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In this work we use the Schwinger-Dyson equations to study the possibility that an enhanced

gravitational attraction triggers the formation of a right-handed neutrino condensate, inducing dynamical

symmetry breaking and generating a Majorana mass for the right-handed neutrino at a scale appropriate

for the seesaw mechanism. The composite field formed by the condensate phase could drive an early

epoch of inflation. We find that to the lowest order, the theory does not allow dynamical symmetry

breaking. Nevertheless, thanks to the large number of matter fields in the model, the suppression by

additional powers in G of higher order terms can be compensated, boosting them up to their lowest order

counterparts. This way chiral symmetry can be broken dynamically and the infrared mass generated turns

out to be in the expected range for a successful seesaw scenario.

DOI: 10.1103/PhysRevD.82.093014 PACS numbers: 14.60.Pq

I. INTRODUCTION

The most commonly accepted theory about the origin
and the evolution of our Universe is doubtlessly the hot big
bang model. Such a model is based on two crucial obser-
vations: the discovery of the expansion of the Universe
as depicted by the Hubble’s law, and the existence of
an astonishing isotropic and a perfectly thermal cosmic
microwave background (CMB) radiation. Since the energy
density of radiation dilutes away faster with the expansion
than that of matter, these two observations immediately
point to the fact that the Universe has evolved from a hot
and dense early phase when radiation, and not matter, was
dominant. The recent evolution to a matter dominated
epoch takes place when the radiation density falls suffi-
ciently low that the photons cease to interact with matter.
The CMB is then nothing but the remnant of a lost epoch,
in which radiation was the dominant component of the
energy budget, the relic radiation which is reaching us
today from this epoch of decoupling. While reasonably
isotropic, the CMB possesses small anisotropies (of about
one part in 105), and the observed pattern of the fluctua-
tions in the CMB provides a straight snapshot of the
Universe at this epoch. The hot big bang model has been
rather successful in predicting, say, the primordial abun-
dances of the light elements in terms of a single parameter,
namely, the baryon-to-photon ratio, and the amount re-
quired to fit these observations beautifully agrees with
the value that has been arrived at independently from the
structure of the anisotropies in the CMB. Despite the
success of the hot big bang model in explaining the results
from different observations, the model has a serious draw-
back. Under this framework, the CMB photons arriving at
us today from sufficiently widely separated directions in
the sky could not have interacted at the time of decoupling.
Nevertheless, one finds that the temperature of the CMB

photons reaching us from any two diametrically opposite
directions scarcely vary.1

Inflation [2], which refers to a period of accelerated
expansion during the early stages of the radiation domi-
nated epoch, provides a satisfactory resolution to the
above mentioned deficiencies of the hot big bang model.
Actually, in addition to offering a graceful explanation
for the extent of homogeneity and isotropy of the back-
ground universe, inflation also provides an attractive causal
mechanism to generate the inhomogeneities superimposed
upon it. The inflationary phase blows up the tiny quantum
fluctuations present at the beginning of the epoch and
transforms them into classical perturbations which leave
their watermarks as anisotropies in the CMB. Subsequently
these anisotropies act as seeds for the formation of the
large scale structures that we observe at the present time
as galaxies and clusters of galaxies. With the anisotropies
in the CMB being measured to greater and greater preci-
sion, we have an unprecedented fertile ground to test the
predictions of inflation. The simplest models of inflation
driven by a single, slowly rolling scalar field, generically
predict a nearly scale invariant spectrum of primordial
perturbations, which seems to be in excellent agreement
with the recent observations of the CMB.
Although the inflationary paradigm is widely accepted,

most attempts to incorporate inflation into specific models
of particle physics struggle with two weaknesses:
(i) Parameters such as coupling constants must often be
fine-tuned to extremely small values in order to avoid
massive overproduction of density fluctuations. This can
be traced back in a general sense to emanate from an
exponential dependence of the vacuum energy density
V4 on the symmetry breaking scale V. (ii) Symmetry

1For an account of the impressive successes and the scarce
weaknesses of the hot big bang model see, for example, [1].
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breaking scales significantly below the Planck (Pl) scale,
V <MPl ’ 1019 GeV are at odds with observational con-
straints. The latter deficiency is particularly bothering,
since physics at the Planck scale is at present poorly under-
stood, and there is not a powerful basis to assume that
standard notions of spontaneous symmetry breaking are
valid at such high energies.

Models giving rise to inflation are typically formulated in
terms of an elementary scalar field, the inflaton. In most
models the inflaton field, �, is conceived as a scalar field
(associated in the most ambitious models with a grand
unified Higgs field) whose effective potential Veffð�Þ is
chosen such that � is initially trapped in a local minimum
at � ¼ 0 (where it is specially flat) and has to roll down
slowly to its true minimum at� ¼ �0. For a suitable choice
of the model parameters the Universe would spend a sig-
nificant period of time in an exponentially expanding
de Sitter phase, with its energy density dominated by the
large value Veffð0Þ � Veffð�0Þ. A crucial fine tuning is re-
quired in these models. Let alone the fact that these models
reckon upon the existence of a fundamental scalar field.

As fundamental scalar fields are yet to be observed, in
this work we explore the possibility of giving the inflaton
a structure, as a dynamically generated condensate of
right-handed neutrinos triggered by gravitation.

Why neutrinos? Neutrinos have provided our first (and
so far the only) glimpse beyond the standard model as
neutrino oscillation experiments have shown unambiguous
evidence that the three active neutrinos have mass and mix.
Neutrino masses, as deduced from oscillation experiments
point towards the existence of right-handed neutrino states
and a new energy scale. The new energy scale is associated
with the fact that the triviality of the quantum numbers of
the new states allows them to have Majorana masses of
order M, as well as to couple to the SUð2ÞL doublets and
Higgs bosons. Although all values for M are technically
natural, large values ofM are preferred for several reasons,
including the fact that one may relate M to other well-
justified high energy scales, asMPl or the grand unification
scale MGUT. Within the seesaw mechanism [3], a theoreti-
cally appealing scenario to generate the observed light
masses in a natural way, the coupling to the Higgs doublet
becomes a Dirac mass of order � after electroweak
symmetry breaking, while the Majorana masses are at
some high scale, M�MGUT. In this case, the resulting
propagating neutrino degrees of freedom separate into two
quasidecoupled groups: mostly active states with masses
m��2=M and mostly sterile states with very large
masses. In this case the right-handed neutrinos will have
superheavy masses, as compared to their standard model
counterparts. Being so heavy turns them into ideal candi-
dates to provide structure (dynamical origin) to another
superheavy and weakly coupled particle, the inflaton.

