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We construct a simple AdS4 � S1 flux compactification stabilized by a complex scalar field winding the

single extra dimension and demonstrate an instability to nucleation of a bubble of nothing. This occurs

when the Kaluza-Klein dimension degenerates to a point, defining the bubble surface. Because the extra

dimension is stabilized by a flux, the bubble surface must be charged, in this case under the axionic part of

the complex scalar. This smooth geometry can be seen as a de Sitter topological defect with asymptotic

behavior identical to the pure compactification. We discuss how a similar construction can be imple-

mented in more general Freund-Rubin compactifications.
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I. INTRODUCTION

Some time ago, Witten showed that the Kaluza-Klein
vacuum suffers from a nonperturbative instability due to
the semiclassical nucleation of so-called bubbles of noth-
ing. These smooth ‘‘boundaries’’ of space expand and soon
engulf the whole of spacetime [1]. Such instabilities may
be cause for concern regarding the viability of certain
higher dimensional spacetimes as acceptable vacua.
It is therefore necessary to consider the existence of
analogous decay processes for perturbatively stable
compactifications.

Flux compactifications [2] provide an elegant solution to
the moduli problem in higher dimensional field theories
[3–6] as well as string theory [7,8]. By stabilizing the extra
dimensions with sufficiently high moduli masses, we
can construct a model realistic enough to accommodate
the low energy physics as well as a cosmological frame-
work compatible with observations. These masses are in-
duced by a flux potential, which depends on a discrete set
of flux winding numbers. The diverse set of fluxes and
associated winding numbers gives rise to the multitude of
(meta)stable vacua known as the string landscape [9].
Although supersymmetric flux compactifications are
known to be stable [10], the more phenomenologically
interesting compactifications may enjoy/suffer from sev-
eral instabilities, including decompactification [11–13] or
more general transdimensional tunneling [13,14], flux tran-
sitions [12,15–18] and, as we will demonstrate here,
nucleation of bubbles of nothing.1 The bubble of nothing
geometry asymptotic to a given flux compactification
is a gravitational instanton which represents both the
decay mediator and subsequent classical evolution of
the metastable spacetime. This is the case for Witten’s

bubble of nothing in the minimal five-dimensional
Kaluza-Klein (KK) model [1].
The outline of the paper is as follows. In Sec. II we

review the original bubble of nothing. In Sec. III we discuss
how these bubble solutions can be obtained as the space-
times of de Sitter topological defects in a simple five-
dimensional flux compactification, where the extra dimen-
sion is stabilized by the presence of a winding complex
scalar field. In Sec. IV we obtain numerical solutions
describing these bubbles of nothing. We conclude in
Sec. V and speculate on similar constructions in more
general flux compactifications.

II. THE ORIGINAL BUBBLE OF NOTHING

The bubble of nothing geometry introduced by Witten
[1] is easily obtained from the five-dimensional
Schwarzschild black hole,

ds2 ¼ �
�
1� ‘2

�2

�
dt2 þ

�
1� ‘2

�2

��1
d�2

þ �2ðdc 2 þ sin2c d�2
2Þ: (1)

It will be convenient for us to express this metric in terms

of a new radial coordinate, r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � ‘2

p
, as

ds2 ¼ � r2

r2 þ ‘2
dt2 þ dr2

þ ðr2 þ ‘2Þðdc 2 þ sin2c d�2
2Þ: (2)

We can now Wick rotate two of the coordinates via

t ! i‘y c ! itþ �

2
(3)

to yield

ds2 ¼ r2

1þ r2=‘2
dy2 þ dr2

þ ðr2 þ ‘2Þð�dt2 þ cosh2td�2
2Þ: (4)

1Bubbles of nothing in flux compactifications have been
recently discussed in [18] by matching different spacetime
geometries across a codimension one brane. This is different
from our present construction describing a geometry which is
smooth everywhere, obviating the need to postulate the existence
of domain walls.
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This is the bubble of nothing metric written in a somewhat
unfamiliar gauge. (See the discussion in [19].) In the limit
r ! 0, it becomes

ds2 � r2dy2 þ dr2 þ ‘2ð�dt2 þ cosh2td�2
2Þ; (5)

which is devoid of a conical singularity if we impose
periodicity with 0 � y < 2�. In this limit the r slice de-
generates onto a 2þ 1 dimensional de Sitter space of size
‘, representing the induced metric on the bubble surface.

