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We present a study of 649 *+ 35 e*e” — cc events produced at /s = 10.6 GeV containing both a A
baryon and a A, antibaryon. The number observed is roughly 4 times that expected if the leading charmed
hadron types are uncorrelated, confirming an observation by the CLEO Collaboration. We find a 2-jet

091102-3



B. AUBERT et al.

PHYSICAL REVIEW D 82, 091102(R) (2010)

topology in these events but very few additional baryons, demonstrating that the primary ¢ and ¢ are
predominantly contained in a correlated baryon-antibaryon system. In addition to the charmed baryons we
observe on average 2.6 = 0.2 charged intermediate mesons, predominantly pions, carrying 65% of the

remaining energy.

DOI: 10.1103/PhysRevD.82.091102

Baryon production in high-energy jets from e*e”
annihilations has presented a series of challenges to our
understanding of strong interactions. Its observation led to
the competing notions of “primary” and “local” baryon
correlations [1]. In the former, the et and e~ annihilate
into a primary diquark-antidiquark, rather than a quark-
antiquark, pair. The diquark and antidiquark then hadron-
ize into jets containing a leading baryon N, and a leading
antibaryon N,, respectively, but no other (anti)baryons.
N, and N, would then share two quark flavors and typi-
cally have high, antiparalle]l momenta and large values of
variables characterizing their separation, such as invariant
mass or rapidity difference |Ay|, where y = 0.5 In[(E +
p)/(E — py)], E is the baryon energy, and pj is the
projection of its momentum on the thrust axis.
Alternatively, an N, N, pair might be produced locally, in
an individual step of a hadronization cascade, with a
smaller value of |Ay|. Most experimental studies of
baryon-antibaryon pairs have shown |Ay| distributions
that peak at small values [2].

Several mechanisms to describe baryon production and
correlations have been implemented in Monte Carlo ha-
dronization models [3]. In the JETSET [4] color-flux-tube
model, a tube break can result in a diquark-antidiquark
(rather than gg) pair, producing an NN, pair locally. An
intermediate meson is introduced between N; and N,
with some probability (50% by default [5]) to match the
measured |Ay| distributions. In the HERWIG [6] model, an
individual, color-singlet cluster may fragment into a
baryon-antibaryon pair but not a multibody state with
additional mesons. The model does not reproduce the
measured |Ay| distributions when tuned to other observ-
ables [2]. The UCLA [7] area-law model includes NN,
pairs with any number of intermediate mesons, and sup-
presses higher-mass intermediate meson systems by means
of a tunable parameter.

Direct evidence of primary production and/or inter-
mediate mesons would be of great interest, but previous
searches for the latter using three-particle correlations [8]

*Deceased.

PACS numbers: 13.66.Bc, 13.60.Rj, 13.87.Fh

or baryon flavor correlations [9]
inconclusive.

At center-of-mass (c.m.) energies /s much larger than
four baryon masses, the assumption of local baryon num-
ber conservation implies that an e"e™ — ¢gg event con-
taining a leading baryon N, in the ¢ jet and a leading
antibaryon N, in the G jet must also contain an antibaryon
N5 in the ¢ jet and a baryon N, in the 7 jet. However, if the
N;N;N,N, mass is a large fraction of /s, these four-
baryon events would be suppressed and other processes
might be visible—in particular, primary baryon production
events with exactly two baryons, one in each jet. At /s =
10 GeV, charmed (c¢) baryons are of particular interest,
since any high-momentum c or ¢ baryon must be a leading
particle in an e*e” — c¢ event, and any N.N;N,N,.,
mass exceeds 6.5 GeV/c?. The CLEO Collaboration re-
ported an excess by a factor of 3.5 = 0.6 [10] in the number
of events at /s = 10.6 GeV with both a A} and a A_,
where their expectation is derived assuming local baryon
number conservation in the JETSET model and from
observed events with a A} and a D~ or D° meson. This
excess is evidence that the baryon production is correlated
between the ¢ and ¢ jets and is consistent with primary
baryon production, but does not exclude the possibility of
local baryon production with correlation between the jets.
The two cases can be distinguished experimentally: local
production would require an additional baryon and anti-
baryon (N, and N) in the event, so events with exactly one
A}, exactly one A, and no additional baryons would
imply primary production. CLEO investigated this and
did not observe a strong signal for additional protons in
the A7 A, candidate events, but due to a limited data
sample and the lack of a limit on additional neutrons
they were unable to exclude local baryon production.

