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We discuss the importance of inelasticity in the P-wave �� amplitude on the Dalitz distribution of 3�

events in J=c decay. The inelasticity, which becomes sizable for �� masses above 1.4 GeV, is attributed

to K �K ! �� rescattering. We construct an analytical model for the two-channel scattering amplitude and

use it to solve the dispersion relation for the isobar amplitudes that parametrize the J=c decay. We present

comparisons between theoretical predictions for the Dalitz distribution of 3� events with available

experimental data.
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I. INTRODUCTION

One of the most outstanding difficulties of experimental
light quark spectroscopy—like in studies of charmonium
decays to light quark mesons at BES III [1] or future
studies of photoproduction at GlueX—is in the disentan-
glement of overlapping and interfering meson states, which
often have widths of several hundreds of MeV. This re-
quires amplitude analyses, where experimental distribu-
tions are described by a series of theoretical amplitudes
(decay amplitudes) with each amplitude generally multi-
plied by a freely fit parameter (production amplitudes). In
the past, decay amplitudes were generally written using the
isobar model, i.e. assuming a multiparticle decay pro-
ceeded through a series of two-body resonance decays
with the resonance decays usually parametrized as Breit-
Wigner amplitudes. This model, however, is known to
violate unitarity. With high-statistics data samples now
available at BES III and later in GlueX, as well as in other
current and future experiments, more careful attention
must now be paid to the theoretical descriptions of the
decay amplitudes, and phenomena such as final-state re-
scattering and inelasticity must be considered.

The decay J=c ! �þ���0, which is observed to pro-
ceed dominantly through ��, provides a simple context
in which rescattering effects can be studied. Here the ��
system is limited to either JPC ¼ 1�� (P wave) or 3��
(F wave). Neglecting the small 3�� component, this reac-
tion thus provides clean access to P-wave �� scattering.
The decay J=c ! �þ���0 has previously been studied
experimentally by BES II [2] and BABAR [3], but limited
statistics prevented any detailed analysis of the 3� sub-
structure. BES III will soon have a set of J=c decays many
times larger than what is now available, and this data set
could be used to greatly improve many of the theoretical
uncertainties associated with rescattering effects.

In this work, we present a coupled channel analysis of
J=c ! �þ���0 decays in which we consider both ��
andK �K isospin-1 intermediate states. In particular, we take
advantage of unitarity constraints to reconstruct the ampli-

tudes based on their analytical properties. Unitarity relates
the discontinuity of the isobar amplitude to the scattering
amplitude and we use the available data on P-wave ��
scattering to construct analytical �� and K �K scattering
amplitudes.We show that available data on the 3� decay of
the J=c is inconsistent with the single channel parametri-
zation. The effect of the intermediate K �K pairs is to
enhance the contribution from the tail of the �ð770Þ while
reducing contributions from higher-mass � excitations.
This paper is organized as follows. In the following

section, we discuss the analytical properties of the produc-
tion and scattering amplitudes. We also construct an ana-
lytical model for two-channel �� and K �K scattering and
finally compare theoretical predictions with the experi-
mental data. A summary is given in Sec. III.

II. P-WAVE �� EFFECTS
IN J=c ! �þ���0 DECAY

For each helicity state, �, of the J=c , the amplitude to
decay to three pions is a function of three angles and two
invariant masses. In the rest frame of the J=c , the angles
may be chosen to specify the orientation of the plane
formed by the momenta of the three produced pions with
respect to the direction of polarization of the J=c . The
invariant masses correspond then to the Dalitz variables
describing the 3� system. Denoting the four-momenta by
p�;0, P for ��, �0 and J=c , respectively, the general

expression for the amplitude is given by

h�0�þ��; outjJ=c ð�Þ; ini ¼ ð2�Þ4�4

� X
i¼0;�

pi � P

�
iT�;

(1)

with, in the rest frame of the J=c ,

T� ¼ �i�ð�Þ � ðp̂þ � p̂�ÞFðsþ�; s0þ; s�0Þ: (2)

Here � is the polarization vector of the J=c , the Dalitz
invariants are defined by sij ¼ ðpi þ pjÞ2 for i, j ¼ �; 0

and satisfy sþ� þ s0þ þ s�0 ¼ M2 þ 3m2
�, p̂i ¼ pi=jpij,

and the scalar form factor F describes the dynamics of the
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decay. It is jFj2 that determines the distribution of events in
the Dalitz plot, i.e. jFj2 ¼ const yields a flat distribution.
Since

P
ipi ¼ 0 in the J=c rest frame, any two pion

momenta can be used instead of pþ and p� in Eq. (2) to
specify the orientation of the decay plane.

The isobar model makes a specific assumption about T,
i.e. the decay is assumed to proceed via a quasi-two-body
process in which a pair of pions in a low partial wave and a
spectator are formed without any further interactions. The
isobar model violates unitarity, which forces interactions
between pions from the quasi-two-body state and the
spectator to be included. If the quasi-two-body state, how-
ever, is dominated by a low-mass, narrow resonance, then
the overlap between the resonance and the spectator pion
wave functions is expected to be small. Indeed, in the case
of the ��N final state at a total center of mass energy
below 2 GeV [4,5] (one of the very few phenomenological
analyses of rescattering effects in three-particle systems
that we are aware of), the rescattering corrections were
found to not exceed 20% [6]. In the case of the J=c with
even higher center of mass energy and with a pronounced �
resonance in ��, we expect these effects to be even
smaller. Nevertheless, it will be important to quantify the
size of such rescattering effects in three-body J=c decays,
in particular, in view of the very high-statistics data cur-
rently being collected at BES III.

