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We present the first complete calculation of the one-loop electroweak effect in the process of semi-

inclusive bottom-Higgs production at LHC in the minimal supersymmetric standard model. The size of

the electroweak contribution depends on the choice of the final produced neutral Higgs boson and can be

relevant, in some range of the input parameters. A comparison of the one-loop results obtained in two

different renormalization schemes is also performed, showing a very good next-to-leading order scheme

independence. We further comment on two possible, simpler, approximations of the full next-to-leading

order result, and on their reliability.
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I. INTRODUCTION

It is a well-known fact that tan� enhanced Yukawa
coupling in the minimal supersymmetric standard model
(MSSM) could favor the Higgs production in association
with bottom quarks, contrarily to the standard model (SM)
case, where the Higgs production is dominated by top-
Higgs coupling.

Because of its relevance as a possible channel for the
Higgs discovery, in the last few years the associated
bottom-Higgs production has been extensively studied in
the literature. Depending on the choice of the flavor
scheme in the partonic description of the initial state and
on the identified final state, one can consider a number of
different partonic subprocesses forH 0 þ bjets production:

while the choice of the four- versus five-flavor scheme is
mainly theoretically motivated, resulting in a reordering of
the perturbative expansion [1], the requirement of a mini-
mum number of tagged b in the final state is physically
relevant in the signal extraction. Assuming the five-flavor
scheme (which ensures a better convergence of the pertur-
bative series resumming large logarithms in the bottom
parton distribution function (PDF), one can consider three
different types of production processes, depending on the
required final states: the exclusive one where both bottom
jets are tagged (b �bH 0 final state), the semi-inclusive one
where only one bottom quark is tagged (bH 0), and the
inclusive one where no bottom quark jets are tagged. While
the inclusive process has a larger cross section [2], the
semi-inclusive with a high pb;T bottom in the final state is

experimentally more appealing [3].
The relative weights of the partonic processes (b �b !

H 0, bg ! bH 0, gg ! b �bH 0) are analyzed in [2],
where also the �s corrections (next-to-leading order

[NLO]) to the leading subprocess b �b ! H 0 are computed.
The NNLO order in QCD (�2

s) for the same subprocess is
calculated in [4], while the electroweak (SM and MSSM)
and SUSY-QCD NLO corrections have been computed in
[5], showing that the size of electroweak corrections can be
comparable, for large tan�, with that of the strong ones.
The associated semi-inclusive production process

(bH 0 final state) is analyzed at the NLO in QCD in
[3,6], while the effect of the SUSY QCD is given in [7].
Very recently, Dawson and Jaiswal have also computed, for
the standard model process bg ! bhSM, the one-loop weak
corrections [8].
Finally, the exclusive process, where two bottom jets are

tagged in the final state, is considered at the NLO in QCD
in [1,9–11]. The leading Yukawa corrections for this
partonic process are considered in [12] and SUSY-QCD
effects have also been computed in [13].
Our paper is strongly motivated by the possible rele-

vance of the associated bottom-Higgs production in the
experimental search of the Higgs at the LHC; moreover, as
stressed in [5], the SUSY one-loop electroweak (EW)
effects (for the inclusive process) can be sizable and they
can be safely accounted by an improved Born approxima-
tion. Therefore the spirit of our computation is twofold: on
the one hand we provide for the first time the complete
NLO EW corrections for the semi-inclusive process, in-
cluding also the overall QED effect, that was not computed
by [8], and on the other hand we can perform a further and
independent test on the validity and limits of the improved
Born approximation in different scenarios. Our calcula-
tions have been performed in two different (DR and
DCPR) renormalization schemes: as expected the final
one-loop results are, within at most a relative few percent
difference, the same in the two frames; however, the DR
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scheme appears to be the one where the perturbative effect
is numerically mostly more under control. Therefore we
shall discuss our results in this frame, showing in various
figures the dependence of the different observables on the
choice of the input parameters. We have finally compared
the results obtained with the full electroweak computation
with those obtained within a commonly used approxima-
tion scheme. This will be done in the final part of our paper,
which is organized as follows: Sec. II contains a general
concentrated discussion of the actual derivation of the
theoretical formulas (a part of which has been shifted in
a technical Appendix B) to be used for the calculation of
the various observables. Sections III and IV contain our
numerical results, that are briefly discussed in Sec. V.

II. KINEMATICS AND AMPLITUDE
OF THE PROCESS bg ! bH 0

A. Kinematics

At lowest order there is only one partonic1 channel
leading to bottom-Higgs production

bðpbÞgðpgÞ ! bðp0
bÞH 0ðpH 0Þ; (1)

whereH 0 is one of the three MSSM neutral Higgs bosons
ðh0; H0; A0Þ. In the partonic center-of-mass frame the mo-
menta of the particles read

pb ¼ ðEb; 0; 0; pÞ;
pg ¼ ðp; 0; 0;�pÞ;
p0
b ¼ ðE0

b;p
0 sin�; 0; p0 cos�Þ;

pH 0 ¼ ðEH 0 ;�p0 sin�; 0;�p0 cos�Þ:

(2)

The Mandelstam variables are defined as

s¼ ðpg þpbÞ2; t¼ ðpb�p0
bÞ2; u¼ ðpg �p0

bÞ2:
(3)