Trying to form a right-handed neutrino condensate faces
an obvious problem. Neutrinos are weakly interacting

particles. Even more, right-handed neutrinos are solo
players in the standard model, leaving gravity as their
only possibility. Gravity is a force known to be miserably
weak among elementary particles. So, we want to explore
the prospects of gravitational interactions between right-
handed neutrinos at ultrahigh energies, i.e., in the very
early universe, being strong enough to trigger the forma-
tion of a low-energy condensate, breaking the lepton
number and giving masses to right-handed neutrinos.
As before, we can ask again, why neutrinos? Would this

not work (if it indeed works) for any other fermion as well?
If neutrinos do condensate, why does it not happen to say,
electrons or quarks ? The answer to this puzzling behavior
rests on the fact that neutrinos are the only known funda-
mental neutral fermion. And this fact singles them out from
the rest. For all charged fermions, when gauge interactions
are attractive, a new annihilation channel opens up, closing
the door to condensation. On the other hand, when anni-
hilation is not possible, gauge interactions are repulsive.

II. SETTING THE SCENE

We will investigate whether chiral symmetry is broken
dynamically due to the formation of a right-handed
neutrino condensate triggered by gravity. The formation
of such a condensate, if it extists, sets off the dynamical
symmetry breaking of the lepton number and produces
a Majorana mass for the right-handed neutrino. The phe-
nomenology of right-handed neutrino condensates in the
early universe was studied in [4] by introducing an effec-
tive four fermion self-coupling for the right-handed neu-
trinos. It was found there that the condensate dynamics
also produces ‘‘natural inflation’’ [5]. This way both the
inflationary de Sitter scale and the right-handed neutrino
mass come out naturally of the order of the infrared mass
of the condensate. The quantum fluctuations of the con-
densate, which mimics a scalar field, give rise to primordial
density fluctuations of the needed size and a spectral index
in agreement with observations. The tensor perturbations,
however, end up being exponentially suppressed, while the
predictions for the running of the spectral index come out
to be negligible small, experimentally indistinguishable
from zero, making the model especially easy to test in
the next generation of experiments. As compared to the
usual approach to inflaton model building a dynamical
framework is both economical and predictive. In this
work we will try to relate the dynamics underlying the
effective four fermion interaction to quantum gravity.
The Schwinger-Dyson equations provide a convenient

way to study dynamical symmetry breaking and dynamical
mass generation in quantum field theory. However, they
constitute an infinite set of integral equations and some
truncation scheme is necessary in order to explore its
possible solutions.
Since quantum gravity is known to be non renormaliz-

able, it will be necessary to introduce a momentum cutoff
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� into the theory. Intuitively one assumes that� is of order
MPl, Planck’s mass. We will see that when the number of
matter fields is large a lower, reduced Planck scale will
play an important role.

We can now explore dynamical symmetry breaking us-
ing the Schwinger-Dyson equation for the fermion propa-
gator. Because of Lorentz and parity invariance the full
propagator for the neutrino field SF can be written in the
massless limit as

S0FðpÞ ¼
i

p��ðpÞ ¼
i

�ðp2Þp� �ðp2Þ (1)

then the self-energy part �ðpÞ satisfies the following in-
tegral equation:

�ðpÞ ¼
Z d4k

ð2�Þ4 ���ðk� p; pÞSFðkÞG0����ðp� kÞ
� �0

��ðp� k; kÞ; (2)

where �ð0Þ
��ðp; kÞ is the tree (full) fermion-fermion-graviton

vertex function and G0���� stands for the full graviton
propagator (Fig. 1). We will perform our calculation in
the standard harmonic gauge and will consider an approxi-
mation where we replace G0 and �0 by their tree level
values G and �, respectively. Then, for the lowest order,
we obtain the coupled integral equations

�ðp2Þ ¼ 1� i�2
Z d4k

ð2�Þ4
�ðk2Þ

�ðk2Þk2 � �2k2
1

16ðp� kÞ2p2

� ð4k2p2 þ 3ðk2 þ p2Þkpþ 2ðkpÞ2Þ; (3)

where �2 ¼ 32�G and

�ðp2Þ ¼ i�2
Z d4k

ð2�Þ4
�ðk2Þ

�ðk2Þk2 � �2k2
Lðp; kÞ: (4)

If the fermion is not a tachyon, SF has no singularity in the
spacelike momentum region, and one can safely perform
the angular integration after Wick’s rotation. Within the
approximations we are using, and at the lowest order
Lðp; kÞ, the kernel of the � function is zero and therefore
� ¼ 0, which implies no symmetry breaking at all. We are
forced then to go beyond the lowest order, the bare gravi-
ton, if we are to find a nontrivial solution for �. By going
to the next leading term, we will obtain terms which are
higher order in G and therefore we will include them only
for � and not for � where the bare propagator contribution
is the dominant one.