The two lowest �� partial waves allowed in J=c decay
have L ¼ 1 (P) and L ¼ 3 (F). Little is known about
higher partial waves, but the F wave is already very
weak with the phase shift staying below 5� for energies
up to 1.45 GeV [7]. In the following we will thus keep only
the P wave in our isobar analysis. Within the isobar model
with a single P-wave �� isobar, the amplitude T in Eq. (1)
is given by

T� ¼ X
i¼0;�

X
�¼�;0

D1�
�;�ðriÞd1�;0ð�iÞF�ðsjkÞ (3)

where the angles are illustrated in Fig. 1 and the indices ijk
run through cyclic permutations of 0,þ,� [8,9]. Here � is
the spin projection of the J=c , which, together with the x
and y defined with respect to a lab coordinate system,
defines the z axis. The rotation rk is given by three Euler
angles, rk ¼ rkð�k; #k; c kÞ, which rotates the standard
configuration that corresponds to the ðijÞk coupling
scheme (with the ij forming the L ¼ 1 isobar and�k being
the spectator) to the actual one. In the standard configura-
tion �k has momentum along �z and �i and �j have
momenta in the xz plane with �i having a positive x
component. Finally, �k is the polar angle of the �i in the
�i�j rest frame. In other words, �k and #k are the azimu-
thal and polar angles, respectively, of the total momentum
of the �i�j pair in the 3� rest frame, while c k and �k are
the azimuthal and polar angles, respectively, of the �i in
the�i�j rest frame (i.e. the isobar rest frame). For the three
possible coupling schemes, the corresponding Euler rota-
tions, ri, i ¼ �; 0, are related to each other by

r0 ¼ rþrð0; �þ; 0Þ ¼ r�r�1ð0; ��; 0Þ; (4)

where �þð��Þ is the angle between �þ (��) and �0 in
the 3� rest frame. This enables us to write T in terms of
Dðr0Þ alone:

T� ¼ X
�;	¼�;0

D1�
�;	ðr0Þ½d1	;0ð�0Þ�	�F�ðsþ�Þ

þ d1�	ð�þÞd1�;0ð�þÞF�ðs�0Þ
þ d1	�ð��Þd1�;0ð��ÞF�ðs0þÞ�: (5)

The helicity amplitudes, F�, are linear combinations of

the L� S coupling, isospin-I amplitudes, FJ
ILS [10]. In the

case considered here with I ¼ L ¼ S ¼ 1, only a single
amplitude, F1

111, contributes, and

F�ðsijÞ ¼ � 1ffiffiffi
6

p 3

4�
h1�j1; �; 1; 0iF1

111ðsijÞ; (6)

which implies F0 ¼ 0 and F1 ¼ �F�1. Finally, compar-
ing with Eq. (2), in the isobar model we obtain

Fðsþ�; s0þ; s�0Þ
¼ � 1ffiffiffi

6
p 3

4�

X
	¼�

ð�	;1 þ �	;�1Þd11;0ð�0ÞF1ðsþ�Þ

þ ðd11;	ð��Þ þ d1�1	ð��ÞÞd11;0ð��ÞF1ðs0þÞ
þ ðd11;	ð�þÞ þ d1�1;	ð�þÞÞd11;0ð�þÞF1ðs�0Þ: (7)

A. Unitarity constraints on the isobar amplitudes

Writing the J=c decay amplitude as an analytical func-
tion of the channel subenergy, sjk, one finds

hðijÞk; outjJ=c ; ini � hðijÞk; injJ=c ; ini
¼ ð2�Þ4iX

i0j0
�4ðpi þ pj � p0

i � p0
jÞt�ðij; i0j0Þ

� hði0j0Þk; outjJ=c ; ini; (8)

FIG. 1. Definition of the decay angles in the J=c rest frame
(left and top right) and the �þ�� isobar rest frame (bottom
right).
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where tðij; i0j0Þ is the scattering amplitude between the
incoming jij; ini and the outgoing ji0j0; outi state.
The two matrix elements on the left-hand side (lhs) give
the J=c decay amplitude evaluated at sij þ i
 and sij �
i
, respectively. Similarly, discontinuities across the other
two subchannel energies can be considered. However,
because of the symmetry of the isobar amplitude under
permutation of the three pions, they all lead to the same
unitarity relation. The summation over intermediate states
on the right-hand side (rhs) should include inelastic chan-
nels. It is known that the P-wave �� amplitude is elastic
up to energies�1:4 GeV, with the K �K channel effectively
saturating inelasticity above this energy, at least up to
�1:9 GeV where data are available [11–13]. Thus, using
a single K �K intermediate channel, Eq. (8) leads to

ImF̂�ðsþ i
Þ ¼ t̂���ðsÞ�̂�ðsÞF̂�ðsÞ�ðs� 4m2
�Þ

þ t̂��KðsÞ�̂KðsÞF̂KðsÞ�ðs� 4m2
KÞ: (9)