For later convenience we define two momenta q and q0 as
follows:

q ¼ pb þ pg; q0 ¼ p0
b � pg:

B. Born and one-loop amplitudes

We denote the Oð�a
s�

bÞ contribution to the amplitude

(differential cross section) of the process X as Ma;b
X

(d�ab
X ). The Born terms result from the s- and u-channel

b quark exchange of Fig. 1. The color stripped tree-level
amplitude reads as follows:

M1=2;1=2

bg!bH 0 ¼ �
�

gs
s�m2

b

�
�u0bð�0

bÞ½cLðbbH 0ÞPL

þ cRðbbH 0ÞPR�ðqþmbÞ6�gð�Þubð�bÞ
�

�
gs

u�m2
b

�
�u0bð�0

bÞ6�gð�Þðq0 þmbÞ

� ½cLðbbH 0ÞPL þ cRðbbH 0ÞPR�ubð�bÞ;
(4)
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FIG. 1. Tree-level diagrams for the partonic bg ! bH 0

processes.
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FIG. 2. Bottom quark self-energies, Higgs self-energies (only
the diagonal case), and internal self-energies.

1One should also consider the photon induced process b� !
bH 0: the contribution to the total cross section arising from this
subprocess is doubly suppressed, due to the smaller � parton
distribution function and smaller coupling (� instead of �s).
Because the main goal of this paper is the calculation of the NLO
electroweak effects for bH 0 production, and the b� ! bH 0

can be safely computed at the LO, we do not take into account
the photon induced production in the following.
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where �b (�0
b) is the helicity of the initial (final) bottom

quark while � is the polarization of the gluon. ubð�bÞ
[u0bð�0

bÞ] is the spinor of the initial [final] bottom

quark, �gð�Þ ¼ ð0;�=
ffiffiffi
2

p
;�i=

ffiffiffi
2

p
; 0Þ is the gluon polariza-

tion vector, and PR;L ¼ ð1� �5Þ=2 are the chirality pro-

jectors. The relevant couplings c	ðbbH 0Þ (	 ¼ L, R) are
defined as

c	ðbbH0Þ ¼ �
�

emb

2sWMW

�
cos�

cos�
;

c	ðbbh0Þ ¼
�

emb

2sWMW

�
sin�

cos�

cLðbbA0Þ ¼ �i

�
emb

2sWMW

�
tan�;

cRðbbA0Þ ¼ cL�ðbbA0Þ:

(5)
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FIG. 3. Triangle and box diagrams.
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We factorize out of the gluon couplings the color matrix
element �a=2. The sum over colors leads to a factor

X8
a¼1

tr

�
�a

2

�a

2

�
¼ 4 (6)

that multiplies the squared amplitude.
The generic helicity amplitude can be decomposed on a

set of eight forms factors Jk	 (	 ¼ L, R) as follows:

M 1=2;1=2

bg!bH 0 ¼ �u0bð�0
bÞ
�X4
k¼1

X
	¼L;R

Jk	N
k	

bg!bH 0

�
ubð�bÞ; (7)

where

J1	 ¼ pg 6�gð�ÞP	; J2	 ¼ ð�gð�Þ:p0
bÞP	;

J3	 ¼ 6�gð�ÞP	; J4	 ¼ ð�gð�Þ:p0
bÞpgP	:

(8)

The only nonzero scalar functions at the tree level are

N1	

bg!bH 0 and N2	

bg!bH 0 . They read as follows:

N
1	

bg!bH 0 ¼ �gs
c	ðbbH 0Þ
s�m2

b

� gs
c	ðbbH 0Þ
u�m2

b

;

N
2	

bg!bH 0 ¼ �2gs
c	ðbbH 0Þ
u�m2

b

(9)

The one-loop electroweak virtual contributions arise from
self-energy, vertex, and box diagrams. Counterterms for
the various bottom-quark lines, for theH 0 line, and for the
bbH 0 coupling constants have to be considered as well.
The corresponding diagrams can be read off from Figs. 2
and 3.

All these contributions have been computed using the
usual decomposition in terms of Passarino-Veltman func-
tions and the complete amplitude has been implemented in
a C++ numerical code.

C. Renormalization

In order to cancel the ultraviolet (UV) divergences the
Higgs sector and the bottom sector have to be renormalized
at Oð�Þ. The expressions of the counterterms entering our
calculation are collected in Appendix B.

1. Higgs sector

As anticipated we performed the calculation using two
different renormalization schemes: the DR scheme [14] is
defined by the following renormalization conditions:


ZDR
H1

¼ �
�
Re

@�H0ðk2Þ
@k2

��������k2¼M2

H0
;�¼0

�
div


ZDR
H2

¼ �
�
Re

@�h0ðk2Þ
@k2

��������k2¼M2

h0
;�¼0

�
div


Th0 ¼ �Th0


TH0 ¼ �TH0


M2
A0 ¼ Re�A0ðM2

A0Þ �M2
A0�

0
A0ðM2

A0Þ

 tan�DR ¼ 1

2
ð
ZDR

H2
� 
ZDR

H1
Þ tan�:

(10)


