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The recent discovery of an explicit dynamical description of p-branes makes it possible to investigate
the existence of intersection of such objects. We generalize the solutions depending on the overall
transverse space coordinates and time to those which depend also on the relative transverse space and
satisfy new intersection rules. We give classification of these dynamical intersecting brane solutions
involving two branes, and discuss the application of these solutions to cosmology and show that these give
Friedmann-Lemaitre-Robertson-Walker cosmological solutions. Finally, we construct the brane world
models, using the (cut-)copy-paste method after compactifying the trivial spatial dimensions. We then find
that interesting brane world models can be obtained from codimension-one branes and several static
branes with higher codimensions. We also classify the behaviors of the brane world near the future/past

singularity.
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I. INTRODUCTION

The dynamics of the brane world model in five or six
dimensions have been much explored (see [1-4] and refer-
ences therein) because of the possible cosmological and
phenomenological interests. Although some results have
recently emerged on the applications of the solutions in
higher-dimensional supergravity to the brane world cos-
mology, e.g., in [5-15], the construction of the brane world
model in string theory is much less extensive. One moti-
vation for the present work is to improve this situation. For
this purpose, it is first necessary to construct dynamical
brane solutions depending on the time as well as space
coordinates.

It has already been known [16,17] that dynamical brane
solutions arise when the gravity is coupled not only to a
single gauge field but also to several combinations of
scalars and forms, as generalization of the static intersect-
ing brane solutions in the supergravity [18-23]. Similar
solutions which have only time dependence have been
obtained in [24] and other related solutions in [25-32].
Here we construct dynamical brane solutions by general-
izing these static solutions to a dynamical one. The first
class of dynamical solutions we study in this paper has the
dependence on the time as well as overall transverse space
coordinates in the metric and obeys the well-known inter-
section rules. However, it has also been known for some
time that some static intersecting brane solutions may not
follow these intersection rules [33]. These intersecting
brane solutions are derived for the case when the branes
depend on the relative transverse directions of the inter-
secting branes.
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Our goal in the present paper is to exhaust and classify
all two-intersecting-brane solutions which depend on the
time and (relative) transverse dimensions and to study their
applications to the cosmological evolutions and the brane
world models, in particular in the ten-dimensional string
theory and eleven-dimensional supergravity theory. We
first find cosmological solutions for possible intersections
including the above exceptional cases for two intersecting
branes by extending the similar solutions obeying the
usual intersection rules [16,17]. Our results on the dynami-
cal branes are given for general cases of arbitrary dimen-
sions and forms, but in their applications to cosmology and
brane world models, we mainly focus on the dynamical
branes in ten- and eleven-dimensional supergravities be-
cause these are the most important low-energy effective
theories of superstrings. We show that they exhibit
physical phenomena of general interest, including the evo-
lution of the four-dimensional universe in the brane world
cosmology and dynamics of the internal space via
compactification.

The paper is organized as follows. In Sec. II, we show
that the dynamical intersecting brane solutions of two
p-branes exist as an almost immediate generalization of
the static p-brane solution. We then go on in Sec. III to
apply these solutions to cosmology. In Sec. IV, we discuss
construction of brane world models from these solutions
and identify physically relevant solutions among these.
Section V is devoted to discussions.

II. INTERSECTING BRANE SOLUTIONS IN
D-DIMENSIONAL THEORY

In this section, we consider a D-dimensional theory
composed of the metric g,y, dilaton ¢, and the antisym-
metric tensor fields of rank (p, + 2) and (p, + 2):
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where «Z is the D-dimensional gravitational constant, * is
the Hodge operator in the D-dimensional spacetime, F,) is

an n-form field strength, and ¢;, €; (I = r, s) are constants
|
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given by
2(p; + 1)(D — p; —3)
2 =420 D—2p1 , (2a)
{ + if p,-brane is electric (2b)
6 =
! — if p;-brane is magnetic.

After variations with respect to the metric, the dilaton, and
the forms, we obtain the field equations:

= I 1 efrcr(b Ay A Pr +1 5

Ryy = EaMd)aNd’ + 200 F2)1 (p, + 2)FMA2“‘A(,7,+2)FN 2 A — mgMNF(p,+2)

1 eExC.\-¢ p + 1

AyAgyia _ Ps >

E (ps + 2)' I:(ps + Z)FMAZ'“A(IJ‘\-'*Z)FN : (ps2) D — 2 gMNF(pJ+2) ]r (33)

1 gc, ¢ 1 e.c .
drdd = ™ Foy A = 5 (€ iy A*F L = 0 (3b)

r . B |

dlecr<r? « F(prﬂ)] =, (30)
dle®:? % F(p 1] = 0. (3d)

To solve these field equations, we assume that the
D-dimensional metric takes the form

ds? = hehfThy 'hy' g, (X)dx#dx” + by, (Y, )dy'dy’
+ by 'w,,, (Yy)dv™dv" + u,,(Z)dzdz"], 4)

where q,,, ¥ij» Wnn» and u,, are the metrics depending
only on x#, y', v™, and z¢ coordinates of dimensions (p +

D, (ps = p), (pr = p), and (D + p — p, — py — 1), re-
spectively. The parameters « and 8 in the metric (4) are

given as

ps T 1
D-2

prtl
o« =

p—2 B=

(%)
Here we suppose that p,(p,)-brane extends along X and Y,
(Y,) spaces.

The D-dimensional metric (4) implies that the p-brane
solutions are characterized by a function which depends on
the coordinates transverse to the brane as well as the
worldvolume coordinate. For the configurations of two
branes, we should sort the coordinates in three sets and
the powers of harmonic functions are different for each set
of coordinates according to the intersection rules. One set
of the coordinates is the overall worldvolume coordinates,
which are common to the two branes. The others are
overall transverse coordinates and the last are the relative
transverse coordinates, which are transverse to only one of
the two branes.

The field equations of intersecting branes allow for the
following three kinds of possibilities on p,- and p,-branes
in D dimensions [34,35]:

() Both &, and h; depend on the overall transverse
coordinates: h, = h,(x, z), hy = hy(x, z).

(IT) Only h, depends on the overall transverse coordi-
nates, but the other %, does on the corresponding
relative coordinates: h, = h,(x, y), h, = h(x, z).

(IIT) Each of h, and h, depends on the corresponding

relative coordinates: h, = h,(x, y), hy = h(x, v).
In the following, we consider intersections where each
participating brane corresponds to an independent har-
monic function in the solution and derive the dynamical
intersecting brane solution in D dimensions satisfying the
above conditions.

A. Case (I)

For completeness, let us first consider case (I) though
this has been already discussed in [17]. For this class, the
D-dimensional metric (4) becomes

ds® = h2(x, 2 (x, )k ' (x, 2)hy ' (x, 2)q,,,(X)dxkdx”
+ hil(x, 2)y(Y)dy'dy’
+ b N x, 2wy, (Yo)dv™dv™ + uy,(Z)dz%dzb]. (6)
We also assume that the scalar field ¢ and the gauge field
strengths are given as
et = hf,cr/Zh?cx/Z’ (7a)
Fip o) = dlh ' (x, D] A QX) A Q(Y,),  (Tb)
Fipin = dlh (6 D1 A QX) A QYY) (Te)

where (X), Q(Y,), and Q(Y,) denote the volume forms
of dimensions (p + 1), (p, — p), and (p, — p), respec-
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tively:

QOX) = /=qdx" Adx" A -+ A dxP, (8a)
QYY) = Jydy' Ady* A+ AdyPsP, (8b)
Q(Y,) = Vwdv' Adv> A+ AdvPP. (8c)

Here, g, v, and w are the determinant of the metric g,
Yij» and w,,,, respectively.

Let us now consider gauge field equations (3c) and (3d).
Under the assumptions (7b) and (7c), we find

dle<rr® = F(, 5] = —d[h¥d,h,(+7dz") A Q(Y)] =0,
(9a)

dles? % F(, 0] = —d[h¥d,h(+2dz") A Q(Y,)] =0,
(9b)

where *; denotes the Hodge operator on Z, and y is
defined by

+1 +1) 1
x=p+1- % + Ee,esc,cs. (10)

The vanishing condition of y is the intersection rule
|
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[17,20,21]. Then, Eq. (9a) leads to
hE A, h, =0, aﬂhé(aah, + hﬁ(aﬂéahr =0, (11)

where /\, is the Laplace operators on the space of Z. On
the other hand, it follows from (9b) that
h¥ Ay hy =0, d,h¥o hg + hfo,0,h, =0. (12)

When the intersection rule y = 0 is obeyed, Eq. (11) gives

Az h, =0, d,0.h, =0, (13)
and Eq. (12) reduces to
Az hy =0, d,0.h; = 0. (14)

We note that, in this case, the functions %, and A can be
written by linear combinations of terms depending on both
x* and z% We are now going to see that the Einstein
equations also hold if we use this result and the intersection
rule y = 0.

Next we consider the Einstein equations (3a). With the
assumptions (6) and (7), they reduce to

R,,(X) = h;'D,D,h, — hi'D,D,h; —Xh,h) "3 ,h,0,h; + 0,h;d,h,)
—Ma+ B =2)q,,q"7 9, 0h,d, Inhy = 3q,,h7 (a — D[Axh, + (hh) ™" Ay hy]

= 34uhs (B = D[Axhy + (hhy) ™" Ay h] =0,

hy'9,0.h, =0,
hi'd,0.hs =0,

(15a)
(15b)
(15¢)

Rij(Yl) - %(a + :8 - I)Yijhrqpa-ap lnhraulnhs - %Yija/[Ath + (hrhs)71 AZ hr]

- %71](3 - l)hrhx_l[Ath + (hrhs)_l AZ hs] = Or

(15d)

Rmn(YZ) - %(a + ﬁ - l)wmnhsqpo—ap lnhra(rlnhs - %ﬂwmn[Ath + (hrhs)i1 AZ hv]

- %(a - l)wmnhr_lhs[Ath + (hrhs)_l AZ hr] =0,

(15¢)

Rab(z) - %(a + B)uabhrhsqpa—ap 1nhra(rlnhs - %auubhx[Ath + (hrhx)_l AZ hr]

- %ﬁuabhr[Ath + (hrhs)71 AZ hs] =0,

(15f)

where we have used the intersection rule y = 0, and D, is the covariant derivative with respect to the metric g,,,,, Ay is the
Laplace operators on the space of X, and R, ,(X), R;;(Y}), R,,,(Y,), and R, (Z) are the Ricci tensors of the metrics ¢,,,(X),

¥ii (Y1), Wi (Y3), and u,,,(Z), respectively.

We see from Egs. (15b) and (15c¢) that the warp factors £, and /; must be of the form

h.(x, 2) = ho(x) + hy(2),

hy(x, 2) = ko(x) + k; (2). (16)

With this form of &, and A, the other components of the Einstein equations (15) are rewritten as
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R,MV(X) - hr_lD/.LDVhO - hS_ID/.LDI/kO - %(hrhs)_l(a,uhoauko + aMkOthO) - %(a + B - 2)(hrhs)_lqMqugaa'han'k0

- %qluvhr_l(a - 1)[Axh0 + (h'rhs)_l AZ hl] - %q,u.uhf_l(ﬁ - 1)[AXkO + (hrhs)_l AZ kl] = O,

(17a)

R;(Y)) = 3+ B = 1)y;;h'qP7 0 ,hod kg — 3yijal Axhg + (hh) ™" Ay hy]

=37 (B = Dh,hi [Axko + (hohg) ™' Ay k] =0,

(17b)

Rmn(YZ) - %(a + B - l)wmnh;lqp”aph080'k0 - %men[AXkO + (hrhs)il AZ kl]

- %(a - 1)Wmnh;1hs[AXh0 + (hrhs)71 AZ h]] = 0’

(17¢)

Rup(Z) — Mo + Buapq®?d ,hod oko — Yo, h[Axhg + (hhg) ™" Ay hy] = 3Bugph,[Axko + (hhg) ™" Az k] = 0.