As discussed in Sec. II, this is an approximate relation,
which ignores contributions to the rhs from rescattering
between a pion from the isobar and the spectator pion.
In Eq. (9), the helicity-1 isobar amplitude, F1 from the rhs
of Eq. (7), is denoted by F�ðsÞ to distinguish it from the
corresponding helicity-1 amplitude for production of K �K
P-wave pair in J=c ! ðK �KÞP�, which we denote by

FKðsÞ. Furthermore we define F̂�ðsÞ (� ¼ �;K) as the
reduced isobar amplitude, i.e. the amplitude with the an-
gular momentum barrier factors

2q�ðsÞ 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� s�

p
; s� ¼ 4m2

�;

2pðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2 � ð ffiffiffi

s
p þm�Þ2ÞðM2 � ð ffiffiffi

s
p þm�Þ2Þ

M2

s
;
(10)

removed, so that F̂� 	 F�=ð2q�2pÞ. Here q� is the
relative momentum between the pions (� ¼ �) or kaons
(� ¼ K) in the isobar rest frame, and p is the breakup
momentum of the J=c (massM) into an isobar of mass

ffiffiffi
s

p
and the spectator pion. In addition, t�� (tK �K) is the elastic,
isospin-1 �� (K �K) P-wave amplitude, and t�K is the
P-wave transition amplitude for K �K ! ��. Similarly,
t̂�� are defined as the scattering amplitudes without the

barrier factors, i.e. t̂�� 	 t��=ð4q�q�Þ. In terms of the

P-wave phase shifts, �� and �K, and the inelasticity, 
,
these amplitudes are given by

t�� ¼ 
e2i�� � 1

2i��

; tK �K ¼ 
e2i�K � 1

2i�K

;

t�K ¼ tK� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
2

p
eið��þ�KÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffi
���K

p ;

(11)

where the phase space factors are given by ��ðsÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s�=s

p
and the �̂� in Eq. (9) are defined as �̂�ðsÞ 	

4q2�ðsÞ��ðsÞ ¼ ðs� s�Þ��ðsÞ. Similarly one finds

ImF̂Kðsþ i
Þ ¼ t̂�K�ðsÞ�̂�ðsÞF̂�ðsÞ�ðs� 4m2
�Þ

þ t̂�KKðsÞ�̂KðsÞF̂KðsÞ�ðs� 4m2
KÞ: (12)

In the isobar approximation the form factors F� and FK

are real analytical functions (F̂�ðs�Þ ¼ F̂�
�ðsÞ) of a single

subchannel energy and thus have only the unitary cuts
and satisfy

F̂ �ðsÞ ¼ 1

�

Z 1

s�

ImF̂�ðs0Þ
s0 � s

ds0: (13)

With ImF̂� given by Eqs. (9) and (12) the isobar form
factors become a set of two coupled integral equations. An
analytical solution can be obtained using the standard
Omnés-Muskhelishvili approach [14,15]. To this extent
one first notices that, in the two-channel (� ¼ �, K)
approximation considered here, the unitarity condition
for the reduced scattering amplitudes, t̂��, is given by

Im t̂��ðsþ i
Þ ¼ X
�¼�;K

t̂���ðsÞ�̂�ðsÞ�ðs� s�Þt̂��ðsÞ: (14)

This implies that the right-hand discontinuity relations for

F̂� are satisfied by the functions [16]

F̂ �ðsÞ ¼
X

�¼�;K

t̂��ðsÞP�ðsÞ; (15)

where the production amplitudes, P�ðsÞ, are real for s > 0

and free from right-hand side discontinuities. If F̂�ðsÞ is to
be free from discontinuities for s < 0 then the production
amplitudes P�ðsÞ have to satisfy the integral equation

P�ðsÞ ¼ 1

�

Z 0

�1
ds0

ImP�ðs0Þ
ðs0 � sÞ : (16)

For s < 0, ImP�ðsÞ is obtained from the condition

ImF̂�ðsÞ ¼ 0,

ImP�ðsÞ ¼
X

�;�¼�;K

½Ret̂ðsÞ��1
��½Imt̂ðsÞ��� ReP�ðsÞ: (17)

In general, at most one subtraction in Eq. (16) may be
needed based on the asymptotic behavior of the scattering
amplitude, which is discussed below. The subtraction con-
stants would then become fit parameters in this unitarized
isobar approach.

B. P-wave �� scattering amplitude:
General properties

In order to solve Eqs. (13) and (16), it is convenient to
separate the left (s < 0) and right (s > s�) cut contribu-
tions to the reduced scattering amplitudes t̂��ðsÞ. This can
be done using the ‘‘N=D’’ representation independently for
the amplitude of each channel [17],

t̂ �� ¼ N��ðsÞ
D��ðsÞ ; (18)
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with N�� ¼ N�� and D�� ¼ D�� having only the left-

and right-hand cuts, respectively. Then analyticity of the
amplitudes in the cut s plane then leads to [18]

