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Static quark-antiquark potential encodes important information on the chromodynamical interaction

between color charges, and recent lattice results show its very nontrivial behavior near the deconfinement

temperature Tc. In this paper we study such potential in the framework of the ‘‘magnetic scenario’’ for the

near Tc QCD plasma, and particularly focus on the linear part (as quantified by its slope, the tension) in the

potential as well as the strong splitting between the free energy and internal energy. By using an analytic

‘‘ellipsoidal bag’’ model, we will quantitatively relate the free energy tension to the magnetic condensate

density and relate the internal energy tension to the thermal monopole density. By converting the lattice

results for static potential into density for thermal monopoles we find the density to be very large around

Tc and indicate at quantum coherence, in good agreement with direct lattice calculation of such density. A

few important consequences for heavy ion collisions phenomenology will also be discussed.
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I. INTRODUCTION

A traditional observable for studying the QCD confine-
ment is the interaction potential between static quark and
antiquark. It was originally inferred from heavy meson
spectrum and Regge trajectories, and has then been exten-
sively studied in lattice gauge theories. (For reviews see
e.g. [1,2].) Its vacuum (T ¼ 0) form is well-known, usually
represented as a sum of a Coulomb part V � 1=r, dominant
at small separation between �QQ, and a linear part V ¼ �r
dominant at large separation (see the black solid curve in
Fig. 1). The latter implies the confinement of quarks and
has been interpreted in terms of chromo-electric flux tube
(or ‘‘string’’) formation between well-separated �QQ pair.
The so-called string tension � in the vacuum (T ¼ 0) has
been consistently determined by different methods to be

�vac � ð426 MeVÞ2 � 0:92 GeV=fm: (1)

With current Relativistic Heavy Ion Collider (RHIC)
and future LHC experimental programs exploring excited
hadronic matter and quark-gluon plasma (QGP) at increas-
ing temperature T, it is very important to know the finite T
form of the static �QQ potential, which has recently been
calculated by means of the lattice QCD. (See e.g. [3–5].)
At finite temperature, there are actually two potentials
associated with a �QQ pair separated by distance r: one is
the free energy FðT; rÞ and the other is the internal energy
VðT; rÞ, with the difference related to the entropy generated
in the medium by the �QQ pair, i.e.

VðT;rÞ ¼ FðT;rÞ�Tð@F=@TÞ ¼ FðT;rÞþTSðT;rÞ: (2)

What is directly evaluated on the lattice is the free energy
FðT; rÞ from which the corresponding VðT; rÞ and SðT; rÞ
can be inferred [3]. While at T ¼ 0 there is no entropy and
the free and internal energies are identical, splitting be-
tween the two shall be expected at T > 0 and may carry
key information about the medium and deconfinement
transition near Tc.
The lattice results indeed show remarkably different

potentials FðT; rÞ and VðT; rÞ near Tc (see e.g. Fig. 1–4
in [6] and also here Fig. 1 adapted from [3]). In particular
let us emphasize two important points. (i) The tensions
(slopes of the potentials at r about 0.3–1 fm) have very
different temperature dependences: while the tension of the

FIG. 1 (color online). The static �QQ potential at T � Tc

(adapted from [3]). The boxes (blue) are for the internal energy
VðrÞ while the diamonds (red) are for free energy FðrÞ, with the
dashed line (green) indicating the strong linear rise in VðrÞ for
r 2 ð0:5; 1Þ fm and the solid curve (black) showing the vacuum
�QQ potential.
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free energy �F decreases with T, to near zero at Tc (an
expected signal of deconfinement), the tension of the in-
ternal energy �V remains nonzero till about T ¼ 1:3Tc,
with a peak value at Tc about 5 times (!) the vacuum
tension �vac (see Fig. 2). (ii) This drastically different
behavior persists to very large distances, where linear
behavior changes to saturated values. Near Tc the internal
energy flattens to a huge asymptotic value at large r ! 1,
e.g. VðT;1Þ � 4 GeV at Tc with the corresponding en-
tropy SðTc;1Þ � 20 implying huge number of states in-
volved, � expð20Þ. These features indicate a strikingly
strong interaction between the static color charges and
the medium near Tc, which persists into the deconfined
phase.

