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radiative corrections to parity-violating e�e� ! e�e�ð�Þ scattering asymmetries at energies relevant for

the ultraprecise Møller experiment to be performed at JLab. Our numerical results are presented for a

range of experimental cuts and the relative importance of various contributions is analyzed. We also

provide very compact expressions analytically free from nonphysical parameters and show them to be

valid for fast, yet accurate estimations.
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I. INTRODUCTION

There are several reasons why polarized Møller scatter-
ing has attracted so much interest from both the experi-
mental and theoretical communities. The scattering of
two identical polarized fermions has been used in many
laboratories for the high-precision determination of the
electron-beam polarization, including SLC in [1], the
E-143 [2] and E-154 [3] experiments at SLAC, and several
experiments at JLab [4] and MIT-Bates [5]. A Møller
polarimeter may also be of use in future experiments
planned at ILC [6]. The E-158 experiment at SLAC [7],
which studiedMøller scattering of 45- to 48-GeV polarized
electrons on the unpolarized electrons of a hydrogen target,
allowed one of the most important parameters in the stan-
dard model—the sine of the Weinberg angle—to be deter-
mined with unprecedented accuracy. The next-generation
experiment at 11 GeV soon to begin at JLab will offer a
new level of sensitivity and measure the parity-violating
asymmetry in the scattering of longitudinally polarized
electrons off unpolarized electrons to a precision of
0.73 ppb. That would allow a measurement of the weak
charge of the electron to a fractional accuracy of 2.3% and
a determination of the weak mixing angle with an uncer-
tainty of �0:000 26ðstatÞ � 0:000 13ðsystÞ [8].

Since e�e� ! e�e�ð�Þ scattering is a very clean
process with a well-known initial energy and extremely

suppressed backgrounds, any inconsistency with the
standard model will signal new physics. Møller scattering
experiments can provide indirect access to physics at
multi-TeV scales and play an important complementary
role to the LHC research program [9].
Obviously, before we can extract reliable information

from the experimental data, it is necessary to take into
account higher order effects. These are the processes which
are more complicated than the process being studied, but
which are indistinguishable from it experimentally. This
procedure of the inclusion of radiative corrections is an
indispensable part of any modern experiment, but will be
of the most paramount importance for the ultraprecise
measurement of the weak mixing angle via 11 GeV
Møller scattering planned at JLab.
One of the earliest studies on electroweak radiative

corrections (EWC) to the observables of Møller scattering
was done by Czarnecki and Marciano [10]. According to
their calculations for the asymmetry in the E-158 kine-
matical region, the EWC reduce the tree level prediction
by 40%� 3%. A similar value for the asymmetry was
obtained in the study of Denner and Pozzorini [11], where
radiative corrections in polarized Møller scattering were
examined at arbitrary, including high, energies. It is worth
noticing that these two studies used different renormaliza-
tion schemes: [10] employed the modified minimal-
subtraction scheme and [11] used the on-shell renormal-
ization. However, the authors of [10,11] did not take into
account all radiative contributions consistently. For ex-
ample, they completely disregarded the hard photon
bremsstrahlung (HPB) contribution assuming that it was
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small. The first computation of the HPB contributions with
realistic experimental cuts was done by Petriello [12] who
studied a total set of the lowest-order EWC under the
kinematical conditions of the E-158 experiment. He clearly
showed that experimental cuts play a significant role. Later
works [13–15] dedicated to the EWC for the E-158 experi-
ment, which employed a covariant method for extracting of
infrared divergences [16], showed a good agreement with
[10] for the bulk of the weak-interaction contributions and
proved that the effect of HPB was below the experimental
error of E-158.

Electromagnetic radiative corrections, which dominate
the weak-interaction effects at the energies of E-158, and
their effect on the measurement of beam polarization in a
Møller polarimeter were assessed in [17]. A different
calculation of these electromagnetic corrections was
undertaken in [18], where attention was primarily given
to the effect of experimental cuts on the inelasticity and,
accordingly, proving the need for taking into account HPB
in experiments of this kind. A Monte Carlo generator that
makes it possible to simulate radiative events in a Møller
process at moderate energies with the aim of determining
beam polarization was developed in [19].

Finally, an attempt to calculate the HPB contribution for
the Møller process at high energies was made in paper [20].
A feature specific to this calculation, as well as to the
calculations in [11,12], was the use of a parameter ! that
separates regions of soft and hard photons. As a result, the
Monte Carlo integration technique permitted the develop-
ment of a code which made it possible to take into account
radiative corrections in the case of arbitrary cuts imposed
on the detection of electrons.

Although obviously significant theoretical effort has al-
ready been dedicated to this task, we can see at least three
major reasons for addressing EWC to Møller scattering yet
again. First, since the new experiment at Jlab will provide
more precise information than, for example, E-158, the
theoretical predictions for this ultraprecise measurement
must be made with a full treatment of one-loop radiative
corrections and at least leading two-loop corrections. In this
work, we calculated the full set of the one-loop corrections
both numerically with no simplifications using FEYNARTS

and FORMCALC [21] as the base languages and analytically
in a compact form useful for fast estimations. This way, we
can control the accuracy of asymptotic approximations at
the one-loop level very well now, so we hope that the same
idea will help us to control the accuracy as we calculate
leading corrections at two-loop level in the near future. The
next major goal of the presented paper is to get EWC in a
form which is analytically free from nonphysical parame-
ters. And, finally, we believe that the complexity of the
problem demands a tuned comparison with different calcu-
lation schemes. This will be our next task.

The rest of the paper is organized as follows. The basic
notations as well as the lowest-order (Born) contribution to

Møller scattering are presented in Sec. II. The contribution
from a full set of additional virtual particles (such as self-
energies, vertices, and boxes) is described in Sec. III. The
real photon emission and its separation into hard and soft
parts as well as cancellation of the infrared divergences
together with the unphysical parameters can be found in
Sec. IV. The numerical analysis is presented in Sec. V and
Appendix C.