The standard model possesses a large number of matter
degrees of freedom: 12 gauge bosons, 48 chiral fermions
(including right-handed neutrinos), and 4 Higgs scalars. In
extensions of the standard model the matter content is even
larger. This large number of matter degrees of freedom can
help overcome the additional G suppression factor arising
with the next leading contribution. However, not all the
one loop diagrams enjoy this large N increase. We will
consider only the vacuum polarization diagrams (correc-
tions to the propagator), and not the vertex corrections,
as they are the only ones who benefit from the large matter
content of the theory close to the Planck scale and will
exhibit a large N enhancement.
The fact that Lðp; kÞ ¼ 0 and therefore the chiral sym-

metry is unbroken at tree level is indeed remarkable. This
may be related to gravity’s structure itself, although one
could question whether this is an artifact of the standard
gauge we have chosen.
The matter contribution to the graviton self-energy is

obtained from the subdiagrams in Fig. 2 and includes the
one loop contributions for gauge bosons (gb), Dirac fermi-
ons (df), minimal scalars (ms), conformal scalars (cs), and
gravitons (gr).
The contribution of the photon/gauge boson loop to the

polarization tensor reads

~���;�	 ¼ G

�

�
1

30
ðq�q� � q2
��Þðq�q	 � q2
�	Þ

� 1

20
ðq�q� � q2
��Þðq�q	 � q2
�	Þ

� 1

20
ðq�q	 � q2
�	Þðq�q� � q2
��Þ

�

� logð�2=� q2Þ; (5)

where q ¼ p� k and we have introduced a renormaliza-
tion mass � which is in principle arbitrary. The gauge

(a) (b)

(c)

(d) (e)

FIG. 2. The set of vacuum polarization diagrams which con-
tribute to the graviton self-energy, which comprises (a) gauge
bosons, (b) Dirac fermions, (c) minimal and conformal scalars,
and (d) gravitons. Notice that there exists a ghost diagram
(e) along with the graviton one.

=
Γ

G’

Σ S’F Γ ’

FIG. 1. The Schwinger-Dyson equation for the fermion full
propagator. Apostrophes denote full quantities.
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boson loop yields as a contribution to the kernel Lðp; kÞ of
the �-term for the self-energy of the graviton

Lphðp; kÞ ¼ ���

�P����

q2

�
~���;�	ðqÞ

�P �	�


q2

�
��


¼ �G2

3

�
ðpþ kÞ2 � ðp2 � k2Þ2

ðp� kÞ2
�

� log

�
�2

�ðp� kÞ2
�
; (6)

where P���� is the polarization tensor, defined in the

Appendix.
We have to include also the Dirac fermion loop

(Majorana fermion contribution halves)

�̂��;�	 ¼ G

�

�
1

60
ðq�q� � q2
��Þðq�q	 � q2
�	Þ

� 1

40
ðq�q� � q2
��Þðq�q	 � q2
�	Þ

� 1

40
ðq�q	 � q2
�	Þðq�q� � q2
��Þ

�

� logð�2=� q2Þ; (7)

whose addition to the �-term input to the self-energy gives

Ldfðp; kÞ ¼ ���

�P����

q2

�
�̂��;�	ðqÞ

�P �	�


q2

�
��


¼ �G2

6

�
ðpþ kÞ2 � ðp2 � k2Þ2

ðp� kÞ2
�

� log

�
�2

�ðp� kÞ2
�
: (8)

And also minimal scalar fields

����;�	 ¼ G

�

�
1

40
ðq�q� � q2
��Þðq�q	 � q2
�	Þ

� 1

240
ðq�q� � q2
��Þðq�q	 � q2
�	Þ

� 1

240
ðq�q	 � q2
�	Þðq�q� � q2
��Þ

�

� logð�2=� q2Þ; (9)

that contribute to the self-energy and thus to the kernel of
the �-term by

Lmsðp; kÞ ¼ ���

�P����

q2

�
����;�	ðqÞ

�P �	�


q2

�
��


¼ � 3G2

8

�
ðpþ kÞ2 � 2

3

ðp2 � k2Þ2
ðp� kÞ2

�

� log

�
�2

�ðp� kÞ2
�
: (10)

Last but not least we have to include also the contribution
of conformal scalars

����;�	 ¼ G

�

�
1

360
ðq�q� � q2
��Þðq�q	 � q2
�	Þ

� 1

240
ðq�q� � q2
��Þðq�q	 � q2
�	Þ

� 1

240
ðq�q	 � q2
�	Þðq�q� � q2
��Þ

�

� logð�2=� q2Þ; (11)

whose addition to the kernel of the� function coming from
their contribution to the self-energy yields

Lcsðp; kÞ ¼ ���

�P����

q2

�
����;�	ðqÞ

�P �	�


q2

�
��


¼ �G2

36

�
ðpþ kÞ2 � ðp2 � k2Þ2

ðp� kÞ2
�

� log

�
�2

�ðp� kÞ2
�
: (12)

Despite not being a matter field, the graviton loop con-
tribution to its self-energy could prove to be important,
although subdominant in a formal large N expansion. Its
contribution to the effective Lagrangian has been worked
out by ’t Hooft and Veltman [6], and from it one can
estimate its contribution to the vacuum polarization tensor

���;�	 ¼ G

�

�
23

60
ðq�q� � q2
��Þðq�q	 � q2
�	Þ

� 7

40
ðq�q� � q2
��Þðq�q	 � q2
�	Þ

� 7

40
ðq�q	 � q2
�	Þðq�q� � q2
��Þ

�

� logð�2=� q2Þ: (13)

Inserting this expression into the self-energy, from the
graviton loop one obtains the following contribution to
the kernel of the �-term:

Lgrðp; kÞ ¼ ���

�P����

q2

�
���;�	ðqÞ

�P �	�


q2

�
��


¼ �8G2

�
89

96
ðpþ kÞ2 � 31

48

ðp2 � k2Þ2
ðp� kÞ2

�

� log

�
�2

�ðp� kÞ2
�
: (14)

Including all these contributions we obtain

�ðp2Þ ¼ i2�G2
Z d4k

ð2�Þ4
�ðk2Þ

�ðk2Þk2 � �2k2

�
Aðpþ kÞ2

� B
ðp2 � k2Þ2
ðp� kÞ2

�
log

�
�2

�ðp� kÞ2
�
; (15)
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¼ i2�G2
Z d4k

ð2�Þ4
�ðk2Þ

�ðk2Þk2 � �2k2

�
A

�
ðpþ kÞ2

� ðp2 � k2Þ2
ðp� kÞ2

�
þ C

ðp2 � k2Þ2
ðp� kÞ2

�
log

�
�2

�ðp� kÞ2
�
;

(16)

with

A ¼ � 267þ 12Ngb þ 6Ndf þ 27=2Nms þ Ncs

288
; (17)

B ¼ 186þ 12Ngb þ 6Ndf þ 9Nms þ Ncs

288
; (18)

C ¼ 81þ 9=2Nms

288
; (19)

where Ngb, Ndf , Nms, and Ncs correspond to the number of

gauge bosons, Dirac fermions, minimal scalar, and confor-
mal scalar degrees of freedom in the model, respectively.