Such static �QQ potentials at finite T are closely con-
nected with a number of phenomenological issues. For
example, the consequence of these features for the survival
of quarkonium in deconfined plasma is much debated, e.g.
on what/which potential should be used [7–9]. If, as sug-
gested in [10,11], the internal energy is used, J=c state
would exist even in the deconfined plasma in 1–2Tc.
Persistence of some baryonic states above Tc is also in-
dicated by other observable like the baryonic susceptibil-
ities [12,13]. These potentials also imply significant
interaction energy in the quark-gluon plasma and in the
many body context this may lead to a large classical
plasma parameter � (defined as the ratio of average inter-
action energy to average kinetic energy): indeed the �
value in strongly coupled QGP has been estimated to be
above one (about three) and thus in a typical liquid regime
(see for example [14–16]). If so, QGP would be a strongly
coupled Coulombic liquid, in agreement with the strong
collective flow observed at RHIC (see more in reviews
[17,18]). Apart from QGP phenomenology, it is important
to understand the microscopic origin of the potentials,
especially the strong splitting between two potentials and
the large energy/entropy associated with the static �QQ pair
near Tc. Earlier attempts can be found in e.g. [19–21].

In this paper wewill specifically focus on the ‘‘tensions’’
�F and �V (as shown in Fig. 2) related to the linear part of
the potentials (while leaving the discussion of ‘‘screening’’
behavior at very large distances to further studies). We will
provide an explanation in the framework of the magnetic
scenario of QCD plasma near Tc [15,22–25]. In such a
scenario, the near Tc QCD plasma is strongly influenced by
the magnetic component, made of relatively light and
abundant chromo-magnetic monopoles. Those are quasi-
particles above Tc which undergo the Bose-Einstein con-
densation (BEC) below Tc, enforcing color confinement
(for reviews see e.g. [26]). Two key points of the present
model for the potentials are: First, we identify the �QQ
free energy as been probed by an adiabatically ‘‘slow
separation’’ process while the internal energy by a ‘‘fast
separation’’ process. Second, we further relate the linear
part of potentials with the flux tube formation, enabled by
condensed monopoles below Tc while thermal monopoles
above Tc, between the �QQ pair during the separation
process [27], and relate the free/internal energy tensions
with the condensed/thermal monopoles, respectively.
These ideas will be elaborated more in Sec. II and III.
The rest of the paper is structured as follows. In Sec. IV

we will develop an analytic ‘‘elliptic flux bag’’ model for a
static charge-anti-charge pair by solving the Laplace equa-
tion for electric field inside it. This allows to get the
potentials correctly interpolating between a Coulomb at
short distance and linear behavior at larger distance. The
model will then be used in Sec. V to determine the free and
potential energies and relate the extracted �FðTÞ and
�VðTÞ with the monopole condensate and the thermal
monopole density, respectively. Finally we summarize
the results in Sec. VI.

II. FREE VS INTERNAL ENERGYAND
SLOW VS FAST SEPARATION

Let us start by examining the difference between the free
energy and the internal energy. We already introduced the
effective string tensions �FðTÞ and �VðTÞ as the slopes of
linear parts in FðT; rÞ and VðT; rÞ respectively, and empha-
sized their quite different T dependencies shown in Fig. 2.
While�F vanishes at T > Tc,�V survives to at least 1:3Tc.
While �F monotonously decreases with T, �V peaks at Tc

to a maximal value of 5 times the vacuum string tension
�vac. What is the difference in the meaning of F and V, and
why do they have such different T dependence? As has
been emphasized in [10], the free and internal energies
actually correspond to slow and fast (relative) motion of
the charges, respectively. Let us explain this idea in more
details.
Consider the system made of the medium as a thermal

bath and the static �QQ pair separated by a distance L.
Because of interaction between the medium particles and
the static pair, the medium’s various eigentstates have their
energies depending on the distance L. When the medium is

FIG. 2 (color online). Effective string tensions in the free
energy �FðTÞ (from [4]) and the internal energy �VðTÞ (ex-
tracted from [3]).
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in equilibrium these states should be populated according
to thermal distributions. This means at different L, the
thermal equilibrium requires different population of medi-
um’s eigenstates. Now suppose the pair of static charges
(held by external ‘‘hands’’) are moved apart in thermal
medium at certain speed v ¼ _L. Clearly when L is
changed, the medium has to rearrange the population of
various eigenstates in order to reach again the thermal
equilibrium and that can happen only on the time scale
of the medium relaxation time. If the motion of static
charges is adiabatically slow, then all the processes for
rearrangement of population will happen; in thermody-
namical context this leads to maintained equilibrium and
maximal entropy/heat generation. If however the pair is
separated very fast, then the time is just not enough for the
medium to ‘‘adjust’’ the eigenstates’ distribution and the
medium can no longer stay in equilibrium; in thermody-
namical context this means the medium does not yet max-
imize its total entropy for the given new L, and during the
course of such fast separation the amount of entropy gen-
erated is therefore less than in the adiabatic case. In the
extreme case of the pair separation on a time scale much
much shorter than the medium relaxation time scale, one
may expect negligible entropy generation.