II. BORN CROSS SECTION: BASIC NOTATION
AND CONVENTIONS

In the standard model, the Born cross section for Møller
scattering

e�ðk1; �Þ þ e�ðp1; �Þ ! e�ðk2Þ þ e�ðp2Þ (1)

can be represented in the form

�0 ¼ ��2

s

X
i;j¼�;Z

½�i;j� ðu2DitDjt þ t2DiuDjuÞ

þ �i;j
þ s2ðDit þDiuÞðDjt þDjuÞ�; (2)

with� � d�=d cos�, where � is the scattering angle of the
detected electron with 4-momentum k2 in the center of
mass system of the initial electrons and the 4-momenta of
initial (k1 and p1) and final (k2 and p2) electrons (see
Fig. 1) generate a standard set of Mandelstam variables,

s ¼ ðk1 þ p1Þ2; t ¼ ðk1 � k2Þ2; u ¼ ðk2 � p1Þ2;
(3)

while the electron polarization vectors � and � have the
form [22]:

� � k1
m

� 2m

s
p1; � � 2m

s
k1 � p1

m
: (4)

It should also be noted that the electron mass m is
disregarded wherever possible, in particular, if m2 � s,
�t, �u.
A useful structure in the present study is

Dil ¼ 1

l�m2
i

ði ¼ �; Z; l ¼ t; uÞ; (5)

which depends on the Z-boson mass mZ and on the photon
mass m�. The photon mass is set to zero everywhere with
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FIG. 1. Diagrams describing nonradiative Møller scattering in
the (1) t and (2) u channels.
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the exception of specially indicated cases where the photon
mass is taken to be an infinitesimal parameter that regu-
larizes an infrared divergence. Another set of useful func-
tions is

��i;k ¼ � i;k
1B � i;k

1T � � i;k
2B � i;k

2T ; (6)

which are combinations of coupling constants and pBðTÞ,
where pBðTÞ are the degrees of polarization of electrons

with 4-momentum k1 (p1). Specifically, they are given by

� i;j
1BðTÞ ¼ �i;j

V � pBðTÞ�
i;j
A ; � i;j

2BðTÞ ¼ �i;j
A � pBðTÞ�

i;j
V ;

�i;j
V ¼ vivj þ aiaj; �i;j

A ¼ viaj þ aivj; (7)

where

v� ¼ 1; a� ¼ 0;

vZ ¼ ðI3e þ 2s2WÞ=ð2sWcWÞ; aZ ¼ I3e=ð2sWcWÞ:
(8)

It should be recalled that I3e ¼ �1=2 and sWðcWÞ is the sine
(cosine) of the Weinberg angle expressed in terms of the
Z- and W-boson masses according to the rules of the
standard model:

cW ¼ mW=mZ; sW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2W

q
: (9)

The electron polarization degrees pBðTÞ in the cross

sections are labeled here as follows: the subscripts L and
R on the cross sections correspond to pBðTÞ ¼ �1 and

pBðTÞ ¼ þ1, where the first subscript indicates the degree

of polarization for the 4-momentum k1, while the second
one indicates the degree of polarization for the 4-
momentum p1. By combining the degrees of electron-
beam polarizations, we can obtain four measurable cross
sections, but, by virtue of the rotational invariance, the two
of them will be identical: �LR ¼ �RL. From the three cross
sections we can construct three independent asymmetries
[23] (which are very close at large scattering angles), and
the two of them (mainly A1) are the main subject of our
investigation:

A1 ¼ �LL þ �LR � �RL � �RR

�LL þ �LR þ �RL þ �RR

¼ �LL � �RR

�LL þ 2�LR þ �RR

;

(10)

A2 ¼ �LL � �RR

�LL þ �RR

: (11)

All of the asymmetries are proportional to the combina-
tion 1� 4s2W (by virtue of the proportionality of the cross-
section difference �LL � �RR) and are therefore highly
sensitive to small changes in sW . This is precisely the
reason why the asymmetry A1, which, at moderately low
energies, is given by

A1 ¼ s

2m2
W

yð1� yÞ
1þ y4 þ ð1� yÞ4

1� 4s2W
s2W

; y ¼ �t=s;

(12)

was used as the observable in E-158 and will be measured
in the future experiment at JLab with 11 GeV electrons.
In addition to the fact that the asymmetry A1 is a parity-

violating observable, this asymmetry has yet another re-
markable property based on its structure: it only involves
combinations �LL þ �LR and �RL þ �RR, which can be
interpreted as the cross sections for the scattering of elec-
trons having the polarizations of pB ¼ �1 and pB ¼ þ1
on unpolarized electrons. Frequently, A1 is said to be a
single-polarization asymmetry, in contrast to the asymme-
try constructed as

ALR ¼ �LR � �LL

�LR þ �LL

; (13)

which consists of the cross sections for the scattering
of electrons having different polarizations. The latter
asymmetry, which conserves parity, is the most important
observable in determining the electron-beam polarization
with the aid of a Møller polarimeter.

III. EWC: CONTRIBUTION OF ADDITIONAL
VIRTUAL PARTICLES

A. Boson self-energies

The contribution of virtual particles (V contribution) to
the observables of Møller scattering is described by three
classes of diagrams (see Fig. 2): boson self-energies (BSE),
vertex functions, and two-boson exchange (boxes). In the
on-shell renormalization schemes which we use here there
are no contributions from the electron self-energies.
The corresponding cross section is given by

�V ¼ �BSE þ �Ver þ �Box; (14)

where the first term corresponds to the contributions of the
boson self-energies, the second term represents the vertex
diagrams, and the third term stands for the diagrams of
two-boson exchange.