In Eq. (16) the conformal contributions are contained in
the A-term while conformal breaking terms contribute to
the C-term. While both terms can help trigger dynamical
symmetry breaking, the A-term for a small external mo-
ment, p � k, becomes

�
ðpþ kÞ2 � ðp2 � k2Þ2

ðp� kÞ2
�
!p�k � ðk � pÞ2 þ 4k2p2 ! 0

(20)

so that it cannot give rise to an infrared mass. Thus, it is
only the term proportional to C that can provide a dynami-
cal infrared mass to the right-handed neutrino, effectively
breaking both symmetries, the lepton number and chiral
symmetry, dynamically. The infrared mass generated will
be suppressed with respect to the cut-off scale by the factor
C=A which is Oð1=NmatterÞ.

Now imposing � positive and � real for spacelike
momentum, which is imposing that the fermion is stable
without a tachyonic singularity, we can safely perform the
angular integration after the Wick rotation. We get

�ðxÞ ¼ 1�G�2

32�

Z 1

0
dyKðx; yÞ y�ðyÞ

y�2ðyÞ þ �2ðyÞ ; (21)

and

�ðxÞ ¼ G2�4

16�

Z 1

0
dyLðx; yÞ y�ðyÞ

y�2ðyÞ þ �2ðyÞ ; (22)

where x ¼ p2=�2 and y¼k2=�2 and

Kðx;yÞ¼1

x

�
16ðx2þy2Þþ64xy

xþyþjx�yj �8ðxþyÞ
�
;

Lðx;yÞ¼ A

48xy

�
�2jx�yjð5x2þ2xyþ5y2ÞþðxþyÞ

�ð�36xyþ10ðxþyÞ2Þþ24xyðxþyÞ

� log

�
xþyþjx�yj

2

��
þ B

8xy

�
2jx�yj

�
�
1�2log

�
2ðx�yÞ2

xþyþjx�yj
��

þðxþyÞ

�
�
�2þ log

��2xyþðxþyÞðxþyþjx�yjÞ
2

���
:

We have introduced an UV momentum cutoff �, arising
from the nonrenormalizabilty of the theory which does
not necessarily possess the same value as the scale �.
However, one would expect them to be of the same order
of magnitude. In the remaining of this work we will con-
sider them to be equal, � ¼ � ¼ 0:8MPl.
As in [7], we implement the following iterative method

to find the numerical solutions of the Schwinger-Dyson
equations. We first choose two trial functions to start our
iterative calculation

�ð0ÞðxÞ ¼ c1; �ð0ÞðxÞ ¼ c2; (23)

with c1 and c2 constants. We then define �ðiÞ and �ðiÞ by

�ðiþ1ÞðxÞ ¼ 1�G�2

32�

Z 1

0
dyKðx; yÞ y�ðiÞðyÞ

y�ðiÞ2ðyÞ þ �ðiÞ2ðyÞ ;
(24)

and

�ðiþ1ÞðxÞ ¼ G2�4

16�

Z 1

0
dyLðx; yÞ y�ðiÞðyÞ

y�ðiÞ2ðyÞ þ �ðiÞ2ðyÞ ;
(25)

expecting that the series �ðiÞðxÞ and �ðiÞðxÞ converge into
the solutions of the Schwinger-Dyson equations �ðxÞ and
�ðxÞ, respectively. In practice, we assume that the series

�ðiÞðxÞ and �ðiÞðxÞ converge if the normalized difference j
�ðiþ1Þ � �ðiÞ j þ j �ðiþ1Þ � �ðiÞ j become less than 10�3.
For a true dynamical symmetry breaking one has to

check that the minimum we have found is a real minimum.
For that purpose, we use the effective potential defined in
[8]. In the Hartree-Fock approximation the effective po-
tential V½S� as the functional of the fermion propagator S is
obtained to be

V½S� ¼ �i
Z d4p

ð2�Þ4 Tr½logS
�1
F ðpÞSðpÞ � S�1

F ðpÞSðpÞ þ 1�

� i

2

Z d4pd4k

ð2�Þ8 Tr½���ðk;p� kÞSðpÞ���ðp;k�pÞ
� SðkÞG����ðk�pÞ�: (26)
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Substituting the solution of the Swinger-Dyson equation
	V½S0F�=	S0F ¼ 0 into the above expression we get

V½SF� ¼ �i

2

Z d4p

ð2�Þ4 Tr½2 logS�1
F ðpÞS0FðpÞ

� S�1
F ðpÞS0FðpÞ þ 1�: (27)

Using now that SFðpÞ ¼ i=p and Eq. (1) and performing
the angular integration after Wick’s rotation we have

V½�;�� ¼ �4

8�2

Z 1

0
dx

�
log

x

x�2ðxÞ þ �2ðxÞ
� x�ðxÞ

x�2ðxÞ þ �2ðxÞ þ 1

�
; (28)

where � and � are the solutions of Eqs. (21) and (22). As
the solution corresponding to the true vacuum should
minimize the potential, if there is a symmetry breaking
solution (� ¼ ��, � � 0) besides the symmetry conserv-

ing solution (� ¼ �o, � ¼ 0) a difference of potentials

	V ¼ V½� ¼ ��;� � 0� � V½� ¼ �o; � ¼ 0� (29)

selects the solution of the two corresponding to a true
vacuum.