N��ðsÞ ¼ 1

�

Z 0

�1
ds0

Imt��ðs0ÞD��ðs0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs0 � s�Þðs0 � s�Þ

q
ðs0 � sÞ

(19)

and

D��ðsÞ ¼ 1� ðs� s0Þ
�

Z 1

s�

ds0
N��ðs0ÞR��ðs0Þ
ðs0 � sÞðs0 � s0Þ

��
Np

p¼1

s� s0
sp;�� � s0

�p;��

sp;�� � s
; (20)

where

R��ðsÞ ¼
Imt̂��ðsÞ
jt̂��ðsÞj2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� s�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� s�

p
jt��ðsÞj2

� X
�¼�;K

t���ðsÞ��ðsÞ�ðs� s�Þt��ðsÞ:

(21)

We have chosen to normalize N�� and D�� such that

D��ðs0Þ ¼ 1 (a convenient choice that will be employed

later is s0 ¼ 0). The last term in the dispersion relation for
D�� reflects the so-called CDD ambiguity [19]; the uni-

tarity relation in Eq. (14) does not uniquely determineD��

if t̂�� vanishes at some s ¼ sp;��, p ¼ 1; . . . ; Np. These

zeros are then incorporated as poles in D�� with �p;��

being their residues. It is clear from Eq. (11) that these
poles can exist only in the elastic region of sK > s > s� or
in the inelastic region s > sK if inelasticity happens to
vanish, 
 ¼ 1 (including the point at infinity). At every
CDD pole the phase of the elastic amplitude passes through
180� or the inelastic amplitude vanishes. If the residue of a
CDD pole is small then D��ðsÞ will develop a zero on the
unphysical sheet near the position of the pole, i.e. produce
a resonance. Thus, in the past it has been proposed to
identify CDD poles with the elementary quark bound
states that turn into physical resonances when coupled to
the continuum channels. Indeed it has been shown that in
potential models describing, for example, the scattering
of a static source with internal structure, the CDD
poles correspond to excitations of the target [20].
Asymptotically, at large s, t��ðs ! 1þ i
Þ<Oð1Þ, and
since D��ðs ! 1Þ ¼ Oð1Þ it follows from Eqs. (19) and

(20) that (for P wave) N��ðs ! 1Þ ¼ Oð1=sÞ. The set of

coupled integral equations, Eqs. (19) and (20), gives the
scattering amplitudes t�;�ðsÞ for all complex s in terms of

the discontinuity of the scattering amplitudes on the left
cut and the location of the zeros in the physical region (the
CDD poles).

The left-hand cut discontinuity plays the role of the
driving term, which is analogous to the potential in non-
relativistic Schrödinger theory and in general it is not

known. Fortunately, as is clear from Eq. (15), both
N��ðsÞ and the production vectors P�ðsÞ are real and

have no singularities in the physical region. Thus it is the
behavior of the D��ðsÞ which determines the phase and

any rapid variation of the isobar amplitudes F̂�ðsÞ. We will
use Eqs. (19) and (20), not as integral equations for N and
D, but instead we will use what is known about the scat-
tering amplitude at the boundary of the right-hand cut,
t̂��ðsþ i
Þ, with a model for the left-hand cut as input to

determine the denominator functions. Then Eq. (20) can be
written as an integral equation for D alone

D��ðsÞ ¼ 1��
Np

i¼p

s� s0
sp;�� � s0

�p;��

sp;�� � s
� ðs� s0Þ

�

�
Z 1

s�

ds0
D��ðs0Þe�i���ðs0Þ sin���ðs0Þ

ðs0 � sÞðs0 � s0Þ ; (22)

where ��� is the phase of t�� ¼ jt��ðsÞj expði���ðsÞÞ,
which has an analytical solution given by

D��ðsÞ ¼ �
Np

p¼1

�
s0 � sp;��
s� sp;��

�
�

Nq

q¼1

�
s� sq;��
s0 � sq;��

�
���ðsÞ:

(23)

The first (second) factor gives the contribution from the
CDD poles (zeros) and � is the Omnés-Muskhelishvili
function,

���ðsÞ ¼ exp

�
� s� s0

�

Z 1

s�

ds0
��;�ðs0Þ

ðs0 � sÞðs0 � s0Þ
�
: (24)

Phase shifts �� are determined up to an integer multiple
of � and the phase of the amplitude ��� is determined

modulo 2�. It is customary to remove this ambiguity by
setting all phase shifts to zero at elastic thresholds, i.e.
��ð4m2

�Þ ¼ 0. This condition is at the origin of zeros of
D�� being explicit in Eq. (23). With ���ð4m2

�Þ ¼ 0 and

the asymptotic behavior,D��ðs ! 1Þ ¼ Oð1Þ, the number

of zeros, Nq, and CDD poles, Np, are related by

���ð1Þ ¼ �ðNp � NqÞ: (25)

C. Analytical model for the P-wave amplitude

If the left-hand cut discontinuity of t̂��ðsÞ were known,
then the whole amplitude could be reconstructed using the
N=D method discussed above and the production vectors
P�ðsÞ could be computed from Eq. (16). Unfortunately, to
the best of our knowledge, only in the case of t̂�� is the
left-hand cut fairly well known [21]. Thus, one needs a
model to incorporate the contribution from the K �K chan-
nel. One might as well then construct a model that leads to
a simple solution of the integral equation in Eq. (16). This
is indeed the case if one uses the analytical K-matrix
representation with the typical choice of the K-matrix
parametrized in terms of simple poles. Then the singularity
of the scattering amplitude for s < 0 is also given by poles
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and this in turn allows one to solve Eq. (16) by algebraic
methods. We fix the parameters of the 2� 2K matrix so as
to reproduce the P-wave �� data from [11–13] (Fig. 2);
�� and 
 are input parameters, and the model will give a
prediction for �K. The K-matrix parametrization was
already used by Hyams et al. to interpret their data from
[11]. Unfortunately, instead of using Eq. (14), the unitarity
condition employed in [11] was