FIG. 2. One-loop t-channel diagrams for the Møller process.
The circles represent the contributions of self-energies and
vertex functions. The u-channel diagrams are obtained via the
interchange k2 $ p2.
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The contributions of the photon and Z-boson self-
energies are shown symbolically in Fig. 2(1). They do
not involve infrared divergences and have the following
form:

�BSE ¼ ��2

s

X8
l¼1

MS
l þ ðt $ uÞ; (15)

where MS
l are expressed in terms of the propagators and

functions Mev;od

Mijkl
ev ¼ 2ðs2 þ u2Þ� ij

1B�
kl
1T þ 2ðs2 � u2Þ� ij

2B�
kl
2T ;

Mijkl
od ¼ �2s2ð� ij

1B�
kl
1T þ � ij

2B�
kl
2T Þ;

(16)

are defined as

MS
1 ¼ D�tD�Zt

S ðM��Z�
ev þMZ���

ev Þ;
MS

2 ¼ �D�uD�Zt
S ðM��Z�

od þMZ���
od Þ;

MS
3 ¼ DZtD�Zt

S ðM�ZZZ
ev þMZZ�Z

ev Þ;
MS

4 ¼ �DZuD�Zt
S ðM�ZZZ

od þMZZ�Z
od Þ;

MS
5 ¼ D�tðD��t

S M����
ev þDZZt

S MZ�Z�
ev Þ;

MS
6 ¼ �D�uðD��t

S M����
od þDZZt

S MZ�Z�
od Þ;

MS
7 ¼ DZtðD��t

S M�Z�Z
ev þDZZt

S MZZZZ
ev Þ;

MS
8 ¼ �DZuðD��t

S M�Z�Z
od þDZZt

S MZZZZ
od Þ:

(17)

Here,

Dijl
S ¼ �Dil�̂

ij
T ðlÞDjl; (18)

with �̂
ij
T ðlÞ being the transverse part of the renormalized

photon, Z boson and �Z self-energies. The longitudinal
parts of the boson self-energy make contributions that are
proportional to the ratios m2=t and m2=u so they are very
small and are not considered here.

B. Vertices

In order to calculate the electron vertex corrections
(2nd and 3rd diagrams in Fig. 2), we use the form factors

	Fje
V;A in the manner of paper [24]. Replacing the coupling

constants vj, aj with these form factors (for example,

v�ðZÞ ! 	F�ðZÞe
V , a�ðZÞ ! 	F�ðZÞe

A ) in the corresponding
terms of the Born functions Mev;od, we obtain a vertex

part of the cross sections in the form

�Ver ¼ ��2

s

X4
l¼1

MV
l þ ðt $ uÞ; (19)

where

MV
1 ¼ D�tðD�tðMF����

ev þM��F��
ev Þ �D�uðMF����

od þM��F��
od ÞÞ;

MV
2 ¼ D�tðDZtðMF�Z�Z

ev þM�ZF�Z
ev Þ �DZuðMF�Z�Z

od þM�ZF�Z
od ÞÞ;

MV
3 ¼ DZtðD�tðMFZ�Z�

ev þMZ�FZ�
ev Þ �D�uðMFZ�Z�

od þMZ�FZ�
od ÞÞ;

MV
4 ¼ DZtðDZtðMFZZZZ

ev þMZZFZZ
ev Þ �DZuðMFZZZZ

od þMZZFZZ
od ÞÞ;

(20)

and

�Fi;j
V ¼ 	Fi

Vv
j þ 	Fi

Aa
j; �Fi;j

A ¼ 	Fi
Va

j þ 	Fi
Av

j:

(21)

For the virtual photon exchange [i ¼ � in Eq. (5)], the
vertices look like

	F�
V¼

�

4�

�
�1þððvZÞ2þðaZÞ2Þ�2ðmZÞþ 3

4s2W
�3ðmWÞ

�
;

(22)

	F�
A ¼ �

4�

�
2vZaZ�2ðmZÞ þ 3

4s2W
�3ðmWÞ

�
; (23)

and for the virtual Z-boson exchange [i ¼ Z in Eq. (5)] we
have the form

	FZ
V ¼ �

4�

�
vZ�1 þ vZððvZÞ2 þ 3ðaZÞ2Þ�2ðmZÞ

þ 1

8s3WcW
�2ðmWÞ � 3cW

4s3W
�3ðmWÞ

�
; (24)

	FZ
A ¼ �

4�

�
aZ�1 þ aZð3ðvZÞ2 þ ðaZÞ2Þ�2ðmZÞ

þ 1

8s3WcW
�2ðmWÞ � 3cW

4s3W
�3ðmWÞ

�
: (25)

Function �1 is the contribution of triangle diagrams with
an additional photon, �2 refers to the triangle diagrams
with an additional massive boson—Z or W, and �3 corre-
sponds to the triangle diagrams with 3-boson vertices—
WW� or WWZ. We denote the vertices with an additional
photon as light vertices (LV) and the vertices with an
additional massive boson as heavy vertices (HV). The LV
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terms are proportional to the function �1, and the HV
terms are proportional to the combinations of functions
�2 and �3 as it is evident from Eqs. (22)–(25).

The contributions of separate HV, �Z, and ZZ self-
energies strongly depend on the details of the renormaliza-
tion scheme and for a proper account of EWC they should
be taken in numerical analysis as one gauge independent
set. For that purpose we used the on-shell renormalization
scheme from Ref. [25]. It is of crucial importance to raise a
question of dependence of EWC on details of different
renormalization schemes and this will be addressed in our
following paper.

Next, we represent the vertex contribution as the sum of
infrared (IR) divergent and finite parts using the identical
transformation

�Ver ¼ ð�Ver � �Verð�2 ! sÞÞ þ �Verð�2 ! sÞ
¼ �Ver

IR þ �Verð�2 ! sÞ; (26)

where � is the photon mass which regularizes the infrared
divergence. Then the IR part of the vertex cross section will
look like

�Ver
IR ¼ �3

2s
�IR

1

X4
l¼1

M0
l þ ðt $ uÞ; (27)

where

�IR
1 ¼ �1 ��1ð�2 ! sÞ ¼ �2 log

s

�2
log

�t

em2
; (28)

e is the base of the natural logarithm, and

M0
1 ¼ D�tðD�tM����

ev �D�uM����
od Þ;

M0
2 ¼ D�tðDZtM�Z�Z

ev �DZuM�Z�Z
od Þ;

M0
3 ¼ DZtðD�tMZ�Z�

ev �D�uMZ�Z�
od Þ;

M0
4 ¼ DZtðDZtMZZZZ

ev �DZuMZZZZ
od Þ:

(29)

It is worth noticing that since the Born cross section can be
presented as

�0 ¼ ��2

2s

X4
l¼1

M0
l þ ðt $ uÞ (30)

it is easy to make sure that in the IR part of the vertex cross
section the Born structure is factorized with t and u terms
separated.