In summary, the essence of the above arguments is about
the separation of time scales between the probing time
scale versus the medium relaxation time scale. In the
slow case the medium is allowed ample time to repopulate
various states according to equilibrium distribution and
achieve maximal entropy, while in the fast case with the
needed processes for repopulating the medium not occur-
ring the medium no longer maintains thermal equilibration
and generates negligible entropy. It is plausible, therefore,
to identify the adiabatic limit as probing the free energy
FðT; LÞ measured on the lattice with the presence of static
�QQ pair. The ‘‘internal energy’’ VðT; LÞ, on the other hand,
is different from FðT; LÞ by subtracting the entropy term
and thus can be probed in the extremely fast limit.

III. STABLE AND META-STABLE FLUX TUBES

We now turn to the possible microscopic origin of the
linear rise in both potentials. Let us start with the ‘‘dual
superconductor’’ model for QCD confinement in the vac-
uum, introduced by t’Hooft-Mandelstam [28] and well
supported by extensive studies in lattice QCD. In this
model, certain ‘‘magnetically charged’’ condensate (i.e. a
magnetic superconductor) occupies the vacuum and expels
the electric flux between �QQ into a stable flux tube by
forming magnetic supercurrent on tube surface, known as
(dual) Meissner effect. Such flux tube naturally gives
rise to a linear potential and the vacuum string tension is
thus identified with energy per unit length of such flux
tube, mathematically described by the well-known
Abrikosov-Nielsen-Olesen (ANO) solution [29] (for re-
views and further references see e.g. [1,2,30,31]). What

happens at finite T then?With increasing T, the free energy
tension decreases and eventually the linear part in �QQ free
energy disappears at Tc, signaling the deconfinement tran-
sition. Since the flux tube and free energy tension is a direct
consequence of the magnetic condensate, the decrease of
�F toward Tc is naturally interpreted as the gradual ‘‘melt-
ing’’ of the magnetic condensate due to thermal excita-
tions; similar phenomena is known for the usual
superconductor in condensed matter systems.
Now, where does the linear part in internal energy (and

the associated tension �V) come from? In particular, why
does it persist even above Tc? The answer first proposed in
[15] relates it to the ‘‘normal’’ monopoles, as opposed to
the ‘‘supercomponent" which form a Bose-Einstein
Condensation (BEC) and exist only below Tc. Such ther-
mal monopoles can also expel the electric flux into the
(meta-stable) flux tube by forming a magnetic current
(which may suffer from dissipation) on the tube surface;
its dual phenomenon, i.e. magnetic flux tube formation in
thermal electron plasma is well-known in classical (e.g.
solar) plasma physics. The specific condition for the per-
sistence of the electric flux tube in a magnetic plasma was
further developed in [27], for infinitely long flux tubes.
There it has been found that ‘‘normal’’ monopoles are
much less effective for this task as compared with ‘‘super’’
monopoles, but nevertheless are able to mechanically sta-
bilize the flux tube provided high enough density of these
thermal monopoles. What has not been previously consid-
ered is the mechanism for the dynamical formation of the
flux tube between a �QQ pair with finite separation.
Here we provide a dynamical explanation of why large

energy, growing approximately linearly with length, ap-
pears in a magnetic plasma when a pair of two electric
charges are separated with certain speed v. (See sketch of
the setting in Fig. 3.) The answer lies in the Maxwell
equations (with the presence of magnetic sources, see
e.g. [32]), in particularly the dual Faraday’s law which

relates the circulation of the magnetic field
R

~B ~d l over a
closed contour with the change of electric flux penetrating
the enclosed area. As an electric charge moves through the
loop, rotating magnetic field in the magnetic medium leads
to solenoidal magnetic current (a ‘‘magnetic coil’’). In the
confined phase T < Tc this current, after relaxation, be-
comes the persistent supercurrent, remaining forever with-
out loss. Thus, the free energy F has a linear term for
T < Tc. In a deconfined plasma phase T > Tc this is im-
possible, thus �F ¼ 0. The solenoidal ‘‘magnetic coil’’
created in the fast process has only normal magnetic
current, which is a meta-stable flux tube and eventually
disappears due to dissipation. Yet it is still generated; thus
�V � �F is nonzero and there is splitting between free and
internal energy.
Let us emphasize again the different roles of the super