ZDR
Hi

define the wave-function renormalization constant of

the Higgs field Hi, the third and fourth line fix the tadpole
renormalization and the last one the tan� renormalization
constant. ½A�div means keeping the UV divergent part of
A, discarding the finite contribution. In the DCPR scheme
[15,16] the independent parameters are the same, and the
renormalization conditions of the Higgs wave functions
change as follows:


ZDCPR
H1

¼�Re
@�A0ðk2Þ

@k2

��������k2¼M2

A0

� 1

tan�MZ

Re�A0ZðM2
A0Þ


ZDCPR
H2

¼�Re
@�A0ðk2Þ

@k2

��������k2¼M2

A0

þtan�

MZ

Re�A0ZðM2
A0Þ


Th0 ¼�Th0


TH0 ¼�TH0


M2
A0 ¼Re�A0ðM2

A0Þ�M2
A0�

0
A0ðM2

A0Þ

tan�DCPR¼1

2
ð
ZDCPR

H2
�
ZDCPR

H1
Þtan�: (11)

We choose to impose the on-shell (OS) condition for the
mass of CP-odd A0 Higgs in both schemes.
The renormalization constants of the Higgs bosons wave

functions and of the c	ðbbH 0Þ couplings can be written in
terms of the of the renormalization constants defined
above. Their explicit expression is given in Appendix A.

2. Bottom sector

The mass of the bottom and its wave-function renormal-
ization function is fixed in the on-shell scheme,


mOS
b ¼ 1

2
mb½Re�bLðm2

bÞ þ Re�bRðm2
bÞ þ 2Re�bSðm2

bÞ�;


ZL
b ¼ �Re�bLðm2

bÞ �m2
b

@

@k2
Re½�bL ðk2Þ þ �bRðk2Þ

þ 2�bSðk2Þ�jk2¼m2
b
;


ZR
b ¼ �Re�bRðm2

bÞ �m2
b

@

@k2
Re½�bL ðk2Þ þ �bRðk2Þ

þ 2�bSðk2Þ�jk2¼m2
b
; (12)
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where the bottom self-energies are defined according to
following Lorentz decomposition:

�bðpÞ ¼ pPL�bLðp2ÞþpPR�bRðp2Þþmb�bSðp2Þ: (13)

The bottom masses in the Yukawa couplings are treated
completely at the electroweak level, with OS or DR renor-
malization conditions, respectively, in the two schemes.
Resummation of large logarithms from the running of
the bottom mass suggests to trade bottom mass appearing
in the couplings with an effective bottom mass [17].
The resummation of the ð�s tan�Þn contributions can be
achieved modifying the tree-level relation between the
bottom Yukawa coupling and the bottom mass: the bottom
mass of the couplings, which is related to the bottom
Yukawa coupling, is replaced by an effective mass (e.g.
in the DR scheme)

mDR
b ! �mDR

b ¼ mDR
b

1þ �b

; (14)

where �b is given by

�b ¼ 2

3

�s

�
M~g� tan�IðM~b1

;M~b2
;M~gÞ

Iða; b; cÞ ¼ �1

ða2 � b2Þðb2 � c2Þðc2 � a2Þ
�

�
a2b2 ln

a2

b2
þ b2c2 ln

b2

c2
þ c2a2 ln

c2

a2

�
: (15)

Moreover, the b �bH1 coupling is dynamically generated at
Oð�sÞ and can be enhanced if tan� is large. This effect can
be included modifying the c	ðbbH 0Þ couplings. The ac-
tual effect of this modification and of the bottom mass
resummation, Eq. (14), is to substitute the c	ðbbH 0Þ
couplings in Eq. (5) as follows:

c	ðbbh0Þ ! c	ðbbh0Þ
mb

� �mDR

�
1� �b

tan� tan�

�

c	ðbbH0Þ ! c	ðbbH0Þ
mb

� �mDR

�
1þ�b tan�

tan�

�

c	ðbbA0Þ ! c	ðbbA0Þ
mb

� �mDR

�
1� �b

tan2�

�
:

(16)

We have checked the cancellation of the UV divergences
among counterterms, self-energies, and triangles. This
cancellation occurs separately inside 8 sectors, i.e.
s-channel ‘‘initial’’ triangles with chirality L or R,
s-channel ‘‘final’’ L or R, u-channel up triangles (L or R)
and u-channel down triangles (L or R). The box diagrams
are UV-finite.

D. QED radiation

The infrared (IR) singularities affecting the virtual con-
tributions are canceled including the bremsstrahlung of
real photons at Oð�s�

2Þ,

bðpbÞgðpgÞ ! bðp0
bÞH 0ðpH 0Þ�ðp�Þ; (17)

arising from the diagrams in Fig. 4. This contribution has
been computed using FEYNARTS [18] and FORMCALC [19].
The integral over the photon phase space is IR divergent in
the soft-photon region, i.e. for p0