C. Boxes

Using the identical transformation, we divide the box
cross section into two parts:

�Box ¼ ð�Box � �Boxð�2 ! sÞÞ þ �Boxð�2 ! sÞ
¼ �Box

IR þ �Box
F : (31)

The IR-finite box cross section looks like

�Box
F ¼��3

s

�
L2
uþ�2

2

X4
l¼1

M0
l þ

X4
ðijÞ¼1

X
k¼�;Z

Bk
ðijÞ

�
þðt$uÞ;

(32)

where Lu ¼ logð�s=uÞ, the double index ðijÞ runs like
ðijÞ ¼ f1; 2; 3; 4g ¼ f��; �Z; ZZ;WWg, and expressions
Bk
ðijÞ take the form

Bk
ð��Þ ¼ Dkt��k� 	1

ð��Þ þ ðDkt þDkuÞ��k
þ 	2

ð��Þ;

Bk
ð�ZÞ ¼ Dkt�Zk� 	1

ð�ZÞ þ ðDkt þDkuÞ�Zkþ 	2
ð�ZÞ;

Bk
ðZZÞ ¼ Dkt�Bk� 	1

ðZZÞ þ ðDkt þDkuÞ�Bkþ 	2
ðZZÞ;

Bk
ðWWÞ ¼ Dkt�Ck� 	1

ðWWÞ þ ðDkt þDkuÞ�Ckþ 	2
ðWWÞ: (33)

The combinations of the coupling constants are given in (6).
Let us recall the coupling constants for ZZ and WW boxes:

vB ¼ ðvZÞ2 þ ðaZÞ2;
aB ¼ 2vZaZ;

vC ¼ aC ¼ 1=ð4s2WÞ:
(34)

To calculate the corrections 	1;2
ðijÞ for ðijÞ ¼ f2; 3; 4g we

used the low-energy approximation (a detailed example of
the low-energy approximation used in the two-boson
exchange calculations is presented in Appendix A). Our
numerical estimates show the accuracy better than 0.2%
in the whole low-energy region 0<

ffiffiffi
s

p
< 50 GeV. The

accuracy of the approximate approach improves with the
decrease of energy. On the contrary, the calculation of
boxes using FEYNARTS and FORMCALC [21] in the regionffiffiffi
s

p
< 1 GeV suffers from a problem of numerical insta-

bility due to Landau singularities. In any case, for the
11 GeV relevant to the JLab experiments, the consistency
of calculations for boxes in both approaches is obvious and
the discrepancy has an order of �0:01%.

As result, the corrections 	1;2
ðijÞ have the form:

	1
ð��Þ ¼ L2

sðs2 þ u2Þ=ð2tÞ � Lsu� ðL2
x þ �2Þu2=t;

	2
ð��Þ ¼ L2

ss
2=tþ Lxs� ðL2

x þ �2Þðs2 þ u2Þ=ð2tÞ; (35)

	1
ð�ZÞ ¼ 8u2ð4I�Z � Î�ZÞ; 	2

ð�ZÞ ¼ 8s2ðI�Z � 4Î�ZÞ;

	1
ðZZÞ ¼

3u2

2m2
Z

; 	2
ðZZÞ ¼ � 3s2

2m2
Z

;

	1
ðWWÞ ¼

2u2

m2
W

; 	2
ðWWÞ ¼

s2

2m2
W

; (36)

where

Ls ¼ log
s

�t
; Lx ¼ log

u

t
; (37)

with

I�Z ¼ 1

2
ffiffiffiffiffiffiffi�u

p
Z 1

0
zdz

Z 1

0
dx

1ffiffiffiffi



p log

��������
xz

ffiffiffiffiffiffiffi�u
p � ffiffiffiffi



p

xz
ffiffiffiffiffiffiffi�u

p þ ffiffiffiffi



p
��������;
(38)
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 ¼ �ux2z2 þ 4ð1� zÞðtzðx� 1Þ þm2
ZÞ;

Î�Z ¼ I�Zju!�s:
(39)

Finally, the terms of the box IR cross section �Box
IR are

given by

���-box
IR ¼ �3

s
log

s

�u
log

s

�2

X2
l¼1

M0
l þ ðt $ uÞ; (40)

��Z-box
IR ¼ �3

s
log

s

�u
log

s

�2

X4
l¼3

M0
l þ ðt $ uÞ; (41)

and, summing all the IR terms of the V contribution, we
have

�Ver
IR þ�Box

IR ¼�3

2s

�
�IR

1 þ2log
s

�u
log

s

�2

�

�X4
l¼1

M0
l þðt$uÞ¼��3

s
log

s

�2
log

tu

em2s

�X4
l¼1

M0
l þðt$uÞ¼�2�

�
log

s

�2
log

tu

em2s
�0:

(42)

IV. BREMSSTRAHLUNG

In order to get the IR-finite result, we have to consider
the diagrams with the photon emission (Fig. 3). The whole
bremsstrahlung cross section looks like

�R ¼ �3

4s

Z vcut

0

s� v

2s
dv

X
i;j¼�;Z

I½Mij
R �; (43)

where vcut is the boundary of the region in the Chew-Low
diagram [13], and

I½Mij
R � ¼

1

�

Z d3k

k0
	ððk1 þ p1 � k2 � kÞ2 �m2ÞMij

R

(44)

is an integral over phase space of an emitted photon with
4-momentum k. The squared matrix elements correspond-
ing to diagrams in Fig. 3 can be presented as

Mij
R ¼ ðMit

R �Miu
R ÞðMjt

R �Mju
R Þþ; (45)

where the minus sign is caused by identity of final elec-
trons and the superscripts tðuÞ denote the tðuÞ-channel
diagrams.
Simplifying (45), we have

Mit
RM

jtþ
R ¼ X

k¼1;4

Vij
k ; Mit

RM
juþ
R ¼ X

k¼5;8

Vij
k ; (46)

Miu
R M

juþ
R ¼ Mit

RM
jtþ
R jk2$p2

;