In this paper we exploit the particle identification capa-
bilities of the BABAR detector [11] to select a sample of
A} A X events in which the A} and A_ are produced at
high momentum in opposite hemispheres, and study their
characteristics in detail. We use 220 fb~! of data collected

were generally
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¥Also with Universita di Perugia, Dipartimento di Fisica, Perugia, Italy.

$Also with Universita di Roma La Sapienza, [-00185 Roma, Italy.

Now at University of South Alabama, Mobile, Alabama 36688, USA.

TAlso with Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6,

Université Denis Diderot-Paris7, F-75252 Paris, France.
** Also with Universita di Sassari, Sassari, Italy.

091102-4

RAPID COMMUNICATIONS


http://dx.doi.org/10.1103/PhysRevD.82.091102

CORRELATED LEADING BARYON-ANTIBARYON ...

at \/s = 10.54-10.58 GeV. We identify the charged tracks
in the X system, looking for additional (anti)protons, and
search for higher-mass baryons that could be a source of
the A7 A X events. We consider charged tracks measured
in the silicon vertex tracker (SVT) and drift chamber
(DCH), and identified as pions, kaons, or protons using
the DCH and the detector of internally reflected Cherenkov
light. The identification algorithm used here [12,13] is
over 99% efficient for pions and kaons (protons) within
the acceptance with momenta between (.15 and 0.5
(1.2) GeV/c, with misidentification rates below 0.5%. At
higher momenta it remains over 90% efficient, with
misidentification rates generally below 1%.

We construct A/ candidates in the pK~ 7" and pK}
decay modes and A_ in the corresponding charge-
conjugate modes. We consider a pair of oppositely charged
tracks as a K) — 7+ 7~ candidate if a vertex fit returns a
x°> with a confidence level (C.L.) exceeding 0.01, the
vertex is displaced by 2.5-60 cm from the interaction point
(IP) calculated for each event from the set of well-
measured tracks in the SVT, the angle 6  between the
Kg candidate’s momentum and the IP-to-vertex direction
satisfies cosé Ky = 0.97, and the 77 7~ invariant mass is in
the range 491.8-503.8 MeV/c?. All combinations of a K
and a well-measured ( = 15 hits in the DCH and = 5 in the
SVT) proton are considered A} — pK) candidates. A
combination of well-measured p, K~, and 7" tracks is
considered a A — pK~ 7" candidate if its vertex fit
yields C.L. > 0.001.

We require p*, the momentum of the A candidate in
the et e c.m. frame, to exceed 2.3 GeV/c, so that the rate
of A from Y(4S) decays [12,14] is negligible. We select
events containing at least one A candidate and at least
one A, candidate, requiring each candidate to have mass
within 190 MeV/c? of the fitted A peak. We then form
A} A, pairs provided that they have no common tracks in
their decay chains. For these 21000 pairs we show the
candidate pK~ 7" and ng invariant mass distributions in
Fig. 1(a). Clear A} signals are visible over modest back-
grounds. The peak mass values, rates, and momentum
distributions are consistent with previous measurements
[12,14,15]. We plot the invariant mass of the 1_\; candidate
versus that of the A candidate in Fig. 1(b). Horizontal and
vertical bands are visible, corresponding to events with a
real A, or A7, respectively, and there is a substantial
enhancement where they overlap.