� ! 0. The IR divergences

are regularized within mass regularization, giving a small

b
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FIG. 4. Real photon � emission.
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mass m� to the photon. The phase space integration has

been performed using the phase space slicing method.
This method introduces a fictitious separator �E and
restricts the numerical phase space integration in the
region characterized by p� > �E. The integral over the

region p� < �E is performed analytically in the eikonal

approximation [20].
Large collinear logarithms containing the bottom mass

can be reabsorbed into the redefinition of the parton distri-

bution function of the bottom fbðx;�Þ. In the MS (deep
inelastic scattering [DIS]) factorization scheme this is
achieved performing the substitution [21]

fbðx;�Þ ! fbðx;�Þ
�
1� �

�
e2b

�
1� ln
s � ln
2

s

þ
�
ln
s þ 3

4

�
ln

�
�2

m2
b

�
� 1

4
�FC�1

��
� �

2�
e2b

�
Z 1�
s

x

dz

z
fb

�
x

z
;�

��
1þ z2

1� z
ln

�
�2

m2
b

1

ð1� zÞ2
�

� 1þ z2

1� z
þ �FC�2

�
; (18)

and setting �FC ¼ 0 (�FC ¼ 1).� is the factorization scale,

s ¼ 2�E=

ffiffiffi
s

p
, while eb is the bottom charge. �1 and �2

are defined as follows:

�1 ¼ 9þ 2

3
�2 þ 3 ln
s � 2ln2
s;

�2 ¼ 1þ z2

1� z
ln

�
1� z

z

�
� 3

2

1

1� z
þ 2zþ 3:

(19)

We tested numerically the cancellation of IR divergences,
the independence of our results ofm� (in the sum of the soft

and virtual part), and of the separator �E (see Figs. 5–7).

E. Total cross sections

Including the finite wave-function renormalization for
the Higgs field we obtain the following expressions for
the tree-level differential partonic cross section of the
processes we are considering:

d�̂1;1
bg!bH 0 ¼ �0d cos�

768�s�
ZH 0 jM1=2;1=2

bg!bH 0 j2; (20)
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where � ¼ 2p=
ffiffiffi
s

p
, �0 ¼ 2p0=

ffiffiffi
s

p
, and s is the Mandelstam variable defined in Eq. (3); the NLO-EW contribution to the

differential cross section reads as follows:

d�̂1;2
bg!bh0

¼ �0d cos�
768�s�

Zh0

���������1� Zh0H0

cos�

sin�

��������
2jM1=2;1=2

bg!bh0
j2 þ 2ReM1=2;1=2

bg!bh0
ðM1=2;3=2

bg!bh0
Þ�
�
� d�̂1;1

bg!bh0
;

d�̂1;2
bg!bH0 ¼ �0d cos�

768�s�
ZH0

���������1� ZH0h0
sin�

cos�

��������
2jM1=2;1=2

bg!bH0 j2 þ 2ReM1=2;1=2

bg!bH0ðM1=2;3=2

bg!bH0Þ�
�
� d�̂1;1

bg!bH0 ;

d�̂1;2
bg!bA0 ¼ �0d cos�

768�s�
ZA0f2ReM1=2;1=2

bg!bA0ðM1=2;3=2

bg!bA0Þ�g;

(21)

where the Z factors Zh0 , ZH0 , ZA0 , Zh0H0 , and ZH0h0 in the
two renormalization schemes we are considering can be
found in [14] and in [15]. The partonic differential cross
section for the real photon radiation process reads as
follows:

d�̂1;2
bg!bH 0�

¼ 1

4 � 24
dðp0

b;pH 0 ;p�Þ
2�s

ZH 0 jM1=2;1

bg!bH 0�
j2;

(22)

where, according to the notation introduced in [22],
dðp0

b; pH 0 ; p�Þ is the three-particles phase space mea-
sure. The hadronic differential cross section atOð�s�Þ and
Oð�s�

2Þ reads

d�1;1
PP!bH 0ðSÞ ¼

Z 1

0
dx1

Z 1

0
dx2½fbðx1; �Þfgðx2; �Þ

þ ðx1 $ x2Þ�d�̂1;1
bg!bH 0ðx1x2SÞ

d�1;2
PP!bH 0ð�ÞðSÞ ¼

Z 1

0
dx1

Z 1

0
dx2½fbðx1; �Þfgðx2; �Þ

þ ðx1 $ x2Þ�½d�̂1;2
bg!bH 0ðx1x2SÞ

þ d�̂1;2
bg!bH 0�

ðx1x2SÞ�; (23)

respectively.
ffiffiffi
S

p
is the hadronic center-of-mass energy,

while fiðxi; �Þ is the parton distribution function of the
parton i inside the proton with a momentum fraction xi at
the scale �. For later convenience we define the invariant
mass distribution as

d�1;1
PP!bH 0

d
ffiffiffi
�s

p ¼
Z 1

0
dx1

Z 1

0
dx2½fbðx1;�Þfgðx2;�Þ

þ ðx1 $ x2Þ�d�̂1;1
bg!bH 0ðx1x2SÞ

�
ð ffiffiffiffiffiffiffiffiffiffiffiffi
x1x2S

p � ffiffiffi
�s

p Þ
d�1;2

PP!bH 0

d
ffiffiffi
�s

p ¼
Z 1

0
dx1

Z 1

0
dx2½fbðx1;�Þfgðx2;�Þ

þ ðx1 $ x2Þ�½d�̂1;2
bg!bH 0ðx1x2SÞ

þd�̂1;2
bg!bH 0�

ðx1x2SÞ�
ð
ffiffiffiffiffiffiffiffiffiffiffiffi
x1x2S

p � ffiffiffi
�s

p Þ: (24)

