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We investigate the lattice Weinberg-Salam model without fermions numerically for the realistic choice

of coupling constants correspondent to the value of the Weinberg angle �W � 30�, and bare fine structure

constant around �� 1
150 . We consider the values of the scalar self-coupling corresponding to Higgs mass

MH � 100, 150, 270 GeV. It has been found that nonperturbative effects become important while

approaching continuum physics within the lattice model. When the ultraviolet cutoff � ¼ �
a (where a

is the lattice spacing) is increased and achieves the value around 1 TeV, one encounters the fluctuational

region (on the phase diagram of the lattice model), where the fluctuations of the scalar field become

strong. The classical Nambu monopole can be considered as an embryo of the unphysical symmetric

phase within the physical phase. In the fluctuational region quantum Nambu monopoles are dense, and

therefore, the use of the perturbation expansion around the trivial vacuum in this region is limited. Further

increase of the cutoff is accompanied by a transition to the region of the phase diagram, where the scalar

field is not condensed (this happens at the value of � around 1.4 TeV for the considered lattice sizes).

Within this region further increase of the cutoff is possible, although we do not observe this in detail due to

the strong fluctuations of the gauge boson correlator. Both above mentioned regions look unphysical.

Therefore we come to the conclusion that the maximal value of the cutoff admitted within lattice

electroweak theory cannot exceed the value of the order of 1 TeV.
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I. INTRODUCTION

It is well-known [1] that the finite temperature perturba-
tion expansion breaks down at the temperatures above the
electroweak transition/crossover already for Higgs masses
above about 60 GeV. Therefore the present lower bound on
the Higgs mass requires the use of nonperturbative tech-
niques while investigating electroweak physics at high
temperature.

Nambu monopoles are not described by means of a
perturbation expansion around the trivial vacuum back-
ground. Therefore, nonperturbative methods should be
used in order to investigate their physics. However, their
mass is estimated at the Tev scale. That is why at zero
temperature and at the energies much less than 1 Tev their
effect on physical observables is negligible. However,
when energy of the processes approaches 1 Tev we expect
these objects to influence the dynamics. Recently the
indications in favor of this point of view were indeed
found [2–4].

In this paper we consider lattice realization of zero
temperature electroweak theory (without fermions). The
phase diagram of the correspondent lattice model contains
the physical Higgs phase, where the scalar field is con-
densed and gauge bosons Z and W acquire their masses.
This physical phase is bounded by the phase-transition
surface. Crossing this surface one leaves the Higgs phase
and enters the phase of the lattice theory, where the scalar
field is not condensed.

In the lattice theory the ultraviolet cutoff is finite and is

equal to the momentum � ¼ �
a (see, for example, [5]),

where a is the lattice spacing. The physical scale can be

fixed, for example, using the value of the Z-boson mass

Mphys
Z � 90 GeV. Therefore the lattice spacing is evaluated

to be a� ½90 GeV��1MZ, where MZ is the Z-boson mass

in lattice units. Within the physical phase of the theory the

lines of constant physics (LCP) are defined that correspond

to constant renormalized physical couplings (the fine struc-

ture constant �, the Weinberg angle �W , and Higgs mass to

Z-boson mass ratio � ¼ MH=MZ). The points on LCP are

parametrized by the lattice spacing. Our observation is

that the LCP corresponding to realistic values of �, �W ,
and � crosses the transition between the two ‘‘phases’’ at a

certain value a ¼ ac and for a < ac the scalar field is not

condensed. We denote the corresponding value of the

cutoff �c ¼ �
ac
. Our estimate for the considered values of

the Higgs mass MH � 100, 160, 270 Gev is �c ¼ 1:4�
0:2 Tev (for the considered lattice sizes). We do not ob-

serve the dependence of �c on the lattice size. That is why

the value�c might appear as the maximal possible value of

the cutoff allowed in the conventional electroweak theory.
It is important to compare this result with the limitations

on the ultraviolet cutoff, which come from the perturbation
theory. From the point of view of perturbation theory the
energy scale 1 TeV appears in the hierarchy problem [6].
Namely, the mass parameter �2 for the scalar field
receives a quadratically divergent contribution in one
loop. Therefore, the initial mass parameter (�2 ¼
��cv

2, where v is the vacuum average of the scalar field)*zubkov@itep.ru
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should be set to infinity in such a way that the renormalized
mass �2

R remains negative and finite. This is the content of
the so-called fine-tuning. It is commonly believed that this
fine-tuning is not natural [6] and, therefore, one should
set up the finite ultraviolet cutoff �. From the requirement
that the one-loop contribution to �2 is less than 10j�2

Rj,
one derives that �� 1 TeV. However, strictly speaking,
the possibility that the mentioned fine-tuning takes place is
not excluded.

In the perturbation theory there is also a more solid
limitation on the ultraviolet cutoff. It appears as a conse-
quence of the triviality problem, which is related to Landau
pole in the scalar field self-coupling � and in the fine
structure constant �. The Landau pole in the fine structure
constant is related to the fermion loops and, therefore, has
no direct connection with our lattice result (we neglect
dynamical fermions in our consideration). Because of the
Landau pole the renormalized � is zero, and the only way
to keep it equal to its measured value is to impose the
limitation on the cutoff. That is why the electroweak theory
is usually thought of as a finite cutoff theory. For small
Higgs masses (less than about 350 GeV) the correspondent
energy scale �0

c calculated within the perturbation theory
is much larger than 1 Tev. In particular, forMH � 300 GeV
we have �0

c � 1000 TeV. It is worth mentioning that
for � ! 1 the perturbation expansion in � cannot be
used. In this case the Higgs mass approaches its absolute
upper bound [7], and both triviality and hierarchy scales
approach each other.

From the previous research we know that the phase
diagram in the �-� plane of the lattice SUð2Þ gauge-
Higgs for any fixed � resembles the phase diagram for
the lattice Weinberg-Salam model. The only difference is
that in the SUð2Þ gauge-Higgs model the confinement-
deconfinement phase transition corresponding to the Uð1Þ
constituents of the model is absent. The direct measure-
ment of the renormalized coupling �R shows [8–21] that
the line of constant renormalized coupling constant (with
the value close to the experimental one) intersects the
phase-transition line. Also we know from the direct mea-
surements of MW in the SUð2Þ gauge-Higgs model that
the ultraviolet cutoff is increased when one is moving
along this line from the physical Higgs phase to the sym-
metric phase.

On the tree level the gauge boson mass in lattice units

vanishes on the transition surface at small enough �. This

means that the tree level estimate predicts the appearance

of an infinite ultraviolet cutoff at the transition point

for small �. At infinite � the tree level estimate gives

nonzero values of lattice masses at the transition point.

Our numerical investigation of the SUð2Þ �Uð1Þmodel (at

� ¼ 0:0025, 0.009, 0.001) and previous calculations in the

SUð2Þ gauge-Higgs model (both at finite � and at � ¼ 1)

showed that for the considered lattice sizes renormalized

masses do not vanish and the transition is of either the first

order or a crossover. (Actually, the situation, when the

cutoff tends to infinity at the position of the transition

point, means that there is a second order phase transition.)

The dependence on the lattice sizes for the SUð2Þ gauge-
Higgs model was investigated, for example, in [17].

Namely, for � ¼ 8, �� 0:001 16, where MH �MW , the

correlation lengths were evaluated at the transition points.