The opening angle 6 between the A and A, momenta
in the c.m. frame is sensitive to their production mecha-
nism. We expect A}A_ pairs from gluon splitting
(ete” — qgg — qgcc) or ete” — cCg events with a
very hard gluon to have relatively small 6, but also a
suppressed selection efficiency due to the p* requirement.
In the 21000 events selected, € values are concentrated
near 180°, consistent with dominance of 2-jet e* e~ — c¢¢
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FIG. 1. (a) Invariant mass distributions for the AY /A, candi-
dates in selected events, reconstructed in the pK7 (gray) and
ng (black) decay modes. (b) Invariant mass of the A. candi-
date vs that of the A candidate in the same event, in 5 MeV/ c?
square bins.

events. Only seven events have 6§ < 90°, one of which is in
the signal region defined below. Since the small-6 back-
ground may have different characteristics from that at large
6, we require # > 90°. This criterion also removes events
with a hard initial state photon, the study of which would
be interesting with a larger data sample and a different
analysis approach, as has been done by Belle [16].

About 3% of the events have two A (or two A.)
candidates, due to the two pK~ 7" combinations in
the decay chains X" — Af(pK~ 7" )m" and A" —
AY(pK~ @t)m" 7~ . We include all combinations in the
sample and account for the kinematic overlap through the
background subtraction. We define a circular A7 A X
signal region centered at our peak mass values with a
radius of 12 MeV/c2, which contains 919 entries. Using
the single-A}/ A bands [13], we estimate an expected
background in the signal region of 245 = 5 events with one
real A7 or A, and one fake. Using events with both
masses at least 40 MeV/c? from the fitted A} mass, we
estimate 25 + 1 expected background events with fake A
and A_, giving a A} A, X signal of Np+i- =649 =35
events.

We can calculate an expected number of signal events,
Nexp» Under the assumption that the ¢ and ¢ hadron types are
uncorrelated so that all signal events are four-baryon
events. Then ne, = Cni/4N.;, where n; = 420000 is

the number of single A /A observed in the data, N,. =
3 X 108 is the number of e*e™ — ¢¢ events expected for
our integrated luminosity, and the factor C accounts for the
correlation between the A} and A_ reconstruction effi-
ciencies. This formulation is independent of the A
branching fractions and average efficiencies. In the simple
case where the efficiencies of the A} and A in A A X
events are uncorrelated, no correction is needed (C = 1)
and ney, = ni/4N,;. More generally, 0 < C < 1/& for an
average acceptance times efficiency of e: in the extreme
case of maximal correlation C = 1/&, and in the extreme
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case of maximal anticorrelation ng,, = C = 0. At BABAR
there might be correlations because of the asymmetric
beam energies and detector layout. We evaluate this cor-
rection using the JETSET, HERWIG, and UCLA models, adjust-
ing their charm fragmentation parameters and reweighting
the resulting p* distributions to reproduce our measured
distribution for inclusive A [12]. Combined with smooth
parametrizations of our efficiencies as functions of momen-
tum and polar angle, the models give values of C ranging
from 0.63 to 1.65, with a mean of 1.05. Even allowing for
the large model dependence, the full range of ng, =
100-250 events is well below the observed 649 = 35, con-
firming the enhanced rate N, + 3 - /nexp = 4 reported by the
CLEO Collaboration [10].

We investigate the structure of the A A X events using
the A} and A, candidates along with additional charged
tracks that have at least ten points measured in the DCH,
five in the SVT, and extrapolate within 5 mm of the beam
axis. We subtract appropriately scaled distributions in the
background regions from those in the signal region to
obtain distributions for A7 A X events. Figure 2(a) shows
the distribution of the number of additional tracks, as well
as the numbers of identified K* and p/p among them.
Were each ¢ baryon compensated by a light antibaryon,
then—assuming that half the antibaryons have an antipro-
ton in the final state and accounting for p/p detection
efficiency—we would expect 45% of these events to con-
tain one identified p/p and another 20% to contain both an
identified p and a p; we observe only 3.4% and 0.6%,
respectively. Figure 2(b) shows the distribution of missing
mass, calculated from the four-momenta of the initial e™
and e, the reconstructed A and /_\; , and all additional
tracks interpreted as pions. A typical N, iXnN,, event,
containing both a neutron and an antineutron, would have a
missing mass well in excess of 2 GeV/c?.

