�
0 elastic

�ð1475Þ IG ¼ 0þ � ’ 150 f0� elastic

Exotic I ¼ 3
2 � ’ 200 a0K threshold
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notation of the Particle Data Group. The resonances that
result from this study can be qualified as dynamically
generated from the interactions between the scalar reso-
nances and the pseudoscalar mesons. This establishes
that an important contribution to the physical signal
of the resonances just mentioned has a dynamical origin.
The exotic I ¼ 3=2 channel could also exhibit a resonant
structure around the a0K threshold, in agreement with the
behavior predicted by Longacre [55] 20 years ago.
However, larger values for the subtraction constant ja1j
tend to destroy this resonant behavior. No signal of the
intriguing �ð1405Þ resonance is obtained.

This approach should be pursued further by including,
simultaneously with the interaction between the scalar
resonances and the pseudoscalar mesons considered here,
those arising from the lightest vector resonances with the
same pseudoscalars in P-wave. In this way, both pseudo-
scalar and axial resonances will be studied together.
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APPENDIX A: MESON–MESON
UNITARIZED AMPLITUDES

We use the N=D method [13] to unitarize the different
isospin channels’ amplitudes for meson–meson scattering,
which are fitted to data, and then used in the vertex of the
triangle loop. From these amplitudes, once fitted, the po-
sition of the poles can be found. [We use here the f0ð980Þ
and a0ð980Þ, but we also check for the appearance of the
other scalars, � and �]. As mentioned, the amplitudes are
unitarized through

TI ¼ ð1þ VI � GÞ�1 � VI; (A1)

which is analogous to Eq. (2.11) but now for the
pseudoscalar-pseudoscalar scattering. The symmetric
matrix VI [analogous to T IG in Eq. (2.11)] collects the
S-wave pseudoscalar-pseudoscalar tree-level amplitudes
obtained from the lowest order chiral Lagrangians, includ-
ing resonances as well. The matrix G is a diagonal matrix
that contains the meson–meson loop propagator. (The
same expression as given in Eq. (2.12) can be used with
the appropriate replacement for the masses involved.)

The lowest order chiral Lagrangian at leading order in
large Nc, which also includes the �1, is [57–59]

L 2 ¼ f2�
4
h@�Uy@�Ui þ f2�

4
h
yUþ 
Uyi � 1

2
M2

1�
2
1;

(A2)

Uð�Þ¼ expði ffiffiffi
2

p
�=f�Þ; �¼X8

i¼0

�iffiffiffi
2

p �i; �0 ¼
ffiffiffi
2

3

s
I3;

(A3)

and �i, i ¼ 1; . . . ; 8, the Gell-Mann matrices. The �8 and
�1 fields mix to give the physical � and �0:

�0
�

� �
¼ cos� sin�

� sin� cos�

� �
�1

�8

� �
:

The mixing angle � is taken as sin� ’ � 1
3 , � ’ �20� [60].

In the same spirit as in Ref. [13], the explicit exchange of
JPC ¼ 0þþ scalar resonances is incorporated and calcu-
lated from the leading order chiral Lagrangians of
Ref. [61]. The appropriate Lagrangians are

LS8 ¼ cdhS8u�u�i þ cmhS8
þi;
LS1 ¼ ~cdS1hu�u�i þ ~cmS1h
þi;

þ ¼ uy
uy þ u
yu;

UðxÞ ¼ uðxÞ2;
u� ¼ iuy@�Uuy ¼ uy�;

S8 ¼

a0ffiffi
2

p þ f8ffiffi
6

p aþ0 K�þ
0

a�0 � a0ffiffi
2

p þ f8ffiffi
6

p K�0
0

K��
0

�K�0
0 � 2ffiffi

6
p f8

0
BBBB@

1
CCCCA; (A4)

and S1 is a scalar SU(3) singlet. The interaction kernels
obtained from Lagrangians (A2) and (A4) can thus be
written as

Vij ¼ VðCÞ
ij þ VðRÞ

ij ; VðRÞ
ij ¼ �i�j

M2
R � s

; (A5)

where C means contact term and R means resonance
exchange. This is represented diagrammatically in Fig. 7.
In what follows, we give explicit formulae for the contact
kernels from the chiral Lagrangians in Eq. (A3) for the
different isospin channels. We also give the couplings �i

for each scalar resonance. For I ¼ 0, we include the super-
script (8) or (1) in �i to distinguish between the octet and

FIG. 7. Equation (A5) in terms of Feynman diagrams.
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singlet contributions, respectively. For the rest of isospins,
there is no singlet contribution.