For different lattice sizes (from 123 � 28 to 183 � 36) no
change in correlation length was observed [17].
In Table 1 of [2] the data on the ultraviolet cutoff

achieved in selected lattice studies of the SUð2Þ gauge-
Higgs model are presented. Everywhere � is around �� 8
and the renormalized fine structure constant is around

�� 1=110. This table shows that the maximal value

of the cutoff � ¼ �
a ever achieved in these studies is

around 1.4 Tev.
Thus the predictions on the value of �c given by our

lattice study and on the value �0
c given by the perturbation

theory contradict with each other. We suggested a possible

explanation of this contradiction in [4]. Namely, it was

demonstrated that in the vicinity of the transition there

exists the fluctuational region. Within this region the

application of the perturbation theory is limited. This

situation is similar to that of some phenomenological

models that describe condensed matter systems [22], where

there exists the vicinity of the finite temperature phase

transition that is also called the fluctuational region. In

this region the fluctuations of the order parameter become

strong. The contribution of these fluctuations to certain

physical observables becomes larger than the tree level

estimate. Thus the perturbation theory in these models fails

down within the fluctuational region.
We find that there exists thevicinity of the phase tran-

sition between the Higgs phase and the symmetric phase in

the Weinberg-Salam model, where the fluctuations of the

scalar field become strong and the perturbation expansion

around the trivial vacuum cannot be applied. According to

the numerical results the continuum theory is to be ap-

proached within the vicinity of the phase transition; i.e., the

cutoff is increased along the line of constant physics when

one approaches the point of the transition. That is why the

conventional prediction of the value of the cutoff admitted

in the standard model based on the perturbation theory may

be incorrect.
In the present paper we proceed to further investigate [4]

the model at the value of the scalar self-coupling � ¼
0:009 (which corresponds to the Higgs boson mass around
270 Gev in the vicinity of the phase transition), bare
Weinberg angle �W ¼ 30�, and bare fine structure constant
around 1=150. The results presented now correspond to
essentially larger lattices than that used in [4]. Namely, in
[4] the main results correspond to lattices 83 � 16; some
results were checked on the lattice 123 � 16; two points
were checked on the lattice 164. Now our main results are
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obtained on the lattice 164, while the results at the tran-
sition point were checked on the lattice 203 � 24.

In addition we investigate the model at the value of the
scalar self-coupling � ¼ 0:0025, bare Weinberg angle
�W ¼ 30�, and bare fine structure constant around �0 �
1=150. These values of couplings correspond to the Higgs
boson mass around 150 Gev in the vicinity of the phase
transition. The results are obtained using lattices 83 � 16,
123 � 16, and 164. We also present results for � ¼ 0:001,
�W ¼ 30�, �0 � 1=150. These values of couplings corre-
spond to the Higgs boson mass around 100 Gev. The results
are obtained using lattices 83 � 16, 123 � 16.

It is worth mentioning that far from the transition point
the renormalized fine structure constant slowly approaches
the tree level estimate. Contrary to the maximal value
of the cutoff the renormalized fine structure constant de-
pends on the lattice size. And for the larger lattice the value
of �R is closer to the tree level estimate than for the smaller
one. For example, for � ¼ 12, �� 1, � ¼ 0:001 (far from
the transition point) on the lattice 83 � 16, the value of �R

is around 1=130, while on the lattice 123 � 16 it is around
1=140. Within the fluctuational region the deviation
from tree level estimate becomes essentially strong. For
example, for � ¼ 0:009, � ¼ 0:274 (near the transition
point) the renormalized value of �R calculated on the
lattice 83 � 16 is around 1=99, while on the lattice 203 �
24 its value is around 1=106. As it is seen from our
numerical results and as it will be explained in the con-
clusions, we guess the mentioned finite volume effects
present in the value of renormalized � do not affect the
main observables we considered like the value of �c and
the Nambu monopole density.

We calculate the constraint effective potential Vðj�jÞ for
the Higgs field �. In the physical Higgs phase this poten-
tial has a minimum at a certain nonzero value 	m of j�j.
This shows that the spontaneous breakdown of the electro-
weak symmetry takes place as it should. However, there
exists the vicinity of the phase transition, where the fluc-
tuations of the Higgs field are of the order of 	m while the
height of the ‘‘potential barrier’’ [23] H ¼ Vð0Þ � Vð	mÞ
is of the order of Vð	m þ 
	Þ � Vð	mÞ, where 
	 is the
fluctuation of j�j. We expect that in this region the per-
turbation expansion around trivial vacuum � ¼ ð	m; 0ÞT
cannot be applied. This region of the phase diagram is
called the fluctuational region (FR).

The nature of the fluctuational region is illustrated by
the behavior of quantum Nambu monopoles [24,25]. We
show that their lattice density increases when the phase-
transition point is approached. Within the FR these objects
are so dense that it is not possible at all to speak of them as
of single monopoles [26]. Namely, within this region the
average distance between the Nambu monopoles is of the
order of their size. Such complicated configurations obvi-
ously have nothing to do with the conventional vacuum
used in the continuum perturbation theory.

II. THE LATTICE MODEL UNDER
INVESTIGATION

The lattice Weinberg-Salam Model without fermions
contains gauge fieldU ¼ ðU; �Þ [whereU 2 SUð2Þ, ei� 2
Uð1Þ are realized as link variables], and the scalar doublet
�� (� ¼ 1, 2) defined on sites.
The action is taken in the form

S ¼ �
X

plaquettes

��
1� 1

2
TrUp

�
þ 1

tg2�W
ð1� cos�pÞ

�

þ �
X
xy

Reð�þUxye
i�xy�Þ

þX
x

ðj�xj2 þ �ðj�xj2 � 1Þ2Þ; (1)

where the plaquette variables are defined as Up ¼
UxyUyzU

�
wzU

�
xw, and �p ¼ �xy þ �yz � �wz � �xw for the

plaquette composed of the vertices x, y, z, w. Here � is the
scalar self-coupling, and � ¼ 2�, where � corresponds to
the constant used in the investigations of the SUð2Þ gauge-
Higgs model. �W is the Weinberg angle.
Bare fine structure constant � is expressed through �

and �W as � ¼ tg2�W
��ð1þtg2�W Þ . In order to demonstrate this we

consider the naı̈ve continuum limit of (1). We set

Ux;� ¼ eiA�ðxÞa; ei�x;� ¼ eiB�ðxÞa: (2)

Here a is the lattice spacing. The field B� ¼ ~B�

2 , where ~B�,

is the conventionalUð1Þ field, while A� is the conventional

SUð2Þ field. In continuum limit (1) must become

Sg ¼
Z

d4x

�
1

2g22
Tr

�
2�X

i>j

G2
ij

�
þ 1

4g21

�
2�X

i>j

~F2
ij

��
:

(3)

Here ~Fij ¼ @i ~Bj � @j ~Bi ¼ 2ð@iBj � @jBiÞ ¼ 2Fij, Gij ¼
@iAj � @jAi � i½Ai; Aj�. We also have the following cor-

respondence between the plaquette variables and the field
strengths:

TrUx;�� ¼ Tr

�
1� 1

2
G2

��a
4

�
;

cosN�x;�� ¼
�
1� N2

2
F2
��a

4

�
:

(4)

Now in order to clarify the correspondence between
constants g1;2 and � we must substitute the expressions

for the field strengths to (1) and compare it to (3). We have

1

g21
¼ 1

4 tg2�W
� �;

1

g22
¼ �=4: (5)
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Thus

tg �W ¼ g1
g2

;

� ¼ e2

4�
¼

½ 1
g2
1

þ 1
g2
2

��1

4�
¼ tg2�W

��ð1þ tg2�WÞ
:

(6)

We consider the region of the phase diagram with
�� 12 and �W � �=6. Therefore, bare couplings are
sin2�W � 0:25; �� 1

150 . These values are to be compared

with the experimental ones sin2�Wð100 GevÞ � 0:23,
�ð100 GevÞ � 1

128 .