III. NUMERICAL RESULTS

The independent input parameters in the MSSM Higgs
sector are the A0 mass and tan�: since we impose the same
renormalization condition for MA0 only tan� should be
converted in the change of scheme, using the one-loop
relation

tan�DCPR ¼ tan�DR þ 
 tan�DR � 
 tan�DCPR; (25)

while the OS and DR bottom masses mOS
b and mDR

b ð�Þ are
computed starting from mMS

b ðmbÞ ¼ 4:2 GeV and follow-

ing the procedure described in Sec. 3.2.2 of [17].
For the numerical evaluations we defined the supersym-

metric scenario SPP1 and a class of points of the parameter
space SPP2, with variable tan� ¼ 10; 20; 30; 40. The input
parameters characterizing these scenarios are summarized
in Table I. The sparticle masses and mixing angles have
been obtained with the code FEYNHIGGS [23]. The one-loop

TABLE I. Input parameters for the SUSY scenarios considered in our numerical discussion.
M~q;j is the common value of the breaking parameters in the sector of the squarks belonging to the

jth generation. The dimensionful parameters are given in GeV.

Scenario tan� MA0 M~q;1 M~q;2 M~q;3 M1 M2 M~g

SPP1 15 350 350 350 250 90 150 800

SPP2 variable 250 500 500 400 90 200 800
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Higgs masses are numerically computed by finding the
zero of inverse one-loop propagator matrix determinant

½k2 �M2
H0 þ �̂H0ðk2Þ�½k2 �M2

h0
þ �̂h0ðk2Þ�

� �̂
2
H0h0ðk2Þ ¼ 0: (26)

Since we require semi-inclusive production (i.e. the
bottom quark must be tagged) we impose the following
kinematical cuts on the bottom in the final state, limiting
the transferred momentum pb;T > 20 GeV (due to resolu-

tion limitations of the hadronic calorimeter) and the rapid-
ity jybj< 2 (in order to be able to perform inner tracking).
The process we are considering is leading order in QCD.
Therefore, analogously to [24–26], we use a LO QCD PDF
set, namely, the LO CTEQ6L [27]. Our choice is justified
since the QED effects in the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi evolution equations are known to be small
[28]. The factorization of the bottom PDF has been
performed in the DIS scheme, with factorization scale
� ¼ MH 0 þmOS

b .

In Figs. 8–10 we show the total cross section for A0, H0,
and h0 production in the class of supersymmetric scenarios
SPP2, as functions of tan�. We present both the results in
the DR and in the DCPR schemes. The numerical values
and the K-factors in the two schemes (defined as usual as
the ratios �NLO=�LO; note that the LO is computed with
the resummed/modified SUSY-QCD coupling, so our
K-factors account of the pure electroweak NLO effect),
as well as the ratios of the NLO cross sections in the two
scheme are reported in Table II, III, and IV.

As one sees, the values of the total cross sections do
coincide in the overall range, apart from small differences
of the few percent size for very large tan� values. This
confirms our expectation that at the NLO level the two
schemes should be equivalent, and also provides an im-
portant check of the reliability of our calculations.

Having verified the realistic one-loop equivalence of the
two schemes, we have decided to perform our analysis in
theDR scheme. The main theoretical reasons of our choice
have been fully illustrated in [29]. In particular this scheme
is known to be generally more stable numerically: our
results confirm mainly this expectation but it is worth
noting that for h0 production both schemes can produce
(in different tan� regions) relatively large effects; never-
theless the good agreement between the two schemes leads
one to suppose that the perturbative expansion is well
behaved, and NNLO effects are well under control.
Figure 11 shows theK-factors for the three Higgs bosons

in DR as function of tan� while Figs. 12–14 show, for the
scenario SPP2 tan� ¼ 30, the invariant mass distribution
and the relative NLO effect. In the next Figs. 15–17 we
again plot the differential distributions for the SPP1 sce-
nario; the total cross sections for this scenario are reported
in Table V.
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FIG. 10. Total LO and NLO cross sections in the DR and
DCPR schemes, h0 production; MA0 ¼ 250 GeV, pb;T >
20 GeV, jybj< 2.
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FIG. 8. Total LO and NLO cross sections in the DR and DCPR
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schemes, H0 production; MA0 ¼ 250 GeV, pb;T > 20 GeV,
jybj< 2.

M. BECCARIA et al. PHYSICAL REVIEW D 82, 093018 (2010)

093018-8



From inspection of the figures, one can draw the follow-
ing main conclusions:

(1) The K-factors for H0, A0 are systematically small
for large tan�, and would reach a larger size
(roughly, 8%) for small tan� values around 10.

(2) The K-factor for h0 varies drastically with tan�,
changing from positive values of about 15% for
tan� around 10 to negative values of about 25%
for tan� around 40. These extreme negative and

positive values are of a size that cannot be ignored
in a dedicated experimental analysis.

These features follow from the two-Higgs doublet model
structure and the h0 �H0 mixing where � is close to ��
�=2 leading to a tan� enhancement in the h0 case but to a
1= tan� suppression in the H0, A0 cases.