(17d)

Finally, we should consider the scalar field equation. Substituting Egs. (7) and (16) and the intersection rule y = 0 into

Eq. (3b), we obtain

h;ahgﬁ[ercr{hx AX hO + qp(raphoa(rk() + h;l AZ hl} + escx{hr AX k() + qpo—aph()a(rk() + h:I AZ kl}] =0. (18)

Thus, the warp factors 4, and &, should satisfy the equa-
tions

Nxhy =0, Nzhy =0, Azhy =0, for d,ky =0,
(19a)
Nxky =0, Ak, =0, Azh, =0, for d,hy=0.
(19b)

Combining these, we find that these field equations lead
to [17]

R#V(X) =0, Rij(Yl) =0, R, (Y2) =0,

R, (Z) = 0, (20a)
h, = ho(x) + h(2), hy = ko(x) + k,(2), (20b)
D,D,hy =0, Azhy =0, Azhg =0,

for d,h, =0, (20c)
DD ky =0, Nzk; =0, Azh, =0,

for 9,,h, = 0. (20d)

If F(, +2y =0 and F(, 5 = 0, the functions h; and k,
become trivial. Namely, the D-dimensional spacetime is no
longer warped [36,37].

As a special example, let us consider the case

q,uv = T],uw 7ij = 6ij’

Wmn = 5””’1’

(21)
Ugp = Sab’

where 7, is the (p + 1)-dimensional Minkowski metric
and 6ij’ Omns O4p are the (py — p)-, (p, — p)-, and
(D+ p— p,— ps — 1)-dimensional Euclidean metrics,
respectively. For 9,k = 0, the solution for A, and h;
can be obtained explicitly as

[
h(x,z) = A,x* + B+ ! 22
[(x,2) =A,x ;Iz—zllmf’_”’_""_y (22a)

M
h‘(Z) - C + Z |z -z |D+;_pr_ps_3’
c c

where A E B, C, M;, and M, are constant parameters, and
z; and z,. are constant vectors representing the positions of
the branes. We can also choose the solution in which the
p,-brane part depends on both ¢ and z. Then, we have

M,
h.(z) =B+ —
;lz _zl|D+p Pr—ps—3

M.
hy(x,z) = A, x* + C+ Z PR
c c

(22b)

(23a)

(23b)

Now we discuss the intersecting brane solutions in
eleven-dimensional supergravity and in ten-dimensional
string theories. For the M-branes in eleven-dimensional
supergravity, there is 4-form field strength without dilaton,
so the intersection rule y = 0 gives

_(p, D+ 1)
9

where p denotes the number of overlapping dimensions of
the p, and p, branes. Then we get the intersections involv-
ing the M2 and MS5-branes [20,21]

M2NnM2 =0, M2NMS =1,

1, (24)

M5NMs5 = 3.
(25)

For the ten-dimensional string theories, the couplings to
dilaton for the RR-charged D-branes are given by
€.Cr = 5(3 - pr)’ €;Cs = %(3 - ps) (26)
The condition y = 0 then gives
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The intersections for the D-branes are thus given by
[20,21]

Dp,NDp; =i(p, + py) — 2. (28)

We finally consider the intersections for NS-branes. The
parameters c, for fundamental string (F1) and solitonic 5-
brane are €;c; = —1 (for F1) and e5¢5 = 1 (for NS9),
respectively. Then the intersections involving the F1 and
NSS5-branes are [20,21]

FINNS5=1 NS5ANS5=3,  (29)
FINDp =0, (29b)
DpNNSS5=p—1, 1=p=6.  (29)

There is no solution for the F1-F1 and DO-NSS intersecting
brane systems because the numbers of space dimensions
for each pairwise overlap are negative by the intersection
rule.

B. Case (II)

We next consider the case (II). For this class, the
D-dimensional metric ansatz (4) gives

ds? = h&(x, y)h¥ (x, DA, (x, ) (x, 2., (X)dxt dx”
+ hi'(x, 2y (Y dy' dy!
+ h N (x, y)w,,, (Ys)dv™dv™ + uy,(Z)dz0dz"].
(30)

We also take the following ansatz for the scalar field ¢ and
the gauge field strengths:

b — hfrcr/Zh?Cs/Z’ (31a)
Fip+2 = d[h; (6, )] A QX) AQ(Y,),  (31b)
F(p:+2) = d[hs_l(x’ Z)] A Q(X) A Q(Yl): (310)

where Q(X), Q(Y;), and Q(Y,) are defined in (8). Since
we use the same procedure as in Sec. I A, we can derive
the intersection rule y = 0 from the field equations. For
x = 0, it is easy to show that the field equations reduce to

R,,(X) =0, R;(Y)) =0, R, (Y2) =0,
R.(2) =0, (32a)
h, = ho(x) + hy(y), hy = hy(2), (32b)
D,D,hy=0, Ay h =0,  Agh =0,
d,hy =0, (32c¢)

where Ay is the Laplace operators on the space of Y. If
F(, +2 # 0 and F(, 1, # 0, the functions i, and k; are
nontrivial.

Let us consider the following case in more detail:

CI,uV = 77,u,w 7ij = 61'/" (33)

Winn = 5mn’ Ugp = Babr

PHYSICAL REVIEW D 82, 086002 (2010)

where 7, is the (p + 1)-dimensional Minkowski metric
and 8;;, 8,,, 8, are the (p;— p)-, (p.— p)-, and
(D+ p— p,— p, — I)-dimensional Euclidean metrics,
respectively. For 9, h; = 0, the solution for h, and h;
can be obtained explicitly as

M
h.(x,y) = A, x* + B+ Zl ! (34a)
1y =

yilpsmr=2

M
h@)=C+3 lz— 2 |D+;—p,—m—3’
c c

(34b)

where A,, B, C, y;, z., M;, and M, are constant
parameters.

On can easily get the solution for 9 ,h, = Oand 9, h, #
0 if the roles of Y and Y, are exchanged. The solution of
field equations is thus expressed as

M,

h(z) =B+ ZI: |z — g, [P P P 3 (35a)
M,

hy(x,v) = Ax# + C+ Y oz G

Since the dynamical solution (34) obeys the same inter-
section rule y = 0, the intersections of M-branes in eleven-
dimensional supergravity and D-branes in ten-dimensional
string theories are given as (25), (28), and (29).

C. Case (IIT)

Finally, we consider the case (III). For this class, the
D-dimensional metric ansatz (4) reduces to
ds? = h(x, IS (e v)[ Ay (6 9D (5 0)g,,,(X)dxtdx”
+ hy ' v)y (Y dy'dy!
+ b (X Y)W (Yo)dv™dv" + uy,(Z)dz¢dzb].
(36)

We also assume that the scalar field ¢ and the gauge field
strengths are given as

et = hiyc‘,/Zhssc‘;/Z’ (37a)
F(p,+2) = hsd[hri](-x» y)] A Q(X) A Q(YZ)’ (37b)
Fipen = hdlh; (6, )] A QX) AQ(Y,),  (370)

where Q(X), Q(Y;), and Q(Y,) denote the volume
(p + -, (ps — p)-, and (p, — p)-forms, respectively.
Under the assumption, the field equations give the inter-

section rule y = —2. This is different from the usual rule
applicable to the cases (I) and (II). Upon using the inter-
section rule y = —2, it is easy to show that the field

equations reduce to
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R,,(X) =0, Ry (Y)=0,  R,(Yy)=0
R.(Z) =0, (38a)
h, = ho(x) + hy(y),
hy = ko(x) + ky(v), (38b)
D/LD,,hU = 0, AY]hl = O,
Ay,hy =0, for a,h, =0, (38¢)
DMDVkO = 0, AY]hr = O,
Ay,ky =0, for d,h, =0. (38d)

where Ay and Ay, are the Laplace operators on the spaces
of Y, and Y,, respectively. The functions s, and k; are
nontrivial for F(, 1, # 0 and F(, 42 # 0.

Now we consider the case

q,uv = n,uw ')/ij = 5ij:

Wmn = Smnr

(39)
Ugp = 6abr

where 7, is the (p + 1)-dimensional Minkowski metric
and 8;;, 8,,, 8, are the (p;— p)-, (p. — p)-, and
(D + p— p,— ps — I)-dimensional Euclidean metrics,
respectively. For 9, h; = 0, the solution for A, and A,
can be obtained explicitly as

M,
h.(x,y) = Aﬂx/’“ + B+ ZW’ (40a)
M.
hs(v) =C+ Z |‘U _ vclp"_P_z’ (40b)

where A e B, C, y;, v., M;, and M, are constant parame-
ters. We can also get the solution in which the function A
depends on both ¢ and v. The solution (40) is replaced by

M,
hr(}’) =B+ I ——
2 ly = yilpsmp2

M
hx,v)=Ax*+C+ )y ——— .
s 12 Zlv_vclp,pZ

(41a)

(41b)

Let us consider the intersecting brane solutions in
eleven-dimensional supergravity and in ten-dimensional
string theories. We first discuss the intersections of M-
branes in eleven-dimensional supergravity. The intersec-
tion rule y = —2 leads to

+1 +1
_ A D+ o 42)
9
Then we get the intersection involving the M5-brane
M5NnMS5 = 1. (43)

Equation (42) tells us that the numbers of intersection for
M?2-M2 and M2-MS5 branes are negative, which means that
there is no intersecting solution of these brane systems.

PHYSICAL REVIEW D 82, 086002 (2010)

Next we consider the intersection in the ten-dimensional
string theory. The couplings to dilaton for the RR-charged
D-branes are

€sCs = 5(3 - Ps), (44)
and the condition y = —2 is expressed as
p=5p,+ ps—8). (45)

The intersections for the RR-charged D-branes are thus
given by

€,.Cr = 5(3 - pr)’

Dp,NDp, = 3(p, + p,) — 4 (46)

We finally consider the intersections for NS-branes. The
parameters c, for fundamental string (F1) and solitonic 5-
brane are €;c; = —1 for F1 and e5¢5 = 1 for NS5, re-
spectively. Then the intersection with Fl-brane is forbid-
den by the intersection rule. The intersections involving the
NS5-branes are

NS5NNS5 = 1,
DpNNS5 = p — 3,

(47a)

3=p=8. (47b)

There is no brane solution involving other intersections
because the numbers of space dimensions for each pairwise
overlap become negative by the intersection rule.

III. COSMOLOGY

In this section, we discuss the application of the above
solutions to four-dimensional cosmology. We assume an
isotropic and homogeneous three-space in the four-
dimensional spacetime known as Friedmann-Lemaitre-
Robertson-Walker (FLRW) universe, and do not discuss
solutions which break these properties after compactifica-
tion. In what follows, we concentrate on the (p + 1)-
dimensional Minkowski spacetime with ¢,,(X) =
1 ,4»(X), and drop the coordinate dependence on X space
except for the time.

The D-dimensional metric (4) can be expressed as

ds? = —hdr* + ds*(X) + ds*(Y,) + ds*(Y,) + ds*(2),

(48)

where we have defined
ds*(X) = hdpo(X)dor doe, (49a)
ds*(Y)) = hehd ™y, (Y))dy'dy/, (49b)
ds?(Y,) = he ' hPw, (Y,)dv"dv", (49¢)
ds*(Z) = h*hPu,,(Z)dz0dz, (49d)
h=he1pPt (49¢)

Here & pQ(X) is the p-dimensional Euclidean metric, and
0" denotes the coordinate of the p-dimensional Euclid
space X. In the following, we assume 9 whs = 0 and set
h, = At + h,. The D-dimensional metric (49) can be writ-
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ten as
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2/(a+1) a—1 2(a—=1)/(a+1) ~
ds* = P~ l[1+< ) hl] [ dr? ( ) 8po(X)do do?
To 7o

7\-2/(a+1) 7\2a/(a+1) 2(a—1)/(a+1)
+ {1 + (—) th—) vii(Yy Ydy'dy/ + h ( ) W (Yo)dv™ dv"
T 70

7o 0

=2/(a+1) 2a/(a+1)
+ hs{l + (l) hl}(l) uab(Z)dz“dzb], (50)
70

To

where we have introduced the cosmic time 7 defined by

T ap@t)2 _ 2

o T AR TS A
On the other hand, for h(t, v) = At + k,(v), the metric
(49) is given by replacing « and h; with 8 and k;.