The simulations were performed on lattices of sizes
83 � 16, 123 � 16. For � ¼ 0:0025, 0.009 we investigate
the system on the lattice 164. The transition point at
� ¼ 0:009 was checked using the larger lattice (203 �
24). In order to simulate the system we used the
Metropolis algorithm. The acceptance rate is kept around
0.5 via the automatic self-tuning of the suggested distribu-
tion of the fields. At each step of the suggestion the random
value is added to the old value of the scalar field while the
old value of the gauge field is multiplied by a random
SUð2Þ �Uð1Þ matrix. We use the Gaussian distribution
for both the random value added to the scalar field and
the parameters of the random matrix multiplied by the
lattice gauge field. We use two independent parameters
for these distributions: one for the gauge fields and another
for the scalar field. The program code has been tested for
the case of a frozen scalar field. And the results of the
papers [3] are reproduced. We also have tested our code for
theUð1Þ field frozen and repeat the results of [27]. Far from
the transition point the autocorrelation time for the gauge
fields is estimated as about Ng

auto � 500 Metropolis steps.
In the vicinity of the transition point the autocorrelation
time is several times larger and is about Ng

auto � 1500
Metropolis steps. (The correlation between the values of
the gauge field is less than 3% for the configurations
separated by Ng

auto Metropolis steps. Each metropolis step
consists of renewing the fields over all the lattice.) The
autocorrelation time for the scalar field is essentially
smaller than for the gauge fields and is of the order of

N	
auto � 20. The estimated time for preparing the equilib-

rium starting from the cold start far from the phase tran-
sition within the Higgs phase is about 18 000 Metropolis
steps for the considered values of couplings. At the same
time near the phase transition and within the symmetric
phase the estimated time for preparing the equilibrium is
up to 3 times larger.

III. THE TREE LEVEL ESTIMATES
OF LATTICE QUANTITIES

At finite � the line of constant renormalized � is not a
line of constant physics, because the mass of the Higgs
boson depends on the position on this line. Thus, in order to
investigate the line of constant physics one should vary �

together with � to keep the ratio of lattice massesMH=MW

constant.
In order to obtain the tree level estimates let us rewrite

the lattice action in an appropriate way. Namely, we define

the scalar field ~� ¼
ffiffiffi
�
2

q
�. We have

S ¼ �
X

plaquettes

��
1� 1

2
TrUp

�
þ 1

tg2�W
ð1� cos�pÞ

�

þX
xy

j ~�x �Uxye
i�xy ~�yj2

þX
x

ð�2j ~�xj2 þ ~�j ~�xj4Þ þ!; (7)

where �2 ¼ �2ð4þ ð2�� 1Þ=�Þ, ~� ¼ 4 �
�2 , and ! ¼

�V. Here V ¼ L4 is the lattice volume, and L is the
lattice size.

For negative �2 we fix unitary gauge ~�2 ¼ 0,

Im ~�1 ¼ 0, and introduce the vacuum value of ~�: v ¼
j�jffiffiffiffi
2 ~�

p . We also introduce the scalar field 
 instead of ~�:

~�1 ¼ vþ 
. We denote Vxy ¼ ðU11
xye

i�xy � 1Þ, and obtain

S ¼ �
X

plaquettes

��
1� 1

2
TrUp

�
þ 1

tg2�W
ð1� cos�pÞ

�

þX
xy

ðð
x � 
yÞ2 þ jVxyj2v2Þ þX
x

2j�j2
2
x

þX
xy

ðð
2
y þ 2v
yÞjVxyj2

� 2ð
x � 
yÞReVxyð
y þ vÞÞ
þX

x

~�
2
xð
2

x þ 4v
xÞ þ ~!; (8)

where ~! ¼ !� ~�v4V.
Now we easily derive the tree level estimates:

MH ¼ ffiffiffi
2

p j�j ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ ð2�� 1Þ=�

q
;

MW ¼ ffiffiffi
2

p vffiffiffiffi
�

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð4�þ 2�� 1Þ

2��

s
;

MW ¼ cos�WMZ MH=MW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8��=�2

q
;

� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��

�ð4�þ 2�� 1Þ

s
½80 GeV�:

(9)

The fine structure constant is given by � ¼ tg2�W
��ð1þtg2�W Þ and

does not depend on � and �. From (9) we learn that at the
tree level LCP on the phase diagram corresponds to fixed

� ¼ tg2�W
��ð1þtg2�W Þ � 10 and � ¼ MH=MW , and is given by

the equation �ð�Þ ¼ �2

8��
2.

The important case is � ¼ 1, where the tree level
estimates give
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MH ¼ 1; MW ¼
ffiffiffiffi
�

�

s
;

MZ ¼
ffiffiffiffi
�

�

s
cos�1�W ; � ¼ �

ffiffiffiffi
�

�

s
½80 GeV�: (10)

In the SUð2Þ gauge-Higgs model for the small values of
� 	 0:1, the tree level estimate for MH=MW gives values
that differ from the renormalized ratio by about 20% [18].
The tree level estimate for the ultraviolet cutoff is
about 1 TeV at � ¼ 1, � ¼ 1, � ¼ 15, which is not far
from the numerical result given in [3]. In the SUð2Þ gauge-
Higgs model at � ¼ 1 the critical �c ¼ 0:63 for � ¼ 8
[21]. At this point the tree level estimate gives � ¼
0:9 Tev while the direct measurements give � 2
½0:8; 1:5� Tev for values of � 2 ½0:64; 0:95� [21]. The
investigations of the SUð2Þ gauge-Higgs model showed
that a consideration of finite � does not change much the
estimate for the gauge boson mass. However, at finite � and
values of � close to the phase-transition point, the tree level
formula does not work at all.

The tree level estimate for the critical � is �c ¼ ð1�
2�Þ=4�. At small � this formula gives values that are close
to the ones obtained by the numerical simulations [19–21].
In particular, �c ! 0:25 (�c ! 0:125) at � 	 1. However,
this formula clearly does not work for � > 1=2. From [19–
21,28] we know that the critical coupling in the SUð2Þ
gauge-Higgs model is about 2–4 times smaller for � ¼ 0
than for � ¼ 1.

Tree level estimate predicts that there is the second
order phase transition. This means that according to the
tree level estimate the value of the cutoff at the transition
point is infinite. Our numerical simulations, however,
show that the cutoff remains finite and the transition is,
most likely, a crossover at the considered values of �W , �,
and �.

IV. NAMBU MONOPOLES

In this section we remind the reader of what is called the
Nambu monopole [24]. First let us define the continuum
electroweak fields as they appear in the Weinberg-Salam
model. The continuum scalar doublet is denoted as�. The
Z-boson field Z� and electromagnetic field A

�
EM are de-

fined as

Z� ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffi
�þ�

p �þA��� B�;

A
�
EM ¼ 2B� þ 2sin2�WZ

�;

(11)

where A� and B� are the corresponding SUð2Þ and Uð1Þ
gauge fields of the standard model.