(i) I ¼ 0

VðCÞ
��!�� ¼ 2s�m2

�

2f2�

VðCÞ
��!K �K

¼
ffiffiffi
3

p
4

s

f2�

VðCÞ
��!�� ¼ � 1ffiffiffi

3
p m2

�

f2�

VðCÞ
K �K!K �K

¼ 3

4

s

f2�

VðCÞ
K �K!��

¼ � 2

9

3s� 2m2
� �m2

K

f2�

VðCÞ
��!�� ¼ 2m2

K þm2
�

9f2�

(A6)

�ð8Þ
�� ¼ cdsþ 2ðcm � cdÞm2

�

f2�

�ð8Þ
K �K

¼ � cdsþ 2ðcm � cdÞm2
Kffiffiffi

3
p

f2�

�ð8Þ
�� ¼ 8cmðm2

K �m2
�Þ

3
ffiffiffi
3

p
f2�

(A7)

�ð1Þ
�� ¼ ffiffiffi

6
p ~cdsþ 2ð~cm � ~cdÞm2

�

f2�

�ð1Þ
K �K

¼ � ~cdsþ 2ð~cm � ~cdÞm2
K

2
ffiffiffi
2

p
f2�

�ð1Þ
�� ¼ ffiffiffi

2
p 3~cdðs� 2m2

�Þ þ 2~cmð2m2
K þm2

�Þ
3f2�

(A8)

(ii) I ¼ 1=2

VðCÞ
K�!K� ¼ s� 3uþ 2m2

K þ 2m2
�

4f2�

VðCÞ
K�!K� ¼

ffiffiffi
2

p
6

3t�m2
� � 2m2

K

f2�

VðCÞ
K�!K�0 ¼ � 1

12

3t� 8m2
K �m2

�0 � 3m2
�

f2�

VðCÞ
K�!K� ¼ 6t� 4m2

� � 2m2
K

9f2�

VðCÞ
K�!K�0 ¼ � 1

9
ffiffiffi
2

p 3t�m2
� �m2

�0 � 3m2
� þ 2m2

K

f2�

VðCÞ
K�0!K�0 ¼ 1

36

3t� 2m2
�0 þ 32m2

K � 6m2
�

f2�
(A9)

�K�¼�
ffiffiffi
3

2

s
cdsþðcm�cdÞðm2

�þm2
KÞ

f2�

�K�¼� 2ffiffiffi
3

p cmðm2
K�m2

�Þ
f2�

�K�0 ¼�
ffiffiffi
3

2

s
cds�cdðm2

Kþm2
�0 Þ� 1

3cmðm2
��7m2

KÞ
f2�

(A10)

(iii) I ¼ 1

VðCÞ
��!�� ¼ 2

3

m2
�

f2�

VðCÞ
��!K �K

¼ � 3s� 2m2
K �m2

�

3
ffiffiffi
3

p
f2�

VðCÞ
��!��0 ¼

ffiffiffi
2

p
3

m2
�

f2�

VðCÞ
K �K!K �K

¼ � u� 2m2
�

2f2�

VðCÞ
K �K!��0 ¼

3s� 8m2
K �m2

�0 � 3m2
�

6
ffiffiffi
6

p
f2�

VðCÞ
K�0!K�0 ¼ 1

3

m2
�

f2�

(A11)

���¼� 2ffiffiffi
3

p cds�cdðm2
�þm2

�Þþ2cmm
2
�

f2�

�K �K¼
cds�2ðcd�cmÞm2

K

f2�

���0 ¼� 2ffiffiffi
6

p cds�cdðm2
�þm2

�0 Þþ2cmm
2
�

f2�

(A12)

(iv) I ¼ 3=2

VK�!K� ¼ � s�m2
K �m2

�

2f2�
(A13)

With the amplitudes calculated for meson–meson scat-
tering, we perform several fits, e.g., by changing the value
of the highest

ffiffiffi
s

p
fitted from 1.2 to 1.4 GeV and by

imposing that several subtraction constants for the pseu-
doscalar–pseudoscalar channels are equal, so that we can
calculate the pseudoscalar–scalar kernels with different
inputs, and then check the independence of our results.
We show only our main fit since all the other fits that we
obtained give rise to similar results that would not change
our conclusions. In this fit the highest value of