Now we apply these solutions to lower-dimensional
effective theory. We compactify d (=d; +d, + d; +
d,) dimensions to fit our universe, where d,, d,, d;, and
dy4 denote the compactified dimensions with respect to the
X, Y, Y,, and Z spaces. The metric (48) is then described
by

D

ds? = ds*(M) + ds*(N), (52)

where ds?(M) is the (D — d)-dimensional metric and
ds*(N) is the metric of compactified dimensions.
By the conformal transformation

ds*(M) = hBhCds>(M), (53)

|
as ) = i’ 1+ (© )W”) 1 [

|
we can rewrite the (D — d)-dimensional metric in the

Einstein frame. Here B and C are

_—ad+d1+d3 __ﬁd+d2+d4
B D—d—-2 "~ ¢ D—d—-2 - (54

Hence, the (D — d)-dimensional metric in the Einstein
frame is

ds*(M) = hB'hS'[—dr? + 8p(X)do" do%
+ ey (Y, )ayr dy! + hgw e (Y, )dv™ dv™
+ h,hsuarb/(Z’)dz"/dzbl], (55)

where B’ and C’ are defined by BB=—-B+a—1
and C'=-C+pB8—-1, and X, Y,, Y,/, and Z
denote the (p —dy)-, (py—p —da)-, (p, — p — d3)-,
and (D+ p— p,— ps — dy)-dimensional spaces,
respectively.

For h, = At + h;, the metric (55) is thus rewritten as

2B'/(B'+2) - ’
( ) SP,Q,(X)dQ de?
To

2/(B’+2) 2(B'+1)/(B'+2) ,
+ {1 +( ) }( ) Yir(Y, NdyK dy" + h, (
70

B'/(B'+2) , ,
) Wm/,,r(Yzl)dvm dv"

70

2/(B'+2) 2B'+1)/(B'+2) o
+ hs{l + <7) hl}(—) Uy (Z')dz" dzb ] (56)

7o 7o

where the cosmic time 7 is defined by

T 2
= (At (B/+2)/2’ — .
70 (41) 7o (B"+2)A

For hy = At + k; and 9 ,h,
similar to (50) and (56).

We list the FLRW cosmological solutions with an iso-
tropic and homogeneous three-space for the solutions (56)
in Table I for M-branes, Tables II, III, IV, V, VI, VII, VIII,
and IX for D-branes, and X, XI, XII, XIII, and XIV for F1
and NS5-branes. The power exponents of the scale factor
of possible four-dimensional cosmological models are
given by a(M) o« 7™ where 7 is the cosmic time, and
a(M) and a;(M) denote the scale factors of the space M in

(57)

= 0, we can also get results

I
Jordan and Einstein frames with the exponents carrying the
same suffices, respectively. Here M denotes the spatial part
of spacetime M and includes our four—dimensional uni-

verse besides the time coordinate. The mark | in the tables
shows which brane is time dependent.

Since the time dependence in the metric comes from
only one brane in the intersections, the obtained expansion
law is simple. In order to find an expanding universe, one
may have to compactify the vacuum bulk space as well as
the brane worldvolume. Unfortunately, we find that the
fastest expanding case in the Jordan frame has the power
a « 77/15_ which is too small to give a realistic expansion
law like that in the matter dominated era (a o 72/3) or that

in the radiation dominated era (a « 7'/2). Note that all
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these cases correspond to the solutions involving D6-
branes, given in Tables IV, V, VI, VII, VIII, IX, XI, XII,
and XIII.

When we compactify the extra dimensions and go to the
four-dimensional Einstein frame, the power exponents are
different depending on how we compactify the extra di-
mensions even within one solution. We give the power
exponent of the fastest expansion of our four-dimensional
universe in the Einstein frame in Tables XIV, XV, XVI,
XVII, XVIII, XIX, XX, XXI, XXII, XXIII, XXIV, and
XXV. We again see that the expansion is too small.
Hence, we have to conclude that in order to find a realistic
expansion of the universe in this type of models, one has to
include additional “matter” fields on the brane.

IV. BRANE WORLD APPROACH

A. Construction of the brane world model

In this section, we discuss the applications of our solu-
tions to construct the brane world models. Starting from a
given ten- or eleven-dimensional solution, we compactify
the trivial extra dimensions. After the reduction, we further
move to the Einstein frame. Then, there are the ordinary
four-dimensional spacetime and extra dimensions. The
following procedure depends on the number of codimen-
sions .

For n > 2, the brane is so singular that one cannot put
the ordinary matter and we employ the cut-copy-paste
method as a way of regularization, which is explained later.
As a result, the original brane with n codimensions is
replaced with a codimension-one object including the in-
ternal angular dimensions. For n = 2, there is a curvature
singularity at the infinity due to the logarithmic spatial
dependence of the metric and we do not discuss this case
any more. For n = 1, the spacetime is regular. In all cases,
due to the presence of the time dependence, there can be
the other singularity in the future or past, where 2, = 0 in
brane solutions. For the moment, we focus on the prescrip-
tion for the brane and will discuss the behavior of the brane
world near the time dependent singularity in the next
subsection. In both cases, the boundary of the bulk space-
time is a codimension-one hypersurface, which is called
“brane world” in the rest. By construction, the extra space
is Z,-symmetric with respect to the brane world.

We consider the time dependent Einstein-frame metric
with n conformally flat extra dimensions,

ds? = —d(1, £)*dr* + a(t, £)*8;;d X d X

+ f(1, €)*(d€” + £ G, d0?do’), (58)
where metric G, [a =1,2,...,(n — 1)] represents the
unit (n — 1) sphere. The coordinates (£, #¢) and X' denote
the radial and angular directions of the extra space, and the
ordinary three-space, respectively. We assume that in the
original intersecting brane solution, the brane is at ¢ = 0.
For n > 2, we need a regularization to put the matter on the
brane and we employ the cut-copy-paste method:
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(a) The region including the brane 0 = & < ¢, is
removed.
(b) The remaining piece is glued to its identical copy at

&= &

In this way, the brane is replaced with a codimension-one
brane world including the extra angular dimensions. For
n = 1, we assume that the brane world is at the place where
the original brane source exists.

The brane world moves along the trajectory (¢(7), £(7)),
where 7 satisfies

—d(i(7), E)PE + f(1(7), E(N)*E = —1. (59)

The “dot”” denotes the derivative with respect to 7. Thus,
the induced metric becomes cosmological

dsiznd = —dr* + a(t(7), 5(7’))25ijdX"de
+ E(1)2f(1(7), €(7))*Gopd0°dO”. (60)

In the case of n>2, since G,, denotes the (n — 1)-
dimensional sphere, the corresponding dimensions in the
brane worldvolume are automatically compact as long as
the scale factor in these directions £f is finite. To construct
the brane world by our cut-copy-paste method, further
simplifications should be required: We first assume that
each function £, and A, in Egs. (22), (34), and (40) contains
only a contribution from a single brane, with charge M,
and M|, respectively. We then impose additional restric-
tions in each of the cases (I)—(III).

1. Case (I)
Both functions 4, and &, depend on z:

h.(z,1) = At + B + M —,
|z =z, (61)
M,
hy(z) = C + P
[see Eq. (22)]. The positions of branes, z, and z,, are
different in general. Our cut-copy-paste procedure works
when the extra space is spherically symmetric. To realize
the spherical symmetry, we put the branes at the same place
z, = 2, = 0 and then set £ = |z|. Alternatively, we may
choose z, = 0 for M, = 0 and z, = 0 for M, = 0, with
& = |z|, but we focus on the former general case with
MM, # 0 here. For n = 1, we may take z, # z,.

2. Case (1)
Here h, and h, depend on y and z. We write

M
h.(y,t)=Apt +B+ —"——

ly = y,Im ™% (62)
M
hy(z) = C + —5_2
|z — z,|™
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[see Eq. (34)]. We need to assume either M, = 0 or M, =
0, since in our construction the position of the brane world
is specified by a single coordinate |y| or |z|. For M, = 0,
we set & = |z| and n, = n with z; = 0, while for M; = 0
&= |yl and n, = n with y, = 0.

3. Case (1II)

Here A, and h, depend on y and v. We again write

M,
ly =y,
M,

lv — v,|"2

ho(y.1) = Aot + B + —. )

n

hy(v)=C+

[see Eq. (40)]. Similarly we need to set either M, = 0 or
M, =0. For M, =0, we set £ = |v| and n, = n with
v, = 0, while for M; =0, £ = |y| and n, = n with y, =
0.

Let us illustrate a D3-D1 solution of the case (I), where
the D3 brane is time dependent. Under our assumptions,
after compactifying the trivial Y, directions, the Einstein-
frame metric is given by

ds® = h; 2 (z, DRy 7 (2)(—de* + h,(2)8,,dv"dv"

+ h,(z, Ohy(2)8pdz%dzP), (64)
@ of ‘ ‘ ‘ ;
S ]
010 015 lfO 115 210
3
FIG. 1.
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where v™ and z“ are the coordinates of three- and five-
dimensional Euclidean spaces. Now, we identify & = |z],
{0} = angular part of {z}, and { X} = {v}. Then, functions
in (58) read a = A, Y 4R @ = 003 and f =
h%/ 7hl/ 14, respectively.

B. Properties of brane world near the singularity

We discuss the properties of singularity at #,, = 0, which
arises because of the time dependence. We assume that
B> 0and M, = 0. We also assume that C > 0 and M, =
01in &g, so that no singularity other than the brane at ¢ = 0
appears from /. In the case n > 2, the dynamics of the
spacetime is changed at the critical time ¢t = —A%. For

M, > 0and A, > 0, in the infinite past t — — oo the regular

spatial region is small. The spatial region gradually ex-

pands and spreads to the infinity at r= —B/A,.

Subsequently, the spacetime is regular except at & = 0.

For Ay <0, initially spacetime is regular except at the

brane. But at t = %, a singularity appears at the spatial
0

infinity, and then the spatial domain shrinks as the time
evolves. See Fig. 1. In the case of n = 1, for M, > 0 and
Ay >0, the spacetime is defined for ¢ > — - (Ayr + B),

while for Ay < 0 it can be done for ¢ < 5~ (|Aplt — B). For
M, = 0, a spacelike singularity appears at t = — A%. For
Ay >0, spacetime can be defined for t > — A% while for

Ay <0 it can be done for t<ﬁ.

(b) [T T T [ T T T T T T T T T T T T T T ]

12 -

Curves in the figures show the level of &, = 0 (solid curves) in the case of n = 3. We set |A,| = 1. The horizontal and

vertical axes show ¢ and 7, respectively. The dashed lines denote the critical times. (a) For Ay > 0, the size of the spacetime domain
(the left side of the solid curve) expands and diverges at t = —1. (b) For A; <0, at t = +1 singularity appears at the infinity and then
the spacetime domain (the left side of the solid curve) shrinks as the time progresses.
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We embed the brane world and discuss the dynamics
near the singularity. In Tables XX VI, XXVII, and XXVIII,
we have classified the future singularities of brane worlds
for Ay < 0. The behavior of past singularities can be dis-
cussed for Ay > 0. In the tables, for example, “Dm-Dn”
denotes the intersecting D-branes, where the first
Dm-brane has the time dependence. Also “(A, B)” repre-
sents the directions of the ordinary three-space and the
bulk, respectively. These rules are also applied to the
subsequent tables.

For n > 2, in the metric (58) d® = h{ ' (f* = h{ or f? =
¢!, where 0 < g < 1. From (59), 4 ~ p{'"9/2 — 0 as
h, — 0, which implies that for Ay <O the brane world
cannot reach the future singularity within a finite proper
time. Note that for f2 « h{ the brane world trajectory is
always timelike as &, — 0 while for f? o« R4~ it becomes
timelike or null in approaching singularity. Conversely, for
Ay > 0, the universe is born in the infinite past in terms of
the proper time. On the other hand, the solutions listed in
Table XXIX give ¢ > 1, and hence 4 ~ B2 o0 as
h,— 0. Thus, the brane world can reach the singularity
within a finite proper time. Some of the n = 1 solutions are
in this class.

C. Cosmological equations

Now we derive the cosmological equations in the brane
world through the junction conditions. Under the Z, sym-
metry, they are given by

A _ sA pC _ _1,2¢A
Y e TS (65)
where K; 5 *= q7q2Vanp is the extrinsic curvature tensor,

and $4 5 18 the energy-momentum tensor of the brane world
matter. n, and qg are the unit normal vector and projection
tensor to the brane world, respectively, The hatted indices
{A} run over the brane world directions. The nonvanishing
(i, j), (a, b), and (7, T) components of the left-hand side of
Eq. (65) are related to the pressure in the ordinary 3-spatial
direction, that in the (n — 1)-sphere and the energy density
on the brane world.

