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We formulate a duality-symmetric N ¼ 1 supersymmetric Yang-Mills theory in three dimensions. Our

field content is ðA�
I; �I; ’IÞ, where the index I is for the adjoint representation of an arbitrary gauge group

G. Our Hodge duality symmetry is F��
I ¼ þ���

�D�’
I . Because of this relationship, the presence of two

physical fields A�
I and ’I within the same N ¼ 1 supermultiplet poses no problem. We can couple this

multiplet to another vector multiplet ðC�
I; �I;B��

IÞ with 1þ 1 physical degrees of freedom modulo

dim G. Thanks to peculiar couplings and supersymmetry, the usual problem with an extra vector field in a

nontrivial representation does not arise in our system.

DOI: 10.1103/PhysRevD.82.087701 PACS numbers: 11.10.Kk, 11.30.Pb, 12.60.Jv

I. INTRODUCTION

The so-called ‘‘duality-symmetric theory’’ or ‘‘self-dual
theory’’ has drawn much attention [1–3]. However, there is
a caveat about these theories, associated with Lagrangian
constructions. The problem can be most easily seen by the
following example in two dimensions (2D). Suppose we
require the ‘‘self-duality’’ (heterotic) condition @�’ ¼
��

�@�’ on the ‘‘field strength’’ @�’. If we use a

Lagrange multiplier ��, such as

L ¼ ��ð@�’� ��
�@�’Þ; (1.1)

then not only the original field ’, but also the multiplier
field �� starts propagating [1,2]. This is because the field
equation of ’ gives1

@��
� þ ���@��� ¼� 0
) @��ðþÞ

� ¼� 0; @��
ðþÞ
� � @��

ðþÞ
� ¼� 0;

(1.2)

where �ðþÞ
� � ð1=2Þ½�� þ ð1=2Þ������. Applying @� to

the last equation yields

@2��
ðþÞ
� � @�ð@���

ðþÞÞ¼
�
@2��

ðþÞ
� ¼� 0; (1.3)

meaning that �ðþÞ
� is a propagating component.

Propagating multiplier fields is sometimes problematic.
For example in 11D, introducing extra propagating fields
other than the conventional 128þ 128 components [4] is
not allowed. There are several nontrivial ways to solve this
sort of problem, such as using nonlinear constraint terms
[1,5], introducing infinitely many auxiliary fields [6], har-
monic space [2], or harmonic unit vector fields [3,6].

In the present paper, we deal with a duality-symmetric
Yang-Mills (DSYM) multiplet in 3D with N ¼ 1 super-
symmetry. However, we do not give a Lagrangian formu-
lation, in order to avoid the usage of a multiplier field,
caused by the above-mentioned problem with multiplier
fields. Instead, we give the set of field equations consistent

with N ¼ 1 supersymmetry. This is similar to the type IIB
supergravity in 10D [7].
In order to show the nontrivial nature of our duality-

symmetric system, we further couple the DSYM multiplet
to another vector multiplet in a nontrivial way. The extra
vector multiplet has the fields ðC�

I; �I;B��
IÞ with the

adjoint index I. We show that the coupling to this extra
vector multiplet is consistent, despite the nontrivial duality
symmetry within the YM multiplet.
It is usually problematic to introduce an extra vector

field in nontrivial representation of a gauge group G, in
addition to the ordinary YM gauge field. This can be seen
as follows: Suppose we have an additional vector field
C�

I in addition to the YM gauge field A�
I in the

adjoint representation of the group G. Their field strengths
are F��

I � 2@½�A��
I þmfIJKA�

JA�
K and H��

I �
2D½�C��

I, where m is a coupling constant. The field equa-

tion for the C-field is generally given by

D�H
��I ¼� J�I: (1.4)

Now the problem is the application of another D� to this

equation yielding

D�D�H
��I ¼ 1

2
½D�;D��H��I

¼ 1

2
mfIJKF��

JH��K ¼� D�J
�I: (1.5)

If the current J� is ‘‘conserved,’’ the last side of (1.5)
should vanish. However, the trouble is that its penultimate
side is a product of two field strengths F andH, which does
not simply vanish! A similar problem had been known [8]
for the case of the spin 3=2 field, before supergravity was
discovered [9]
In our formulation below, the fields in the YM multiplet

ðA�
I; �I; ’IÞ have the respective degrees of freedom

(DOF): ð1=2; 1; 1=2Þ modulo dim G, where 1=2 come

from the duality condition F��
I¼� ���

�D�’
I, reducing

each of the original DOF 1 of A�
I and ’I into 1=2, while

the sum of these will be unity. Relevantly, the extra vector
multiplet ðC�

I; �i;B��
IÞ has the expected DOF (1, 1, 0).
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1We use the symbol ¼� for a field equation distinguished from

an algebraic identity.
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In a sense, the formulation below is similar to the
Stueckelberg formulation for self-duality in 3D [10], be-
cause the latter also leads to the duality symmetryD�’

I ¼
ð1=2Þ����F��

I. However, the difference is that our present

formulation is not with such a compensator generating a
mass to a vector field, but all the fields are massless.
Another difference is that we interact two vector multiplets
ðA�

I; �I; ’IÞ and ðC�
I; �I;B��

IÞ, while the work in [10]

uses a YM multiplet and a scalar multiplet combined
together.