After fixing the unitary gauge �2 ¼ const, �1 ¼ 0
we have

Z� ¼ gz
2

� ~A�
3

g2
cos�W � ~B�

g1
sin�W

�
¼ 1

2
~Z�;

A�
EM ¼ e

� ~A�
3

g2
sin�W þ ~B�

g1
cos�W

�
¼ ~A�;

(12)

where
~A3

g2
¼ 1

g2
TrA
3,

~B
g1
¼ 2B=g1,

~Z
gz
,

~A
e are conventional

standard model fields, and gz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

q
.

Nambu monopoles are defined as the endpoints of the Z
string [24]. The Z string is the classical field configuration
that represents the object, which is characterized by the
magnetic flux extracted from the Z-boson field. Namely,
for a small contour C winding around the Z string one
should have

Z
C
Z�dx� � 2�;

Z
C
A�
EMdx

� � 0;

Z
C
B�dx� � 2�sin2�W:

(13)

The string terminates at the position of the Nambu
monopole. The hypercharge flux is supposed to be con-
served at that point. Therefore, a Nambu monopole carries
electromagnetic flux 4�sin2�W . The size of Nambu mono-
poles was estimated [24] to be of the order of the inverse
Higgs mass, while its mass should be of the order of a
few TeV. According to [24] Nambu monopoles may appear
only in the form of a bound state of a monopole-
antimonopole pair.
In lattice theory the following variables are considered

as creating the Z boson:

Zxy ¼ Z�
x ¼ � sin½Argð�þ

x Uxye
i�xy�yÞ� (14)

and

Z0
xy ¼ Z

�
x ¼ �½Argð�þ

x Uxye
i�xy�yÞ�: (15)

The classical solution corresponding to a Z string
should be formed around the 2-dimensional topological
defect which is represented by the integer-
valued field defined on the dual lattice

P ¼
1
2�

�ð½dZ0�mod 2� � dZ0Þ. [Here we used the notations of

differential forms on the lattice. For a definition of those
notations see, for example, [29]. Lattice field Z0 is defined
in Eq. (15).] Therefore, � can be treated as the world sheet
of a quantum Z string [25]. Then, the worldlines of quan-
tum Nambu monopoles appear as the boundary of the
Z-string world sheet: jZ ¼ 
�.
For historical reasons in lattice simulations we fix

unitary gauge �2 ¼ 0, �1 2 R, �1 
 0 (instead of the
usual �1 ¼ 0, �2 2 R), and the lattice electroweak
theory becomes a lattice Uð1Þ gauge theory with the Uð1Þ
gauge field

Axy ¼ A
�
x ¼ ½Z0 þ 2�xy� mod 2�: (16)
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(The usual lattice electromagnetic field is related to A
as AEM ¼ A� Z0 þ 2sin2�WZ

0.) One may try to extract
monopole trajectories directly from A. The monopole cur-
rent is given by

jA ¼ 1

2�

�
dð½dA�mod 2�Þ: (17)

Both jZ and jA carry magnetic charges. That is why it is
important to find the correspondence between them.

In continuum notations we have

A� ¼ Z� þ 2B�; (18)

where B is the hypercharge field. Its strength is divergence-
less. As a result in continuum theory the net Z flux ema-
nating from the center of the monopole is equal to the net A
flux. (Both A and Z are undefined inside the monopole.)
This means that in the continuum limit the position of the
Nambu monopole must coincide with the position of the
antimonopole extracted from the field A. Therefore, one
can consider Eq. (17) as another definition of a quantum
Nambu monopole [3]. Actually, in our numerical simula-
tions we use the definition of Eq. (17).

V. PHASE DIAGRAM

In our lattice study we fix bare �W ¼ �=6. Then in
the three-dimensional ð�;�; �Þ phase diagram the transi-
tion surfaces are two-dimensional. The lines of con-
stant physics on the tree level are the lines ( �

�2 ¼ 1
8� �

ðM2
H=M

2
WÞ ¼ const; � ¼ 1

4�� ¼ const). We suppose that in

the vicinity of the transition the deviation of the lines of
constant physics from the tree level estimate may be sig-
nificant. However, qualitatively their behavior is the same.
Namely, the cutoff is increased along the line of constant
physics when � is decreased and the maximal value of the
cutoff is achieved at the transition point. Nambu monopole
density in lattice units is also increased when the ultraviolet
cutoff is increased.

At � ¼ 12 (corresponds to bare �� 1=150) the phase
diagram is represented in Fig. 1. This diagram is obtained,
mainly, using the lattice 83 � 16. Some regions (� ¼
0:009, 0.0025, 0.001), however, were checked using larger
lattices. According to our data there is no dependence of
the diagram on the lattice size. The physical Higgs phase
is situated right to the transition line. The position of the
transition �cð�Þ is localized here at the point where the
susceptibility extracted from the Higgs field creation op-
erator achieves its maximum. We use the susceptibility

� ¼ hH2i � hHi2 (19)

extracted from H ¼ P
yZ

2
xy (see, for example, Fig. 2). We

observe no difference between the values of the suscepti-
bility calculated using the lattices of different sizes. This
indicates that the transition at �c is a crossover. Indeed we
find that gauge boson masses do not vanish in a certain

vicinity of �c even within the symmetric phase. In the next
section we shall see that within the statistical errors �c

coincides with the value of �, where the scalar field
condensate disappears. Actually, there also exist two
other crucial points: �c0ð�Þ<�cð�Þ<�c2ð�Þ (say, at � ¼
0:001 we have �c0 ¼ 0:252� 0:001, �c ¼ 0:256� 0:001,
�c2 ¼ 0:258� 0:001; see the next sections for the details).
�c2 denotes the boundary of the fluctuational region. At
�c0 the extrapolation of the dependence of lattice Z-boson
massMZð�Þ on � indicates thatMZð�c0Þmay vanish. In the
symmetric phase the perturbation theory predicts vanishing
of the gauge boson masses. Therefore, supposition thatMZ

vanishes at a certain point is very natural. The perturbation
theory also predicts that the mass parameter present in the
effective action for the scalar field vanishes at the point of
the transition between the Higgs phase and the symmetric
phase. Our analysis shows that at the point where the scalar
field condensate disappears, lattice MH does not vanish.
However, it may vanish, in principle, at some other point. If
bothMZ andMH vanish simultaneously at �c0, at this point
the model becomes scale invariant and the formal contin-
uum limit of the lattice model can be achieved at �c0. This
point may then appear as the point of the second order
phase transition. Near �c0 the fluctuations of the gauge
boson correlator are strong and at the present moment we
do not make definite conclusions on the behavior of the
system at �c0. However, the calculated susceptibilities do
not have peaks at this point, which is an indirect indication
that the real second order phase transition cannot appear at
�c0. It is worth mentioning that within the region ð�c0; �cÞ
the scalar field is not condensed. That is why we guess this
region has nothing to do with real continuum physics.

FIG. 1. The phase diagram of the model in the ð�; �Þ plane
at � ¼ 12. The dashed line is the tree level estimate for the line
of constant physics correspondent to bare M0

H ¼ 270 Gev.
The continuous line is the line of phase transition between the
physical Higgs phase and the unphysical symmetric phase
(statistical errors for the values of � at each � on this line are
about 0.005).
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We investigated carefully the region � 
 �c for � ¼
0:001, 0.0025, 0.009. We observe that for �c < � < �c2

Nambu monopoles dominate the vacuum and the usual
perturbation theory cannot be applied. For this reason,
most likely, the interval ð�c; �c2Þ also has no connection
with the conventional continuum electroweak theory. At
the same time for � � �c2 the behavior of the system is
close to what one would expect based on the usual pertur-
bative continuumWeinberg-Salam model. It is worth men-
tioning that the value of the renormalized Higgs boson
mass does not deviate significantly from its bare value
near the transition point �c. For example, for � around
0.009 and � ¼ 0:274 bare value of the Higgs mass is
around 270 Gev, while the observed renormalized value
is 300� 70 Gev.