Miu
R M

jtþ
R ¼ Mit

RM
juþ
R jk2$p2

;
(47)

where

Vij
1 ¼ �Sp½G��

1 �ijðk1ÞG�T
1 �ðk2Þ�Sp½���

ijðp1Þ��ðp2Þ�Dit1Djt1 ;

Vij
2 ¼ �Sp½G��

1 �ijðk1Þ��ðk2Þ�Sp½���
ijðp1ÞG�T

2 �ðp2Þ�Dit1Djt;

Vij
3 ¼ �Sp½G��

2 �ijðp1Þ��ðp2Þ�Sp½���
ijðk1ÞG�T

1 �ðk2Þ�DitDjt1 ;

Vij
4 ¼ �Sp½G��

2 �ijðp1ÞG�T
2 �ðp2Þ�Sp½���

ijðk1Þ��ðk2Þ�DitDjt;

Vij
5 ¼ �Sp½G��

1 �ijðk1ÞG�
3 �ðp2Þ���

ijðp1Þ��ðk2Þ�Dit1Dju;

Vij
6 ¼ �Sp½G��

1 �ijðk1Þ��ðp2Þ���
ijðp1ÞG�

4 �ðk2Þ�Dit1Djz2 ;

Vij
7 ¼ �Sp½���

ijðk1ÞG�
3 �ðp2ÞG��

2 �ijðp1Þ��ðk2Þ�DitDju;

Vij
8 ¼ �Sp½���

ijðk1Þ��ðp2ÞG��
2 �ijðp1ÞG�

4 �ðk2Þ�DitDjz2 :

(48)

FIG. 3. Bremsstrahlung diagrams for the Møller process in the
t channel. The four u-channel diagrams are obtained by means of
the interchange k2 $ p2.
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We used the radiative invariants which are zero at k ! 0:

z1 ¼ 2kk1; z ¼ 2kk2; v1 ¼ 2kp1;

v ¼ 2kp2 ¼ sþ uþ t� 4m2;
(49)

and the invariants for propagator structure as

t1 ¼ ðp1 � p2Þ2; z2 ¼ ðk1 � p2Þ2: (50)

Also, we applied a short abbreviation for combinations
with �ðpÞ, the density matrix of a particle with
4-momentum p, defined as

�ijðpÞ ¼ ðvi � ai�5Þ�ðpÞðvj þ aj�5Þ
¼ 1

2ð�ij
1Bp̂� �ij

2B�5p̂Þ þOðmÞ: (51)

We define

�ðpÞ ¼ p̂þm; p̂ ¼ ��p�; (52)

and

G
��
1 ¼ �� 2k�1 � k̂��

�z1
þ 2k�2 þ ��k̂

z
��;

G��
2 ¼ �� 2p�

1 � k̂��

�v1

þ 2p�
2 þ ��k̂

v
��;

G�
3 ¼ 2k�1 � ��k̂

�z1
� þ � 2p

�
2 þ k̂��

v
;

G�
4 ¼ 2p�

1 � ��k̂

�v1

� þ � 2k
�
2 þ k̂��

z
:

The bremsstrahlung cross section can be broken down
into two parts (soft and hard) as

�R ¼ �R
IR þ �R

H (53)

by separating the integration domain according to k0 <!
or k0 >!, where k0 is the photon energy (in the reference
frame comoving with the center of mass of the primary
electrons) and ! is a parameter corresponding to the
maximum soft photon energy. The easiest way to imple-
ment such a partition is to multiply the integrand in (43) by
�ð!� k0Þ and neglect photon momentum k ! 0 where
possible, which would give us the soft photon cross
section.

A. Soft photons and IR-divergence cancellation

First, we follow the methods of paper [26] to get a well-
known result (see also [11,12]) for the soft photon cross
section:

�R
IR ¼ �

�

�
4 log

2!

�
log

tu

em2s
� log2

s

em2
þ 1� �2

3

þ log2
u

t

�
�0: (54)

Next, we sum the IR terms of V and R contributions
[Eqs. (42) and (54)],

�C ¼ �V
IR þ �R

IR

¼ �

�

�
2 log

4!2

s
log

tu

em2s
� log2

s

em2
þ 1� �2

3

þ log2
u

t

�
�0 (55)

and get a result free from IR divergence which logarithmi-
cally depends on! and contains log2ðs=m2Þ terms. Adding
the contribution corresponding to �1 to �C, we get an
expression with the first power of collinear logarithms:

�Ver þ �C � �

�

�
�1ð�2 ! sÞ � log2

s

m2

�
þ 	 	 	

¼ �

�

�
log2

�t

m2
� log2

s

m2

�
þ 	 	 	

¼ �

�
log

�t

s
log

�ts

m4
þ 	 	 	 (56)

with nonphysical dependences canceled analytically.

B. Hard photons: Leading logarithms approach

Nowwewill calculate the HPB cross section retaining in
the result the leading collinear logarithms. This approach
allows estimating the EWC very rapidly yet provides a
rather accurate result. First let us consider exact collinear
kinematics, with all relevant information given in Table II
of Appendix B. As one can see from this table, zþ v �
ð1� �Þs for all peaks. Using the radiative invariants k0 ¼
ðvþ zÞ=ð2 ffiffiffi

s
p Þ, we can transform the region of integration

over v into

1� 2
�ffiffiffi
s

p <�< 1� 2
!ffiffiffi
s

p ; (57)

where� is the maximal energy of the emitted hard photon.
Now, integrating over photon phase space and taking

into consideration the results from Table II of Appendix B
to simplify, we get the hard part of the bremsstrahlung
cross section as