From now on, we focus on the (square of the) (7, 7)
component, which is given by

[

: —8”56“ op + %Agf)(T) + 0(8p?) (static limit)
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a2 a,z(a‘é —a?a* — aé(at2 —34d%))

1+ ——
aé aé(aé — a?)?
2a§a,d1/a§ —a? + a?
x 2 232
(a§ - ap

_ ! 1o, (3% Y
_(3?+(n—1)}§)2{26"p (3f+(" Ua’)

aga * am/aé —a’+a’yp
X }, (66)

o —
where p is the energy density in the brane world. For
convenience, we have introduced

d’ 67)

€ = +1 (— 1) denotes the normal vector pointing the
increasing (decreasing) & direction. When the spacetime
is approximately static, i.e., |ag| > |a,| and |y¢| > |y,
Eq. (66) reduces to

.2 4.2 a’
a_zz =P Yed 2__5’ (68)
a 43+ (n—1) agfg) a

where “=~” becomes “="" when «, = v, = 0. When the

time dependence dominates the system, i.e., |a;| < |a,]
and || < |y,l, Eq. (66) reduces to

. 4.2 2
a? K*p a;

@ A3+ (- DZ

(69)

where “~" becomes “="" when a; = 0 and y; = 1.

Furthermore, we integrate the energy density over the
(n — 1)-sphere in the brane world pyp = "' "7V, _,p,
where V,,_| := 13(2—/27) is the surface area of the unit (n — 1)-
sphere. Then, we decompose the energy density into the
constant part o and the time dependent one 6p: pyp =
o + 0p. In both of the above limiting cases, at the low-
energy scale (0p < o), Eq. (68) reduces to

— = . . (70)
a? @ Sp + %Agf)f(r) + 0(8p?) (time-dependent limit),
where the effective gravitational constant is given by
e 7 (static limit)
87Gegr . | V0 (N B+ (= D+ 71
3 e (time-dependent limit),

22 (£ 2B+ (n—1)

)2
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respectively. Agf)(f) and Agf)f(T) give the nonstandard con-

tributions. The necessary condition to obtain a realistic
low-energy cosmology is that the effective gravitational
coupling in Eq. (71) remains (almost) constant during the
cosmological evolution. It is clear that in the definition of
G, Eq. (71), the motion of the (n — 1) compact dimen-
sions on the brane world is taken in account. Its effect
makes it difficult to obtain a constant G;. Nevertheless, as
we will discuss later, we will find a few examples in which
the constant G is obtained.

Before closing this subsection, we briefly mention the
other requirement for the recovery of the four-dimensional
gravity, i.e., the localizability of the graviton zero mode.
This issue is independent of the number of extra dimen-
sions n. Although to clarify it we have to investigate the
perturbations, at least we need to require the finiteness of
the bulk volume off the brane world. In our solutions, in
general it is not ensured. Then, it is necessary to add, for
example, the cut-off second brane world. In this case, the
gravity in the brane world may not coincide with the
ordinary general relativity, due to the degree of freedom
associated with the interbrane distance. For now, we leave
this issue for a future study and focus on the minimal
requirement that G must be constant.

D. Effective gravitational coupling

Finally, we discuss the behavior of the effective gravi-
tational coupling (71) and list the realistic brane world
models.

l1.n=1

The requirement of a constant G is trivially satisfied
for n = 1, with G = 2. The solutions which give n =
1 brane world models are listed in Table XXX. We classify
the solutions with i, = Ayt + B + M,|€| and h, = Ayt +
B in (a) and (b) in the table, respectively. Also in the right
column of Tables I, 11, III, IV, V, VI, VII, VIIL, IX, X, XI,
XII, XIII, XTV, XV, XVI, XVII, and XVIII, the original ten-
or eleven-dimensional solutions which give these brane
worlds are listed.

In Table XXXI we further classify n = 1 brane worlds in
terms of the behavior near the future singularity for Ag < 0.
We find that no brane world model whose scale factor
diverges within a finite time, i.e., a big-rip singularity, is
obtained. Solutions in the category of (a = 0,“Finite”)
provide the brane worlds which collapse within a finite
time. But ever expanding brane worlds are also obtained
from the intersecting D-branes of the cases (I) and (II). For
Ay > 0, from Table XXXI, the behavior of the brane near
the past singularity can be discussed. In particular, the
solutions of (a = 0,Finite) in Table XXXI provides the
brane worlds with initial big bang singularities in the finite
past.

Before closing this part, it is important to summarize the
property of brane world models of n =1 in each case.
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First, it is clear that in our treatment M-branes do not
provide such a brane world model in all the cases (I)-
(IIT). Concerning the ten-dimensional solutions, we sum-
marize their properties below:

Case (I) A remarkable property of this case is that all the
n =1 brane world models are obtained only from the
intersecting D-branes. By definition, the bulk direction is
always Z. In addition, all of models are of type (a) (see
Table XXX). In approaching the future 4, = 0 singularity,
the model of D5-D7(Y,, Z) gives an ever expanding uni-
verse, while the model of D5-D7(Y, Z) provides an ever
contracting universe. All the rest give universes collapsing
within the finite time.

Case (IT) All classes of solutions can provide the n = 1
brane world models. This is in part because some of the
case (II) solutions correspond to particular cases of case (I).
The bulk direction can be either Y, or Z. For the models of
type (a) Y; is the bulk direction, while for those of type
(b) Z is the bulk direction. In approaching the future 4, = 0
singularity, the model of D5-D7(X, Z) gives an ever ex-
panding universe, while the models of D5-D7(Y, Z), D3-
D1(Z, Y,), and NS5-D4(Z, Y,) provide ever contracting
universes. All the rest give universes collapsing within
the finite time.

Case (IIT) The n = 1 brane world models are obtained
only from the solutions including an NS5-brane. The
bulk direction can be either Y, or Y,. For the models of
type (a) Y, is the bulk direction, while for those of type
(b) Y, is the bulk direction. In approaching the future , =
0 singularity, the model of NS5-D7(Y,, Y,) provides an
ever contracting universe. All the rest give universes col-
lapsing within the finite time and an ever expanding uni-
verse is not realized.

2.n>2

We consider the case of n > 2. First, for simplicity, we
discuss the case of the completely static solutions «; =
v; = 0. In this case, there is no future or past singularity.
We do not find examples that the effective gravitational
coupling approaches a constant. In the opposite limit ¢ —
oo, we find that there are examples with constant G in
cases (I) and (III), which are listed in Table XXXII. From
the table, we see that for case (I) the four models of n = 3,
i.e., D5-D3 (Y,, Z), NS5-D3(Y,, Z), D3-D5 (Y, Z), D3-
NS5(Y;,Z), and for the case (III) D3-D7((X,Y,), Y;)
model of n = 6 can be realistic. In case (I), we have to
assume both M, # 0 and M, # 0. In the right column of
Tables I, 11, 111, IV, V, VI, VII, VIII, IX, X, XI, XII, and
XIII, the original ten-dimensional solutions which give
these models are indicated. Note that the static M-brane
solutions do not give realistic models. Although in our
model there are many solutions and ways of compactifica-
tion, the number of realistic solutions is rather small. This
is because the compact (n — 1) dimensions in the brane
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world evolve with time and make G in Eq. (71) time
dependent even in the static solutions.

By allowing the time dependence «; # 0 and y, # 0, in
the near-brane limit ¢ — 0, the static approximation is still
valid, namely |a,| < |a¢|and |y,| < |y|. Butinthe & —
oo limit, the time dependence now dominates the system
since |a,| > |ag| and |y,| > |y,|. Then, in both the limits
of £ — 0 and & — oo, there is no example of the constant
gravitational coupling. Therefore, for n > 2, it is impos-
sible to construct the realistic brane world models from our
solutions.

V. DISCUSSIONS

In this paper, we have derived intersecting dynamical
brane solutions and discussed their dynamics in the ten-
and eleven-dimensional supergravity models. These solu-
tions are obtained by replacing a constant A in the warp
factor h = A + h;(y) of a supersymmetric solution by a
function hy(x) of the coordinates x* [16,17,36,38]. Our
solutions can contain only one function depending on both
time as well as overall or relative transverse space coor-
dinates. In particular, the solutions in Sec. II B tell us that
the brane which depends on overall transverse coordinate
can be extended to the time dependent case. It is possible to
get the dynamical intersecting brane solutions which obey
the intersection rule y = —2 different from the usual one,
as we have discussed in Sec. I C.

We have used the intersection rules to find the cosmo-
logical solution because it is not so easy to find it analyti-
cally without their rules. The intersection rules have led to
the functions &, and h, which can be written by linear
combinations of terms depending on both coordinates of
worldvolume and transverse space. This feature is ex-
pected to be shared by a wide class of supersymmetric
solutions beyond the examples considered in the present
paper, because the result has been obtained by analyzing
the general structure of solutions for warped compactifica-
tion with field strength of the ten- or eleven-dimensional
supergravities under ansatz that is natural to include super-
symmetric solutions as a special case. We have showed that
these solutions give a FLRW universe if we regard the
homogeneous and isotropic part of the brane worldvolumes
as our spacetime. Unfortunately, the power of the scale
factor is so small that the solutions of field equations
cannot give a realistic expansion law. This means that we
have to consider additional matter on the brane in order to
get a realistic expanding universe. As the number p, or p;
increases, the power of the scale factor becomes large. We
find that the intersection with D6-brane in ten-dimensional
theory gives the fastest expansion of our universe because
the three-dimensional spatial space of our universe stays in
the transverse space to the D6-brane. Though the power of
the scale factor for the transverse space in solutions with
the D7- or D8-branes is larger than those with the D6-
brane, the number of the transverse space to these branes is
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less than three. Hence, these solutions cannot provide the
isotropic universe if we assume that the transverse space to
the brane is the part of our universe.

The solutions we have obtained may give some moduli
instabilities because of the flat direction of the moduli
potential in the lower-dimensional effective theories after
compactifications [15,17,36,37]. Such instability will grow
unless the global or local minimum of the potential can be
produced by some correction in the effective theory.

The dynamical solutions contain only one function de-
pending on both time and transverse space coordinates.
One possible reason for this is that the ansatz concerning
the structure of the D-dimensional metric is too restrictive.
However, a recent study of similar systems shows that it is
possible to obtain solutions with each function depending
on both time and transverse space coordinates (see [31] for
recent discussion). It is interesting to examine if our solu-
tions can be extended to more general solutions by relaxing
the assumptions of the field ansatz.

Finally, we have constructed the brane world models
from our solutions. This approach makes it clear how the
ordinary four-dimensional matter contributes to the cos-
mology. In our approach, we first compactify the trivial
spatial directions in a given ten- or eleven-dimensional
spacetime and then move to the FEinstein frame. This
approach gives a way of regularization of the brane source
to put matter there. For a brane with higher codimensions
we have applied the cut-copy-paste method. We then need
to integrate over the angular dimensions in the brane
worldvolume to define the effective four-dimensional
quantities. For a codimension-one brane, we need just the
copy and paste. For our prescription to work, we have
restricted our solutions. In particular, we have chosen the
parameters of ten- or eleven-dimensional solutions that
after compactifying the trivial spatial dimensions the extra
dimensions become spherically symmetric with respect to
a single brane. We have also classified the singularity in the
time dependent solutions, and discussed the behaviors of
the brane world universe around it.

Then, we have derived the effective gravitational equa-
tions via the junction condition. The necessary condition to
obtain a realistic cosmological model is that the effective
gravitational constant must approach constant. A brane
world model obtained from a codimension-one brane can
automatically realize a constant gravitational coupling.
The intersecting M-branes could not provide such models
for all types of brane intersection. The existence of some
ten-dimensional solutions which provide such brane world
models crucially depend on the types of the brane inter-
section. In terms of the behavior around the singularity, an
ever expanding universe cannot be obtained from the so-
lutions where the metric does not depend on the overall
transverse space. Concerning the models constructed from
higher-codimensional branes, for the purely static case, we
have found a few solutions where the effective gravita-
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tional coupling approaches constant in the far brane limit.
In contrast, however, for the generic time dependent solu-
tions, we did not find such examples.
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TABLES

TABLE 1.