and normal magnetic components. The former responds
quantum mechanically as a whole and does not generate
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any entropy nor contribute to the splitting. The latter,
however, has finite relaxation time and nonzero dissipa-
tion, ‘‘feels’’ the different time scales involved in the slow/
fast processes, and therefore is responsible for entropy
generation and the splitting between free and internal
energy. In short, the �F tells us about the super component
only, while the difference in�V � �F tells us about the
normal component. One arrives at the following picture for
an evolving magnetic medium: with increasing T the
monopole ensemble starts as a monopole condensate and
continuously evaporates into a mixture of both condensed
and thermal monopoles; at T > Tc the condensate melts
entirely into a normal component of thermally excited
monopoles. If so, the thermal monopoles are expected to
be most important in the temperature range 0:8–1:3Tc

where the splitting is most significant.
We end this Sec. with discussions on a few important

phenomenological implications of the ‘‘dual Faraday ef-
fect’’ and the meta-stable flux tube. First, it means that
magnetic monopoles may induce new mechanism of (elec-
tric) jet energy loss particularly near Tc. In the jet quench-
ing process, a very fast electric parton (quark or gluon)
penetrates the bulk medium through various phases and
thus may create behind it the above discussed ‘‘magnetic
coil’’ in the near Tc region where there are abundant
thermal monopoles to be accelerated solenoidally by B

field due to the fast moving electric jet and thus take
enormous amount of energy away from the jet. Such near
Tc enhancement of jet quenching has been first suggested
by us in [33] and found to be strongly favored by the
azimuthal anisotropy data of jet quenching. Second, it
also implies specific patterns of multiparticle correlations
if such flux tubes can be created and protected by mono-
poles in heavy ion collisions, as elaborated first in [34].
One example is related to what happens to the flux tube
created by a fast jet: clearly the monopoles forming the
‘‘coil’’ will subsequently collide with the bulk thermal
matter, with their energy being converted and distributed
into the bigger volume. This may possibly be the beginning
of ‘‘conical flow’’ process suggested in [35]. The other
example concerns the narrow-azimuthal-angle long-range-
rapidity correlations known as ‘‘ridge’’ which seems to
originate from certain local initial fluctuation seeds, but
its narrowness in angle may possibly be preserved till the
end of long bulk evolution only if certain mechanism like
the flux tube by the thermal monopoles protects the initial
seed from acoustic expansion (see detailed discussions in
[34]). The existence of meta-stable flux tubes in the near Tc

plasma (and their associated large entropy) may also bear
relevance to the observed cluster correlations [36]. While
the existence and dynamical formation of such flux tubes
are studied in [27] and here, another very important ques-
tion (particularly for phenomenology) is its lifetime, i.e.
the flux tube decay and the end products. This problem has
recently been partially addressed in [37] where a relatively
short lifetime is found in the classical treatment. On one
hand, from hydrodynamic modeling we know the near Tc

plasma has very small shear viscosity which indicates short
mean free path and frequent scattering, while on the other
hand for the magnetic currents to last long and hold the flux
tube they better not scatter too often. Such a dilemma
might be resolved if the thermal monopoles become really
coherent over a large distance at T close to Tc, and the
lattice study supports such coherence [38]. These questions
will be studied further elsewhere.

IV. ELECTRIC FIELD SOLUTION IN THE
ELLIPSOIDAL BAG

In this Sec. we will solve the Maxwell equation for the
electric field induced by a static charge-anti-charge pair
separated by a distance L ¼ 2a along ẑ axis (�Qe sitting
at �aẑ), with a special ‘‘tangent boundary condition’’
(T.B.C.) on the boundary surface �B, i.e.

~r2
�ðrÞ ¼ Qe½�3ðr� aẑÞ � �3ðrþ aẑÞ�

~r� � n̂�B
j�B

¼ 0: (3)

The model itself is a version of an old idea known as the
Bag Model used for light hadrons [39] at T ¼ 0, now
generalized to give an approximate description of the

FIG. 3 (color online). Schematic demonstration of magnetic
solenoidal by Dural Faraday’s law, see text.
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electric field configuration between static �QQ in the
chromo-magnetic medium at finite temperature.

A simplification we use is that the boundary �B is
approximated by a rotational ellipsoid with the two charges
at its focal points. This boundary shape can be specified by
a single parameter �B, the ellipticity. Such boundary �B is
very conveniently parameterized in terms of the parabolic
coordinates system ð�;�;�Þ, which we use (see the
Appendix for necessary formulas related to it). In Fig. 4
we show a few ellipsoidal shapes with parameters (from
inside to outside) ðL; �BÞ to be (0.1, 6.62), (1, 1.68), (2,
1.29), (3, 1.16), respectively. The dashed lines indicate
constant � curves (for L ¼ 3 case) with (from top to
bottom) � ¼ 0:8, 0.5, 0.2, �0:2, �0:5, �0:8, the solid/
empty circles indicate the positions of positive/negative
charges, and the arrows indicate the tangent electric fields
on the boundary.