�R
H ¼ �3

4s

Z 1�2!=
ffiffi
s

p

1�2�=
ffiffi
s

p
d�

1� �
hð�Þ; (58)

where

hð�Þ ¼ hev;tð�Þ þ hod;tð�Þ þ ðk2 $ p2Þ; (59)

and
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hev;tð�Þ ¼ s� v

s

��
2lm � 2þ ð1� �Þ2

�
l̂a

� X
i;j¼�;Z

Mijij
ev ð�s; uÞDit1Djt1 jz1 þ

�
2lm � 2þ ð1� �Þ2

�
la

�

� X
i;j¼�;Z

Mijij
ev ðs; u=�ÞDit1Djt1 jz þ ðl̂a � lsÞ

X
i;j¼�;Z

Mijij
ev ð�s; uÞðDit1Djt þDitDjt1Þjz1 þ ðlx � laÞ

� X
i;j¼�;Z

Mijij
ev ðs; u=�ÞðDit1Djt þDitDjt1Þjz þ ðð1� �Þ2lu � 2�Þ X

i;j¼�;Z

Mijij
ev ðs; uÞDitDjtjv1

þ 2

�ð1� �Þ2 � �

2� �
þ �lu

� X
i;j¼�;Z

Mijij
ev ðs; uÞDitDjtjv

�
;

hod;tð�Þ ¼ v� s

s

X
i;j¼�;Z

Mijij
od

�
ð�ð�2 � �þ 1Þl̂a þ �2lm � 2�2ÞDit1Djujz1 þ ðlm � laÞDit1Djujz þ �2ðlm � lsÞDit1Djz2 jz1

þ
�
lx þ lm þ ð1� �Þ2

�
la � 2

�
Dit1Djz2 jz þ �2ðl̂a � lsÞDitDjujz1 þ

�
lu � 2

�

�
DitDjujv

þ ðð�2 � �þ 1Þlu � 2�ÞDitDjz2 jv1 þ ðlx � laÞDitDjz2 jz
�
: (60)

The logarithms above look like

la ¼ log
ðs� vÞ2
m2�

; l̂a ¼ log
ðsþ tÞ2
m2�

;

lm ¼ log
�t

m2
; ls ¼ log

s2

m4
;

lu ¼ log
ðsþ uÞ2
m2�

; lx ¼ log
u2

m4

(61)

with � ¼ vþm2. An operation Ejx denotes the calculation
of an E expression in the x peak.

Using the standard designation of the IR-divergence
extracting operation (see pioneer paper [27])

Z d�

ð1� �Þþ fð�Þ ¼
Z d�

1� �
ðfð�Þ � fð1ÞÞ (62)

we can present the hard part as

�R
H ¼ �R;�

H þ �R;!
H

¼ �3

4s

Z 1�2ð!=
ffiffi
s

p Þ

1�2ð�=
ffiffi
s

p Þ
d�

ð1� �Þþ hð�Þ

þ �3

4s

Z 1�2ð!=
ffiffi
s

p Þ

1�2ð�=
ffiffi
s

p Þ
d�

1� �
hð1Þ: (63)

Obviously, the first term in (63) is independent of ! (at
sufficiently small ! it depends on� only), and the second
term can be easily calculated as

�R;!
H ¼ �3

4s
hð1Þ

Z 1�2ð!=
ffiffi
s

p Þ

1�2ð�=
ffiffi
s

p Þ
d�

1� �

¼ 4�

�
log

�

!
log

tu

em2s
�0: (64)

Finally, we obtain the desired result where the sum of
all contributions to lowest order radiative corrections is
independent of !:

�C þ �R;!
H ¼ �Cð! ! �Þ: (65)

V. NUMERICAL ANALYSIS

Figure 4 shows the Born asymmetry A0
1 versus � at the

energy of the previous JLab experiment atElab ¼ 3:03 GeV
(solid line) and the energy of the planned one with Elab ¼
11 GeV (dashed line). Here, we used � ¼ 1=137:035 999,
mW ¼ 80:398 GeV, and mZ ¼ 91:1876 GeV according

0

0.02

0.04

0.06

0.08

0.1

0.12

x 10-6

20 40 60 80 100 120 140 160

θ,ο

A1
0

FIG. 4. Born asymmetry versus � at Elab ¼ 3:03 GeV (solid
line), 11 GeV (dashed line).
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to [28]. It is clear that at low energies the asymmetry A0
1

is proportional to s ¼ 2mElab giving A0
1ð11 GeVÞ=

A0
1ð3:03 GeVÞ � 4 for any �.
For the detailed numerical calculation of EWC, we

take the electron, muon, and �-lepton masses as me ¼
0:510 998 910 MeV, m� ¼ 0:105 658 367 GeV, m� ¼
1:776 84 GeV and the quark masses for loop contributions
as mu ¼ 0:069 83 GeV, mc ¼ 1:2 GeV, mt ¼ 174 GeV,
md ¼ 0:069 84 GeV, ms ¼ 0:15 GeV, and mb ¼ 4:6 GeV.

The light quark masses provide ��ð5Þ
hadðm2

ZÞ ¼ 0:027 57
[29], where

��ð5Þ
hadðsÞ ¼

�

�

X
f¼u;d;s;c;b

Q2
f

�
log

s

m2
f

� 5

3

�
; (66)

Qf is the electric charge of fermion f in proton charge units

q (q ¼ ffiffiffiffiffiffiffiffiffiffi
4��

p
). We believe that the use of the light quark

masses as parameters regulated by the hadron vacuum
polarization is a better choice in this case. Finally, for the
mass of the Higgs boson, we take mH ¼ 115 GeV.
Although this mass is still to be determined experimentally,
the dependence of EWC on mH is rather weak.

Let us define the relative corrections to the Born cross
section as

	C ¼ ð�C � �0Þ=�0; C ¼ BSE;Ver;Box; . . .

and to the Born asymmetry as

	C
A ¼ ðAC

1 � A0
1Þ=A0

1:

For convenience, we define weak for relative corrections as
all BSE contributions (including ��-SE which is not weak
by nature, but we need it here to account for all the IR-finite
contributions to the asymmetry), HV, ZZ and WW boxes.
This way, weak ¼ BSEþ HVþ ZZþWW.

We present all weak and total (total ¼ weakþ QED)
relative corrections to the unpolarized cross section at
Elab ¼ 11 GeV and different angles � with different cuts
on soft (’’S’’) and hard (’’Sþ H’’) photon emission energy
given by various �1 (�1 ¼ E�=

ffiffiffi
s

p
) in Table III of

Appendix C. Empty cells correspond to forbidden kine-
matical regions of this process. If E� ¼ !, we take into

consideration only soft photons and if E� ¼ �, both soft

and hard photons are taken into account. In principle, for
E� ¼ �, we should treat !=

ffiffiffi
s

p
as a small parameter but,

as it was shown in Eq. (65), the total result does not depend
on it in any case. The ��-SE contribution is small but still
dominates the relative weak correction to the unpolarized
cross section. We can also see a rather small difference
between contributions S and Sþ H. Additionally, we can
conclude that the unpolarized cross section significantly
drops with the decrease of �1.