TABLE II. A0 production, SPP2 spectra: total cross sections (pb), K-factors, and NLO
DR=DCPR ratio.

tan� �DR;NLO �DR;LO �DCPR;NLO �DCPR;LO KDR KDCPR NLO ratio

10 1.367 1.281 1.371 1.253 1.067 1.093 0.997

20 5.040 4.784 5.060 4.278 1.053 1.182 0.995

30 10.601 10.295 10.785 8.505 1.029 1.268 0.98

40 17.118 17.125 17.615 13.038 0.999 1.350 0.97

TABLE IV. h0 production SPP2 spectra: total cross sections (pb), K-factors, and NLO
DR=DCPR ratio.

tan� �DR;NLO �DR;LO �DCPR;NLO �DCPR;LO KDR KDCPR NLO ratio

10 0.282 0.248 0.282 0.243 1.135 1.156 1.002

20 0.255 0.254 0.254 0.230 1.005 1.107 1.003

30 0.228 0.258 0.230 0.217 0.882 1.059 0.988

40 0.204 0.267 0.213 0.211 0.764 1.012 0.955

TABLE III. H0 production SPP2 spectra: total cross sections (pb), K-factors and NLO
DR=DCPR ratio.

tan� �DR;NLO �DR;LO �DCPR;NLO �DCPR;LO KDR KDCPR NLO ratio

10 1.338 1.260 1.340 1.234 1.061 1.086 0.998

20 5.133 4.857 5.099 4.334 1.056 1.176 1.006

30 10.975 10.461 10.715 8.488 1.049 1.262 1.024

40 18.613 17.918 17.811 13.248 1.038 1.344 1.045
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FIG. 11. K-factors for A0; H0, and h0 production, DR scheme.
MA0 ¼ 250 GeV, pb;T > 20 GeV, jybj< 2.
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This, we believe, is the main message of our calculation:
while for sure the QCD NLO are the dominant corrections
(of order 20–40% depending on the Higgs mass; see for
example [3]), as it was to be expected from the analysis of
Dittmaier et al. [5], the one-loop electroweak contribution
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FIG. 13. Invariant mass distribution, H0 production, DR
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TABLE V. SPP1 spectrum: total cross sections (pb) for the
three Higgs and DR K-factors.

H 0 �DR;NLO �DR;LO KDR

A0 0.768 0.724 1.060

H0 0.769 0.727 1.056

h0 0.213 0.222 0.961
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in the semi-inclusive bottom-Higgs production processes
must not be a priori considered as negligible.

IV. NUMERICAL APPROXIMATIONS

Having performed the calculation of complete one-loop
effect on the process, we shall consider the possibility of
simpler, effective approximations to the full and long
calculation, that may be used to obtain a quicker and
qualitative description of the results.

With this purpose we have first considered the
‘‘improved Born approximation’’ (IBA) following the pre-
scriptions given in [5]: the IBA is obtained is this case by
including in the definition of �b [see Eq. (14)] the elec-
troweak contributions and then replacing the mixing angle
� with the effective value �eff , obtained by the diagonal-
ization of the one-loop mass matrix

m2
h0
� �̂h0ðm2

h0
Þ ��̂h0H0

	
1
2 ðm2

h0
þm2

H0Þ



��̂h0H0

	
1
2 ðm2

h0
þm2

H0Þ



m2
H0 � �̂H0ðm2

H0Þ

0
B@

1
CA:
(27)

The effect of the latter redefinition of � is negligible forH0

and A0, but significant for h0.
As one can see from the plots (Figs. 18–20) this version

of IBA is sufficiently close to the complete calculation only
for relatively small tan� values, roughly tan�< 20. In this
range, the approximation gives larger (compared to the
complete calculation) rates for H0, A0 and smaller rates
for h0. The differences remain below the 10% size, which
would be tolerable at least in a first phase of LHC mea-
surements. Increasing the tan� value, the IBA description
becomes worse. For tan� ¼ 40, it differs in all the three
cases by, roughly, a relative 25%, which seems a rather
poor prediction for the measurable total rates.

For what concerns the tan� dependence of the plots, one
can conclude that it provides those features that would be
expected at the chosen value of MA0 , which is sufficiently
larger than MZ to approach the correct decoupling limits.
In this large MA0 regime, that is discussed widely in the
literature (see e.g. [30]), the H0 and A0 couplings become
almost exactly proportional to tan�, while the h0 coupling
becomes very weakly tan� dependent. These features are
well reproduced by the plots, that show a roughly quadratic
tan� dependence of the H0, A0 rates and a much weaker
tan� dependence for h0. But for large tan� values, there
seems to be an extra tan� dependence of the complete
calculation that is not contained in the IBA description.
Having this apparent discrepancy in our mind, as a

second attempt, we have tried to use what we would call
a ‘‘reduced vertex approximation’’ (RVA): we approximate
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FIG. 19. Comparison of the total NLO cross sections: NLO
DR, RVA (DR and DCPR), and improved Born approximation,
H0 production; MA0 ¼ 250 GeV, pb;T > 20 GeV, jybj< 2.
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the complete NLO keeping only the (all) one-loop correc-
tions to the final Yukawa bbH 0 vertex and the subset of
counterterms needed to get a UV-finite result; the photon
mass is regulated (arbitrarily) asM� ¼ MZ (and thus we do

not include soft and hard radiation). We kept the one-loop
Higgs masses in the kinematics as well as the Z-factors in
the definition of the cross section; all the other diagrams
(boxes, initial, and up triangles, Self-Energies) are ne-
glected. As a check we computed the cross section in this
approximation in both schemes (the subset of diagrams,
with the right choice of counterterms, should be scheme
independent). As one can see from the updated figures our
RVA turns out to provide a very efficient description of the
total NLO cross sections; the difference between the NLO
and the RVA is of order of 1%, 3.4% in the worst case. This
is numerically summarized in Tables VI, VII, and VIII, and
Figs. 18–20.