ffiffiffi
s

p
consid-

ered is 1.4 GeV. For the octet of scalar resonances we take
the values of the parameters cd, cm, andM8 from Ref. [60],
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where M8, the mass of this octet, is around 1.3–1.4 GeV.
For definiteness, cd ¼ cm ¼ 22:8 MeV and M8 ¼
1:4 GeV. The parameters for the singlet resonance ex-
change, ~cd, ~cm, and M1 are left free, with the latter the
mass of the singlet scalar resonance. Regarding the sub-
traction constants in the unitarity loop function of the
different channels [13] [they play the analogous role of
a1 in Eq. (2.12) but for pseudoscalar-pseudoscalar scatter-
ing], we take the most general situation compatible with
isospin symmetry. Adopting the same argument as in
Appendix A of Ref. [62] from SU(3) to SU(2), the sub-
traction constants corresponding to the same pair of pseu-
doscalars should be the same in the different isospin. In this
way, the subtraction constant forK �K both in I ¼ 0 and I ¼
1 is taken with the same value. On the other hand, for a
given isospin, we also put constraints on the subtraction
constants associated with nonrelevant channels. In this
way, the K� subtraction constant in I ¼ 1=2 is kept equal
to that of K� and, similarly, for I ¼ 1, the ��0 subtraction
constant is put equal to that of ��.1 Of course, we have
checked that smoothing these constraints does not affect
the results of the fit. We finally have six independent
subtraction constants for ��, K �K, ��, K�, K�0, and
��. Also, a normalization constant for the data on an
unnormalized �� event distribution around the a0ð980Þ

resonance is required for each fit. The results of the fit
compared to experimental data are shown by the solid line
in Fig. 8, and the values of the fitted parameters are given in
Table II.
The set of experimental data included in the fits for

I ¼ 0 comprises the elastic �� phase shifts, ��!��,
from Refs. [65–70], the phase shift for �� ! K �K,
��!K �K, and ð1� �2Þ=4 from Refs. [71,72], where � is
the elastic parameter for the �� ! �� I ¼ 0 S-wave.
With respect to I ¼ 1=2, we fit the elastic �K phase shifts,
K�!K�, from Refs. [73–76]. Finally, we include an event
distribution of �� around the a0ð980Þ resonance mass
from the central production of ���, Ref. [77], fitted as
in Refs. [11,12].

FIG. 8 (color online). Experimental data and our fits, as explained in the text.

TABLE II. Fitted parameters for the main fit. The 
2=d:o:f: is
0.96. The fits are obtained employing the program MINUIT [63].

Parameter Value

~cd ðMeVÞ 18� 1
~cm ðMeVÞ 23� 4
M1 ðMeVÞ 1100� 20

a�� �0:98� 0:10
aK �K �1:00� 0:20
a�� þ0:04� 0:22
aK� þ0:17� 0:05
aK�0 �3:53� 0:13
a�� �2:55� 0:37

1We have checked that the ��0 channel tends to decouple
from the �� and K �K channels in I ¼ 1 in the region of the
a0ð980Þ.
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Once the fits are performed, we look for the poles of the
scalar resonances �, �, f0ð980Þ, and a0ð980Þ in the un-
physical Riemann sheets continuously connected with the
physical one. Notice that only the f0ð980Þ and a0ð980Þ
poles are actually required for evaluating the pseudosca-
lar–scalar scattering kernels in Sec. II. The � and � are
given for completeness. They are related to the f0ð980Þ and
a0ð980Þ resonances, giving rise to a nonet of light scalar
resonances [44]. Other poles around 1.4 GeV also appear
that we do not include here. The pole positions are given in
Table III. The couplings of the f0ð980Þ and a0ð980Þ to K �K,
used in this work, are collected in Table IV.

APPENDIX B: S-WAVE PROJECTION
OF C3 AND C4ðM2

4Þ
The three- and four-point Green functions C3 and

C4ðm2
4Þ are defined in Eq. (2.5). Here, we consider the

more general case with arbitrary internal masses, and
from the very beginning the S-wave projection is worked
out. Both functions are finite.

We first consider C3 (left diagram of Fig. 9), and follow
its notation with t ¼ ðp1 þ p2Þ2. (Note that all four-
momenta are in-going.) We also introduce two Feynman
parameters u1 and u2 and the relative angle � between the
initial and final pseudoscalars, so that

C3 ¼ i

2

Z þ1

�1
d cos�

Z d4l

ð2�Þ4

� 1

ððlþ p1Þ2 �m2
1Þðl2 �m2

2Þððlþ p1 þ p2Þ2 �m2
3Þ

¼ 1

32�2

Z 1

0
du1

Z u1

0
du2

Z þ1

�1
d cos�½p2

2u
2
1 þ p2

1u
2
2

þ 2p1p2u1u2 þ ðm2
1 �m2

3 � p2
2Þu1 þ ðm2

2 �m2
1

� p2
1 � 2p1p2Þu2 þm2

3 þ i"��1: (B1)

Then, cos� is introduced by taking into account that
p1p2 ¼ ðt� p2

1 � p2
2Þ=2 with t ¼ q20 � jpj2 � jp0j2 þ

2jpjjp0j cos�, with q0 ¼ p0
1 � p0

2, the difference of ener-

gies between the initial and final scalar resonances. We
perform the angular integration and introduce the parame-
ter �2 as u2 ¼ u1�2, so that