In the standard model A ¼ 203=96 � 2:1, which is not
large enough to produce a symmetry breaking minimum.
A much larger matter content would be needed such that
A > 8 for that purpose. Cut-off scales even closer to MPl

would allow symmetry breaking for smaller A. In minimal
supersymmetry, with 12 gauge bosons, 80 chiral fermions,
and 56 real (minimal) scalars, A turns out to be A � 5. The
particle content again is not enough to produce symmetry
breaking. However, extended models or models with extra
dimensions, can reach values of A in the desired range.
For example in N ¼ 8 supergravity [9] A > 8. In Fig. 3 we
show the symmetry breaking solution of the Schwinger-
Dyson equation for A ¼ 10.

Figure 4 shows our solution for �ðxÞ versus x ¼ p2=�2

for values of momenta larger than the cut-off scale. It is
evident there that the cut-off signals when the interaction
stops being attractive. In this sense, its existence seems
justified. Once the symmetry is broken a mass for the right-
handed neutrino (RH) will be produced. Such a mass arises
from the conformal breaking part of the graviton or the
minimal scalar loop contributions (the C-term), and is
roughly given by

mRH � C

A

�

4�
�Oð1=NÞ; (30)

where N reflects the matter field contribution to the con-
formal term. For the successful symmetry breaking
scenario shown before, with A ¼ 10, it produces a mass
mRH � 10�3�, exactly in the right ballpark to a successful
seesaw (see Fig. 5).

III. RESUMMATION

As we have seen in the previous section, the large matter
content of the standard model (and the even larger one of
extended theories) could help overcome the G suppression

xα(  )

xβ(  )
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x

FIG. 3 (color online). The symmetry breaking solutions of the
Schwinger-Dyson equation, � and � for A ¼ 10 as a function of
x ¼ p2=�2.
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FIG. 4 (color online). The solution of the Schwinger-Dyson
equation �ðxÞ becomes repulsive for momenta larger than the
cut-off scale �.
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FIG. 5 (color online). �ðxÞ for C=A ¼ 0:2ðred=light grayÞ, 0.4,
0.6, 0.8, 1 (blue/black) as a function of x ¼ p2=�2 The larger the
ratio, the heavier the infrared mass.
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of the next leading order contribution to the kernel of the �
function, opening the door to a dynamical symmetry break-
ing. If this is the case, then some additional, higher order
contributions suppressed, in principle, by extra powers of
G would also benefit from the N enhancement and must be
included in the calculation.

Following Tomboulis [10] we can include those contri-
butions. As N (the number of matter fields) becomes large
(even if not as large and we would have needed in the
previous section), a natural expansion would be then an
expansion in powers of 1=N, keepingGN fixed. Hence, we
will explore the 1=N expansion where some systematic
resummation of the perturbative series can be done.

The general validity of this 1=N expansion is based on
the fact that gravity couples universally to all matter.
Besides, the expansion possesses important advantages
which make it very convenient to use. Unlike the coupling
G, N is a scale independent parameter. Therefore, the
solution to the theory to a given order in 1=N as given by
the expansion holds in principle for all momenta scales,
and can be used to probe the strong coupling regime.
Furthermore, being N a gauge invariant parameter, the
expansion is manifestly gauge invariant.

To proceed with the expansion, notice that to leading
order in 1=N we should include only those graphs which
contain closed matter loops including fermions, gauge
bosons, or conformally coupled scalars. The large number
of matter fields defines a large N enhancement that com-
pensates for the Planck suppression of the additional cou-
pling factor G producing an effective ‘‘reduced’’ Planck
mass,M2

Pl reduced ¼ M2
Pl=N. In fact the enhancement occurs

only for the spin-2 part of the propagator, the A-term, and
not the trace part as reflected in the C-term. It is not
necessary to include the vertex corrections as they enter
only at the next level in the 1=N expansion.

Therefore, the matter, gauge boson, and conformally
coupled scalar loop corrections to the bare graviton propa-
gator must now be included as part of the leading order
graviton propagator (Fig. 6). Using the one loop contribu-
tion of such particles to the graviton self-energy calculated
before we obtain for the complete leading order graviton
propagator

D���� ¼ P ð2Þ
����

q2ð1� 2
�NGq2 logð�q2

�2 ÞÞ
; (31)

where P ð2Þ is the spin-2 part of the propagator and N is
a measure of the number of matter fields in the theory,

N / Ngb þ Ndf=2þ NðcsþmsÞ=12. In Fig. 7 the potential

enhancement of the spacelike propagator due to large N is
depicted. Such enhancement is due to the fact that the
leading 1=N propagator possesses no spacelike spin-2
poles for real momenta. Instead, it possesses pairs of
complex conjugate poles in the complex plane. As shown
by Tomboulis [10,11], the gravitational quantum correc-
tions modify the propagator in such a way that the new
propagator has no unphysical poles on the real q2 axis. The
would-be unphysical poles are shifted off the real axis by
the matter interactions and split into a pair of complex
conjugate poles, i.e., quantum corrections shift the ta-
chyonic ghost poles to a pair of complex poles on the
physical sheet. According to Lee and Wick [12] the theory
can be defined so that the complex poles do not contribute to
the absorptive part of the amplitudes and physical unitarity
can be maintained. However, the standard analyticity prop-
erties of the S matrix are modified by the extra complex
poles which results in a breakdown of locality. This should
come as no surprise aswe expect gravity to be nonlocal once
quantum effects become important.
With this interpretation we can proceed with the

resummation. We begin by rewriting the different contri-
butions to the polarization tensor as a traceless spin-2 and
a spin-0 part

���;�	 ¼ �2

q4

�
ðq�q� � q2
��Þðq�q	 � q2
�	Þ

þ ðq�q	 � q2
�	Þðq�q� � q2
��Þ
� 2

3
ðq�q� � q2
��Þðq�q	 � q2
�	Þ

�
2

þ�o

q4
½ðq�q� � q2
��Þðq�q	 � q2
�	Þ�0 (32)

define


̂ �� � q�q� � q2
�� (33)

and sum all the bubbles

0.2 0.4 0.6 0.8 1.0

20

40

60

80

Λq/

FIG. 7 (color online). Large N enhancement of the spacelike
propagator in arbitrary units as a function of the momentum
transfer (in units of the cutoff �).