VI. EFFECTIVE CONSTRAINT POTENTIAL

We have calculated the constraint effective potential for
j�j using the histogram method. The calculations have
been performed on the lattice 83 � 16. The probability
hð	Þ to find the value of j�j within the interval ½	�
0:05;	þ 0:05Þ has been calculated for 	 ¼ 0:05þ N �
0:1, N ¼ 0; 1; 2; . . . . This probability is related to the

effective potential as hð	Þ ¼ 	3e�Vð	Þ. That is why we
extract the potential from hð	Þ as

Vð	Þ ¼ � loghð	Þ þ 3 log	: (20)

(See Fig. 3.) It is worth mentioning that hð0:05Þ is calcu-
lated as the probability to find the value of j�j within the
interval [0; 0.1]. Within this interval log	 is ill defined.
That is why we exclude the point 	 ¼ 0:05 from our data.
Instead we calculate Vð0Þ using the extrapolation of the
data at 0:15 � 	 � 2:0. The extrapolation is performed

using the polynomial fit with the powers of 	 up to the
third (average deviation of the fit from the data is around
1 percent). Next, we introduce the useful quantity H ¼
Vð0Þ � Vð	mÞ, which is called the potential barrier height
(here 	m is the point where V achieves its minimum).
As an example we represent in Fig. 4 the values of 	m

for � ¼ 0:001, � ¼ 12. In Fig. 5 we represent the values
ofH for � ¼ 0:009, � ¼ 12. One can see that the values of
	m and H increase when � is increased. The maximum of
the susceptibility constructed of the Higgs field creation
operator Hx ¼

P
yZ

2
xy (see, for example, Fig. 2) coincides

with the point where 	m vanishes within the statistical
errors. We localize the position of the transition points
at the points where 	m vanishes: �c ¼ 0:274� 0:001 at

FIG. 3. The effective constraint potential at � ¼ 0:009 and
� ¼ 12. Solid squares correspond to �c ¼ 0:273. Empty squares
correspond to � ¼ 0:29. Triangles correspond to � ¼ 0:279. The
error bars are about the same size as the symbols used.

FIG. 2. Susceptibility � ¼ hH2i � hHi2 (for Hx ¼ P
yZ

2
xy) as a

function of � at � ¼ 0:001 and � ¼ 12. Circles correspond to
the lattice 123 � 16. Crosses correspond to the lattice 83 � 16.

FIG. 4. 	m as a function of � at � ¼ 0:001 and � ¼ 12.
Circles correspond to lattice 83 � 16. Crosses correspond to
lattice 123 � 16.
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� ¼ 0:009, �c ¼ 0:26� 0:001 at � ¼ 0:0025, and �c ¼
0:256� 0:001 at � ¼ 0:001.

The maximum of the scalar field fluctuation (see, for
example, Fig. 6) is shifted to larger values of � than the
transition point. Again we do not observe any difference in

	 for the considered lattice sizes. This also indicates that
the transition at these values of � is a crossover.

It is important to understand which value of barrier
height can be considered as small and which value
can be considered as large. Our suggestion is to compare
H ¼ Vð0Þ � Vð	mÞ with Hfluct ¼ Vð	m þ 
	Þ � Vð	mÞ,
where 
	 is the fluctuation of j�j. From Fig. 5 it is clear
that there exists the value of � (we denote it �c2) such that
at �c < � < �c2 the barrier height H is of the order of
Hfluct while for �c2 	 � the barrier height is essentially
larger than Hfluct. The rough estimate for this pseudocriti-
cal value is �c2 � 0:278 at � ¼ 0:009.

The fluctuations of j�j are around 
	� 0:6 for
all considered values of � at � ¼ 0:009, 0.0025, 0.001,
� ¼ 12. It follows from our data (see also Fig. 7) that 	m,
hj	ji � 
	 at �c2 	 � while 	m, hj	ji � 
	 at �c2 >
�. Based on these observations we expect that in the region
�c2 	 � the usual perturbation expansion around the triv-
ial vacuum of spontaneously broken theory can be applied
to the lattice Weinberg-Salam model while in the FR
�c < �< �c2 it cannot be applied. In the same way we
define the pseudocritical value �c2 at � ¼ 0:001, 0.0025.
Namely, �c2 � 0:278 for � ¼ 0:009; �0:262 for � ¼
0:0025; �0:258 for � ¼ 0:001.

VII. THE RENORMALIZED COUPLING

In order to calculate the renormalized fine structure
constant �R ¼ e2=4� (where e is the electric charge), we
use the potential for infinitely heavy external fermions.

We consider Wilson loops for the right-handed external
leptons:

W R
leptðlÞ ¼ hRe�ðxyÞ2le

2i�xyi: (21)

Here l denotes a closed contour on the lattice. We consider
the following quantity constructed from the rectangular
Wilson loop of size r� t:

V ðrÞ ¼ loglim
t!1

W ðr� tÞ
W ðr� ðtþ 1ÞÞ : (22)

Because of the exchange by virtual photons at large
enough distances, we expect the appearance of the
Coulomb interaction

FIG. 5. H (points) vs Hfluct (stars) as a function of � at � ¼
0:009 and � ¼ 12. Statistical errors for Hfluct are about the same
size as the symbols used.

FIG. 6. Fluctuation 
	 as a function of � at � ¼ 0:0025 and
� ¼ 12. Circles correspond to the lattice 83 � 16. Crosses
correspond to the lattice 123 � 16. Triangles correspond to the
lattice 164. The transition point is �c ¼ 0:261� 0:001; it is clear
that the maximum of 
	 is shifted to larger values of �.

FIG. 7. Mean value of j	j as a function of � at � ¼ 0:0025 and
� ¼ 12. (Lattice 83 � 16.)
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V ðrÞ ¼ ��R

r
þ const: (23)

It should be mentioned here that in order to extract the
renormalized value of � one may apply to V the fit
obtained using the Coulomb interaction in momentum
space. The lattice Fourier transform then gives

V ðrÞ ¼ ��RUðrÞ þ const;

UðrÞ ¼ �

N3

X
�p�0

eip3r

sin2p1=2þ sin2p2=2þ sin2p3=2
:

(24)

HereN is the lattice size, pi ¼ 2�
L ki, ki ¼ 0; . . . ; L� 1. On

large enough lattices at r 	 L both definitions approach
each other. On the lattices we use, the values of the
renormalized �R extracted from (23) and (24) are essen-
tially different from each other. Either of the two ways,
(23) or (24), may be considered as the definition of the
renormalized � on the finite lattice. And there is no par-
ticular reason to prefer the potential defined using the
lattice Fourier transform of the Coulomb law in momentum
space. Actually, our study shows that the single 1=r fit
approximates V much better. Moreover, the values of
renormalized � calculated using this fit are essentially
closer to the tree level estimate than those calculated using
the fit (24).