1202— +_+_ :lﬂi‘(’ks_ 60;- ++ H -
» sk + aphb 1 ok + # E
NN N A

ST e SN

o ZagseeTos] ofowt L

o
N
N
e}
o]

-1 0 1 2 3 4

Multiplicity Missing Mass (GeV/c?)
FIG. 2. Background-subtracted distributions for the 649
A} A X events in the data: (a) the numbers of additional tracks,
identified K* and identified p/p; and (b) missing mass, with
imaginary masses given negative real values. Most events have
no identified K= or p/p and the corresponding zero-multiplicity
points are off the vertical scale in (a).
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The distributions in Fig. 2 indicate that the majority of
the A7 A X events do not contain additional baryons, and
therefore that the conservation of baryon number is real-
ized with the primary ¢ and ¢ hadrons. In the background-
subtracted sample of 649 + 35 A} A_ X signal events,
there are 28 = 6 additional identified p/p candidates.
These p/p candidates include background from two
main sources: interactions in the detector material and
misidentified pions or kaons. We expect five protons
from material interactions. We also expect about 12 pions
or kaons misidentified as protons, based on the numbers
and momenta of the observed additional 7= and K+
tracks. In cross-checks these expectations are found to be
consistent with the data within uncertainties: there are
8 = 4 more identified p than p (with the excess attributed
to material interactions), and there are 7 = 3 events seen
with exactly one additional identified p/p and an event
missing mass below 750 MeV/c? (inconsistent with a
missing second baryon, and so attributed to a misidentified
kaon or pion). Subtracting the expected contributions from
these two background sources, correcting for efficiency,
and assuming equal p and n production rates, we estimate
that we observe 13 £ 8 true four-baryon events. This is
well below the rate of 100 to 250 four-baryon events
expected for uncorrelated production, let alone the ob-
served rate of 649 = 35 events, indicating that the four-
baryon process is strongly suppressed and that the primary
production process dominates.

None of the reconstructed events is consistent with the
two-body process e*e” — AFA.. However, the signal
could arise from the pair production of ¢ baryons if one
or both are excited states that decay to A7 /A, : eTe™ —
N.N.,— AFA;X. Combining A} /A, candidates with
one or two additional tracks assigned the pion mass hy-
pothesis gives the invariant mass distributions in Fig. 3.
The points represent sideband-subtracted signal events and
the histograms the single-A}/A_ sidebands with entries
reweighted to reproduce the number of the A}/A_ in
signal events and their momentum and polar angle distri-
butions in the lab frame. Peaks are visible in the sideband

data for the 37 7/%(2455), 3/%/°(2520), and the excited
A states at 2593, 2625, 2765, and 2880 MeV /c?. We find
no unexpected peaks in our A 7(7), A} K, or A p mass
distributions. The points are consistent with the histo-
grams, indicating similar ¢ baryon compositions in the
two event types. Only two events are kinematically con-
sistent with e"e” — N, N, for these known N,.
Distributions of # and the decay angles in the A 7 rest
frames are consistent with multihadron events, and not
with very heavy states decaying into a A} and more than
two pions. We conclude that e*e™ — N, N, processes
represent a small fraction of our sample. From the fits in
Fig. 3, we estimate that 35 = 3% of the A} and 29 = 2%
of the additional pions in our sample are decay products of
heavier ¢ baryons.
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(@) Af7* and A 7= and (b) A} /A 77 combinations.
The points with errors represent the background-subtracted
AFACX events, and the weighted histograms are from the
single-A} /A, sidebands.