Im t̂��ðsþ i
Þ ¼ ffiffiffi
s

p X
�¼�;K

t̂���ðsÞ�̂�ðsÞ�ðs� s�Þt̂��ðsÞ:

(26)

This implies

Im ½t̂�1ðsÞ���ðsÞ ¼ �ðs� s�Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� s�

p
���; (27)

and the K-matrix representation becomes

½t̂�1ðsÞ��� ¼ ½K�1ðsÞ��� þ ���ðs� s�Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� � s

p
: (28)

In contrast, the correct unitarity relation in Eq. (14) gives

Im ½t̂�1ðsÞ���ðsÞ ¼ �ðs� s�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1� s�

s

�s
���; (29)

which leads to

½t̂�1ðsÞ��� ¼ ½K�1ðsÞ��� þ ���ðs� s�ÞI�ðsÞ; (30)

where

I�ðsÞ ¼ I�ð0Þ � s

�

Z 1

s�

ds0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s�

s0

r
1

ðs0 � sÞs0 : (31)

A convenient choice for the subtraction constant, I�ð0Þ, is
to take ReI�ðM2

�Þ ¼ 0. Then one of the poles of K��

corresponds to the Breit-Wigner mass squared, M2
� ¼

ð0:77 GeVÞ2, of the � meson. Using the general two-pole
parametrization of the K matrix,

K�� ¼ �2
�

M2
� � s

þ �2
�

s2 � s
þ ���;

KKK ¼ �2
K

s2 � s
þ �KK;

K�K ¼ KK� ¼ ���K

s2 � s
þ ��K;

(32)

where �2
� ¼ ��M

2
�=ðM2

� � s�Þ3=2. By fitting the P-wave

�� phase shift, ��, and the inelasticity, 
, we find �� ¼
0:140 GeV, andffiffiffiffiffi

s2
p ¼ 1:4708 GeV; �� ¼ 0:199; �K ¼ 0:899;

��� ¼ 5:62� 10�2; ��K ¼ 0:104; �KK ¼ 1:525;

(33)

with the �’s in units of GeV�2. The comparison of the
phase shift and the inelasticity obtained with this parame-
trization with the data is shown in Fig. 2.
Since the K-matrix representation of Eq. (30) satisfies

all of the properties of the scattering amplitude discussed in
Sec. II B it is possible to write t�� in the N=D representa-

tion. We find, choosing to normalize D��ðsÞ at s0 ¼ 0,

N��ðsÞ ¼ ���

s� z��
ðs� sL;1Þðs� sL;2Þ ;

D��ðsÞ ¼ exp

�
� s

�

Z
s�

ds0
���ðs0Þ
s0ðs0 � sÞ

�
;

N�KðsÞ ¼ ��K

ðs� sL;1Þðs� sL;2Þ ;

D�KðsÞ ¼ s1;�Ks2;�K
ðs� s1;�KÞðs� s2;�KÞ

� exp

�
� s

�

Z
s�

ds0
��Kðs0Þ
s0ðs0 � sÞ

�
;

NKKðsÞ ¼ �KK

s� zKK

ðs� sL;1Þðs� sL;2Þ ;

DKKðsÞ ¼ exp

�
� s

�

Z
s�

ds0
�KKðs0Þ
s0ðs0 � sÞ

�
;

(34)
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FIG. 2. Phase shift (top panel) and inelasticity (bottom panel)
of the P-wave �� amplitude. Data are taken from [11] (circles),
[12] (triangles), and [13] (squares). The solid line is the result of
the fit to �� and 
 with the analytical K-matrix representation
described in the text. The dashed line is the result of the extended
parametrization described in Sec. II D.

ROLE OF P-WAVE INELASTICITY IN . . . PHYSICAL REVIEW D 82, 094002 (2010)

094002-5



with ��� ¼ 5:649, �KK ¼ 2:271, and ��K ¼ 3:048 GeV2.
Indeed, as discussed above, the left-hand cut is
reduced to two poles at sL;1 ¼ �13:87 GeV2 and sL;2 ¼
�0:787 GeV2, respectively. There are also first order zeros
in N�� at z�� ¼ �0:867 GeV2 and zKK ¼ �13:78 GeV2.

The numerator functions for the elastic amplitudes �� and
K �K are Oð1=sÞ, and for the inelastic amplitudes they are
superconvergent, i.e.Oð1=s2Þ. Asymptotically, as shown in
Fig. 3, ���ðs ! 1Þ ¼ Oð1= logðsÞÞ and �� stays below
180�, so there is no CDD pole in the �� channel, which is
consistent with the Levinson theorem [cf. Eq. (25)]. The
same is true for the K �K channel. Above the K �K threshold
the phase of the inelastic amplitude ��K is given by
��K ¼ �� þ �K and from the K matrix we find that
asymptotically ��Kð1Þ ¼ 2�, which results in two CDD
poles—one at the � mass, s1;�K ¼ M2

�, and the other at

s2;�K ¼ s2 þ ���K=��K ¼ 3:884 GeV2.