We follow the standard method in classical electrostatics
(see for example [32]). First, we rewrite (3) in ð�;�;�Þ
coordinates for solutions with axial symmetry, i.e. assum-
ing � ¼ �ð�; �Þ independent of angle �:

@

@�

�
ð�2 � 1Þ @�

@�

�
þ @

@�

�
ð1� �2Þ @�

@�

�

¼ Qe�ð�� 1Þ
�L

�
�ð�� 1Þ � �ð�þ 1Þ

�

¼ X
�¼1;3;5;...

Qe�ð�� 1Þ
�L

ð2�þ 1ÞP�½��: (4)

The last line in the above is an expansion of the � depen-
dence in terms of Legendre functions P�½��, which in the
interval� 2 ½�1; 1� form a set of orthogonal and complete
basis functions. Similarly, we do the expansion for the �
dependence of �:

��;� ¼ X
�¼1;3;5;...

Qef�½��
�L

ð2�þ 1ÞP�½��: (5)

Then by simply comparing the coefficients of P�½�� on
both sides of Eq. (4) we obtain the equations for the
functions f�½�� defined in � 2 ð1;1Þ:

d

d�

�
ð1� �2Þ df�

d�

�
þ �ð�þ 1Þf� ¼ ��ð�� 1Þ; (6)

while the boundary condition in Eq. (3) now becomes

f0½� ¼ �B� ¼ 0 (7)

with the parameter �B specifying the boundary surface �B.
The solutions are given in terms of the Legendre functions
of the first and second kinds:

f�½�� ¼ �kB�P�½�� �Q�½��

kB� ¼ �Q0
�½�B�

P0
�½�B� ¼ ��BQ�½�B� �Q��1½�B�

�BP�½�B� � P��1½�B� :
(8)

The full electrostatic potential is then given by

�ð ~rjL; �BÞ ¼ � Qe

4�L

X
�¼1;3;5;...

� ð8�þ 4ÞP�½��ðkB�P�½�� þQ�½��Þ

¼ Qe

4�L

2

�þ �
þ ð�QeÞ

4�L

2

�� �
� Qe

4�L

� X
�¼1;3;5;...

ð8�þ 4ÞkB�P�½��P�½��: (9)

We have used the Neumann expansion of Legendre func-
tions (see e.g. [40]) to write down the second equality; in
there the first two terms are nothing but the usual Coulomb
potentials by the �Qe charges, while the last summation
term reflects the nontrivial boundary contribution. At very
large � the summand terms go asymptotically like
���=�2�þ2

B , so with � satisfying 1< � 	 �B, the summa-

tion is guaranteed to converge. The electric field ~E ¼
� ~r� has been calculated using (A4) and the expression
is quite lengthy, which we skip showing here.
The volume occupied by the electric field (i.e. the ellip-

soid bulk within �B) is given by

VEðL; �BÞ ¼
Z �B

1
d�

Z 1

�1
d�

Z 2�

0
d�H�H�H�

¼ �L3

6
�Bð�2

B � 1Þ: (10)

And the total electric field energy in this volume is given by
FIG. 4 (color online). The ellipsoidal shapes we use for solv-
ing the electric field equations, see text for detailed explanations.
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EtotalðL; �BÞ ¼
Z �B

1
d�

Z 1

�1
d�

Z 2�

0
d�H�H�H�

� �e ��ð�; �Þ
2

¼ Eself þ EE

Eself ¼ Q2
e

4�L

1

ð�þ �Þ ! 0
þ Q2

e

4�L

1

ð�� �Þ ! 0

EE ¼ � Q2
e

4�L
þ Q2

e

4�L

X
�¼1;3;5;...

ð8�þ 4ÞkB�


 Q2
e

4�L
�EEð�BÞ: (11)

The Eself is the familiar self-interaction of the two charges
which we discard. The ‘‘real’’ interactional energy EE

consists (again) of a Coulomb piece and a boundary
modification.

We conclude this Sec. by one remark: so far the two key
variables L and �B remain free parameters. They will be
related in the next Sec..