Having established the presence of a category of events
containing a ¢ baryon, a ¢ baryon, no other (anti)baryons,
and several intermediate mesons, we study the number
and structure of these mesons. We exclude events with
an identified p/p or a missing mass squared below
—0.25 GeV?/c*. We estimate that the sample contains a
further 5 + 5 four-baryon events in which no p/p is
detected; we take these to have the same distributions as
the events with an identified p/p and subtract an appro-
priately scaled contribution to correct for them. In
this sample of 619 = 35 events, we study a number of
quantities including the A} /A and additional track mo-
menta, polar angles, rapidities, and opening angles. Their
inclusive distributions are quite similar to those in the
single-A[/ A sample and similar to those in all hadronic
events. In particular, signing the thrust axis such that the
A rapidity is positive, the A} and A, rapidities cluster
near + 1.1 and — 1.1 units, respectively, with the additional
tracks of each charge distributed broadly and symmetri-
cally in between.

These 619 events contain only 45 * 10 identified K* of
which about 20 are expected to be misidentified pions. The
events show no mass peak for Kg candidates reconstructed
from pairs of tracks not included in the A} or A, (includ-
ing tracks that do not extrapolate within 5 mm of the beam
axis). The K:7r ratio is thus much lower than the value 0.3
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typical of hadronic events, which might be due to the
limited energy available and the fact that our ¢ baryons
are nonstrange (the lighter c-s baryons do not decay into
AD). The w* 7w, K*#*, and K"K~ invariant mass dis-
tributions show no significant resonant structure; in par-
ticular, there is no evidence for the p°. This implies a
vector:pseudoscalar meson ratio much lower than the value
near one typical of hadronic events, and suggests that most
tracks not from ¢ baryon decays represent distinct inter-
mediate mesons.

The intermediate meson multiplicity is distributed
broadly. We verify that the contribution from decays of
heavier ¢ baryons is not concentrated in any particular
region in Fig. 2(a), but due to the limited sample size we
do not attempt to correct the distribution. We observe an
average of 2.7 additional charged tracks per event.
Correcting for ¢ baryon decays and tracking efficiency
gives 2.6 = 0.2 charged intermediate mesons per event,
where the uncertainty includes both statistical and system-
atic effects. The uncertainty is dominated by the track
acceptance in these events, evaluated with a set of simula-
tions based on the observed 7= and K* distributions. On
average, the ¢ and ¢ baryons carry 75% of the event energy,
and the intermediate charged mesons account for about
65% of the remainder. This and the broad distribution of
missing masses in Fig. 2(b) suggest the presence of addi-
tional neutral mesons. If intermediate 77° are produced at
half the 77~ rate, as in typical hadronic events, the average
intermediate meson multiplicity would be 3.9 = 0.3.

The new type of event observed in our data might be
explained by either primary diquark-antidiquark produc-
tion or the production of multiple intermediate mesons
between a baryon and antibaryon. Neither the JETSET nor
the HERWIG model produces events of the type observed,
although both might be adapted to include one or both
of the above processes. JETSET does produce N, MN,,
events, where M is a single meson, often a vector decaying
into two or three pions, but the event characteristics are far
from consistent with the data. Multiple intermediate meson
processes occur naturally in the UCLA model, which also
predicts an enhanced A A X fraction due to events of this
type, with suppressions of kaons and vector mesons. The
version of the UCLA model used does not describe the
observed events in detail, having an average of only 1.8
intermediate mesons with a distribution peaked at low
values, but the results presented here should encourage
development of this and other relevant models.

In summary, we isolate a sample of 649 + 35 eTe™ —
c¢ events containing both a A} and a A_ with high
momentum in opposite hemispheres, and study these
events in detail. The number of events is estimated to be
about 4 times that expected if the leading ¢ and ¢ hadron
types are uncorrelated, confirming an observation by the
CLEO Collaboration. Taking advantage of the particle
identification capabilities of the BABAR detector and the
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large data sample, we are further able to establish that
almost all of these events contain no additional baryons.
They do contain 2.6 = 0.2 additional charged intermediate
mesons on average, and events with zero additional mesons
do not contribute significantly. Our event sample exhibits
distributions of momentum, angle, rapidity, and ¢ baryon
type similar to those in typical hadronic events, but con-
tains fewer kaons and vector mesons. This is direct evi-
dence for a new class of multihadron events, in which
baryon number is conserved by a leading baryon and
antibaryon, rather than locally along the hadronization
chain.
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