In the limit of r � ‘, the metric asymptotes to

ds2 � ‘2dy2 þ dr2 þ r2ð�dt2 þ cosh2td�2
2Þ; (6)

which represents the Cartesian product of four-
dimensional Rindler space and a circle of circumference
2�‘. The bubble of nothing geometry can therefore be
regarded as a deformation of Rindler space (times a circle),
whereby the horizon region near r ! 0 is replaced with a
smooth tip consisting of dS3 �B2, where B2 is a cigar-
shaped disk. This is illustrated in Fig. 1 below.

In order for this geometry to represent an instability of
the Kaluza-Klein vacuum, it must have the same asymp-
totics as the pure compactification, in particular, the same
(zero) value of Schwarzschild mass. This can be seen to be
the case in a number of ways. The KK compactification
possesses the 11 isometeries of Poincar�e�Uð1Þ, which
are broken down to the seven in Oð3; 1Þ �Uð1Þ by the
bubble of nothing (four translations are lost). This remain-
ing symmetry is nevertheless larger than the five isome-
teries found in a generic Schwarzschild-Kaluza-Klein
spacetime: Oð3Þ � R�Uð1Þ, and so the mass of the bub-
ble must be zero. Hence, barring any symmetry in place to
prevent bubble nucleation, the KK vacuum is unstable.

III. BUBBLE OF NOTHING IN A FIVE-
DIMENSIONAL FLUX COMPACTIFICATION

In this section we will discuss the construction of a
bubble of nothing geometry similar to that presented

above, but with one crucial difference: we will stabilize
the Kaluza-Klein radion. This is accomplished by intro-
ducing an axionic flux winding around the extra dimen-
sion. The simplest example of this type of flux
compactification was described in [12] using the action
for a complex scalar field given by

S ¼
Z

d5x
ffiffiffiffiffiffiffi�g

p �
1

2�2
R� 1

2
@M�@M ��

� �

4
ð� ��� �2Þ2 ��

�
; (7)

withM;N;¼ 0; . . . 4 and �2 ¼ M�3
P , whereMP is the five-

dimensional reduced Planck mass, and � denotes the five-
dimensional cosmological constant. We now review the
results of [12].

A. The flux vacua

To begin, we shall constrain the magnitude of the scalar
field to lie at j�j ¼ �, leading to the effective action

S ¼
Z

d5x
ffiffiffiffiffiffiffi�g

p �
1

2�2
R� 1

2
�2@M�@

M���

�
; (8)

where � is the phase of�. The equations of motion for this
model are

@Mð ffiffiffiffiffiffiffi�g
p

@M�Þ ¼ 0; (9)

RAB � 1
2gABR ¼ �2TAB; (10)

where

TAB ¼ �2ð@A�@B�� 1
2gAB@M�@

M�Þ � gAB� (11)

is the energy momentum tensor. We will look for a solution
of the form

ds2 ¼ gMNdx
MdxN ¼ g��dx

�dx� þ gyyðx�Þdy2; (12)

where �, � ¼ 0, 1, 2, 3 denote the four-dimensional coor-
dinates, and the compact extra dimension is parameterized
by the coordinate 0 � y < 2�. We are interested in the case

gyyðx�Þ ¼ L2 ¼ const; (13)

i.e., in solutions with the extra dimension stabilized at a
constant circumference 2�L. We shall also require that the
four-dimensional slices are described by a spacetime of
maximal symmetry whose scalar curvature is given by

Rð4Þ ¼ 12H2, with H2 negative for the anti-de Sitter
(AdS) case.
The solutions to the equations of motion for the scalar

field Eq. (9) which are compatible with maximal spacetime
symmetry are given by

�ðxMÞ ¼ ny: (14)

The change of axion phase � around the compact dimen-
sion must be an integer multiple of 2�, and hence the
various flux vacua are parameterized by the integer n.