From the inspection of those tables and figures we would
conclude that the extra vertices that the RVA contains seem
to provide the extra tan� dependence not predicted by the
IBA in a reasonably satisfactory way, i.e. at the level of
few percent in the full tan� range. This RVA cannot be

transformed into simple analytical expressions. It tells us
that the relative effect of a large set of Feynman diagrams,
those that were not included in the approximation, is small,
at the level of a few percent, which might be considered
negligible for the first phase of LHC measurements.

V. CONCLUSIONS

We have performed in this paper a complete MSSM
calculation of the electroweak NLO effect in the processes
of semi-inclusive bottom-Higgs production. Our analysis
has been performed for two choices of the MA0 input
parameter and for variable values of the tan� parameter
defined in the DR renormalization scheme. Although a
more extended analysis of the parameter space would be
interesting, we have found certain results that appear to us
to be general and worth publishing. The first conclusion is
that two different renormalization schemes appear to be
practically identical at SUSY NLO as one would a priori
expect. Working in the DR scheme, that seemed to us to be
somehow preferable, we have found that the pure electro-
weak one-loop effect in the three considered production

TABLE VII. h0 production: comparison between the complete NLO prediction and the two

approximations, total cross sections and ratios �DR;NLO=�APP:.

tan� �DR;NLO RVAbbH �=RVAbbH IBA �=IBA

10 0.282 0.277 157 1.017 47 0.268 161 1.051 61

20 0.255 0.250 495 1.017 99 0.238 459 1.069 36

30 0.228 0.221 673 1.028 54 0.211 275 1.079 16

40 0.204 0.197 159 1.0347 0.164 874 1.237 31

TABLE VIII. A0 production: comparison between the complete NLO prediction and the two

approximations, total cross sections and ratios �DR;NLO=�APP:.

tan� �DR;NLO RVAbbH �=RVAbbH IBA �=IBA

10 1.367 1.353 28 1.010 14 1.367 37 0.999 729

20 5.04 4.980 26 1.011 99 5.4543 0.924 042

30 10.601 10.4581 1.013 66 12.2948 0.862 232

40 17.118 16.8292 1.017 16 21.7326 0.787 663

TABLE VI. H0 production: comparison between the complete NLO prediction and the two

approximations, total cross sections and ratios �DR;NLO=�APP:.

tan� �DR;NLO RVAbbH �=RVAbbH IBA �=IBA

10 1.338 1.326 23 1.008 88 1.340 87 0.997 861

20 5.133 5.083 24 1.009 79 5.483 97 0.936

30 10.975 10.8433 1.012 15 12.6044 0.87073

40 18.613 18.3461 1.014 55 22.6229 0.822 749
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processes is of a size that might be relevant and therefore
that this contribution cannot be ignored for a proper ex-
perimental analysis of the reactions.

There could exist simpler calculations involving a
smaller (but still large) number of diagrams, that would
provide a valid numerical result. We have seen that one
possible improved Born approximation does not reproduce
the correct result in a satisfactory way. We have also seen
that another reduced vertex approximation (which consid-
ers only the one-loop correction to the Yukawa bbH 0

vertex) appears to better approximate the full NLO.
However, if a theoretical prediction of the total cross

section is requested at the percent level, which might be the
hopefully desirable final LHC goal, our conclusion is that
the complete one-loop calculation of the electroweak part
that we have performed in this paper should be considered,
together with the available, large, QCD corrections, as the
correct proposal to offer to the experimental community.

There remains a couple of relevant points still to be
investigated. The first is that of combining this analysis
with an analogous one to be performed for the process of
associated top-charged Higgs production, for which our
group has already provided a complete one-loop electro-
weak analysis [26]. The second one is that of trying to
relate the DR tan� parameter, which is not a measurable
quantity, to a measurable tan� (which could be defined for
instance by A0 ! �þ�� decay as suggested in [29]). This
would allow one to draw plots where also the horizontal
axis represents a measurable quantity. These points are, in
our opinion, quite relevant but beyond the purposes of our
analysis; work is in progress on these issues.
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APPENDIX A: RENORMALIZATION CONSTANTS
IN THE HIGGS SECTOR

The renormalization constants of the wave function of
the Higgs bosons A0, h0,H0 and of the Goldstone bosonG0

are given by


 �ZH0H0 ¼ cos2�
ZH1 þ sin2�
ZH2;


 �ZH0h0 ¼ sin� cos�ð
ZH2 � 
ZH1Þ;

 �Zh0h0 ¼ sin2�
ZH1 þ cos2�
ZH2;