Intersections of two M-branes in the metric (50) and (56). Whichever of the two M2’s or M5’s is time dependent does not

make any difference. In the right column of Tables I, 11, III, IV, V, VI, VII, VIII, IX, X, XI, XII, and XIII, “BW” denotes the solutions
which provide realistic brane world models. From the solutions in the list, no realistic brane world model is obtained.

Case 01 2 3 45 6 7 8 910 M AM) Ae(M) BW
D, (I M2 o °o o VY &Z 0 A(Y) = 1/4 Ae(Y)) = —prarea
M2-M2 M2 o MZ)=1/4 Ne(Z) = —rreg g
Nopoyt oyt ot v? b2 Pt P
0. ) M2 o o o VY &Z AY) =1/4 A(Y)) =~ s
M2-M5 M5 © o o o o NZ)=1/4 Ap(Z) = S
Norox oy oy Yyt v 2P
(D, M) M2 o o o )~(&Y2 AYy) = —1/5 /\E(YZ)=%
M2-M5 M5 o o o © o o \ or )l(Yl)=2/5 AE(YI):%
Norox oy vttt 22t Y &Z M) =2/5 Ap(Z) =~ S
@, M5 o o o o o o J X&Y, AX)=-1/5 /\E(X)=%
M5-M5 M5 o o o o o o or )\(Yz): _1/5 AE(YZ):%
Nt 2Ryt vt 22 Y &Z MY =AD) =2 () = Ae(D) = s
@) M5 o o °©o o o o U X&Y, AX)=-1/5 Ae(X) = s s
M5-M5 M5 © o o o o o or MY,) = —1/5 Ae(Yo) =~ Bt
N 1 2 3 4 1 2 3 —6+d,+d;

X't x y yy y v

vtz Y, &Z MYy) = AZ) :% Ae(Y)) = Ag(2) =

—15+2d, +d> +2ds +d,
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TABLE II.
does not make any difference. In the right column, the notation (A, B) corresponds to the directions which give the ordinary 3-space X'
and the bulk (&, %) of the brane world, respectively. The D3-D1 solution can give a brane world model.

PHYSICAL REVIEW D 82, 086002 (2010)

Intersections of two D-branes with p = 0 intersection in cases (I) and (II). Whichever of the two D2’s is time dependent

Branes 01 2 3 4 5 6 7 8 9 M AM) Ae(M) BW
DO o VY, &2 AY)=1/9 Ae(Y)) = 53—
DO-D4 D4 o o o o o MZ)=1/9 )‘E(Z) = m
xN t yl y2 y3 y4 Zl ZZ Z3 Z4 ZS
DO o Y,orZ AY,) =-3/13 Ag(Y,) = %
DO-D4 D4 o o o o o J AXZ) =5/13 Ae(Z) = 5
o rowt Wt W vt 2 P2 AP »
DI-D3 D3 o o o o N2 =1/5 @) =gas—
)CN t yl y2 y3 v Z] Z2 Z3 Z4 ZS )
DI o o YoorZ AYy) =-1/3 MY =52 %0 (Yo, Y). 1T
DI-D3 D3 o °o o o J NZ)=1/3 M) =g (ZY), T
Ny v W g 2P S '
D2 o o o VY, &Z 0 MY, =3/11 AE(Y,)=%
D2-D2 D2 o o o ANZ) =3/11  As(2) = %
XN t yl y2 vl ‘U2 Z1 Zl Z3 Z4 ZS - ;
TABLE III. Intersections of two D-branes with p = 1 intersection in cases (I) and (II). Whichever of the two D3’s is time dependent
does not make any difference. No solution provides a realistic brane world model.
Branes 0 1 3 4 5 6 7 8 9 M A(M) Ag (M) BW
DI-D5 D5 o o o o AMZ)=1/5 Ae(2) = ot
W~ ot x y y3 y4 A 2 B A N
DI-D5 D5 o o o o o [ orZz AY,) = —1/7 Ae(Ya) = g
XNt ox v: o ot b 2P A NZ) =3/7 As(2) = %
D2-D4 D4 o o o AZ) = 3/11 Ae(Z) = %
Norox oy oy oy v 2B
D2 o o X&Y, AX)=-3/13 A(X) = 5t
D2-D4 D4 o o o o o J or AY,) = —3/13 Ae(Yy) = %
Norox v v 2 P A Y &Z AY) =D = A(Y) = %D = S
D3 o o °o o X&Y, AX)=-1/3 AX) = it —
D3-D3 D3 o o o or )\(Yz) = _1/3 /\E(YZ) = %
XN r x 'y y 'Ul U2 Zl Zz Z3 Z4 Yl & Z )\(Yl) = )l(Z) = % )‘E(Yl) = )lE(Z) = %

086002-14



COSMOLOGICAL INTERSECTING BRANE SOLUTIONS PHYSICAL REVIEW D 82, 086002 (2010)

TABLE IV. Intersections of two D-branes with p = 2 intersection in cases (I) and (II). Whichever of the two D4’s is time dependent
does not make any difference. The static D3-D5 solution of case (I) provides realistic brane world models.

Branes 0123 456 789 M AM) A (M) BW
D2 o o o DY, &Z 0 MY =3/11 A1) = 57—
D2D6 D6 0 0o o o o o o AZ) =3/11 Ae(D) = 5
xN t xl x2 yl y2 y3 y4 Z1 ZZ Z’%
D2 o o o X&Y, AMX)=-1/15 /\E(i)=%
D2-D6 D6 © o o o o o o [ orZz AY,) = —1/15 /\E(Yz):%
N X2 vl vt vt 2P AMZ) =17/15 /\E(Z)=%
D3 o o o o [ X&Y, AX) = —1/3 A(X) =% (Y, 2), I(s)
D3-D5 D50 o o o o o or AMY,) = —1/3 /\E(Yz)=%
Nt 2ty v 22 Y &Z AY)=AD) =1 Ae(Y) = @) = S
D3o o o o X&Y, AX)=-1/7 X = gt (Y22),16)
D3-D5 D5 o o o o o o [ or AY,) = —1/7 AﬂYzF%
N2y v 22 Y &Z AY)=A2) =3 A(Y) = 4D = g
D4 o o o o o | X &Y, MX) =AYy = =3 4(X) = (o) = 5t
D4-D4 D4 o o o o o or  AY)=AZ)=F A(Y) = Ae2) = 55

thx1x2y1 y2 vl UZZI Z2Z3 Yl&z

TABLE V. Intersections of two D-branes with p = 3 intersection in cases (I) and (II). Whichever of the two D5’s is time dependent
does not make any difference. No solution provides a realistic brane world model.

Branes 01 2 3 4 5 6 7 89 M A(M) As(M) BW

D3 o o o o X aR=-1/3 Ae(®) = 57t
D3D7 D7 ©o o o o o o o o or AY,) =1/3 /\E(Yl)=%

Nl w3 gl g2 3 g g 2 Y, &7 ANZ) =1/3 Ae(Z) = %

D3 o o o o X &Y, AX) =0 M) = et
D3D7 D7 © o o o o o o o J MY,) =0 Ae(Y2) = s

XN t xl )C2 x3 vl 1J2 v'% 1J4 Z1 Z2 :

Di o o o o o JX&Y, M) =AY, =T 2pK) = Ap(Yy) = goptdd
D4D6 DG o o o o o o o o AY) =MD = M) =@ = 5o a

Nt ox o x 3 Yy y v 2 Y, &7 '

Di o o o o o X&Y, MX) =AYy =7 Ap(R) = Ap(Y) = gppii—
D4D6 D6 o o o o °o o o oo AYD =MD =% () = @) = s

o oxb 23y v w2 Y, &7

D5 o o o o o o | X &Yy AMX) = MY2) =5 Ae(X) = Ap(Ys) = gagsi—
D5D5 D5 o o o o o o or MY =AZ) =3 Ae(Y) = D) = S

XN oxt 2 2 oyt oy v g Y, &Z
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TABLE VI. Intersections of two D-branes with p = 4 intersection in cases (I) and (II). Whichever of the two D6’s is time dependent
does not make any difference. D5-D7 solutions of the cases (I) and (II) provide realistic brane world model.

Branes 01 23 456 7 89 M A(M) As(M) BW
D4 o o o o o VX M) =-3/13 Np(R) = et
D4-D8 D8 o o o o o o o o o Y, &Z AY,) =5/13 )\E(Yl):%
DA A L Sl S I U R A AZ)=5/13 As(Z) =%
D4 o o o o o X&Yz AX) = 1/17 )\E(X)Z%
D4DE§ D8 o o o o o o o o o | AY,) =1/17 Ae(Y2) = oo
A A L i S VL TR TR N VA
D50 o o o o o | X&Y; AX) = MYy =5 A(X) = Ap(Yo) = gyt (Y,2), L1
D5-D7 D7 o © o o o o o o or  AY)=A@2) =3 AE(Y1)=/\E(Z)=% (X,2), L1
ANty Y vz Y &Z
D50 o o o o o X &Y, AX) =0 AE(X):% (Y5, 2), 1
D5-D7 D7 © o o o o o o o AY,) =0 As(Ys) =% (X,2), L1
Ao a2y v v g
D6 o o o o o ° o \ X&Yz /\()~()=/\(Y2)=I—51 )\E(X)=/\E(Y2)=%
D6-D6 D6 o o o o o o o or )\(Yl) = )\(Z) = 17—5 /\E(Yl) = %
DA L e A e LA VLN T Y &Z

TABLE VII. Intersections of two D-branes with p = 5 intersection in cases (I) and (II). Whichever of the two D7’s is time dependent
does not make any difference. No solution provides a realistic brane world model.

Branes 0O 1 2 3 4 5 6 7 8 9 M AM) A (M) BW
D6 o o o o o o o | X&Y, XX)=-1/15 MK = Mﬁ

D6-D§ D8 o o o o o o o o o orY, AY,) = —1/15  Ag(Y,) = 15—251+11—2m
Noroxb 2B ¥y Y Y AY,) =7/15 Ae(Y)) = %
D6 o o o o o o o X&Y, AX)=1/17 A(X) = =

D6D8 D8 o o o o o o o o o AYy) =1/17  Ag(Y,) = Wjﬂ}r%
N xR ¥y v
DI o o o o o o o o | X&Y, AX) =0 AeX) = o7

DI-D7 DI o o o o o o o o AY,) =0 Ae(Y,) = 16_%%
)CN t )Cl x2 x% )C4 x5 yl y2 UI U2
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TABLE VIII. Intersections of two D-branes with p = 0 intersection in case (III). Whichever of the two D4’s is time dependent does
not make any difference. No solution provides a realistic brane world model.
Branes 0 1 6 7 8 9 M AM) As(M) BW

DO o Y, &7 MY, =1/9 Ae(Y)) = =gt =
DO-D§ D8 o o o o o AZ)=1/9 Ae(Z) = 57—

N y! ¥y )8 g 2

DO o Y MY =1/17  Ap(Yo) = iy
DO-D8 D8 o o o o o J

N ! v W WS g

DI o ° Y, &Z 0 AY)=1/5 Ae(Y)) = %
DI-D7 D7 o o o o AZ)=1/5 Ae(Z) = %

XN t yl yﬁ y7 v z :

DI o o “ Y, AY,) =0 Ae(Yr) = —16,;2@2{}2,,14
DI-D7 D7 o ° ° ° J

Ny vt U g

D2 o o o Y, &Z A(Y)) =3/11 M) = S
D2-D6 D6 o o ° AZ) =3/11 Ae(Z) = %

XN t yl y() vl v2 z

D2 o o Y2 or )\(Yz) = _]/]5 AE(YZ) = %
D2-D6 D6 o o o o U, &Z AY) =T7/15 (Y = %

N ! vt g N2)=17/15  M@2) =575

D3 o o o o U Yaor A =—1/3 0 Ap(Yy) = it
D3D5 D5 o o Y, &2Z MY =1/3 Ae(Y)) = %

oyl vl 2 W3 g AZ)=1/3 Ae(Z) = %

D3 o o Yoor  AYy) =1/ Ap(Yy) = 2142
D3-D5 D5 o o o o \ Y, &Z AY,) =3/7 Ae(Y)) = %