A similar formulation was also given in [11], where we
have shown in 10D the duality symmetry between an
Abelian vector multiplet with A� and its Hodge dual

multiplet with B�1����8
. However, in [11] the duality sym-

metry was established only for an Abelian vector multiplet
and its dual multiplet. In the formulation below, we will
establish a duality-symmetric non-Abelian system with
nontrivial interactions.

The problem in (1.5) can be solved, if the current J�I has
a very sophisticated structure, e.g., a ‘‘Chern-Simons
term’’ present in the field strength H��

I. In the present

paper, we establish such a formulation, i.e., our field
strength H��

I is not just a covariant curl 2D½�C��
I, but it

contains also the potential B��
I within the same vector

multiplet.

II. DUALITY SYMMETRY RELATIONS

Our YM multiplet is ðA�
I; �I; ’IÞ, where A�

I is the

usual YM gauge field with the adjoint index I, �I is the
gaugino as its superpartner Majorana field, and ’I is a
scalar field in the adjoint representation of the gauge group
G.

Our basic duality symmetry between A�
I and ’I is

expressed as F��
I¼� ���

�D�’
I,2 or equivalently

F��
I � ���

�D�’
I � F ��

I ¼� 0; (2.1a)

D�’
I þ 1

2
��

��F��
I � D�’

I þ ~F�
I � ~F�

I ¼� 0: (2.1b)

The field strengths are defined by

F��
I � þ2@½�A��

I þmfIJKA�
JA�

K; (2.2a)

D�’
I � þ@�’

I þmfIJKA�
J’K ðidem for �IÞ;

(2.2b)

where m is a constant with the dimension of a mass.

The consistency of the duality (2.1) with N ¼ 1 super-
symmetry fixes the superpartner gaugino �I-field equation
to be

6D�I þmfIJK�J’K � �I ¼� 0: (2.3)

To be more specific, (2.2) and (2.3) are consistent withN ¼
1 supersymmetry

�QA�
I ¼ þð ��	��

IÞ; (2.4a)

�Q�
I ¼ � 1

4
ð	���ÞF��

I þ 1

2
ð	��ÞD�’

I

¼ � 1

2
ð	��Þð ~F�

I �D�’
IÞ; (2.4b)

�Q’
I ¼ þð ���IÞ: (2.4c)

The explicit consistency is summarized as

�QF �
I ¼ þð ��	��

IÞ¼� 0; (2.5a)

�Q�
I ¼ þ 1

2
�D�

~F �I þ 1

2
ð	��ÞðD�F �

�I

�mfIJK’J ~F �
KÞ¼� 0; (2.5b)

for F�
I and �I defined in (2.1) and (2.3). In (2.5), field

equations have been used only at the last equalities.
The closure of supersymmetry (2.4) is up to field

Eqs. (2.1) and (2.3):

½�Qð�1Þ; �Qð�2Þ�¼� �
 þ ��; (2.6)

where �
 is the translation, and �� is the YM-gauge trans-

formation with the respective parameters


� � þ2ð ��2	��1Þ; �I � �
�A�
I: (2.7)

The actions of �
 and �� on the fundamental fields are

�
ðA�
I; �I; ’IÞ ¼ þ
�@�ðA�

I; �I; ’IÞ; (2.8a)

��A�
I ¼ þD��

I;

��ð�I; ’IÞ ¼ �fIJK�Jð�K; ’KÞ: (2.8b)

The covariances of (2.1) and (2.3) under �
 and �� are

easily confirmed, once we see that all the field strengths are
‘‘covariant’’ under these symmetries.

III. COUPLING TO EXTRAVECTOR MULTIPLET

As has been mentioned, we can couple the DSYM
multiplet above to an extra vector multiplet
ðC�

I; �I;B��
IÞ with the common adjoint index I.