+ + + ...

FIG. 6. Only those graphs which contain a closed loop of
matter fields benefit from the large N enhancement and are to
be resummed.
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D���� ¼ P

q2
þ P

q2
�

P

q2
þ P

q2
�

P

q2
�

P

q2

þ P

q2
�

P

q2
�

P

q2
�

P

q2
þ . . .

P

q2
þ �2

ðq2Þ2
1

1� 2�2

q2

�
�

̂��
̂�� þ 
̂��
̂�� � 2

3

̂��
̂��

�
þ �0

ðq2Þ2

� 1

1þ 3
2
�0

q2

��

̂�� � 3

2

��

��

̂�� � 3

2

��

��
;

where P is the graviton polarization sum P���� in the
harmonic gauge and � represents the polarization tensor
(Lorentz indices have been omitted). Then the resummed
kernel (rs) becomes

Lrsðp; kÞ ¼ ���D
�������

¼ 8�G

ðq2Þ2
�

�2

1� 2�2

q2

5

6

�
ðpþ kÞ2 � ðp2 � k2Þ2

ðp� kÞ2
�

þ �0

1þ 3
2
�0

q2

�
25

16
ðpþ kÞ2 � ðp2 � k2Þ2

ðp� kÞ2
��
;

with

�2ðq2Þ ¼ �G

�
ðq2Þ2 log

�
�2

�q2

��
7

40
þ 1

20
Ngb þ 1

40
Ndf

þ 1

240
Nms þ 1

240
Ncs

�
; (34)

and

�0ðq2Þ ¼ �G

�
ðq2Þ2 log

�
�2

�q2

��
1

2
þ 1

36
Nms

�
; (35)

with this the spin-2 denominator takes the form

1� 2
�2ðq2Þ
q2

¼ 1þ 2G

�
q2 log

�
�2

�q2

��
7

40
þ 1

20
Ngb

þ 1

40
Ndf þ 1

240
Nms þ 1

240
Ncs

�
; (36)

while that of the spin-0 denominator gives

1þ3

2

�0

q2
¼1�3

2

2G

�
q2 log

�
�2

�q2

��
1

2
þ 1

36
Nms

�
: (37)

Notice that although both denominators go like q2

� logð�2

q2
Þ,

only the spin-2 part, the A-term, has the large N enhance-
ment. The large enhancement shown in Fig. 7 occurs
when the complex poles are close to the real axis as would
be expected near criticality in the Lee-Wick theory.
Thus, enhancement is achieved by tuning the reduced
Planck scale, i.e., by tuning the matter content of the theory
and keeping the renormalization scale � always below
but not far from its maximum possible value
�max ¼

ffiffiffi
e

p
MPl reduced.

In Fig. 8 we show how the poles travel the complex
plane as a function of the renormalizaton scale �. The
spin-0 part, the C-term, even if close to the phase transition
point does not get enhanced in the large N scenario. The
vast increase displayed in Fig. 7 is attained when the

maximum of the q2 logð�2

q2
Þ-term in the denominator of

the A-term is tuned to be close to 1.

One can then expand the q2

� logð�2

q2
Þ-term around its

maximum,Q2 ¼ �2=e, as in the narrow width approxima-
tion, i.e., we can approximate the propagator shown before
by a Gaussian, so that we can estimate the size (the
strength) of the spin-2 contribution, while neglecting that
of the spin-0 part. For the spin-2 denominator we get

1� 2
�2ðq2Þ
q2

¼ 1� 2

�
G
�2

e

�
7

40
þ 1

20
Ngb þ 1

40
Ndf

þ 1

240
Nms þ 1

240
Ncs

�
þ 1

�
G

e

�2

�
�
7

40
þ 1

20
Ngb þ 1

40
Ndf þ 1

240
Nms

þ 1

240
Ncs

��
Q2 ��2

e

�
2 þ . . . ; (38)

which under the narrow width approximation becomes

1� 2

�
G
�2

e

�
7

40
þ 1

20
Ngb þ 1

40
Ndf þ 1

240
Nms þ 1

240
Ncs

�

¼ 1

�
G

e

�2

�
7

40
þ 1

20
Ngb þ 1

40
Ndf þ 1

240
Nms

þ 1

240
Ncs

�
�2 � 1; (39)

µ = e2 µ = 02

q2Im(   )

q2Re(   )1.2 1.0 0.8 0.6 0.4 0.2 0.2
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tachyon ghost tachyon

. .

FIG. 8 (color online). The trajectory of the poles in the com-
plex plane is shown as a function of the scale � in units of the
reduced Planck mass.
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so that

Lrsðp;kÞ¼ ���D
�������! 20�

3
G
�2

e

�2p2þ2k2��2=e�ðp2�k2Þ2e=�2

�2þðQ2��2=eÞ2 ; (40)

thus

�ðp2Þ ¼
Z d4k

ð2�Þ4
�ðk2Þ

�ðk2Þk2 � �2k2
���

�D�������jðp�kÞ2¼Q2 : (41)

One can then perform the angular integration after the
Wick rotation to find

�ðxÞ ¼ G2�2�2

16�e

Z 1

0
dyLrsðx; yÞ y�ðyÞ

y�2ðyÞ þ �2ðyÞ ;

Lrsðx; yÞ ¼ 5

12
½��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2 þ ð�R2 � 2

ffiffiffiffiffi
xy

p þ xþ yÞ2Þð�2 þ ð�R2 þ 2
ffiffiffiffiffi
xy

p þ xþ yÞ2Þ4

q
�

�
�
2xþ 2y� R2 � ðx� yÞ2=R2

4xy�

�
cos

�
Argð2xð�i�þ R2 þ yÞ þ ð�þ iðR2 � yÞ2Þ2 � x2Þ

2

�
; (42)

where R2 ¼ �2=e. Now, for a much smaller N, we can
achieve symmetry breaking. Specifically, symmetry break-
ing is accomplished for

7
40 þ 1

20Ngb þ 1
40Ndf þ 1

240Nms þ 1
240Ncs > 3: (43)

In Fig. 9 the solutions of the Schwinger-Dyson equation
are shown for the resummed propagator under the narrow
width approximation using an N consistent with the matter
content of supersymmetry (solid line). Despite being use-
ful, as it allows us to perform analytically the angular
integration, the narrow width approximation does not cap-
ture the low momentum behavior of the propagator and
therefore offers a conservative estimate of the minimum
matter content necessary to achieve dynamical symmetry
breaking. A more accurate result can be obtained by
numerically integrating the exact expression. The result

is depicted in Fig. 9 with a dashed line. In this case, slightly
smaller matter contents also admit dynamical symmetry
breaking.