XN 13 yl U3 U4 'US Z A(Z) = 3/7 AE(Z) = %

b4 e ° o o Vo Yaor o MY ==3/13 0 Ap(Yy) = At
D4-D4 D4 o o Yi&Z  MY)=5/13  A(Y) =g

Nyl v vt g AZ) =5/13 Ap(Z) = l3—df:231g—d4
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TABLE IX. Intersections of two D-branes with p = 1 intersection in case (III). Whichever of the two D5’s is time dependent does
not make any difference. The static D3-D7 solution provides a realistic brane world model.
Branes 01 2 3 4 5 6 7 8 9 M A(M) Ae(M) BW
D2 o o o Y, AY,) =3/11  Ag(Y,) = %
D2-D8 D8 o o o o o o o o o ‘
N ox oy 2 Pt S 0 3Ty
D2 o o o Y, AY)=1/17 (YY) = =it
D2-D8 D8 o o o o o o o o X
Norox oy v w2 v vt v WS Y
D3 o o o o | R&Y, MO=-1/3 %X =pmitisn (XY2) Y)16)
D3D7 D7 o o o o o o o o orY, MY, =-1/3 As(Y,) = %
Aoroxoyhyt oy oyt oy e w2 AYD =1/3  Ae(Y) = gy
D3 o o o o X & Y2 A(X) =0 )\E(X) = m
D3-D7 D7 o o o o o o o AMY2) =0 Ae(Y2) = 72—
N ox oyl w2 W vt oS oS »o
D4 o o o o o / X&Yz )\()N() = _3/13 AE(X)=%
D4-D6 D6 o o o o 0o o or Y,  AYy) =-3/13 Ae(Yy) = %
D A A S A (N VL VERE TR AY)) =5/13  Ag(Y)) = %
D4 o o o o o X&Y, AX)=-1/15 /\E(X)=%
D4-D6 D6 o o o o o o o | orY, AYy)=-1/15 (Y =i
DA T L R VL VR TR N VAR V2 MY, =7/15  Ag(Y)) = 715_72:1]%;51%
D5 o o o o o o | X&Y, MX)=-1/T X)) = 14—25,2—7;1—2513
D3-D5 D5 oo o000 or Yy AYy) =1/ (Y = g
D A A R S A TLN TR VR Vot AY)) =3/7  Ag(Y)) = %
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TABLE X. Intersections of Fl-branes in cases (I) and (II). The F1-D3 solution can provide a realistic brane world model.
p
Branes 01 2 3 4 5 6 7 8 9 M A(M) Ag(M) BW
FI o o U Y &z MY)=1/5 Ae(Y) = gt
FINS5 NS5 © o o o o o MZ)=1/5 M2 =i
XN t x 1 2 3 4 1 2 3 4 ! >
yooyr oy oyt 2Pz
FI o o X&Y, AX)=-1/7 2K = gop—a
FINS5 NS5 © o o o o o Voo MYy =17 Me(Y) = e
Noorox v v W vt 2P A N2) =3/ M) =55
FI o ° oz N2 =1/5 @) =175
FI-DI DI o ’
Nty v P AP S
FI o o -z ANZ)=1/5 @) =g
FI-DI DI o o J ’
)CN t y v Z1 Z2 ZS Z4 ZS Z6 Z7
FI o o oz ANZ)=1/5 @) = =i=5i=a
FI-D2 D2 o o o ’
xN t yl y2 v Z1 Z2 ZS ZS ZS Z6
FI o o -z MZ)=3/11  M(2) =
FI-D2 D2 o 0 J ’
Ny v 2P AP
FI o ° U W&z AY)=1/5 () = g
FID3 D3 o o o o NZ)=1/5 MeD) =
XN t yl y2 y3 v Z] Z2 Z3 Z4 ZS -
Fl o o YoorZ AYy)=-1/3 (Yo = 2% (Yo, Y), 1
FI-D3 D3 o o o o AZ)=1/3 M2) =g5—r  ZY) 1
Ny vhovr W 2P A
Fl o o U Y&z MY)=1/5 () = ga—sa
F1-D4 D4 o o o o o AZ)=1/5 Ae(Z) = ﬁ
.XIN t 1 2 3 4 1 2 3 4 : i
yooyr oy oy v bz 7 Z
FI o o YoorZ A(Yy) =-3/13 (Y, = 2142
FI-D4 D4 o o o o J MZ)=5/13  Ap(2) = %
Ny vt W vt 2P »
Fl o o VY &z MY)=1/5 () =i
FIDS D5 o o o o o o AZ) =1/5 Ae(D) = =5
XN t 1 2 3 4 5 1 2 3 : P
yooyr oy oy y v 2 g
FI o o YoorZ MY, =—1/7 Ag(Yy) = 42
FI-D5 D5 o ° o o o AZ) =31 M@D) = =
B R L VSR V= AR VRN AN SR ]
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TABLE XI. Intersections of Fl-branes in cases (I) and (II). No solution provides a realistic brane world model.

Branes 0O 1 2 3 4 5 6 7 8 9 M A(M) A (M) BW

FlL o ° Y&z AYD=1/5 ) =it
FID6 D6 o o o o o o c NO=1/5 WD) =i

XN t yl y2 y3 y4 y5 y6 v Zl 22

FL oo Yyor Ay =—1/15  Ae(Yo) = 5%
FI-D6 D6 o ° o o o o o Y&z AY) =T7/15 0 Ae(Y) = =g —gr=a;

ANy ot W W vt S 0 2 ANZ) =17/15 Ae(Z) = 7157(12:3237@

F1 o ° DY &z YD =1/5 0 (YD) = gt
FIDT F7 o oo o o o o o NO=1/5  MD)= iy

xN t yl y2 y3 y4 yS y6 y7 v z

FI o o “ Y, A(Y,) =0 Ap(Yr) = %
F1-D7 D7 o o o o o o ) o V - A

XNt y LR TE R VS B VAR VSN VAN V1) Z

FI o o | Y, AYD)=1/5 (V) = 5orsr
F1-D8 D8 o o o o o :

xN t yl y2 y3 y4 yS yﬁ y7 y8 v

F1 o ° ) Y> A(Y,) = 1/17 Ae(Ys) = %
F1-D8 D8 o o o o o o o o o |/ -

XNt y TR TR VS B VAR VS AN VL VA
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TABLE XII. Intersections of NS-branes in cases (I) and (II). Whichever of the two NS5’s is time dependent does not make any
difference. D3-NS5 and D4-NS5 solutions can provide realistic brane world models.

Branes 0 1 4 5 7 8 9 M AM) A (M) BW
NS5 o o ° X& Yy MX)=A(Y2) =3 A() = Ae(Yo) = i,
NS5 NS5 o o °o o or AY) =AZ) =3 (V) = 4@ = gi—d—%—a
x x! yboy? v? ot 2 Y, &Z
DI o Y, & Z AY,) =1/5 A(Y) = s
DI-NS5 NS5 o o o o AMZ)=1/5 A (Z) = %
Wy yoys A 23
DI o o Y, AMY,) = —1/7 Ae(Yr) = %
DI-NS5 NS5 o o o or AY,) =3/7 Ae(Y)) = %
ooy vt 2t 2B Y, &Z ANZ) =3/7 Ae(Z) = %
D2 o o Y, &Z AY,) =3/11 /\E(Yl)=%
D2-NS5 NS5 o o o o AZ) =3/11 Ap(Z) = %
ot x ¥y A 23
D2 o o X&Y, AX) = —1/7 As(X) = %
D2-NS5 NS5 o o o o or AY,) = —1/7 Ae(Y,) = %
Norox v d 22 Y &Z MY)=MD) =3 Ae(Y) = %D = ey
D3 o o X & Y, )\(X) =-1/3 /\E(X) = % (Y2, 2), I(s)
D3-NS5 NS5 o o o o or AMY,y) = —1/3 Ae(Yo) = it
A oy d 22 L&Z MY)=MD) =1 (YD) =A@ = eyt
D3 o o X & Y, AX) = —1/7 /\E(f() = % (Y, Y)), I
D3-NS5 NS5 o o o o or AY,) = —1/7 Ae(Y,) = % (Y, Z), K(s)
N k! vl v? d 2P Y &Z AYD=AMD) =3 (YD) =D =
D4 o o X&Y, MX) =-3/13 ApX) = %
D4-NS5 NS5 o o o o or AMY,) = —3/13 Ae(Y,) = %
N A yioy? 2 2B Y &Z AMY)=AZ) =3 A(Y) = Ae(2) = 50—
D4 o o ° X&Y, MX)=-1/7 AX) = gt (Z,Y), 1
D4-NS5 NS5 o o ° or AYy) = —1/7 Ae(Ya) = = X Y), I
oo A y 2 2P Yi&Z MY)=AM2) =3 () = Ap(2) = =550
D5 o o ° X&Y, AX) = —1/7 A:X) = %
D5-NS5 NS5 o o o o or MYy = —1/7 A (Yy) = i
Wy Xy 7 27 Y, &Z AMY)=M2Z) =2 X(Y) =2 = %
D5-NS5 NS5 o o o or AMY,) = —1/7 Ae(Y,) = %
U * y d 2 Y &Z AY)=AMD) =3 Ap(Y) = ApD) = et
D6 o o o o X&Y, MX)=-1/15 A(X) = %
D6-NS5 NS5 o o °o o orZ MYy =-1/15 Ae(Yo) = it
N X! XX 4 2B AZ) = 17—5 Ae(Z) = %
D6 o o o o X &Y, AX) = —1/7 A:X) = %
D6-NS5 NS5 o o o o orZ AY,) =3/7 As(Y)) = %
WA xS ? 22 AZ) =3/7 A(Z) = et
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TABLE XIII. Intersections of NS-branes in case (III). Whichever of the two NS5’s is time dependent does not make any difference.
D7-NS5 solutions can provide realistic brane world models.
Branes 01 2 3 4 5 6 7 8 9 M AM) As(M) BW
NS5 o o o o o o | X&Y, XX)=-1/7 Ae(X) = i
NS5 NS5 o o o o o o or Y, AY,) = —1/7 Ae(Y,) = M’.ﬁ
Nt ox oy oyr oy oyt vl 2 WPt AY,) =3/7 Ae(Y)) = %
D3 o o o o Y, or AY,) = —1/3 Ae(Y,) = —12:1(21::[3;;1014
D3-NS5 NS5 o o o o o o Y, &Z  AY,)=1/3 Ae(Y)) = %
B AR S L R B o VL YL VS B AZ)=1/3 Ap(Z) = %
D3 o o o o Yyor Ay =-1/7 Ae(Yo) = 550
D3-NS5 NS5 o o o o o o 'Y, &Z  A(Y)) =3/7 As(Y)) =%
D AR S L S A VLR VR VA B VA T MNZ) =3/7 Me(Z2) = %
D4 o o o o o CX&Y, AX)=-3/13 0 A(X) = Ae(Yo) = gt s
D4-NS5 NS5 o o o o o o or AY,) = =3/13  Ag(Y)) = Ae(2) = Hj‘j’ﬁ
oo ox oy oy oy oyt vl W W g Y, &Z AY) =AM2) =5
Di o o o o o X&Y, MX)=-1/7 %X =Y = g
D4-NS5 NS5 o o o o o o or MYy =—1/T  Ae(Y)) = D) = gy—d=%—
XNt ox oyt yr oy ol w2 W3 vt g Y, &Z ANY,)) = A2) =%
D5 o o o o o o [ X&Y, AX)=-1/7 X)) = Ag(Y,) = %
D5-NS5 NS5 © o o o o o or AMYy) = —1/7T  Ae(Yy) = Ag(Z) = %
DA A L S A L AN VLN VLR VR4 Y, &Z MY, =AZ) =3
D5 o© o o o o o X&Y, MX)=-1/7 12X = (Y, = H;’]j%
D5-NS5 NS5 o o o o o o or MY, = —1/7  A(Y)) = Ae(Z) = #ﬁzdm
B AR S L R R L YL T B Y, &Z AY)) = A?Z) :%
D6 o o o o o o o ' X&Y, MX)=-1/15 A(X) = Ag(Y,) = H;ﬂ%
D6-NS5 NS5 o o o o o o or  AYy) =—1/15 Ae(Y) = As(2) = 59—
XN X 2 3yt Y2 ol v W g Y, &Z AMY)=AZ)= % ‘
D6 o o o o o o o X&Y, AR =-1/T  AK) = 2(Yy) = g
D6-NS5 NS5 o o o o 0 or MYa) = —1/T  A(Y)) = D) = gy —4=%—
B AR S e S L (L R VL T Y, &Z ANY)) = A2) =%
D7 o o o o o o o o | X&Y, AX) =0 M) = o (Y5 Y))
D7-NS5 NS5 o o o o o o AY,) =0 Ae(Ys) = g s X, Y)
oo xRy v v g )
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XN t )Cl x2 x3 x4 )C5 yl y2 y3 z

086002-22



COSMOLOGICAL INTERSECTING BRANE SOLUTIONS
TABLE XIV. The power exponent of the fastest expansion in the Einstein frame for M-brane. “TD” in the table shows which brane

is time dependent.