V. THE FREE AND INTERNAL ENERGY
OF THE CHARGE PAIR

With the solutions of the electric field in the ellipsoidal
bag (characterized by two parameters L and �B) from the
preceding Sec., we now examine the dynamic formation of
such bag when separating a pair of �QQ from zero to a finite
distance L. The key point is that for a given L, the bag
boundary �B shall be optimized so that the ‘‘cost’’ for
creating such a configuration is minimized. Furthermore,
we study two settings: slow and fast separation of the �QQ
to a finite distance L, with the outcome being, respectively,
the free and internal energy associated with the pair. With
slow separation, the free energy increase associated with
the pair shall be minimized, and the dominant contribu-
tions to the free energy include both the electric field
energy stored inside the bag and the energy needed to
exclude the monopole condensate out of the bag volume
(noting that for both there is no entropy associated and for
thermal monopoles their contribution to free energy in the
slow separation process largely cancels out between energy
and entropy). With fast separation, the energy increase
shall be minimized, and the dominant contributions to
the energy include both the electric field energy stored
inside the bag and the energy deposited to the thermal
monopoles via the dual Faraday effect. We will calculate
both processes in the rest of this Sec. and make connections
with the lattice data.

A. Free energy from slow separation

As aforementioned, when the �QQ pair is separated in an
adiabatically slow way, the super component of the mag-
netic medium, i.e. the monopole condensate, will be ex-
pelled entirely (in an idealized picture) out of the volume
VE occupied by electric field. Suppose the condensate has a

negative energy density �	C (thus a positive ‘‘bag pres-
sure’’), then the overall change in free energy brought
about by separating the pair will be

�F ¼ EEðL; �BÞ þ 	CðTÞ � VEðL; �BÞ: (12)

Now for given separation distance L and bulk temperature

T, we determine the physical boundary of flux bag �
phy
B by

minimizing the above �F, i.e. the physical boundary

�
phy
B ðL; TÞ, satisfies

@�F

@�B

���������B¼�
phy
B

¼ 0: (13)

Combining the above with Eq. (10) and (11) we then obtain

�
1

3�2
B � 1

d �EE

d�B

����������B¼�
phy
B

¼ �
�
L

lC

�
4
; (14)

where we have introduced a length scale

lC 
 ð6
E=�	CÞ1=4 (15)

with
E 
 Q2
e=4�. This equation could be solved easily by

numerics. For each L with the above determined �phy
B , we

obtain via (12) the free energy associated with the pair as a
function of separation L, shown in Fig. 5(a). It turns out to
be a Coulomb at short distance (see the dashed curve
(magenta) ) plus linear at large distance (see the dashed
line (blue) ). The occurrence of a linear part is due to the
physical effect that for large L the medium pressure (with
which the electric field has to balance) limits the transverse
size of flux bag (where the field gets weak as L increases)
to saturate rather than grow forever. Thus, the bag shape
approaches a cylinder. Mathematically, as L ! 1 one

finds �phy
B ! 1 but L �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�phy

B Þ2 � 1
q

! finite. In Fig. 4

the four bag shapes are at growing L with �B determined
as in the above, which clearly shows the shape becomes
more and more cylindrical at large L.
By fitting the dimensionless slop of the linear part in

Fig. 5(a) we obtain the free energy string tension �F:

ffiffiffiffiffiffiffi
�F

p ¼ 2:32� 
1=4
E � 	1=4C : (16)

(See [41] for a note about the numerical coefficient).
Inversely, since we know �FðTÞ from lattice as shown in
Fig. 2, from the above formula we can infer the T depen-
dence of the monopole condensate energy density 	C (see
Fig. 5(b)). The two curves are for 
E being 0.5 (upper) and
1 (lower), respectively. In both cases, 	C decreases with T
and drops abruptly close to Tc. The interpretation is natu-
ral: toward Tc the monopole condensate becomes less and
less due to increasing thermal excitations and eventually
dies out around Tc.
A connection can be made between our result (16) and

the dual superconductor model (also known as Abelian
Higgs model) of vacuum confinement [30]. In that model,
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a quadratic Higgs potential leads to a Higgs condensate
(the prototype of postulated monopole condensate) �0

(with dimension of mass). By solving ANO flux tube a
string tension is obtained in the form

ffiffiffiffi
�

p ¼ c1�0 with the
coefficient determined by gauge and Higgs coupling con-
stants � and g. On the other hand, the Higgs potential
implies that the condensate has a negative energy density
�	C ¼ ���4

0=2. Thus, one arrives at a similar relation

between string tension and condensate energy density:ffiffiffiffi
�

p ¼ c2	
1=4
C in that model with the coefficient to be

determined numerically for given coupling parameters
(see e.g. [42]). While that model works primarily at
T ¼ 0, our model for �F extends to finite T.