FIG. 1. Left: A four-dimensional conformal diagram for
Witten’s bubble of nothing. The spacetime only exists outside
of the bubble (shaded region). Right: The bubble surface is
smooth, and located where the compactification volume, shown
as the apparent vertical separation, degenerates to zero size.
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With these assumptions we arrive at the Einstein
equations

3H2 ¼ �2

�
n2�2

2L2
þ�

�
; (15)

6H2 ¼ ��2

�
n2�2

2L2
��

�
; (16)

which fix the values of H and L in terms of n and the
parameters of the original Lagrangian according to

L2 ¼ � 3n2�2

2�
; (17)

H2 ¼ 2�2�

9
: (18)

We thus conclude from Eq. (17) that flux vacua exist for
S1 compactifications provided the five-dimensional cos-
mological constant is negative (�< 0). Equation (18)
then indicates that these compactifications always yield a
four-dimensional anti-de Sitter spacetime, enumerated by
the integer n � 0. Furthermore, it can be easily shown by
studying the four-dimensional effective action associated
with these models [12], that the above solutions are per-
turbatively stable. We will now investigate the possibility
that there exist nonperturbative instabilities of this geome-
try,2 similar to the pure Kaluza-Klein bubble of nothing
presented in the previous section.

B. The bubble of nothing as a de Sitter brane

A particularly useful description of our AdS4 � S1

compactification is given by the following metric which
covers a Rindler-like portion of the four-dimensional
spacetime shown in Fig. 2 below:

ds2 ¼ dr2þH�2sinh2ðHrÞð�dt2þcosh2td�2
2ÞþL2dy2:

(19)

Comparing with the right-hand illustration in Fig. 2,
consider a metric of the form

ds2 ¼ dr2 þ B2ðrÞð�dt2 þ cosh2td�2
2Þ þ r2CðrÞ2dy2;

(20)

with boundary conditions

BðrÞ ! ‘ CðrÞ ! 1 (21)

for r ! 0, and

@rBðrÞ
BðrÞ ! H cothðHrÞ rCðrÞ ! L (22)

in the limit r ! 1.

It is clear from this description that such a solution, if it
exists, would have the appropriate asymptotics as r ! 1 to
match to the flux compactification solution Eq. (19) at the
conformal boundary, where we must additionally impose
that the axion � approach the form Eq. (14). Looking at the
boundary conditions imposed above, one can see that the
metric in Eq. (20) has the same structure at r ! 0 as
Witten’s solution discussed previously in Eq. (4); we
have a compelling ansatz for a bubble of nothing in this
flux compactification.
Because the compact dimension in this solution closes

smoothly at r ¼ 0, one must introduce some dynamical
object that is able to resolve the flux singularity on the
surface of the bubble. We can accomplish this simply by
examining our original Lagrangian for the complex scalar
field in Eq. (7). The problem arises only if one insists on
keeping the modulus of the scalar field finite near the
surface of the bubble. The divergence of gradient energy
is cured by allowing the scalar modulus to relax along the
radial direction in such a way that it vanishes at the tip of
the cigarlike geometry. This is the same regularization
found on a global string (i.e., codimension-two) solitonic
solution associated with a complex scalar field.
Singular bubbles of nothing in AdS5 � S5=Zk were

constructed in [20], yielding a bubble surface charged
with respect to the stabilizing flux. The bubble, located
where an S1 fiber degenerates, is singular due to the
required de Sitter D3 branes smeared on the CP2 base.
Our aim is to find nonsingular solutions using a solitonic
rather than smeared pointlike sources.
As pointed out in [12], our Lagrangian admits such

solitonic solutions describing 2-branes charged with re-
spect to the axion �. We therefore conjecture that one
should identify the solution described above, the bubble
of nothing within our AdS4 � S1 flux compactification, as

FIG. 2. Left: A conformal diagram for AdS4. An S2 is sup-
pressed at each point except the left vertical line. The coordi-
nates used in Eq. (19) cover the shaded region. Right: The
spacetime only exists outside (shaded region) the bubble wall,
which respects the de Sitter slicing of AdS4.