PHYSICAL REVIEW D 82, 086002 (2010)

Branes TD dim(M) M (dy, dy, ds, dy) A (M) Case
M2-M2 M2 9 Y, &Z (0, 2,0,0) 3/10 I
M2 9 Y, &Y, &Z 0,0, 1, 0) 1/5 II
M2 7 X&Y,&2Z (0, 4, 0, 0) 3/8 I
M2 10 Y, &Y, & Z (1, 0,0, 0) 1/5 II
M2-M5 M2 10 X&Y, &7Z 0,0, 1, 0) 1/5 II
M5 10 X&Y,&2Z 0, 1,0, 0 3/7 I
M5 10 Y, &Y, & Z (1, 0,0, 0) 5/13 II
M5 10 X&Y, &Y, & 7Z 0,0, 1,0 5/13 II
M5 9 X&Y,&2Z (0, 2,0, 0) 6/13 I
M5-M5 M5 10 X&Y, &Y, & 7Z (1, 0,0, 0) 5/13 II
M5 10 X&Y &Y, &7 0,0, 1,0 5/13 II
M5 10 X&Y, &Y, 0, 0,0, 1) 3/7 111

TABLE XV. The power exponent of the fastest expansion in the Einstein frame for D-brane of cases (I) and (II) (p = 0). “TD” in

the table shows which brane is time dependent.

Branes TD dim(M) M (dy, dy, ds, dy) Ae(M) Case
DO 6 Z 0, 4,0, 0) 1/5 1
DO0-D4 DO 10 Y, &Z 0,0, 0,0 1/9 I
D4 9 Y, &7 0,0,1,0) 4/11 I1&10
DI 7 Y, &Z 0, 3, 0, 0) 2/7 I
D1-D3 D1 9 Y, &7 0,0,1,0) 1/8 11
D3 9 Y, &7 0, 1,0,0) 4/11 1
D3 9 Y, &Y, & Z 0,0, 1, 0) 3/10 1
D2-D2 D2 8 Y, &7 0, 2,0,0) 1/3 1
D2 9 Y, &Y, & Z 0,0, 1, 0) 2/9 11

TABLE XVI. The power exponent of the fastest expansion in the Einstein frame for D-brane of cases (I) and (Il) (p = 1). “TD” in

the table shows which brane is time dependent.

Branes TD dim(M) M (dy, dy, ds, dy) A(M) Case
D1 6 X&Z (0, 4, 0, 0) 1/3 I
DI1-D5 D1 9 Y, &Z (1,0, 0,0 1/8 II
D5 9 Y, &Z (1,0, 0,0 5/12 [&1I
D5 9 X&Y, &7Z 0,0, 1, 0) 5/12 [&1I
D2 7 X&Y,&7Z (0, 3,0, 0 3/8 I
D2 9 Y, &Y, &Z (1,0, 0, 0) 2/9 II
D2-D4 D2 9 X&Y, &7Z (0, 0, 1, 0) 2/9 I
D4 9 X&Y, &7Z (0, 1,0, 0) 5/12 I
D4 9 Y, &Y, & Z (1,0,0,0) 4/11 II
D4 9 X&Y, &Y, &Z 0,0, 1,0) 4/11 Il
D3 8 X&Y, &7Z (0, 2,0, 0) 2/5 I
D3-D3 D3 9 Y, &Y, & Z (1, 0,0, 0) 3/10 II
D3 9 X&Y, &Y, &Z 0,0, 1,0 3/10 Il
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TABLE XVII. The power exponent of the fastest expansion in the Einstein frame for D-brane of cases (I) and (II) (p = 2). “TD” in
the table shows which brane is time dependent.

Branes TD dim(M) M (dy, d5, d3, dy) As(M) Case
D2 6 X&Z (0, 4,0, 0) 3/7 I
D2-D6 D2 9 X&Y, &Z (1,0, 0, 0) 2/9 II
D6 9 X&Y, &7Z (1,0, 0, 0) 6/13 [&1I
D6 9 X&Y,&7Z 0,0, 1,0 6/13 [& 11
D3 7 X&Y, &7Z (0, 3, 0, 0) 4/9 I
D3 9 X&Y, &Y, &2Z (1, 0,0, 0) 3/10 I
D3-D5 D3 9 X&Y, &2Z 0,0, 1,0 3/10 II
D5 9 X&Y,&7Z (0,1, 0,0 6/13 I
D5 9 X&Y, &Y, &Z (1,0, 0,0 5/12 II
D5 9 X&Y, &Y, &Z 0,0, 1,0) 5/12 II
D4 8 X&Y,&7Z (0,2,0,0) 5/11 I
D4-D4 D4 9 X&Y, &Y, &Z (1, 0,0, 0) 4/11 II
D4 9 X&Y, &Y, &2Z (0, 0, 1, 0) 4/11 I

TABLE XVIII. The power exponent of the fastest expansion in the Einstein frame for D-brane of cases (I) and (I) (p = 3). “TD” in
the table shows which brane is time dependent.

Branes TD dim (M) M (dy, dy, ds, dy) As(M) Case
D3 7 X&Y, &Z (0, 3,0, 0 4/9 I
D3-D7 D3 9 X&Y, &Z (1,0, 0,0) 3/10 I
D7 10—d X&Y, & ZorX&ZorY, &Z (d, 0, d5, 0) 0 [&1I
D4 8 X&Y, &Y, & Z 0,2,0,0) 5/11 I
D4 9 X&Y, &Y, &Z (1,0,0,0) 4/11 il
D4-D6 D4 9 X&Y, &7Z 0,0, 1,0 4/11 II
D6 9 X&Y &Y, &Z (1, 0,0, 0) 6/13 [ &I
D6 9 X&Y, &Y, & Z 0,0, 1,0 6/13 [& 11
D5 9 X&Y, &Y, & Z 0, 1,0, 0) 6/13 I
D5-D5 D5 9 X&Y, &Y, & Z (1,0, 0,0 5/12 II
D5 9 X&Y, &Y, &Z 0,0, 1, 0) 5/12 II
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TABLE XIX. The power exponent of the fastest expansion in the Einstein frame for D-brane of cases (I) and (II) (p = 4). “TD” in
the table shows which brane is time dependent.

Branes TD dim(M) M (dy, d», d3, dy) Ae(M) Case
D4 8 X&Y, &2Z (0, 2,0,0) 5/11 I
D4 9 X&Y, &Z (1, 0,0, 0) 4/11 II
D4-D8 D8 5 Y, &Z 4,0,1,0) 1/7 [&1I
D8 5 X&Z (1,0, 4,0 1/7 [&1I
D8 5 X&Y,&7Z (3,0,2,0 1/7 [& 11
D8 5 X&Y, &7Z 2,0,3,0) 1/7 [&1I
D5 9 X&Y, &Y, &Z 0, 1,0, 0) 6/13 I
D5 9 X&Y, &Y, &7 (1,0, 0,0 5/12 II
D5 9 X&Y, &7Z 0,0, 1, 0) 5/12 II
D5-D7 D7 5 Y, &Z 4,1,0,0) 1/6 I
D7 5 X&Y, &7Z (3,1,1,0) 1/6 I
D7 5 X&Y,&7Z 2,1,2,0) 1/6 I
D7 5 X&7Z (1,1,3,0) 1/6 I
D7 10—d X&Y, &Y, &Zor X &Y, & Zor Y, &Y, & Z (d,, 0, ds, 0) 0 Il
D6-D6 D6 9 X&Y, &Y, &Z (1,0, 0,0 6/13 [& 11
D6 9 X&Y, &Y, &Z 0,0, 1,0 6/13 [&11

TABLE XX. The power exponent of the fastest expansion in the Einstein frame for D-brane of cases (I) and (II) (p = 5). “TD” in
the table shows which brane is time dependent.

Branes TD dim(M) M (dy, dy, ds, dy) Ap(M) Case
D6 9 X&Y, &Y, &2Z (1,0,0,0) 6/13 [&1I
D6 9 X&Y, &Y, &7 0,0, 1, 0) 6/13 [& 11
D8 5 Y, &Y, (5,1,0,0) 1/3 I
D8 5 X&Y, 4,1,1,0) 1/3 I
D8 5 X&Y, (3,1,2,0 1/3 I

D6-D8 D8 5 X 2,1,3,0 1/3 I
D8 6 Y, &Y, (5,0,0,0) 1/7 II
D8 6 X&Y, &Y, 4,0,1,0) 1/7 II
D8 6 X&Y, &Y, (3,0,2,0) 1/7 i
D8 6 X&Y, &Y, 2,0,3,0) 1/7 II
D7 4 X&Y, “4,2,0,0) 1/3 I
D7 4 X&Y, (3,2, 1,0 1/3 I

D7-D7 D7 4 X (2,2,2,0) 1/3 I
D7 10—d X&Y, & Y,or X &Y, (d,, 0, dy, 0) 0 I

TABLE XXI. The power exponent of the fastest expansion in the Einstein frame for D-brane of case (III) (p = 0). “TD” in the table
shows which brane is time dependent.

Branes TD dim (M) M (dy, dy, ds, dy) As(M) Case
DO0-DS DO 9 Y, 0, 0,0, 1) 1/8 1
DS 9 Y, 0,0,0,1) 1/8 11T
D1-D7 D1 9 Y, &Y, 0,0,0, 1) 2/9 11T
D7 9 Y, &Y, 0, 0,0, 1) 1/15 |
D2-D6 D2 9 Y, &Y, 0,0,0,1) 3/10 11T
D6 9 Y, &Y, &7 0,0, 1,0 6/13 11T
D3-D5 D3 9 Y, & Y, 0, 0,0, 1) 4/11 1
D5 9 Y, &Y, 0, 0,0, 1) 6/13 it
D4-D4 D4 9 Y, &Y, 0,0,0,1) 5/12 11T

086002-25



MINAMITSUII, OHTA, AND UZAWA

TABLE XXII.

table shows which brane is time dependent.

PHYSICAL REVIEW D 82, 086002 (2010)

The power exponent of the fastest expansion in the Einstein frame for D-brane of case (III) (p = 1). “TD” in the

Branes TD dim (M) M (dy, dy, d3, dy) Ap(M) Case
D2-D8 D2 9 Y &Y, (1,0, 0, 0) 2/9 I
D8 9 Y, &Y, (1,0, 0,0) 1/15 I
D3 9 Y &Y, (1,0, 0, 0) 3/10 11
D3-D7 D7 10 X&Y, &Y, (0, 0, 0, 0) 0 I
D7 9 Y, &Y, (1,0, 0,0) 0 I
D4-D6 D4 9 Y, &Y, (1, 0,0, 0) 4/11 11
D6 9 Y, &Y, (1,0, 0, 0) 6/13 I
D5-D5 D5 9 Y, &Y, (1,0, 0, 0) 5/12 111

TABLE XXIII.

table shows which brane is time dependent.