In practice instead of (22) we use the potential that
depends on additional parameter T:

V ðr; TÞ ¼ log
W ðr� TÞ

W ðr� ðT þ 1ÞÞ : (25)

For example, on the lattice 164 the values T ¼ 4, 5, 6, 7, 8
are used; on the lattice 123 � 16 the values T ¼ 4, 5, 6 are
used; on the lattice 83 � 16 the value T ¼ 4 is used. As a
result �R ¼ �RðTÞmay depend both on the lattice size and
on T. The dependence on T was missed in [4] (where for
lattices 123 � 16, 164 we used T ¼ 5, while for the lattice
83 � 16 we used T ¼ 4).

In Fig. 8 we represent as an example the dependence
of the potential for T ¼ 8 on 1=R. As already mentioned
(23) approximates the potential much better than (24).
Therefore we used the fit (23) to extract �R. This should
be compared with the results of [21], where for similar
reasons the single e��r=r fit (instead of the lattice Yukawa
fit) was used in order to determine the renormalized cou-
pling constant in the SUð2Þ gauge-Higgs model.

Because of the dependence of �RðTÞ on T there is the
essential uncertainty in the definition of �R related to finite
volume effects. For example, at � ¼ 0:29, � ¼ 0:009, and
� ¼ 12, the value of �R calculated on the lattice 164 varies
between �Rð4Þ � 1=ð93� 1Þ and �Rð8Þ � 1=ð108� 2Þ
[at the same time on the lattice 83 � 16 the value is
�Rð4Þ ¼ 1=ð100� 1Þ]. At � ¼ 0:274, � ¼ 0:009, and
� ¼ 12, the value of �R calculated on the lattice 203 �
24 varies between �Rð4Þ � 1=ð98� 1Þ and �Rð10Þ ¼
1=ð106� 1Þ [at the same time on the lattice 83 � 16 the

value is �Rð4Þ ¼ 1=ð99� 1Þ]. Below for the lattice 83 �
16 we use T ¼ 4, for the lattice 123 � 16 we use T ¼ 6,
and for the lattice 164 we use T ¼ 8. Therefore, the
dependence on T is absorbed into the dependence on the
lattice size. As an example, in Fig. 9 we represent
the renormalized fine structure constant [calculated using
the fit (23)] at � ¼ 0:0025, � ¼ 12. The calculated values
are to be compared with bare constant �0 ¼ 1=ð4��Þ �
1=150 at � ¼ 12. One can see that for � � �c2 the tree
level estimate is approached slowly while within the FR the
renormalized � differs essentially from the tree level esti-
mate. This is in correspondence with our supposition that
the perturbation theory cannot be valid within the FR while

FIG. 8. The potential (T ¼ 8) for the right-handed leptons vs
1=R at � ¼ 0:262, � ¼ 0:0025, and � ¼ 12 (lattice 164).

FIG. 9. The inverse renormalized fine structure constant as a
function of � at � ¼ 0:0025 and � ¼ 12. It slowly approaches
the tree level estimate �150 when � and the lattice size are
increased. Circles correspond to lattice 123 � 16. Crosses cor-
respond to lattice 83 � 16. Triangles correspond to lattice 164.
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it works well far from the FR. The dependence of �R on
the lattice size is clear: for the larger lattices�R approaches
its tree level estimate faster than for the smaller ones.
Unfortunately, due to the difficulties in simulation of the
system at large � we cannot observe this pattern in detail.
At the present moment the value of �R most close to the
tree level estimate is obtained on the lattice 123 � 16 and is
about 1=140 (at � ¼ 0:0025, 0.001; � ¼ 12; �� 1).

VIII. MASSES AND THE LATTICE SPACING

After fixing the unitary gauge �1 2 R, �2 ¼ 0,
�1 
 0, the following variables are considered as creating
a Z boson and a W boson, respectively:

Zxy ¼ Z
�
x ¼ � sin½ArgðU11

xye
i�xyÞ�;

Wxy ¼ W
�
x ¼ U12

xye
�i�xy :

(26)

Here, � represents the direction ðxyÞ. The electromagnetic
Uð1Þ symmetry remains:

Uxy ! gyxUxygy; �xy ! �xy � �y=2þ �x=2; (27)

where gx ¼ diagðei�x=2; e�i�x=2Þ. There exists a Uð1Þ lat-
tice gauge field, which is defined as

Axy ¼ A�
x ¼ ½�ArgU11

xy þ �xy� mod 2�; (28)

that transforms as Axy ! Axy � �y þ �x. The field W

transforms as Wxy ! Wxye
�i�x .

The W-boson field is charged with respect to the Uð1Þ
symmetry. Therefore we fix the lattice Landau gauge in
order to investigate the W-boson propagator. The lattice
Landau gauge is fixed via minimizing [with respect to the
Uð1Þ gauge transformations] the following functional:

F ¼ X
xy

ð1� cosðAxyÞÞ: (29)

Then we extract the mass of the W boson from the
correlator

1

N6

X
�x; �y

�X
�

W
�
x ðW�

y Þy
	
� e�MW jx0�y0j þ e�MW ðL�jx0�y0jÞ:

(30)

Here the summation
P

�x; �y is over the three ‘‘space’’ com-

ponents of the four-vectors x and y, while x0, y0 denote
their ‘‘time’’ components. N is the lattice length in the
space direction. L is the lattice length in the time direction.

In order to evaluate the masses of the Z boson and the
Higgs boson we use the correlators:

1

N6

X
�x; �y

�X
�

Z
�
x Z

�
y

	
� e�MZjx0�y0j þ e�MZðL�jx0�y0jÞ (31)

and

1

N6

X
�x; �y

ðhHxHyi � hHi2Þ � e�MHjx0�y0j þ e�MHðL�jx0�y0jÞ:

(32)

In lattice calculations we used two different operators
that create Higgs bosons: Hx ¼ j�j and Hx ¼

P
yZ

2
xy. In

both casesHx is defined at the site x, the sum
P

y is over its

neighboring sites y.
The physical scale is given in our lattice theory by the

value of the Z-boson massMphys
Z � 91 GeV. Therefore the

lattice spacing is evaluated to be a� ½91 GeV��1MZ,
where MZ is the Z-boson mass in lattice units. Similar
calculations have been performed in [3] for � ¼ 1. It has
been found that the W-boson mass contains an artificial
dependence on the lattice size. We suppose that this de-
pendence is due to the photon cloud surrounding the W
boson. The energy of this cloud is related to the renormal-
ization of the fine structure constant. Therefore the
Z-boson mass was used in order to fix the scale.
Our data show that � ¼ �

a ¼ ð�� 91 GeVÞ=MZ is in-

creased slowly with the decrease of � at any fixed �. We
investigated carefully the vicinity of the transition point
at fixed � ¼ 0:001, 0.0025, 0.009 and � ¼ 12. It has been
found that at the transition point the value of � is equal to
1:4� 0:2 TeV for � ¼ 0:009, 0.0025, 0.001. A check of
the dependence on the lattice size (83 � 16, 123 � 16, 164,
203 � 24 at � ¼ 0:009; 83 � 16, 123 � 16, 164 at � ¼
0:0025; 83 � 16, 123 � 16 at � ¼ 0:001) does not show
an essential dependence of this value on the lattice size.
This is illustrated by Figs. 10–12. From these figures it also
follows that at the value of � equal to �c2 (� 0:278 for
� ¼ 0:009; �0:262 for � ¼ 0:0025; �0:258 for � ¼
0:001) the calculated value of the cutoff is about 1 TeV.
It is worth mentioning that the linear fit applied (in