The field equations for the extra vector multiplet are
highly nontrivial:

þD�H
��I �m����fIJK ~H�J’K �mfIJKð ��J	��

KÞ � H �
I ¼� 0; (3.1a)

þ6D�I �mfIJK�J’K � YI ¼� 0; (3.1b)

þ 1

6
����G���

I þmfIJKð ��J�KÞ � GI ¼� 0: (3.1c)

2We use the Greek indices �; �; � � � ¼ 0; 1; 2 for 3D coordinates. We also use the symbol ¼� for a field equation distinguished from
an algebraic identity.
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Here the field strengths H and G have nontrivial structures

H��
I � þ2@½�C��

I þ 2mfIJKA½�
JC��

K þ B��
I

� þ2D½�C��
I þ B��

I; (3.2a)

G���
I � þ3@½�B���

I þ 3mfIJKA½�
JB���

K

þ 3mfIJKF½��
JC��

K

� þ3D½�B���
I þ 3mfIJKF½��

JC��
K; (3.2b)

~H�
I � þ 1

2
��

��H��
I: (3.2c)

The covariant derivative D��
I is defined in the same way

as (2.2b). Note the nontrivial Chern-Simons-like terms
added in the H and G-field strengths. In particular, the
B-linear term in the former plays a crucial role, avoiding
the usual problem with an extra vector field in a nontrivial
representation of the YM group G.

The field equations in (3.1) are fixed by requiring the
consistency of them with N ¼ 1 supersymmetry:

�QC�
I ¼ þð ��	��

IÞ; (3.3a)

�Q�
I ¼ � 1

2
ð	���ÞH��

I ¼ �ð	��Þ �H�
I; (3.3b)

�QB��
I ¼ þ 1

2
½ ��	��ð 6D�I �mfIJK�J’KÞ�

� 2mfIJKð�QA½�j
JÞCj��

K; (3.3c)

in addition to the transformation rule (2.4). The first term in
the right-hand side of (3.3c) contains the factor YI.

The field Eqs. (3.1) are consistent with supersymmetry
(2.4) and (3.3):

�QH �I ¼ � 1

2
ð ��	��D�YIÞ � 1

2
mfIJKð ��	�YIÞ’K

� 1

2
mfIJKð ��	�	��JÞ �F �

K ¼� 0; (3.4a)

�QYI ¼ ��GI þ ð	��ÞH �
I

þmfIJKð	���ÞC�
J ~F �

K ¼� 0; (3.4b)

�QGI ¼ � 1

2
ð �� 6DYIÞ � 1

2
mfIJKð ��	��JÞ ~F �

K ¼� 0;
(3.4c)

where H , Y and G are defined in (3.1). To elucidate the
on-shell vanishing structure explicitly, field equations have
been used only at the last equalities.

Our field equations in (3.1) are also consistent with �
,

��, �� and �	-symmetries defined by

��ðC�
I; �I; B��

IÞ ¼ �fIJK�JðC�
K; �K; B��

KÞ;
��B��

I ¼ þ2D½����
I; ��C�

I ¼ ���
I;

��ðA�
I; �I; ’I; �IÞ ¼ 0; (3.5a)

�	C�
I ¼ þD�	

I;

�	B��
I ¼ �mfIJKF��

J	K;

�	ðA�
I; �I; ’I; �IÞ ¼ 0; (3.5b)

combined with the already-given �
 and �� in (2.8). The

�	 is associated with the gauge symmetry of C�
I, while ��

is the tensorial gauge symmetry for B��
I. The consistency

of our field equations in (3.1) with these symmetries is
easily confirmed, if we use the covariance of the relevant
field strengths under these transformations.
The closure of supersymmetries on the two multiplets

ðA�
I; �I; ’IÞ and ðC�

I; �I;B��
IÞ is also consistent with

these transformations:

½�Qð�1Þ; �Qð�2Þ� ¼ �
 þ �� þ �� þ �	; (3.6)

where the 
 and �-parameters are the same as (2.7), while

�I � �
�B��
I; 	I � �
�C�

I: (3.7)

Note that the field Eq. (3.1a) has the free vectorial index
�. As has been mentioned in the Introduction, its diver-
gence usually causes a problem in naı̈vely constructed
theories. In our system, this problem is avoided in a highly
nontrivial way:

0¼? D�H �I ¼ þm����fIJK ~H�J ~F �
K þmfIJKGJ’K

�mfIJKð ��J�KÞ �mfIJKð ��JYKÞ
� ����fIJKD�ðC�

J ~F �
KÞ¼� 0: (3.8)

As before, field equations have been used only at the last
equality. The usual problem has been avoided in our the-
ory, because the divergence D�J

�I has absorbed the un-

wanted term mfFH in (1.5) into the first term mf ~F ~H in
(3.8) that vanishes on-shell thanks to the duality relation-
ship (2.1)
The original DOF of B��

I is ð3� 2Þð3� 3Þ=2 ¼ 0, due

to the ��-symmetry (3.5a), and the two longitudinal com-

ponents for each index are to be deleted. This tells that the
field B��

I is a nonpropagating field, as it is also a well-

known fact in 3D. From this viewpoint, the B-field is not
physical, while the C�

I-field propagates, as the field

Eq. (3.1a) has its conventional kinetic term D�H
��I. So

in this way of counting, the DOF of each field in the extra
vector multiplet is C�

Ið1Þ, �Ið1Þ, B��
Ið0Þ.