IV. PURE LARGE N

As we have seen, the Schwinger-Dyson equations,
which contain the full dynamical information of the
quantum field gauge theory can serve as an adequate and
effective tool for a nonperturbative approach to gravity.
However, they consist on an infinite chain of strongly
coupled highly nonlinear integral equations, and some
truncation scheme is needed in order to make these equa-
tions tractable for extracting physical information from
them. At leading order, it is natural to assume that approx-
imating the full vertices by their free perturbative (point-
like) counterparts (and in addition, replacing the full
graviton propagator by its free perturbative expression) in
the corresponding kernels of the above mentioned integral
equations is consistent. Nonetheless, it is known that such
an approximation does not preserve explicit gravitational
gauge covariance (general coordinate invariance).
Beyond the leading order, the matter contributions are

separately gauge invariant at one loop and at large N. This
is not clear for the gravitational loop contributions. There is
a similar problem in QCD where the gluon loop contribu-
tions are partly canceled by vertex corrections. In this case
it seems possible to take into account self-interacting gluon
modes (the non-Abelian character of QCD) at the level of
the full gluon propagator only (the so called improved
ladder approximation [13]); hence, vertices remain intact,
i.e., bare ones.
We will not follow this avenue here, instead we would

like to consider the pure large N regime, i.e., to consider in
both the one loop calculation and the resummation only
those contributions that exhibit the large N enhancement
and that are gauge invariant by themselves. Therefore, we

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

x

x

x

β(  )

α(  )

FIG. 9 (color online). The symmetry breaking solutions of the
Schwinger-Dyson equation, � and �, after resummation as a
function of x ¼ p2=�2 for a matter content consistent with
supersymmetry using the narrow width approximation (solid
line) and numerically integrating the exact expression (dashed
line).
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will eliminate the graviton loop contribution to the graviton
self-energy and assume that vertex or other contributions
to the Schwinger-Dyson equations cancel the ’t Hoof-
Veltman contribution.

As we have seen, neither in the one loop nor in the
resummed case, the graviton loop share to the kernel of
the � function is particularly important, therefore we do
not expect our results regarding symmetry breaking to
change in a significant way. However, the graviton loop
was the key (together with the minimal scalar loop) to
generate a conformal breaking term. Such a term controls
the existence (and the magnitude) of the dynamically
generated infrared mass. Then question is then, whether
by suppressing the graviton loop, the infrared mass will
disappear as well. The answer to this question is no. The
infrared mass could be generated by the known conformal
anomalies of the matter fields—the trace anomalies.
These would be suppressed by additional loop and cou-
pling constant effects and will end up being roughly in
the right ballpark to generate realistic right-handed
neutrino masses.

We can now analyze the impact of the suppression of
the graviton loop in the results obtained before. In the
one loop calculation of the graviton propagator (in the
large N regime) we have seen that dynamical symmetry
breaking is achieved for A > 8. This remains being correct,
except that (in the absence of minimal scalars) A is now
given by

A ¼ � 12Ngb þ 6Ndf þ Ncs

288
; (44)

and C ¼ 0. As a result, more matter fields are needed
to compensate the missing contribution, roughly 12 addi-
tional gauge bosons or 24 additional fermions.

In the resummed case, (in the absence of minimal sca-
lars) the condition for symmetry breaking now reads

1
20Ngb þ 1

40Ndf þ 1
240Ncs > 3: (45)

In this case just 7 additional fermions or 4 additional gauge
bosons will offset the graviton loop lost. In Fig. 10 the
exact solutions of the Schwinger-Dyson equation are
shown for the resummed propagator using an N consistent
with the matter content of supersymmetry in the pure
large N regime (solid line). For comparison, the solutions
including the graviton loop contribution to the graviton
self-energy are also shown (dashed line).

V. DISCUSSION AND CONCLUSIONS

In this work we studied the possibility that an enhanced
gravitational attraction can spark the formation of a right-
handed neutrino condensate, inducing dynamical symme-
try breaking and generating a Majorana mass for the
right-handed neutrino at a scale appropriate for the seesaw
mechanism. The composite field formed by the condensate
phase could drive an early epoch of inflation, leaving an
imprint tightly constrained that can be experimentally
probed in the near future.
The major task in studying chiral symmetry breaking is

to establish the Schwinger-Dyson equation for the fermion
self-energy, which takes into account the nonperturbative
features of the theory and then, to investigate whether this
equation admits a nonzero fermion mass as a solution.
We have found that to the lowest order, the theory does

not allow dynamical symmetry breaking. Nevertheless,
thanks to the large number of matter fields in the standard
model (and the ever larger one in extended models) the
suppression by an additional power inG in the next leading
term can be compensated, enhancing these higher order
terms up to their lowest order counterparts. We have seen
then, that for a vast number of matter fields chiral symme-
try can be broken dynamically and the infrared mass
generated this way turns out to be in the expected range
for a successful seesaw scenario.
To further exploit the large N potential, we considered a