2Flux-changing instantons [12] have previously been shown to
exist. Their relation to the bubble of nothing presented here will
be discussed below.
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a de Sitter solitonic 2-brane in a five-dimensional AdS
spacetime. We prove in the next section that one can indeed
find such smooth bubble geometries in our model by
numerically solving the equations of motion using the
ansatz described above.

Solutions for de Sitter branes as topological defects have
been previously discussed in [21], whose numerical solu-
tions introduced many characteristics found in our bubble
of nothing. Here we give a different interpretation for these
spacetimes in the context of flux compactifications. We
illustrate such a bubble of nothing in Fig. 3 below.

IV. THE BUBBLE SOLUTION

We begin by considering the action

S ¼
Z

d5x
ffiffiffiffiffiffiffi�g

p �
1

2�2
R� 1

2
@M�@M ��

� �

4
ð� ��� �2Þ2 ��

�
; (23)

with metric

ds2 ¼ dr2 þ B2ðrÞð�dt2 þ cosh2ðtÞd�2
2Þ þ r2CðrÞ2dy2;

(24)

and scalar field

�ðxMÞ ¼ fðrÞei�ðyÞ ¼ fðrÞeiny: (25)

The Oð3; 1Þ �Uð1Þ symmetry of the bubble of nothing is
easily seen within this ansatz. We arrive at the equations

RMN � 1
2gMNR ¼ �2TMN; (26)

and

@Mð ffiffiffiffiffiffiffi�g
p

@M�Þ � ffiffiffiffiffiffiffi�g
p

��ðj�j2 � �2Þ ¼ 0; (27)

having denoted

TMN ¼ @M�@N ��þ gMN

�
� 1

2
@P�@P ��

� �

4
ð� ��� �2Þ2 ��

�
: (28)

The Einstein tensor then becomes

Gt
t ¼ � 1

B2
þ 2B0

rB
þ B02

B2
þ 2C0

rC
þ 2B0C0

BC
þ 2B00

B
þ C00

C
;

Gr
r ¼ � 3

B2
þ 3B0

rB
þ 3B02

B2
þ 3B0C0

BC
;

Gy
y ¼ � 3

B2
þ 3B02

B2
þ 3B00

B
; (29)

and the energy momentum tensor is given by

Tt
t ¼ � 1

2
f02 � n2f2

2r2C2
� �

4
ðf2 � �2Þ2 ��;

Tr
r ¼ 1

2
f02 � n2f2

2r2C2
� �

4
ðf2 � �2Þ2 ��;

Ty
y ¼ � 1

2
f02 þ n2f2

2r2C2
� �

4
ðf2 � �2Þ2 ��:

The equations of motion are then any three of the four
equations

FIG. 3 (color online). An axionic bubble of nothing. As in Witten’s solution, the bubble wall lies where the S1 extra dimension
degenerates. In this case, the wall is charged under an axionic phase. Hue and saturation represent the scalar phase �, and modulus f,
respectively. The core of the solitonic 2-brane has an ill-defined phase, and is shown in black. The left-hand picture shows two large
dimensions, with the apparent vertical separation representative of the KK radion. The right-hand picture shows the full KK extra
dimension, but only one of the four large dimensions.
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� 1

B2
þ 2B0

rB
þ B02

B2
þ 2C0

rC
þ 2B0C0

BC
þ 2B00

B
þ C00

C
¼ �2

�
� 1

2
f02 � n2f2

2r2C2
� �

4
ðf2 � �2Þ2 ��

�
;

� 3

B2
þ 3B0

rB
þ 3B02

B2
þ 3B0C0

BC
¼ �2

�
1

2
f02 � n2f2

2r2C2
� �

4
ðf2 � �2Þ2 ��

�
;

� 3

B2
þ 3B02

B2
þ 3B00

B
¼ �2

�
� 1

2
f02 þ n2f2

2r2C2
� �

4
ðf2 � �2Þ2 ��

�
;

f00 þ
�
3
B0

B
þ C0

C
þ 1

r

�
f0 ¼ n2f

C2r2
þ �fðf2 � �2Þ:

Because our ansatz is explicitly time-independent, the
Lorentzian and Euclidean solutions are trivially related.