C3 ¼ 1

64�2jpjjp0j
Z 1

0

du1
1� u1

Z 1

0

d�2

�2

½logð1þ c Þ

� logð�1þ c Þ�; (B2)

where

c ¼ 1

2jpjjp0jð1� u1Þu2 ½p
2
2u

2
1 þ p2

1u
2
2 þ u1u2ðq20 � jpj2

� jp0j2 � p2
1 � p2

2Þ þ u1ðm2
1 �m2

3 � p2
2Þ þ u2ðm2

2

�m2
1 þ p2

2 � q20 þ jpj2 þ jp0j2Þ þm2
3 � i"��1:

(B3)

For the four-point function C4ðm2
4Þ (right diagram of

Fig. 9), one has

C4ðm2
4Þ ¼

i

2

Z þ1

�1
d cos�

Z d4l

ð2�Þ4

� 1

ððlþ p1Þ2 �m2
1Þðl2 �m2

2Þ
� 1

ððl� p3 � p4Þ2 �m2
3Þððl� p4Þ2 �m2

4Þ
:

(B4)

In this case there is no ambiguity if instead of performing
the cos� integration one directly calculates the related
integration over t ¼ ðp3 þ p4Þ2 by taking into account
that dt ¼ 2jpjjp0jd cos�. (Ambiguities could arise for s
such that the product jpjjp0j becomes complex. The par-
ticular integration to be performed here is not affected by
such a problem; see below.) We also introduce three
Feynman parameters u1, u2, and u3 so that

TABLE III. The pole positions of the scalar resonances ob-
tained from the main fit.

Resonance Re
ffiffiffi
s

p ðMeVÞ Im
ffiffiffi
s

p ðMeVÞ
� 466 235

� 698 294

f0ð980Þ 987 18

a0ð980Þ 1019 33

TABLE IV. Couplings of the f0ð980Þ and a0ð980Þ resonances
to K �K (with definite isospin). These couplings are calculated
from the residues of the corresponding pole (see, e.g., [13,64]).

Resonance gK �K ðGeVÞ jgK �K ðGeVÞj
f0ð980Þ �3:72þ 1:18i 3.90

a0ð980Þ �4:11þ 1:59i 4.41

l

l l l

l

l

l

FIG. 9. Feynman diagrams for C3 (left) and C4ðm2
4Þ (right).
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C4ðm2
4Þ ¼

�1

64�2jpjjp0j
Z 1

0
du1

Z u1

0
du2

Z u2

0
du3

Z tþ

t�
dt½p2

1ð1� u2 þ u3Þðu2 � u3Þ þ 2p1p3ðu1 � u2Þðu2 � u3Þ

þ 2p1p4ð1� u2Þðu2 � u3Þ �m2
2u3 þ p2

3ð1� u1 þ u2Þðu1 � u2Þ þ 2p3p4ðu1 � u2Þu2 þ p2
4ð1� u2Þu2

�m2
1ðu2 � u3Þ �m2

3ðu1 � u2Þ �m2
4ð1� u1Þ � i"��1: (B5)

In terms of the variable t, the previous integral is of the
form

R
dt=ðatþ bÞ2 so that the t-integration can be done

straightforwardly without problems in its analytical ex-
trapolation. The resulting u3-integration is of the formR
du3=½u3ðu23 þ �u3 þ �Þ� that can also be done straight-

forwardly by factorizing the second-order polynomial in
the denominator. Our final expression for C4ðm2

4Þ is

C4ðm2
4Þ ¼

�1

64p2
1jpjjp0j

Z 1

0
du1

Z 1

0

d�2

1� �2

½c ðtþ; u2Þ

� c ðtþ; 0Þ � c ðt�; u2Þ þ c ðt�; 0Þ�; (B6)

where

c ðt; u3Þ ¼ logu3
y1y2

þ logðu3 � y1Þ
y1ðy1 � y2Þ � logðu3 � y2Þ

y2ðy1 � y2Þ ;
u23 þ �u3 þ � ¼ ðu3 � y1Þðu3 � y2Þ;

p2
1ðu23 þ �u3 þ �Þ ¼ m2

4ð1� u1Þ þm2
3ðu1 � u2Þ þ p2

3ð�1þ u1Þðu1 � u2Þ þm2
1u2 þ u2ðsð�1þ u1Þ þ p2

2ðu2 � u1ÞÞ
� ðm2

1 �m2
2 þ p2

4Þu3 þ p2
1u

2
3 þ ðsð1� u1Þ þ ðp2

2 þ p2
4 � tÞu1 � ðp2

1 þ p2
2 � tÞu2Þu3 � i";

t� ¼ ðp0
3 � p0

4Þ2 � ðjpj � jp0jÞ2: (B7)

The S-wave projection of the three- and four-point functions C3 and C4ðm2
4Þ was also obtained for some kinematical

regions and values ofm2
4 from Ref. [78], wherever the latter could be applied. In such cases, our results and Ref. [78] agree.
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