The power exponent of the fastest expansion in the Einstein frame for F1-string of cases (I) and (I[). “TD” in the

Branes TD dim (M) M (dy, dy, ds, dy) Ae(M) Case
F1 6 X&Z (0, 4,0, 0) 1/3 I
F1-NS5 F1 9 Y, &Z (1,0, 0, 0) 1/8 1
NS5 9 Y, &Z (1,0, 0, 0) 5/12 &1
NS5 9 X&Y, &Z 0,0,1,0) 5/12 1 & 11
F1 9 Y, &Z (0, 1, 0, 0) 2/9 I
F1-D1 F1 9 Y, &Z 0,0,1,0) 1/8 II
DI 9 Y, & Z 0, 1, 0, 0) 2/9 I
D1 9 Y, &Z 0,0,1,0) 1/8 11
F1 8 Y, &Z 0, 2,0, 0) 1/4 1
F1-D2 F1 9 Y, &Z 0,0,1,0) 1/8 II
D2 9 Y, &Z 0, 1,0, 0) 3/10 1
D2 9 Y, &Y, & Z (0,0, 1, 0) 2/9 i
F1 7 Y, &Z 0, 3,0, 0) 2/7 1
F1-D3 F1 9 Y, &Z (0,0, 1, 0) 1/8 I
D3 9 Y, &Z 0, 1,0, 0) 4/11 1
D3 9 Y, &Y, &Z 0,0,1,0) 3/10 II
F1 6 Y, &Z (0, 4, 0, 0) 1/3 I
F1-D4 F1 9 Y, &Z 0,0,1,0) 1/8 II
D4 9 Y, &Z 0, 1,0, 0) 5/12 1
D4 9 Y &Y, &Z 0,0, 1,0) 4/11 II
F1 5 Y, &Z 0, 5,0, 0) 2/5 1
F1-D5 F1 9 Y, &Z 0,0,1,0) 1/8 II
D5 9 Y, &Z 0, 1,0, 0) 6/13 1
D5 9 Y, &Y, & Z (0,0, 1, 0) 5/12 i
F1 5 Y, &Y, &Z (0, 5,0, 0) 2/5 I
F1-D6 F1 9 Y, &Z 0,0,1,0) 1/8 II
D6 9 Y, &Y, & Z (0,0, 1, 0) 6/13 [& 11
Fl 5 Y, &Y, &Z (0, 5, 0, 0) 2/5 I
F1-D7 F1 9 Y, &Z (0,0, 1, 0) 1/8 1I
D7 5 Y, &Z 0,1, 4,0) 1/7 1
D7 10 — d, Y, &Y, & Z (0,0, ds, 0) 0 I
Fl 5 Y, &Y, (0, 5,0, 0) 2/5 I
F1-D8 F1 9 Y, 0,0, 1,0) 1/8 II
D8 4 Y, 0, 1,5, 0) 1/3 1
D8 5 Y, &Y, (0, 0, 5, 0) 1/7 I
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TABLE XXIV. The power exponent of the fastest expansion in the Einstein frame for NS-brane of cases (I) and (II). “TD” in the

table shows which brane is time dependent.

PHYSICAL REVIEW D 82, 086002 (2010)

Branes TD dim (M) M (dy, dy, d3, dy) Ap (M) Case
NS5 9 X&Y, &Y, &Z 0, 1, 0, 0) 6/13 I
NS5-NS5 NS5 9 X&Y, &Y, & Z (1,0, 0, 0) 5/12 II
NS5 9 X&Y, &Y, & Z 0,0, 1, 0) 5/12 II
D1 5 Y, & Z (0, 5, 0, 0) 2/5 I
DI1-NS5 DI 9 Y, &2 0,0, 1,0 1/8 II
NS5 9 Y, & Z 0, 1, 0, 0) 6/13 I
NS5 9 Y, &Y, &7Z 0,0, 1, 0) 5/12 II
D2 6 X&Y, &Z (0, 4, 0, 0) 3/7 I
D2 9 Y, &Y, &7Z (1,0, 0, 0) 2/9 II
D2-NS5 D2 9 X&Y, &Z 0,0, 1, 0) 2/9 11
NS5 9 X&Y, &2Z 0, 1, 0, 0) 6/13 I
NS5 9 Y, &Y, & Z (1,0, 0,0 5/12 I
NS5 9 X&Y, &Y, & Z 0,0, 1, 0) 5/12 11
D3 7 X&Y, &Z (0, 3,0, 0) 4/9 I
D3 9 X&Y, &Y, & Z (1,0, 0, 0) 3/10 11
D3-NS5 D3 9 X&Y, &2Z 0,0, 1, 0) 3/10 1T
NS5 9 X&Y, &Z 0, 1,0, 0) 6/13 I
NS5 9 Y, &Y, &7Z (1, 0,0, 0) 5/12 II
NS5 9 X&Y, &Y, &2Z 0, 0, 1, 0) 5/12 II
D4 8 X&Y, &Z (0,2, 0,0 5/11 I
D4 9 X&Y, &Y, & Z (1, 0, 0, 0) 4/11 11
D4-NS5 D4 9 X&Y, &2 0,0, 1, 0) 4/11 II
NS5 9 X&Y, &Z 0, 1, 0, 0) 6/13 I
NS5 9 X&Y, &Y, & Z (1,0, 0, 0) 5/12 II
NS5 9 X&Y, &Y, & Z 0,0, 1, 0) 5/12 II
D5 9 X&Y, &Z 0, 1, 0, 0) 6/13 I
D5 9 X&Y, &Y, & Z (1,0, 0, 0) 5/12 II
D5-NS5 D5 9 X&Y, &2Z 0,0, 1, 0) 5/12 11
NS5 9 X&Y, &Z 0, 1,0, 0) 6/13 I
NS5 9 X&Y, &Y, & Z (1,0, 0, 0) 5/12 11
NS5 9 X&Y, &2 0,0, 1, 0) 5/12 11
D6 9 X&Y, &Z (1,0, 0, 0) 6/13 [&1I
D6-NS5 D6 9 X&Z 0,0, 1, 0) 6/13 [&1I
NS5 9 X &7 0, 1, 0, 0) 6/13 I
NS5 9 X&Y, &2Z (1,0, 0, 0) 5/12 11
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TABLE XXV. The power exponent of the fastest expansion in the Einstein frame for NS-brane of case (III). “TD” in the table shows
which brane is time dependent.

PHYSICAL REVIEW D 82, 086002 (2010)

Branes TD dim (M) M (dy, dy, d3, dy) As (M) Case
NS5-NS5 NS5 9 Y, &Y, (1, 0,0, 0) 5/12 I
D3-NS5 D3 9 Y, &Y, 0,0,0, 1) 4/11 1
NS5 9 Y, &Y, 0, 0,0, 1) 6/13 I
D4-NS5 D4 9 X&Y, &Y, 0,0,0, 1) 5/12 1
NS5 9 X&Y, &Y, 0, 0,0, 1) 6/13 11
D5-NS5 D5 9 X&Y, &Y, 0,0,0, 1) 6/13 I
NS5 9 X&Y, &Y, 0, 0,0, 1) 6/13 11
D6-NS5 D6 9 X&Y, &Y, &Z (1, 0,0, 0) 6/13 I
NS5 9 X&Y, &Y, 0,0,0, 1) 6/13 11
D7-NS5 D7 5 Y, &Y, 4, 0,0, 1) 1/7 11
NS5 9 X&Y, &Y, 0,0,0, 1) 6/13 11
D8-NS5 D8 4 Y, (5,0,0, 1) 1/3 11
NS5 9 X &Y, 0,0,0, 1) 6/13 11
TABLE XXVI. Future singularity of brane worlds in case (I) with Ay < 0.
Future singularity Type Intersecting branes
a=0 D D1-D3(Y,, Z), D7-D5(Y,, Z), D2-D4(Y,, Z),
D3-D5(Y,, Z), D5-D7(Y,, Z), D7-D5(X, Z)
M M2-M5(Y,, Z)
F1 F1-D3(Y,, Z)
NS5 D3-NS5(Y,, Z)
a= o D D3-D1(Y,, Z), D4-D2(Y,, Z), D5-D3(Y,, Z), D5-D7(X, Z)
M M5-M2(Y,, Z), M5-M5(X, Z)
F1 D3-F1(Y,, Z)
NS5 NS5-D3(Y,, Z), D4-NS5(X, Z), NS5-D4(X, Z)

TABLE XXVII.

Future singularity of brane worlds in case (II) with A, <O0.

Future singularity Type Intersecting branes
a=0 D D3-DI(Z,Y,), D3-DI1(Y,, Y,), D2-D4(Y, Z),
D3-D5(Y,, Z), D5-D7(Y, Z), D7-D5(X, Z)
M M2-M5(Y, Z), M2-M5(Z, Y ), M5-M2(Y,, Z)
Fl1 F1-D3(Y,, Z), F1-D3(Z, Y,), D3-F1(Y,, Y,), D3-F1(Z, Y,)
NS5 D3-NS5(Y, Z), D3-NS5(Z, Y), NS5-D3(Y}, Z), NS5-D3(Y,, Y),
D4-NS5(Z, Y;), NS5-D4(X, Y,), NS5-D4(Z, Y,)
a=o D D5-D7(X, Z)
M M5-M5(X, Z)
F1 D3-F1(Y,, Z)
NS5 NS5-D4(X, Z)
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TABLE XXVIII. Future singularity of brane worlds in case (III) with Ay <O0.

Future singularity Type Intersecting branes
a=0 D D5-D3(Y, Y,), D6-D4(Y,, Y,)
NS5 D6-NS5(X, Z), D5-NS5(Y, Y,), D7-NS5(Y5, Y;), D7-NS5(X, Y)
NS5-D3(Y;, Y,), NS5-D4(Y,, Y5), NS5-D5(Y, Y,), NS5-D7(Y;, Y,), NS5-D7(X, Y,)
a= 00 D D3-D5(Y,, Y;), D4-D6(Y,, Y,), D3-D7((X, Y,), Y;)
NS5 D3-NS5(Y>, Y;), D4-NS5(Y>, Y;), D5-NS5(Y>, Y;), NS5-D3(Y>, Y;), NS5-D4(Y>, Y;),

NS5-D5(Y,, Y1), NS5-D7(Y,, Y)

TABLE XXIX. Solutions with d? = h¢~" with ¢ > 1.

Case Intersecting branes

I D7-D5(Y,, Z), D7-D5(X, Z)

II D3-D1(Y5, Y;), D7-D5(X, Z), D3-F1(Y,, Y,), D3-F1(Z, Y;), NS5-D3(Y,, Y;), NS5-D4(X, Y,)
m D6-NS5(X, Y;), D7-NS5(Y,, Y;), D7-NS5(X, Y;), NS5-D7(X, Y,)

TABLE XXX. Solutions which give codimension-one brane world models.

Case Type Intersecting branes

I (a) D7-D5(Y,, Z), D5-D7(Y,, Z), D7-D5(X, Z), D5-D7(X, Z)
(b) No solution

I (a) D3-D1(Z, Y;), D3-D1(Y,, Y;), D3-F1(Y,, Y,), D3-F1(Z, Y;), NS5-D3(Y,, Y;), NS5-D4(X, Y;), NS5-D4(Z, Y,)
(b) D5-D7(Y,, Z), D7-D5(X, Z), D5-D7(X, Z)

m (a) D7-NS5(Y,, Y,), D7-NSS():(, Y)
(b) NS5-D7(Y;, Y,), NS5-D7(X, Y»)

TABLE XXXI. The possible future singularities for the codimension-one brane world for Ay < 0. “(In)finite”” means that the brane
world reaches the singularity within a (in)finite proper time.

Case a=0 a= o
I D7-D5(Y,, Z), D7-D5(X, Z)
Finite Il D3-D1(Y,, Y;), D7-D5(X, Z), D3-F1(Y,, Y;), D3-F1(Z, Y,) NS5-D3(Y,, Y;), NS5-D4(X,Y,)  No solution
11 NS5-D7(X, Y,), D7-NS5(Y,, Y,), D7-NS5(X, Y,)
I D5-D7(Y,, Z) D5-D7(Y,, Z)
Infinite I D5-D7(Y4,Z), D3-D1(Z, Y,), NS5-D4(Z, Y,) D5-D7(X, Z)
11 NS5-D7(Y,, Y,)

TABLE XXXII. Static solutions which give a constant effective gravitational coupling in the
limit of & — oo,

Case n Intersecting branes M
4o (M,C—M,B)?*
I 3 D5-D3(Ys, Z), NS5-D3(Y5, Z) e
40. C— 2
I 3 D3-D5(Y, Z), D3-NS5(Y}, Z) e
11 6 D3-D7((X, Y1), Y1) <

1870 M2
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