A. Asymptotic solution of the full equations

Before numerically solving the near-bubble region, we
determine the asymptotic values of all functions, which can
be done exactly. The solution below exhibits the expected
backreaction on the scalar modulus, the KK radion, and the
vacuum energy density.

�ðxÞ ¼ f1einy; (30)

ds2 ¼ dr2 þ 1

H2
sinh2ðHrÞð�dt2 þ cosh2ðtÞd�2

2Þ
þ L2dy2; (31)

where

0.0 0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0

3

2

1

1

0.0 0.5 1.0 1.5 2.0

0.5

1.0

1.5

FIG. 4 (color online). The numerical solutions for the scalar modulus (top left), the KK radion modulus (top right), the de Sitter slice
radius (bottom left), and its derivative (bottom right). We express r in units of the AdS radius 1=H. Dashed red lines represent the pure
compactification solution of Eqs. (30) and (31), which shares the conformal boundary with the bubble solution.
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f21 ¼ �2 � n2

�L2
¼ 2�2

5

�
1þ 3

2
�

�
; (32)

L2 ¼ � 3n2�2

4�
ð1þ�Þ; (33)

H2 ¼ � 4�2�

15

�2
3 þ �

1þ �

�
; (34)

and we have introduced the parameter �,

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 20�

9�4�

s
: (35)

Note that � ! 1 in the limit � ! 1, so we recover the
pure flux compactification geometry described in previous
section [See Eqs. (17) and (18)].

B. Near core expansion

We can Taylor expand the equations of motion about the
tip of the cigar. This leaves two unknown boundary con-
ditions, which we will use as shooting parameters. For n ¼
1 they are ‘ and f00. The remaining terms are then com-

pletely specified:

BðrÞ ¼ ‘þ
�
1

2‘
� �2‘ð�4�þ 4�Þ

24

�
r2 þ . . . ; (36)

CðrÞ ¼ 1þ
�
� 1

2‘2
þ �2ð�4�þ 4�� 12f020 Þ

72

�
r2 þ . . . ;

(37)

fðrÞ ¼ f00rþ . . . : (38)

We then numerically integrate the equations of motion
outward from r ¼ 0 to obtain the functions pictured in
Fig. 4. The numerical values for the parameters used are

0.0 0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0

3

2

1

1

0.0 0.5 1.0 1.5 2.0

1

2

3

4

5

FIG. 5 (color online). Parameters were chosen to demonstrate the smooth embedding of Witten’s bubble in a mildly AdS flux
compactification. Dotted blue lines represent Witten’s solution of identical KK circumference 2�L. Dashed red lines represent the
pure flux compactification solution, as before. Near the bubble, the solution resembles that of Witten, while on scales larger than H�1,
the solution approaches the AdS compactification.
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n ¼ 1; � ¼ �ð0:347MPÞ5;
� ¼ ð0:630MPÞ3=2; � ¼ ð0:995MPÞ�1;

(39)

which give the solution

H ¼ 0:0332MP; L ¼ ð0:118MPÞ�1;

‘ ¼ ð0:0806MPÞ�1; f00 ¼ ð0:456MPÞ5=2;
(40)

whereMP ¼ ��2=3 is the five-dimensional reduced Planck
mass. The Euclidean action of this solution is given by

SB ¼ SE ½bubble� � SE½compactification� � 7:4� 104;

(41)

where the numerical solution was matched to the back-
ground in a box of circumference 25:566H�1. Unlike
Witten’s solution, the size ‘ of our bubble depends not
only on the compactification radius L, but on both the
tension of the vortex and the AdS curvature scale as well.
This taxonomy will be explored in a future publication.
Our chosen parameter values are rather generic, but we
expect a large range of solutions to exist. In particular, we
can smoothly deform our parameters and corresponding
solution to match the bubble of Witten.