Having an analytical representation for the scattering
amplitude enables one to identify the resonance content

by studying the singularities of t̂��ðsÞ for s continued
through the unitarity cuts away from the physical sheet.
If we define the unphysical sheet II as the one obtained by
continuing s from above (crossing) the cut s� < s < sK,
and sheet III for s continued through the s > sK cut, then
we find four poles whose location is given in Table I. The �
pole is clearly seen as well as the excited �0 resonance at
1600 MeV that couples primarily to the K �K channel. The
pole on sheet III at 1:1409� i0:1675 GeV is most sensi-
tive to the inelasticity of the K �K channel. If we turn off the
K �K channel this pole goes to infinity while the positions of
the other two remain relatively unchanged.

D. Problems with the K-matrix parametrization

While the K-matrix parametrization faithfully reprodu-
ces the �� phase shift and inelasticity data from ��
threshold up to 1.9 GeV, extrapolation beyond this
range is problematic. The rapid decrease of ��� around
s� 6 GeV2 seems unphysical and results in an absence of
the CDD pole at infinity, i.e. ���ð1Þ ! 0 instead of
���ð1Þ ! � [22]. The CDD pole at infinity in the elastic
�� amplitude is expected based on the asymptotic pQCD
prediction for the pion electromagnetic form factor [23].
In the �� ! K �K channel, the two CDD poles at m2

� and

s2 þ ���K=��K are clearly an artifact of the pole parame-
trization of the K matrix. A CDD pole in the inelastic
channel above threshold (e.g. the pole at s2;�K ¼
3:884 GeV2) leads to a discontinuity in a phase shift and
is unphysical. A pole between �� and K �K thresholds is
admissible, e.g. the pole at s1;�K ¼ m2

�, but its strict over-

lap with the � mass is an artifact of the parametrization.
Since the phase space available in J=c decay extends up to
s�� � 9 GeV2 we need to remove these unphysical fea-
tures of the K-matrix amplitude. We proceed as follows.
The new �� ! �� and K �K ! �� amplitudes will be
denoted by t̂new�� ðsÞ and t̂new�K ðsÞ, respectively. In the case of
the �� ! �� elastic amplitude, we assume that it has a
single CDD pole at infinity. We thus introduce an effective
phase shift and inelasticity that asymptotically approach �
and 1, respectively:

�effðsÞ ¼
�
��ðsÞ; s < sK;
�þ ð��ðsKÞ � �Þ sKs ; s > sK;

(35)


effðsÞ ¼
�

�ðsÞ; s < sK;
1þ ð
�ðsKÞ � 1Þ sKs ; s > sK;

(36)
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FIG. 3. Phase of the �� (to panel) and �K (bottom panel)
amplitude. The dashed lines are the results of the K-matrix
parametrization from Eq. (34). The solid lines are from the
modified K-matrix parametrization discussed in Sec. II D.

TABLE I. Physical poles (
ffiffiffi
s

p
in GeV) on sheets II and III.

II III

0:7638� i0:0747 0:7632� i0:0745
1:1409� i0:1675
1:6306� i0:0844
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with
ffiffiffiffiffiffi
sK

p ¼ 1:9 GeV and �� and 
� obtained from the

K matrix fit below 1.9 GeV (cf. Fig. 2). The denominator
Dnew

�� of the effective amplitude

t̂ newðsÞ ¼ Nnew
�� ðsÞ

Dnew
�� ðsÞ (37)

is then obtained from Eq. (24) with Nq ¼ Np ¼ 0 and

phase, �eff
��, given by (see Fig. 3)

�new
�� ¼ Im ln

�

effe2i�eff � 1

2i�̂

�
: (38)

For the numerator function Nnew
�� , we use a simple pole

approximation to the left-hand cut (sL < 0)

Nnew
�� ðsÞ ¼ �new

��

s� sL
: (39)

In order to remove the unphysical CDD pole from the
K �K ! �� amplitude for Dnew

�K ðsÞ in

t̂ new�K ðsÞ ¼
Nnew

�K ðsÞ
Dnew

�K ðsÞ
(40)

for �new
�K in Eq. (24), we use (see Fig. 3)

�new
�K ¼

�
�K

�KðsÞ; s < sK;
2�þ ð�K

�KðsÞ � �Þ sKs ; s > sK;
(41)

with
ffiffiffiffiffiffi
sK

p ¼ 1:65 GeV. In this case we use the K-matrix fit

up to a lower energy of 1.65 GeV to be less sensitive to the
unwanted CDD pole in the K matrix at

ffiffiffiffiffiffiffiffiffiffiffi
s2;�K

p ¼ 1:97.