B. Internal energy from fast separation

Nowwe study the case of separating the two charges to a
finite distance L within a time much smaller than the
relaxation time of the surrounding thermal bath. In par-
ticular we focus on the region about 0:8–1:3Tc, in which
the normal component of thermal monopoles becomes
substantial and dominant while the super component be-
comes less and less.

During such fast process, each monopole originally in
the volume to be occupied by the electric filed (i.e. the
ellipsoidal bag) will get a ‘‘kick’’ due to the dual Faraday
effect (see Fig. 3) but have no time to release this energy
into the surrounding medium. Suppose the positive charge
is moved along ẑ axis from z ¼ C to z ¼ Cþ �z in �t (and
correspondingly the negative one from z ¼ �C to z ¼
�ðCþ �zÞ), then the electric flux penetrating the plane
z ¼ C changes from 0 to Qe, thus generating a magnetic
dynamical voltage Qe=�t. For a monopole at a transverse
distance � from ẑ axis, the force isQmðQe=�tÞ=ð2��Þ, thus
it gets the ‘‘kick’’ and obtains a momentum �p ¼
QmQe=ð2��Þ, forming strong nonthermal and nonsuper
magnetic currents. For a bag ðL; �BÞ formed after separa-
tion, the total kinetic energy passed to the monopoles in the
flux bag is obtained by integration over the bag volume
(with D 
 QmQe=4� ¼ 1):

�KM ¼
Z �B

1
d�

Z 1

�1
d�

Z 2�

0
d�H�H�H�

� 4nMD

L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�2 � 1Þð1� �2Þp

¼ �2DnM
2

L2�Bð�2
B � 1Þ1=2: (17)

We emphasize in the above only the monopole density
nMðTÞ enters as a property of the medium depending on
T, while other equilibrium properties of the medium shall
not be ‘‘felt’’ in such fast process. In obtaining the above,
we have estimated the acquired kinetic energy by simply
using the momentum kick which is a reasonable approxi-
mation for sufficiently light monopoles, expected to be the
case in the near Tc region [15,38].
Now the total energy change during such process in-

cludes the electric field energy in the bag volume, the
energy for expelling the monopole condensate (if there is
any) out of the volume, and the kinetic energy delivered to
the normal monopoles, which are summed to be �E ¼
EEðL; �BÞ þ 	CVE þ �KMðL; �BÞ. The last new term due
to the thermal monopoles will then partly convert into
entropy after they interact with the medium particles at
large for a time longer than the relaxation, ultimately caus-
ing the splitting between free/internal energy. Since the
condensate term 	CVE becomes very small close to Tc (as
we showed in the previous subsection) and vanishes above
Tc, we neglect it here for simplicity, i.e.�E � EEðL; �BÞ þ
�KMðL; �BÞ. To obtain the physical value �phy

B , we need to
minimize �E according to �B, which leads to

@�E

@�B

���������B¼�
phy
B

¼ 0: (18)

This can be written as2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
B � 1

q
2�2

B � 1

d �EE

d�B

3
75
�������������

�B¼�
phy
B

¼ �
�
L

lM

�
3
: (19)

FIG. 5 (color online). (a) (Left) free energy F (in unit of 
E=lC) versus separation L=lC; (b) (Right) monopole condensate energy
density ð	CÞ1=4 in unit of

ffiffiffiffiffiffiffiffiffi
�vac

p
with the two curves for 
E being 0.5 (upper, red) and 1 (lower, blue) in Eq. (16), respectively.
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Here we introduced a different length scale lM 

ð2
E=�

2DnMÞ1=3. Not surprisingly we find the internal
energy, shown in Fig. 6(a), to be a Coulomb at short
distance (see the dashed curve (magenta) ) plus linear at
large distance (see the dashed line (blue) ).

Now the string tension in the internal energy is given by
the following formula:

ffiffiffiffiffiffiffi
�V

p ¼ 3:88� 
1=6
E � n1=3M : (20)

(See [41] for a note about the numerical coefficient). Since
we know �V from lattice data in the 0:8–1:3Tc region, by
the above formula we can convert �V into the thermal
monopole density nMðTÞ in the same region; see the two
curves (connecting box symbols) for 
E being 0.5 (upper,
red) and 1 (lower, blue), respectively, in Fig. 6(b). We also
show an independent information on the thermal monopole
density above 1:3Tc from lattice study in [25] in Fig. 6(b)
as green curves (connecting diamond symbols): the lower
one is the original data for SUð2Þ in [25], while the upper
one is an extrapolation to SUð3Þ by the simple Nc � 1
scaling for monopole species (i.e. twice more monopoles
in SUð3Þ than in SUð2Þ), with both curves extended toward
Tc according to the fitting formula nm=T

3 ¼
0:48= logð2:48 � T=TcÞ1:89 (and twice in the upper one for
SUð3Þ) in [25]. The comparison shows reasonably good
agreement between our estimates for the thermal monopole
density from string tension and the measured density by
directly identifying the thermal monopoles on the lattice.