However, there is an alternative counting method for the
B and C-fields. In the field strength H��

I in (3.2a), the

tensorial ��-gauge symmetry ��B��
I in (3.5a) absorbs the

gradient term 2D½�B��
I. In other words, the C-field is

absorbed into the B-field. Now, the counting of physical
DOF works as follows: The usual counting of ð3� 2Þ�
ð3� 1Þ=2 ¼ 0 is no longer valid, because the
��-symmetry has been used up to absorb the C-field. It

is now modified to ð3� 1Þð3� 2Þ=2 ¼ 1, i.e., the B-field
after the absorption carries one DOF which is a propagat-
ing physical freedom. So in this second way of counting,
the DOF are C�

Ið0Þ, �Ið1Þ, B��
Ið1Þ, again consistently

with N ¼ 1 supersymmetry.
We mention one subtlety related to a possible

Lagrangian for the extra vector multiplet ðC�
I; �I;B��

IÞ.
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When the non-Abelian coupling is turned off bym ¼ 0, the
field equations in (3.1) are possibly obtained from the
tentative Lagrangian

L m¼0 ¼ � 1

4
ðH��

IÞ2 � 1

2
ð ��I 6@�IÞ; (3.9)

where the index I here means just copies of fields, but
without any non-Abelian couplings due to m ¼ 0. The
invariance �Q

R
d3xLm¼0 ¼ 0 is confirmed with (3.3) for

m ¼ 0. Now the subtlety is about the absence of
C���

I-containing term in (3.9), because (3.1c) is not ob-

tained from (3.9), unless there is a term involving G in the
latter. On the other hand, the field strength G of the C-field

is vanishing on-shell: G���
I¼� 0, so that the presence or

absence of G in the transformation rule (3.3) is not essen-
tial, because it will not affect the closure of supersymme-
try. Once such a G-dependent term is added to the
Lagrangian (3.9), then the transformation rule (3.3c)
should be modified with G-dependent terms accordingly,

because the field equationG���
I¼� 0 should not be used for

action invariance. However, since we do not present
Lagrangian formulation in this paper, this point is not
essential, although we mention at least the existence of
such subtlety.

IV. CONCLUDING REMARKS

In this paper, we have presented an apparently simple
but simultaneously sophisticated YM multiplet
ðA�

I; �I; ’IÞ that possesses the peculiar duality-symmetric

relationship (2.1). We showed that this YM multiplet can
be consistently coupled to the extra vector multiplet
ðC�

I; �I;B��
IÞ. Here the tensor field B��

I is a nonpropa-

gating auxiliary field, while the extra vector field C�
I has a

physical propagating DOF. Our system has in total 2

bosonic and 2 fermionic DOF consistent with supersym-
metry, because the DOF of each field is A�

Ið1=2Þ, �Ið1Þ,
’Ið1=2Þ, C�

Ið1Þ, �Ið1Þ, B��
Ið0Þ.

We have also mentioned the alternative DOF counting,
such that the C-field is absorbed into the B-field by the
��-symmetry. From this viewpoint, the C-field carries no

physical DOF. In other words, the B��
I-field now propa-

gates, instead of being an auxiliary multiplier field,
whereas the C-field lost its physical degree of freedom.
Accordingly, the DOF of each field is A�

Ið1=2Þ, �Ið1Þ,
’Ið1=2Þ, C�

Ið0Þ, �Ið1Þ, B��
Ið1Þ, in total 2þ 2 DOF, again

in agreement with supersymmetry.
We have seen that all of our field equations in (2.1), (2.3),

and (3.1), are consistent with supersymmetry (2.4) and
(3.3), as shown in (2.5) and (3.4). In particular, there arises
no problem for the divergence of the field equation

H �I¼� 0. In other words, the extra vector field C�
I in

the adjoint representation poses no problem for consistent
interactions in our system.
To our knowledge, there has been no formulation in 3D,

in which a DSYM multiplet is coupled to an extra vector
multiplet with the 2nd-rank tensor, either propagating or
not propagating, depending whether absorbing the vector
field C�

I or not, respectively. This peculiar feature of the

extra vector multiplet, especially the role played by the
fields B��

I andC�
I, avoiding the usual problem of an extra

vector field does not seem to have any example in the past,
especially in the presence of a DSYM multiplet.
Our results above have opened a completely new avenue

for duality-symmetric theory in 3D, and possibly in higher
dimensions. For example, the application of similar
mechanisms to extended supersymmetries is the next natu-
ral subject to be explored in the near future.
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