There is no effect of this pole in the elastic amplitude, and
thus for that case we could use the K-matrix parametriza-
tion all the way up to 1.9 GeV where data exist. Assuming
further that Dnew

�K ðsÞ has the same asymptotic behavior as
Dnew

�� we add a single CDD pole at snew1;�K in place of the pole

at m2
� between the �� and K �K thresholds. Finally, for the

numerator function we use

Nnew
�K ðsÞ ¼ �new

�K

s� sL
; (42)

i.e. we use the same pole to represent the left-hand cut as in
Nnew

�� . The four parameters �new
�� , �

new
KK , sL, and snew1;�K are
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FIG. 4. Real (top panel) and imaginary (bottom panel) part of
t̂��. The dashed lines correspond to the K-matrix solution of Eq.
(34), and the solid lines are the modified K-matrix solution, t̂new�� ,
discussed in Sec. II D, Eq. (37).
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determined by simultaneously fitting t̂new�� and tnew�� to � and
K phase shifts and inelasticity in the ranges 2m� <

ffiffiffi
s

p
<

1:9 GeV and 2mK <
ffiffiffi
s

p
< 1:65 GeV, respectively. The

comparison with the K-matrix solution is shown in
Figs. 4 and 5 and the fit yields �new

�� ¼ 0:750, �new
�K ¼

0:0477, sL ¼ �1:328 GeV2, and snew1;�K ¼ 0:220 GeV2.

As expected, the location of the left-hand side pole falls
between the two left-hand side poles of the K-matrix
parametrization. In Fig. 6 we show the inverse of the
denominator functions Dnew

�� and Dnew
�K .

E. Interpretation of the J=c ! 3� data

With the left-hand cut singularities of the scattering
amplitudes given by a simple pole [cf. Eqs. (39) and (42)]
from Eq. (17) it follows that ImP�ðsÞ ¼ 0. Thus P�ðsÞ is
analytical in the entire s plane and therefore given by a
polynomial,

P�ðsÞ ¼ ðs� sLÞC�ðsÞ: (43)

The first term is responsible for removing the left-hand cut

singularities from Nnew
�� ðsÞ and making F̂�ðsÞ in Eq. (15)

analytical for s < 0. The bound jP�ð1Þj< 1 restricts
C�ðsÞ to be at most a first order polynomial in s. Thus
the final solution to Eq. (15) has the form

F1ðsÞ ¼ Nq�ðsÞp�ðsÞ
�
1þ a�s

Dnew
�� ðsÞ þ r�K

1þ aKs

Dnew
�K ðsÞ

�
: (44)

The first term corresponds to J=c ! ð��ÞP� and the
second to the rescattering contribution from J=c !
ðK �KÞP� ! ð��ÞP�. The plot of the magnitude squared,
jF1ðsÞj2 is shown in Fig. 7.
The Dalitz distribution of 3� events from J=c decays is

shown in Fig. 8 and the striking feature is the depletion
of events in the center of the plot. This is to be compared
with the distribution shown in Fig. 9, which has been
generated with r�K ¼ 0. The three bands originate from
the � meson contribution to Dnew

�� and the large contribu-
tion from the �0ð1600Þ resonance leads to a significant
population of events in the middle of the Dalitz plot that
is not seen in the data in Fig. 8. Furthermore in the data
there is a large contribution near the tails of the � bands,
which are absent if only the direct 3� production is con-
sidered. We thus consider the full amplitude from Eq. (44)
and float the three parameters a�, aK, and r�K to obtain a
distribution that best resembles the data. We find little
sensitivity to the term proportional to aK and thus set
aK ¼ 0. The parameter a� is relevant since it controls
the tail of the � resonance and so is r�K which determines
the relative strength of the K �K contribution which inter-
feres with the �� amplitude in the �0ð1600Þ region and
reduces the contribution at the center of the Dalitz plot.
In Fig. 10 we show the event distribution using a� ¼
�1:5� 10�1 GeV�2 and r�=K ¼ �1:3� 10�2.
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the inverse of Dnew
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used in the computation of the isobar form factor, cf. Eq. (44).
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line) using the same parameters as in Fig. 10.
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The normalization constant N is at this stage arbitrary
since we are not determining the absolute value of the
branching ratio.

Now, inspecting the Dalitz plot in Fig. 10 and the plot of

the function jF̂�ðsÞj in Fig. 7, it is seen that theK �K channel
can indeed bring theory closer to the data by enhancing the
�� contribution in the energy range 1 GeV<

ffiffiffi
s

p
<

1:5 GeV and reducing the strength of the �0ð1600Þ peak.

III. SUMMARY

We have studied the effects of inelastic �� scattering on
the J=c ! 3� Dalitz plot. We have seen that the K �K !
�� channel can significantly alter the shape of the Dalitz
plot, especially at higher �� masses. This brings the
observed data closer to the phenomenological expectations
based on �� P-wave scattering. These coupled channel
effects will become even more important as experimental
data sets grow larger, for example, at BES III, where 1�
109 J=c decays are expected.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. Department
of Energy grant under Contract No. DE-FG0287ER40365
and National Science Foundation PIF Grant No. 0653405.

[1] D.M. Asner et al., arXiv:0809.1869.
[2] J. Z. Bai et al. (BES Collaboration), Phys. Rev. D 70,

012005 (2004).
[3] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 70,

072004 (2004).
[4] I. J. R. Aitchison and J. J. Brehm, Phys. Rev. D 20, 1119

(1979).