some vicinity of �c) to the dependence ofMZ on � predicts
the vanishing of MZð�Þ at � equal to �c0 < �c. Within
the statistical errors �c0 ¼ 0:253� 0:001 for � ¼ 0:001,
�c0 ¼ 0:253� 0:001 for � ¼ 0:0025, �c0 ¼ 0:254�
0:001 for � ¼ 0:009. We perform direct calculations
within the region ð�c0; �cÞ at � ¼ 0:001, 0.0025. These
calculations show that the fluctuations of the correlator
(31) are increased (compared with the values of the corre-
lator) fast when � is decreased. Already for � ¼ 0:255 at
� ¼ 0:0025 (�c ¼ 0:26) and for � ¼ 0:254 at � ¼ 0:001
(�c ¼ 0:258), the values of the correlator at jx0 � y0j> 0
are smaller than the statistical errors. Most likely, at � �
�c0 it is necessary to apply another gauge [like in the pure
SUð2Þ �Uð1Þ gauge model] in order to calculate gauge
boson propagators. At the present moment we do not
estimate the scalar particle mass at �c0 because of the
lack of statistics. The behavior of the other quantities is
smooth at �� �c0; no maximum of 
	 or other suscep-
tibilities is observed there (see, for example, Fig. 2). Based
on our data it is natural to suppose that the lattice gauge
boson mass may vanish at �� �c0, although we do not
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observe the correspondent pattern in detail because of the
strong fluctuations of the correlator (31) near �c0. As
mentioned above, the transition for the considered values
of couplings is, most likely, a crossover. There are 3 excep-
tional points: �c0, where the lattice value of MZ may
vanish, �c, where the scalar field condensate disappears,
and �c2, which denotes the boundary of the fluctuational
region. This situation is typical for the crossovers: different
quantities change their behavior at different points on the
phase diagram. At the present moment we do not exclude
that the second order phase transition may take place at

�c0. This would happen if both mass parameters (Z-boson
mass and scalar particle mass) vanish simultaneously at
this point. The careful investigation of the vicinity of �c0 is
to be the subject of further research.
In the Higgs channel the situation is more difficult.

Because of the lack of statistics we cannot estimate the
masses in this channel using the correlators (32) at all
considered values of coupling constants. Moreover, at
several points, where we have estimated the renormalized
Higgs boson mass, the statistical errors are much larger
than that of for the Z-boson mass. At the present moment
we can represent the data at four points on the lattice
83 � 16: (� ¼ 0:274, � ¼ 0:009, � ¼ 12), (� ¼ 0:290,
� ¼ 0:009, � ¼ 12), (� ¼ 0:261, � ¼ 0:0025, � ¼ 12),
and (� ¼ 0:257, � ¼ 0:001, � ¼ 12).
The first point roughly corresponds to the position of the

transition at � ¼ 0:009, � ¼ 12, while the second point is
situated deep within the Higgs phase. These two points
correspond to bare Higgs mass around 270 Gev. At the
point (� ¼ 0:274, � ¼ 0:009, � ¼ 12) we have collected
enough statistics to calculate the correlator (32) up to the
time separation jx0 � y0j ¼ 4. The value � ¼ 0:274 cor-
responds roughly to the position of the phase transition.
We estimate at this point MH ¼ 300� 40 Gev. At the
point (� ¼ 0:29, � ¼ 0:009, � ¼ 12), we calculate the
correlator with reasonable accuracy up to jx0 � y0j ¼ 3.
At this point MH ¼ 265� 70 Gev.
For � ¼ 0:001, 0.0025 we calculate the Higgs boson

mass close to the transition points. Similar to the case � ¼
0:009 we do not observe here essential deviation from the
tree level estimates. Namely, for � ¼ 0:001, � ¼ 0:257
we have MH ¼ 90� 20 GeV (tree level value is M0

H �
100 GeV). For this point we have collected enough statis-
tics to calculate correlator (32) up to the time separation

FIG. 10. Z-bosonmass in lattice units at � ¼ 0:009 and� ¼ 12
as a function of �. Solid triangles correspond to lattice 123 � 16.
Crosses correspond to lattice 83 � 16. Circles correspond to
lattice 164. Square corresponds to lattice 203 � 24. (The error
bars for lattices 163 � 16 and 203 � 24 are about the same size as
the symbols used.)

FIG. 11. Z-bosonmass in lattice units at� ¼ 0:001 and� ¼ 12.
Circles correspond to lattice 83 � 16. Crosses correspond to
lattice 123 � 16.

FIG. 12. Z-boson mass in lattice units at � ¼ 0:0025 and � ¼
12. Circles correspond to lattice 123 � 16. Crosses correspond to
lattice 83 � 16. Triangles correspond to lattice 164.
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jx0 � y0j ¼ 8. For � ¼ 0:0025, � ¼ 0:261 we haveMH ¼
170� 30 GeV (tree level value is M0

H � 150 GeV). For
this point we have collected enough statistics to calculate
correlator (32) up to the time separation jx0 � y0j ¼ 4. It is
worth mentioning that in order to calculate the Z-boson
mass we fit correlator (31) for 8 
 jx0 � y0j 
 1.

IX. NAMBU MONOPOLE DENSITY

The worldlines of the quantum Nambu monopoles can
be extracted from the field configurations according to
Eq. (17). The monopole density is defined as

� ¼
* P
links

jjlinkj
4VL

+
;

where VL is the lattice volume.
In Figs. 13–15 we represent Nambu monopole density

as a function of � at � ¼ 0:009, 0.0025, 0.001, � ¼ 12.
The value of monopole density at �c is around 0.1.

According to the classical picture the Nambu monopole
size is of the order of M�1

H . Therefore, for example, for
a�1 � 430 Gev and MH � 300, 150, 100 Gev, the ex-
pected size of the monopole is about a lattice spacing.
The monopole density around 0.1 means that among 10
sites there exist 4 sites that are occupied by the monopole.
Average distance between the two monopoles is, therefore,
less than 1 lattice spacing and it is not possible at all to
speak of the given configurations as representing the physi-
cal Nambu monopole.

At � ¼ �c2 the Nambu monopole density is of the order
of 0.01. This means that among about 25 sites there exists

one site that is occupied by the monopole. Average dis-
tance between the two monopoles is, therefore, between
one and two lattice spacings. We see that at this value of �
the average distance between Nambu monopoles is of the
order of their size.
We summarize the above observations as follows.

Within the fluctuational region the configurations under
consideration do not represent single Nambu monopoles.
Instead these configurations can be considered as the col-
lection of monopolelike objects that is so dense that the
average distance between the objects is of the order of their

FIG. 13. Nambu monopole density as a function of � at � ¼
0:009 and � ¼ 12. (Lattice 83 � 16.)

FIG. 14. Nambu monopole density as a function of � at � ¼
0:0025 and � ¼ 12. Circles correspond to lattice 123 � 16.
Crosses correspond to lattice 83 � 16. Triangles correspond to
lattice 164.

FIG. 15. Nambu monopole density as a function of � at � ¼
0:001 and � ¼ 12. Circles correspond to lattice 123 � 16.
Crosses correspond to lattice 83 � 16.
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size. On the other hand, at � � �c2 the considered con-
figurations do represent single Nambu monopoles and the
average distance between them is much larger than their
size. In other words out of the FR vacuum can be treated
as a gas of Nambu monopoles, while within the FR vacuum
can be treated as a liquid composed of monopolelike
objects.