1=N expansion of the graviton propagator, keeping GN
fixed. The resulting lowest order graviton propagator has
1=ðq4 logðq2ÞÞ asymptotic behavior and no tachyon or un-
physical real bound state poles. There are however, com-
plex conjugate poles on the physical sheet that when close
to the real axis, significantly enhance the spacelike propa-
gator. This enhancement allows a dynamical symmetry
breaking solution for a matter content consistent with the
standard model.
A distinguishing feature of the model is the presence of

nonlocal effects associated with the complex poles. Such
effects become appreciable only at ultrahigh energy scales.
It will be quite interesting to investigate the effects of these
nonlocalities in the very early universe where they become
relevant, in particular, with respect to the horizon and
homogeneity problems.
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FIG. 10 (color online). The exact symmetry breaking solutions
of the Schwinger-Dyson equation, � and �, after resummation
as a function of x ¼ p2=�2 for a matter content consistent with
supersymmetry with (dashed line) and without (solid line) the
graviton loop input.
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Probably the least attractive feature of our model is the
fact that we are working at energies close to the Planck
scale, where our physics knowledge is rather poor. It is
widely believed that field theory breaks down at the Planck
scale because gravity becomes important and a full theory
of quantum gravity is called for. If the gauge force strength
is characterized by the dimensionless gravitational cou-
pling �G ¼ G2�2 ¼ �2=M2

Pl at an energy scale �, then

yet unknown quantum gravity effects become dominant
at energy scales close to MPl where �G approaches 1, the
regime needed for dynamical symmetry breaking.
However, since gravity (and thus the graviton) couples to
all fields, matter loop corrections can enhance the effective
gravitational coupling to the needed range, before full
quantum gravity completely blurs the picture.

In our case, it is crucial to notice that there are (at least)
three relevant scales, one fundamental scale, the original
Planck scale, and two dynamically induced scales, the
reduced Planck scale, M2

Pl reduced ¼ M2
Pl=N, that governs

size of the net matter loop corrections and the scale where
the dominant chiral symmetry breaking occurs for the
condensate. Of course, there is also the scale of the infrared
mass which is suppressed relative to the others scales
and is relevant for the phenomenology of the right-handed
neutrinos. The reason for this suppression is that the
symmetry breaking is largely due to the A-term, which is
the dominant contribution to the kernel for the � function,
while the infrared mass is generated by the conformal
breaking C-term, which does not enjoy the large N
enhancement.

As we have seen the dynamical scales are suppressed
relative to the original Planck scale courtesy of the large
matter content of the model, which implies an inevitable
hierarchy between the energy scale of the field theory
and the Planck scale. This effectively amounts to an en-
hancemnet of the dimensionless gravitational coupling,
�G large N ¼ N�G at momenta that are below the normal

Planck scale, opening the door to dynamical symmetry
breaking at those scales. We assume that as the energies
involved are sufficiently below MPl, we are not sensitive
to black hole formation and other nonlinear effects that
could dominate Planck scale physics.

Before closing, we would like to mention that there is
a net gravitational anomaly for the singlet chiral current
associated with the right-handed neutrino phases [gravita-
tional anomalies cancel for the standard model gauge
currents as TrðYÞ ¼ 0]. If the condensate is the only break-
ing of these phases then there should be massless Nambu-
Goldstone bosons (NGBs), or massive pseudo–NGBs if
there is some other explicit breaking. These NGBs or
pseudo–NGBs are our would-be inflatons. Despite being
a kind of explicit breaking, the gravitational anomaly does
not necessarily generate a mass. Instantons make the 
0
heavy in QCD but the electroweak anomalies make little or
no contribution to masses. Even if the anomaly does not

generate a mass for the pseudo–NGB, it may still have an
important role in our model as it could play a role ending
the inflationary phase.
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APPENDIX A: FEYNMAN RULES

We list here the Feyman rules which are employed in our
calculations. For derivations of these forms, see [14]
The propagator for a massless fermion field is given by

In harmonic (Feynman) gauge the graviton propagator has
been discussed in [6,15];

where the polarization sum is given by

P ���� ¼ 1
2ð
��
�� þ 
��
�� � 
��
��Þ:

The 1-graviton–2-(massless) fermion vertex is given by

with

�
��
1 ¼ i�

2
½ðp0 þ pÞ��� þ ðp0 þ pÞ��� � 
��ðp0 þ pÞ�:

The 1-graviton-2-scalar vertex reads

with

���
2 ¼ �i�

2
fp�p0� þ p�p0� � 
��ðp � p0Þg:

The 1-graviton–2-photon vertex is given by
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with

�
���	
3 ¼ i�

�
P���	ðp � p0Þ þ 1

2
½
��p	p0� þ 
�	ðp�p0�

þ p�p0�Þ � ð
�	p0�p� þ 
�	p0�p�

þ 
��p0�p	 þ 
��p0�p	Þ�
�
:

Using the background field method the 3-graviton vertex is
found as [15]

with

���
4���	 ¼ � i�

2
�
�
P ���	

�
k�k� þ ðk� qÞ�ðk� qÞ� þ q�q� � 3

2

��q2

�
þ 2q�q
½1��


�1�	
�� þ 1�	


�1��
��

� 1��
�
1�	

�� � 1�	
�
1��

��� þ ½q�q�ð
��1�	
�� þ 
�	1��

��Þ þ q�q
�ð
��1�	

�� þ 
�	1��
��Þ

� q2ð
��1�	
�� þ 
�	1��

��Þ � 
��q�q
ð
��1�	

� þ 
�	1��


�Þ� þ ½2q�f1��
�
1�	


�ðk� qÞ�
þ 1��

�
1�	

�ðk� qÞ� � 1�	

�
1��

�k� � 1�	

�
1��

�k�g þ q2ð1��


�1�	
�
 þ 1��

�
1�	

�Þ

þ 
��q
q�ð1��
��1�	�


 þ 1�	
��1���


Þ� þ
�
ðk2 þ ðk� qÞ2Þ �

�
1��

�
1�	

�

þ 1�	
�
1��


� � 1

2

��P ���	

�
� ð1�	

��
��k
2 � 1��

��
�	ðk� qÞ2Þ
��
:

and

1 ���	 ¼ 1
2ð
��
�	 þ 
�	
��Þ:

A complete set of Feynman rules can be found in [16,17].
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