This is shown in the solution Fig. 5, where the chosen
parameters are

n ¼ 1; � ¼ �ð0:224MPÞ5;
� ¼ ð0:422MPÞ3=2; � ¼ ð4:50MPÞ�1;

(42)

which give the solution

H ¼ 0:010MP; L ¼ ð0:100MPÞ�1;

‘ ¼ ð0:0985MPÞ�1; f00 ¼ ð0:179MPÞ5=2:
(43)

The Euclidean action of this solution is given by

SB ¼ SE ½bubble� � SE½compactification� � 6:4� 104;

(44)

which is similar to the analogous action for Witten: SB ¼
2�3L3=�2 � 6:2� 104. As seen in Fig. 5, the solution
resembles that of Witten on scales smaller than H�1, but
then asymptotes to the AdS compactification far from the
bubble.

V. CONCLUSIONS

We have shown that a simple AdS4 � S1 flux compacti-
fication exhibits an instability to the nucleation of bubbles
of nothing. The key feature of this geometry is the flux
through the compactification cycle at the conformal
boundary, which demands a source wherever the cycle
degenerates. Appropriately, the field theoretic model
considered has solitonic 2-brane solutions which are

charged with respect to the axionic flux stabilizing the
extra dimension. One can construct a bubble of nothing
in this context as the spacetime sourced by an ‘‘inflating’’
solitonic 2-brane whose worldvolume is given by a
codimension-two de Sitter space (the surface of the bub-
ble). We have obtained numerical examples of these bub-
bles which asymptotically match the pure compactification
geometry. Although our numerical work only considered
the decay of n ¼ 1 vacua, analogous decays should exist
involving higher n vortex solutions. Because the relevant
instanton is probably less symmetric [22], jnj> 1 bubbles
of nothing require numerical analysis beyond the scope of
ordinary differential equations.
We have presented our construction using the simplest

field theory that possesses the minimal ingredients for the
scenario to work, but we believe this kind of instability
should be a generic feature of other nonsupersymmetric
flux compactifications. In particular, we have recently
shown how to implement these ideas [23] in a model based
on a six-dimensional Einstein-Maxwell theory, where one
finds a sizable landscape [5,12] of dS4, M4 and AdS4
vacua. As explained in [12], this theory possesses 2-brane
solutions which could be used to construct instantons
interpolating between vacua of differing flux numbers.
One can then extend this model to an Einstein-Yang-
Mills-Higgs theory [3]. The new degrees of freedom in-
corporated in this model allow for smooth codimension-
three solitonic 2-branes. Such magnetically charged
de Sitter 2-branes have the correct asymptotics, similar to
those in [24], to be bubbles of nothing [23]. The difficulty
of finding higher n solutions is exacerbated in the
codimension-three case: there are no finite energy configu-
rations with both jnj> 1 and spherical symmetry [25].
An alternate perspective of the solutions presented here

is as the critical case of a flux-changing instanton whose
final vacuum has zero flux. Typical flux-changing transi-
tions do not exhibit large backreaction on the spacetime
geometry, provided one considers the nucleation of a
single-charge brane, i.e., small relative changes in flux.
On the other hand, the bubble of nothing corresponds to
the extreme case, where the brane acts as a sink for all the
flux found in the asymptotic compactification. It is not
surprising that the effect on the geometry is drastic, since
a zero-flux vacuum is unstable to collapse. One can see this
in our model by examining the effective four-dimensional
theory for the KK radion, which in the absence of flux is
parameterized solely by the contribution from the negative
bulk cosmological constant. The resulting tachyonic po-
tential is divergent as one approaches zero-size compact
dimension (See [12]). This suggests that one should be able
to understand the bubble of nothing from a purely four-
dimensional point of view by including the field f as a new
scalar degree of freedom in the four-dimensional effective
theory. Such a solution may appear singular from the four-
dimensional perspective, but this is just an artifact of the
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dimensional reduction, much like the case of Witten’s
bubble [19].

The bubbles of nothing considered here affect many
otherwise stable flux vacua. One should consider this
instability as a new decay channel whose end result is a
type of terminal vacuum, a vacuum without a classical
spacetime. This is clearly relevant for any program under-
taking the assigning of probabilities to different vacua in
the landscape, the so-called measure problem. (See, for
example, [26] and references therein.)
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