All weak and QED relative corrections to the asymmetry
A0
1 at Elab ¼ 11 GeV are presented in Tables IV and V in

Appendix C. At � ¼ 90
 the ��-SE gives �� 0:007 to
the relative weak correction, the �Z-SE gives a consider-

able contribution and the ZZ-SE gives a contribution which
is nonzero but not as large as that from �Z-SE. It is
unphysical to separate the BSE and HV due to the fact
that only their sum gives a gauge invariant set. We show
their contribution as a total weak correction in Table IV.
The WW boxes give a rather significant input: 	WW

A ¼
0:0238, but the result coming from the ZZ boxes is rather
small and equal to 	ZZ

A ¼ �0:0013. Finally, we can see
from Table V that the total relative QED corrections are
significant and strongly depend on the parameter �1.
At this point, it is essential to compare the corrected

parity-violating asymmetry, which is sensitive to input
parameters and calculation scheme, with well-known ex-
isting results. In Fig. 5 we can see the relative weak (solid
line) and QED including soft (dashed line) corrections to
the Born asymmetry A0

1 versus
ffiffiffi
s

p
at � ¼ 90
. In the region

of high energies (
ffiffiffi
s

p � 50 GeV) we can see an excellent
agreement with the result of Denner and Pozzorini [11] if
we use their standard model parameters (see Table I for
	weak
A at different

ffiffiffi
s

p
).

Furthermore, the relative QED corrections (see Fig. 8 in
Ref. [11] and dashed line in Fig. 5 here) are also in good
qualitative and numerical agreement. In this case, we apply
the same cut on the soft photon emission energy as in
Ref. [11] (�1 ¼ 0:05).
In our calculations we chose to use the set of input

parameters �, mW , and mZ since mW has a well-defined
value with constantly increasing accuracy. The set of input
parameters consisting of �, the Fermi constant GF, andmZ

was popular when the W-boson mass was not as well

-1

-0.8

-0.6

-0.4

-0.2

0

10
-1

1 10 10
2

10
3

•

•

δΑ

√s
−
, GeV

FIG. 5. The relative weak (solid line) and QED (dashed line)
corrections to the Born asymmetry A0

1 versus
ffiffiffi
s

p
at � ¼ 90
. The

filled circle corresponds to our predictions of the future 11 GeV
Møller experiment at JLab.
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known (see papers [30,31], for example). However, this
set was used successfully for the calculation of radiative
corrections for several modern experiments including the
recent experiment E-158 [10]. At kinematics of the E-158
and using our parameter set we find that 	weak

A � �54%.

For comparison purposes, if we express our input parame-
ters in terms of�,GF, andmZ, we obtain a good agreement
with the result of [10].

VI. CONCLUSION

Møller scattering is a very clean process that can provide
indirect access to new physics at multi-TeV scales. The
new ultraprecise measurement of the weak mixing angle
via 11 GeV Møller scattering starting soon at JLab will
require the higher order effects to be taken into account
with the highest precision as well. In this work, we calcu-
late the electroweak radiative corrections to the asymmetry
of polarized Møller scattering at energies relevant to the
future experiments at JLab. The results are presented in
both numerical and analytical form. As one can clearly see
from our numerical data, at certain kinematic conditions
EWC can reduce the asymmetry up to �70%, and they
depend quite strongly on the experimental cuts. In the
on-shell renormalization scheme we use, the largest
contribution is coming from the weak corrections: self-
energy graphs (especially �Z-SE), HV, and boxes. The
QED part is obviously very important as well.

We believe that one of the most important results of this
work, however, is our compact analytical and sufficiently
accurate expressions. They can be useful for fast yet rela-
tively precise estimations and are well suitable for building
Monte Carlo generators. Our final results are analytically
free from any nonphysical parameters. The accuracy was
controlled by comparison with the numerical data
obtained by a semiautomatic approach using FEYNARTS

and FORMCALC. These base languages were already suc-
cessfully employed in similar projects (see [32,33], for
example), so we are highly confident in their reliability.

Since the problem of EWC for Møller scattering is rather
involved, we believe that a tuned step-by-step comparison
between different calculation approaches is essential. In
the next work, we plan to present a detailed comparison
between several calculation approaches with different re-
normalization schemes. We also plan to address the leading
two-loop electroweak corrections which are very likely to
be required by the promised experimental precision. To
maximize the precision, the full set of one-loop EWC
evaluated in this paper will also need to be recalculated
with the latest input parameters available at the time of
completion of the measurements, but this will be easy to do
based on the results of the present work.

ACKNOWLEDGMENTS

We are grateful to T. Hahn, Yu. Kolomensky, E. Kuraev,
and J. Suarez for stimulating discussions. A. A. and S. B.
thank the Theory Center at Jefferson Lab for their hospital-
ity in late 2009 where this project was inspired. A. I. and
V. Z. thank the Acadia and Memorial Universities for their
hospitality in 2010. This work was supported by the
Natural Sciences and Engineering Research Council of
Canada.