[5] I. J. R. Aitchison and J. J. Brehm, Phys. Rev. D 20, 1131
(1979).

[6] I. J. R. Aitchison and J. J. Brehm, Phys. Lett. 84B, 349
(1979).

[7] R. Kaminski, J. R. Pelaez, and F. J. Yndurain, Phys. Rev. D
74, 014001 (2006); 74, 079903(E) (2006).

[8] J. J. Brehm, Ann. Phys. (N.Y.) 108, 454 (1977).

2 GeV+0s

0 1 2 3 4 5 6 7 8 9

2
 G

eV
-0s

0

1

2

3

4

5

6

7

8

9

FIG. 10. Dalitz plot distribution from F̂1 in Eq. (44) with both
the �� and K �K channels with a� ¼ �1:5� 10�1 GeV�2 and
r�=K ¼ �1:3� 10�2.

2 GeV+0s
0 1 2 3 4 5 6 7 8 9

2
 G

eV
-0s

0

1

2

3

4

5

6

7

8

9

FIG. 9. Dalitz plot distribution with the single �� channel
only, i.e. F̂1ðsÞ ¼ q�p�=D11 instead of Eq. (44).

FIG. 8. The J=c ! �þ���0 Dalitz plot distribution from the
BES Collaboration [2].

ROLE OF P-WAVE INELASTICITY IN . . . PHYSICAL REVIEW D 82, 094002 (2010)

094002-9

http://arXiv.org/abs/0809.1869
http://dx.doi.org/10.1103/PhysRevD.70.012005
http://dx.doi.org/10.1103/PhysRevD.70.012005
http://dx.doi.org/10.1103/PhysRevD.70.072004
http://dx.doi.org/10.1103/PhysRevD.70.072004
http://dx.doi.org/10.1103/PhysRevD.20.1119
http://dx.doi.org/10.1103/PhysRevD.20.1119
http://dx.doi.org/10.1103/PhysRevD.20.1131
http://dx.doi.org/10.1103/PhysRevD.20.1131
http://dx.doi.org/10.1016/0370-2693(79)90056-X
http://dx.doi.org/10.1016/0370-2693(79)90056-X
http://dx.doi.org/10.1103/PhysRevD.74.014001
http://dx.doi.org/10.1103/PhysRevD.74.014001
http://dx.doi.org/10.1103/PhysRevD.74.079903
http://dx.doi.org/10.1016/0003-4916(77)90023-9


[9] J. J. Brehm, Phys. Rev. D 23, 1194 (1981).
[10] G. Ascoli and H.W. Wyld, Phys. Rev. D 12, 43 (1975).
[11] B. Hyams, C. Jones, and P. Weilhammer, Nucl. Phys. B64,

134 (1973).
[12] S. D. Protopopescu et al., Phys. Rev. D 7, 1279 (1973).
[13] P. Estabrooks and A.D. Martin, Nucl. Phys. B79, 301

(1974).
[14] N. I. Muskhelishvili, Tr. Tbilis. Math Instrum. 10, 1

(1958); in Singular Integral Equations, edited by J.
Radox (Noordhoff, Groningen, 1985).

[15] R. Omnés, Nuovo Cimento 8, 316 (1958).
[16] T.N. Pham and T. N. Truong, Phys. Rev. D 16, 896 (1977).

[17] G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467
(1960).

[18] G. Frye and R. L. Warnock, Phys. Rev. 130, 478
(1963).

[19] L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101,
453 (1956).

[20] F. Dyson, Phys. Rev. 106, 157 (1957).
[21] E. P. Tryon, Phys. Rev. D 12, 759 (1975).
[22] J. F. De Troconiz and F. J. Yndurain, Phys. Rev. D 65,

093001 (2002).
[23] G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157

(1980).

PENG GUO, RYAN MITCHELL, AND ADAM P. SZCZEPANIAK PHYSICAL REVIEW D 82, 094002 (2010)

094002-10

http://dx.doi.org/10.1103/PhysRevD.23.1194
http://dx.doi.org/10.1103/PhysRevD.12.43
http://dx.doi.org/10.1016/0550-3213(73)90618-4
http://dx.doi.org/10.1016/0550-3213(73)90618-4
http://dx.doi.org/10.1103/PhysRevD.7.1279
http://dx.doi.org/10.1016/0550-3213(74)90488-X
http://dx.doi.org/10.1016/0550-3213(74)90488-X
http://dx.doi.org/10.1007/BF02747746
http://dx.doi.org/10.1103/PhysRevD.16.896
http://dx.doi.org/10.1103/PhysRev.119.467
http://dx.doi.org/10.1103/PhysRev.119.467
http://dx.doi.org/10.1103/PhysRev.130.478
http://dx.doi.org/10.1103/PhysRev.130.478
http://dx.doi.org/10.1103/PhysRev.101.453
http://dx.doi.org/10.1103/PhysRev.101.453
http://dx.doi.org/10.1103/PhysRev.106.157
http://dx.doi.org/10.1103/PhysRevD.12.759
http://dx.doi.org/10.1103/PhysRevD.65.093001
http://dx.doi.org/10.1103/PhysRevD.65.093001
http://dx.doi.org/10.1103/PhysRevD.22.2157
http://dx.doi.org/10.1103/PhysRevD.22.2157