A few comments are in order: (i) for 0:8–1Tc the density
quickly grows toward Tc while at the same time results
from previous subsection show rapid dropping of conden-
sate density in the same region, which strongly indicates
the scenario that close to Tc monopole condensate is con-
tinuously and substantially getting excited into thermal
monopoles; (ii) around 1:3Tc we see our results connect
well to the higher T lattice data with reasonable values of
coupling
E; (iii) cooling down to Tc we find the monopole

density nM=T
3 quickly rising almost by an order of mag-

nitude; (iv) the strongly increasing density also suggests
rapid increase of magnetic screening toward Tc, which is in
agreement with lattice results [43].
A particularly interesting feature is that the (normalized)

density nM=T
3 increases roughly by 1 order of magnitude

from 1:3Tc down to Tc, with the number much larger than
even a Stefan-Boltzman gas. This indicates that near Tc the
monopoles should be very light, and furthermore their
interactions should make it beneficial in energy to have a
large number of monopole-anti-monopole pairs. The
monopoles are so dense and light that they become the
dominant component in the near Tc plasma and presum-
ably become quantum coherent, and eventually reach the
condensation point at Tc (see most recent lattice results in
[38] showing evidences for such a scenario). It has been
suggested that these thermal monopoles near Tc seem to
form a densely packed liquid [22,25].

VI. SUMMARY

In this paper, we have argued that the free energy Fðr; TÞ
and internal energy Vðr; TÞ can be probed by slow and fast
separation of the �QQ pair, respectively. Furthermore we
have identified the linear part in both potentials with flux
tube formation between the pair: for free energy as probed
by slow separation, there is stable flux tube protected by
magnetic supercurrent due to condensed monopoles which
has no dissipation and exists below Tc; for internal energy
as probed by fast separation, there is meta-stable flux tube
protected by magnetic normal current due to thermal
monopoles which are very dense in the region 0:8–1:3Tc

and generate large entropy (the splitting between free and
internal energy) via dissipation on a longer time scale.
Based on these ideas we have solved analytically the
elliptic bags and provided expressions for the potentials
at all separations, which happen to describe the data very
well.

FIG. 6 (color online). (a) (Left) internal energy V (in unit of 
E=lM) versus separation L=lM; (b) (Right) thermal monopole density
nM=T

3 with the two curves connecting box symbols for 
E being 0.5 (upper, red) and 1 (lower, blue) in Eq. (20), respectively, while the
two dashed curves (green) connecting diamond symbols showing SUð2Þ (lower) lattice data and their SUð3Þ extrapolation (upper) for
T > 1:3Tc from [25] (see text for more details).
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The main outcome from our study of the static �QQ
potentials is the particular relations we suggest between
the free energy Fðr; TÞ and internal energy Vðr; TÞ mea-
sured on the lattice and the densities of the condensed and
‘‘normal’’ monopoles (see Eqs. (16) and (20)). Since those
densities can be directly obtained from the lattice configu-
rations, one may check if these relations are correct or not.
Such further tests of the ‘‘magnetic scenario’’[15,23] for
the near Tc QCD plasma are rather straightforward and
should be performed.
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APPENDIX

In this Appendix we briefly list the parabolic coordinates
formulae needed for the calculation in Sec. II.

The coordinates we use are ð�; �;�Þ with two focal
points at �aẑ, which are related to cylindrical coordinates
ð�;�; zÞ by

�¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2 � 1Þð1��2Þ

q
; �¼�; z¼ a��: (A1)

The variables are defined in the following domains: � 2
ð1;1Þ, � 2 ½�1; 1�, � 2 ½0; 2�Þ. Writing ds2 ¼
H2

�d�
2 þH2

�d�
2 þH2

�d�
2, we have

H� ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p ;

H� ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p ;

H� ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2 � 1Þð1� �2Þ

q
:

(A2)

The Laplacian is given by

~r2 ¼ 1

a2ð�2 ��2Þ
�
@

@�

�
ð�2 � 1Þ @

@�

�
þ @

@�

�
�
ð1��2Þ @

@�

�
þ

�
1

�2 � 1
þ 1

1��2

�
@2

@�2

�
: (A3)

Finally the gradient is given by

~r ¼ �̂
@

H�@�
þ �̂

@

H�@�
þ �̂

@

H�@�
: (A4)

For more details one could consult books such as [40].
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