 �ZA0A0 ¼ sin2�
ZH1 þ cos2�
ZH2;


 �ZG0A0 ¼ cos� sin�ð
ZH2 � 
ZH1Þ;

 �Zh0A0 ¼ 
 �ZH0A0 ¼ 
 �Zh0G0 ¼ 
 �ZH0G0 ¼ 0:

(A1)

The renormalization constants for the c	ðbbh0Þ and for the
c	ðbbH0Þ couplings are obtained differentiating the tree-
level expressions in Eq. (5),


c	ðbbh0Þ ¼
�

g

g
þ 
mb

mb

� 
M2
W

2M2
W

� 
 cos�

cos�

�
c	ðbbh0Þ;


c	ðbbH0Þ ¼
�

g

g
þ 
mb

mb

� 
M2
W

2M2
W

� 
 cos�

cos�

�
c	ðbbH0Þ:

(A2)


 cos�, 
M2
W , and 
g, read as follows:


 cos� ¼ �sin2�

 tan�

tan�
;


M2
W ¼ Re�WðM2

WÞ;

g

g
¼ ��Zð0Þ

sWcWM
2
Z

� 1

2

�
þ2

cW
sWM

2
Z

��Zð0Þ

þ c2W
s2W

�

M2

Z

M2
Z

� 
M2
W

M2
W

�
��0

��ð0Þ
�
; (A3)

with 
M2
Z ¼ Re�ZðM2

ZÞ. The c	ðbbA0Þ couplings depends
only on the angle �. When computing the renormalization
constant 
c	ðbbA0Þ, one has to distinguish between the
�-dependent factors originated by the H1, H2 mixing and
the �-dependent factors from the H1, H2 couplings. Only
the latter have to be renormalized. In particular the factor
sin� (1= cos�) entering the c	ðbbA0Þ coupling is origi-
nated from the H1, H2 mixing (couplings), and thus

c	ðbbA0Þ reads


c	ðbbA0Þ ¼
�

g

g
þ 
mb

mb

� 
M2
W

2M2
W

� 
 cos�

cos�

�
c	ðbbA0Þ:

(A4)

APPENDIX B: CONTRIBUTIONS OF THE
COUNTERTERMS

In this appendix we list explicitly the contributions of
the counterterms written in terms of the renormalization
constants introduced in Sec. II C and in Appendix A.
The vertices’ counterterms can be written as follows:

�u 0
bð�0

bÞ
�X4
k¼1

X
	¼L;R

Jk	Vk	

bg!bH 0

�
ubð�bÞ; (B1)

where Jk	 are defined in Eq. (8) while the nonzero

Vk	

bg!bH 0 reads
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V1	

bg!bH 0 ¼ gs
s�m2

b

��
3

2

Zb

	 þ 1

2

Zb

�	

�
c	ðbbH 0Þ þ 
c	ðbbH 0Þ þ 1

2

X
�H 0


 �Z�
�H 0H 0

c	ðbb �H 0Þ
�

� gs
u�m2

b

��
3

2

Zb

�	 þ 1

2

Zb

	

�
c	ðbbH 0Þ þ 
c	ðbbH 0Þ þ 1

2

X
�H 0


 �Z�
�H 0H 0

c	ðbb �H 0Þ
�
;

V2	

bg!bH 0 ¼ �2gs
u�m2

b

��
3

2

Zb

�	 þ 1

2

Zb

	

�
c	ðbbH 0Þ þ 
c	ðbbH 0Þ þ 1

2

X
�H 0


 �Z�
�H 0H 0

c	ðbb �H 0Þ
�
;

V3	

bg!bH 0 ¼ mbgs
s�m2

b

ð
Zb
�	 � 
Zb

	Þc �	ðbbH 0Þ þ mbgs
u�m2

b

ð
Zb
�	 � 
Zb

	Þc	ðbbH 0Þ; (B2)

where ð	; �	Þ 2 fðL; RÞ; ðR;LÞg and H 0, �H 0 ¼ h0, H0, A0, G0. The bottom self-energy counterterm reads as follows

�u 0
bð�0

bÞ
�X4
k¼1

X
	¼L;R

Jk	Sk	
bg!bH 0

�
ubð�bÞ: (B3)

The nonzero S
k	

bg!bH 0 are

S1	
bg!bH 0 ¼ gs

c	ðbbH 0Þ
ðs�m2

bÞ2
�
s
Zb

	 �m2
b

�

Zb

	 � 2

mb

mb

��
þ gs

c	ðbbH 0Þ
ðu�m2

bÞ2
�
u
Zb

�	 �m2
b

�

Zb

�	 � 2

mb

mb

��

S2	
bg!bH 0 ¼ 2gs

c	ðbbH 0Þ
ðu�m2

bÞ2
�
u
Zb

�	 �m2
b

�

Zb

�	 � 2

mb

mb

��

S
3	

bg!bH 0 ¼ gsmb

c �	ðbbH 0Þ
ðs�m2

bÞ
�
1

2
ð
Zb

	 � 
Zb
�	Þ �


mb

mb

�
þ gsmb

c	ðbbH 0Þ
ðu�m2

bÞ
�
1

2
ð
Zb

	 � 
Zb
�	Þ �


mb

mb

�
:

(B4)
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