It is worth mentioning that somewhere inside the Z
string connecting the classical Nambu monopoles the
Higgs field is zero: j�j ¼ 0. This means that the Z string
with the Nambu monopoles at its ends can be considered as
an embryo of the symmetric phase within the Higgs phase.
We observe that the density of these embryos is increased
when the phase transition is approached. Within the fluc-
tuational region the two phases are mixed, which is related
to the large value of Nambu monopole density.

That is why we come to the conclusion that the vacuum
of the lattice Weinberg-Salam model within the FR has
nothing to do with the continuum perturbation theory.
This means that the usual perturbation expansion around
the trivial vacuum [gauge field equal to zero, the scalar
field equal to ð	m; 0ÞT] cannot be valid within the FR. This
might explain why we do not observe in our numerical
simulations the large values of � predicted by the conven-
tional perturbation theory.

X. CONCLUSIONS

In the present paper we demonstrate that while ap-
proaching continuum physics in the lattice Weinberg-
Salam model one encounters the nonperturbative effects.
Namely, the continuum physics is to be approached in the
vicinity of the transition between the physical Higgs phase
and the symmetric phase of the model (in the symmetric
phase the scalar field is not condensed). The ultraviolet
cutoff is increased when the transition point is approached
along the line of constant physics. There exists the FR on
the phase diagram of the lattice Weinberg-Salam model.
This region is situated in the vicinity of the transition
between the Higgs phase and the symmetric phase (where
scalar field is not condensed). According to our data this
transition is, most likely, a crossover. We localize its posi-
tion at the point �cð�;�; �WÞ, where the scalar field con-
densate disappears. We calculate the effective constraint
potential Vð	Þ for the Higgs field. It has a minimum at the
nonzero value 	m in the physical Higgs phase. At the
considered values of �, �, �W for � between �c and �c2

(�c2 is in the Higgs phase), the fluctuations of the scalar
field become of the order of 	m. Moreover, the ‘‘barrier
height’’ H ¼ Vð0Þ � Vð	mÞ is of the order of Vð	m þ

	Þ � Vð	mÞ, where 
	 is the fluctuation of j�j.
Therefore, we refer to this region as FR.

The scalar field must be equal to zero somewhere within
the classical Nambu monopole. That is why this object can
be considered as an embryo of the unphysical symmetric
phase within the physical Higgs phase of the model. We

investigate properties of the quantum Nambu monopoles.
Within the FR they are so dense that the average distance
between them becomes of the order of their size. This
means that the two phases are mixed within the FR. All
these results show that the vacuum of the lattice Weinberg-
Salam model in the FR is essentially different from the
trivial vacuum used in the conventional perturbation
theory. As a result the use of the perturbation theory in
this region is limited.
Our numerical results show that atMH around 270, 150,

100 GeVand the bare fine structure constant around 1=150
the maximal value of the cutoff admitted out of the FR
for the considered lattice sizes cannot exceed the value
around 1 Tev. Within the FR the larger values of the cutoff
can be achieved in principle. The maximum for the value of
the cutoff�c within the Higgs ‘‘phase’’ of the lattice model
is achieved at the point of the transition to the region of
the phase diagram, where the scalar field is not condensed.
Our estimate for this value is �c ¼ 1:4� 0:2 Tev for the
considered lattice sizes. Far from the fluctuational region
the behavior of the lattice model in general is close to what
we expect based on the continuous perturbation theory. As
already mentioned, at the considered values of couplings
the transition is, most likely, a crossover. This follows from
the observation that various quantities (Z-boson mass, the
fluctuation of the scalar field, etc.) do not depend on the
lattice size at the transition point. Within the symmetric
‘‘phase’’ of the lattice model (where the scalar field is not
condensed) in some vicinity of the transition between this
phase and the Higgs phase (where the scalar field is
condensed), the lattice gauge boson masses do not vanish.
The statistical error for MZ is increased fast when � is
decreased starting from the pseudocritical value �c. At
� � �c0 < �c (within the symmetric phase) the values of
the Z-boson correlator (31) are smaller than the statistical
errors. Therefore, our procedure cannot give the values of
gauge boson masses in this region. Most likely, here the
other gauge is to be applied in order to calculate gauge
boson propagators (we used in our simulations the unitary
gauge). It is worth mentioning that the perturbation theory
predicts zero gauge boson masses within the symmetric
phase. Most likely, this prediction fails within the interval
ð�c0; �cÞ due to nonperturbative effects.
An important question is how to treat finite volume

effects that are present in all observables that contain
long-range electromagnetic Coulomb interactions. In
particular, we see that these effects are strong in the
renormalized fine structure constant (about 10% when
the lattice size varies from 83 � 16 to 164) and in the
mass of the electrically charged W boson. On the other
hand all observables related to the SUð2Þ constituent of the
model do not possess essential dependence on the lattice
size. In particular, the Z-boson massMZ (and the cutoff�),
density �Nambu of Nambu monopoles [30], fluctuation of
the scalar field 
	, as well as the position of the transition
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between the phases of the lattice model practically do not
depend on the lattice size. Our point of view is that the
influence of long-range electromagnetic interactions on
these observables is negligible compared to their tree level
and nonperturbative constituents. Actually, electromag-
netic interactions can be taken into account perturbatively,
with the renormalized �� 1=100 as the parameter of the
perturbation expansion. This was the reason why in the
previous numerical studies of the SUð2Þ gauge-Higgs
model the Uð1Þ constituent of the Weinberg-Salam model
was completely disregarded [8–21]. To summarize, we
suppose that in spite of the presence of finite volume
effects in the fine structure constant and W-boson mass,
the calculated values of MZ, �, �Nambu, 
	, etc., can be
considered as free of these effects [31] (up to the perturba-
tions suppressed by the factor �� 1=100).

Based on our data it is natural to suppose that the lattice
gauge boson mass may vanish at �� �c0, although we do
not observe the correspondent pattern in detail because of
the strong fluctuations of the correlator (31) near �c0. If so,
there exist 3 pseudocritical points: �c0, where the lattice
value of MZ vanishes [at this point the cutoff calculated as
� ¼ ð�� 91 GeVÞ=MZ tends to infinity], �c, where sca-
lar field condensate disappears, and �c2, which denotes the
boundary of the fluctuational region (at �� �c2 the aver-
age distance between Nambu monopoles becomes of the
order of their size). This situation is typical for the cross-
overs: different quantities change their behavior at differ-
ent points on the phase diagram. There still exists the
possibility that the point �c0 corresponds to the second

order phase transition (this may happen if, in addition, the
scalar particle mass vanishes at �c0). However, the absence
of a peak in the scalar field fluctuation and in susceptibility
(19) at this point indicates that this is a crossover. Actually,
this possibility is to be checked carefully but this is to be a
subject of another work. There is an important question:
what is the relation between the conventional electroweak
physics and the regions ð�c0; �cÞ and ð�c; �c2Þ? Our ex-
pectation is that both these regions have nothing to do with
real continuum physics. For the first region this is more or
less obvious: there the scalar field is not condensed that
contradicts with the usual spontaneous breakdown pattern.
As for the second region, the situation is not so obvious.
However, there the nonperturbative effects are strong and
the Nambu monopoles dominate the vacuum that seems to
us unphysical. With all the mentioned above we come to
the conclusion that our data indicate the appearance of the
maximal value of the cutoff in electroweak theory that
cannot exceed the value of the order of 1 TeV. This pre-
diction is made based on the numerical investigation of the
lattice model on the finite lattices. However, as mentioned
above, our main results do not depend on the lattice size.
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