APPENDIX A: A DETAILED EXAMPLE OF THE
LOW-ENERGYAPPROXIMATION IN

TWO-BOSON EXCHANGE CALCULATIONS

In order to provide simplified expressions for quick and
reliable estimates, we evaluate box diagrams with two
massive boson exchanges by extracting the leading part
in the low-energy region. As an example, we show here
detailed calculations for the part of the cross section cor-
responding to a product of a t-channel crossed ZZ box and
Hermitian-conjugate Born matrix element (Fig. 6). The
other parts of the cross section are easy to get (a) by
replacement of indices (Z ! W) to obtain a WW box,
(b) switching momentum transfer labels in a diagram to
get the direct box, and (c) exchanging t and u (t $ u)
to arrive at an expression for the u channel. Since for
Møller scattering the direct WW boxes are forbidden by
the charge conservation law, we are left with a crossed-box
diagram for the case of the charged current reaction. The
part of the cross section corresponding to Fig. 6 is calcu-
lated in the ultrarelativistic approximation and has the
following form:

�ZZ-crossed ¼ ��3

s

X
k¼�;Z

Dkt i

ð2�Þ2
Z

d4k
Sp½��p̂2�ðp̂2 � k̂Þ���

Bkðp1Þ�Sp½��k̂2�
�ðk̂1 � k̂Þ��Bkðk1Þ�

ðk2 � 2k1kÞðk2 � 2p2kÞðk2 �m2
ZÞððk� qÞ2 �m2

ZÞ
: (A1)

Next, we need to evaluate the following scalar, vector, and tensor integrals:

IZZð0;;�Þ ¼
i

ð2�Þ2
Z ð1; k; k�kÞd4k

ðk2 � 2k1kÞðk2 � 2p2kÞðk2 �m2
ZÞððk� qÞ2 �m2

ZÞ
: (A2)

TABLE I. Comparison of our result for 	weak
A with the result

of [11].

ffiffiffi
s

p
, GeV Result of Ref. [11] Our result

100 �0:2787 �0:2790

500 �0:3407 �0:3406

2000 �0:9056 �0:9066
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Applying the Feynman parametrization [34], we obtain

IZZð0;;�Þ ¼
i

ð2�Þ2 3!
Z 1

0
z2dz

Z 1

0
xdx

Z 1

0
dy

�
Z ð1; k; k�kÞd4k

½k2 � 2kpþ ��4 ; (A3)

where

p ¼ qð1� zÞ þ k1xyzþ p2xzð1� yÞ;
� ¼ q2ð1� zÞ þm2

Zðxz� 1Þ: (A4)

Taking the integral over k using well-known expressions
(see [35], for example), we obtain

IZZð0;;�Þ ¼ � 1

4

Z 1

0
z2dz

Z 1

0
xdx

Z 1

0
dy

� ð1; p; p�p � g�ðp2 � �Þ=2Þ
½p2 � ��2 : (A5)

Since � clearly gives a dominant contribution, it is now
easy to arrive at the approximate expression in the low-
energy area we are interested in ðs; jtj; juj � m2

ZÞ. Then,
for example:

IZZ� � g�

8

Z 1

0
z2dz

Z 1

0
xdx

Z 1

0
dy

1

p2 ��

� � g�

8m2
Z

Z 1

0
z2dz

Z 1

0
xdx

Z 1

0
dy

1

xz� 1

¼ � g�

8m2
Z

Z 1

0
dz

Z x¼1

x¼0
dðxzÞ xz

xz� 1

¼ � g�

8m2
Z

Z 1

0
dzðzþ lnj1� zjÞ ¼ g�

16m2
Z

: (A6)

This outlines the technique we used to obtain the compact
expressions (36).

APPENDIX B: COLLINEAR KINEMATICS

APPENDIX C: NUMERICAL ANALYSIS

k1 k1−k
k2

k q−k

p1
p2-k p2

γ, Z

k1 k2

p1 p2

FIG. 6. Example of an interference term coming from the
t-channel crossed ZZ box and Hermitian conjugated Born
contribution, to illustrate the low-energy approximation in
two-boson exchange calculations.

TABLE II. Kinematic relationships relevant to the hard photon cross section.

z1 peak z peak v1 peak v peak

k ð1� �Þk1 1��
� k2 ð1� �Þp1

1��
� p2

z1 2ð1� �Þm2 ! 0 1��
� ð2m2 � tÞ ð1� �Þðs� 2m2Þ ð1� �Þðsþ t� 4m2 þ 2m2

� Þ
z ð1� �Þð2m2 � tÞ 2 1��

� m2 ! 0 1��
� ð�sþ t� 2m2Þ ð1� �Þðs� 2m2Þ

v1 ð1� �Þðs� 2m2Þ 1��
� ð�ðs� 2m2Þ þ tÞ 2ð1� �Þm2 ! 0 ð1� �Þð2m2 � tÞ

v ð1� �Þðsþ t� 2m2Þ ð1� �Þðs� 2m2Þ 1��
� ð2m2 � tÞ 2 1��

� m2 ! 0
u �ð2m2 � s� tÞ þ 2m2 2m2 � t� �ðs� 2m2Þ 2m2 � sþ 2m2�t

� 2m2 � s� tþ 2m2

�

k2p2 � 	 k1p1 � 	 k1p1 � 	 k1p1 � 	 k1p1

p1p2 � 	 k1k2 1
� 	 k1k2 1

� 	 k1k2 � 	 k1k2
k1p2

1
� 	 p1k2

1
� 	 p1k2 � 	 p1k2 � 	 p1k2

TABLE III. The unpolarized Born cross section and the relative weak and total corrections to it at Elab ¼ 11 GeV at different �1

(�1 ¼ 0:005, 0.01, 0.05) and �.

�;



�0, mb Weak S, 0.005 Sþ H, 0.005 S, 0.01 Sþ H, 0.01 S, 0.05 Sþ H, 0.05

20 0:1277� 102 0.0087 �0:2149 �0:2148 �0:1754 �0:1758 	 	 	 	 	 	
30 0:2607� 101 0.0101 �0:2417 �0:2415 �0:1972 �0:1978 	 	 	 	 	 	
40 0.8734 0.0111 �0:2595 �0:2591 �0:2118 �0:2124 �0:1012 �0:1067

50 0.3920 0.0119 �0:2721 �0:2716 �0:2222 �0:2227 �0:1063 �0:1136

60 0.2176 0.0126 �0:2810 �0:2805 �0:2295 �0:2303 �0:1099 �0:1183

70 0.1444 0.0131 �0:2870 �0:2867 �0:2344 �0:2356 �0:1124 �0:1219

80 0.1131 0.0135 �0:2905 �0:2904 �0:2373 �0:2389 �0:1139 �0:1241

90 0.1043 0.0136 �0:2916 �0:2916 �0:2383 �0:2400 �0:1144 �0:1249
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