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Nonsupersymmetric strong coupling background from the large N quantum mechanics
of two matrices coupled via a Yang-Mills interaction
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We derive a planar sector of the large N nonsupersymmetric background of the quantum mechanical
Hamiltonian of two Hermitian matrices coupled via a Yang-Mills interaction, in terms of the density of
eigenvalues of one of the matrices. This background satisfies an implicit nonlinear integral equation, with
a perturbative small coupling expansion and a solvable large coupling solution, which is obtained. The
energy of system and the expectation value of several correlators are obtained in this strong coupling limit.

They are free of infrared divergences.
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I. INTRODUCTION

The study of multimatrix models,' and particularly their
large N limit [1], is of great interest. It is well known, for
instance, that the large N limit of their description of DO
branes [2] has been conjectured to provide a definition of
M theory [3]. In the context of the AdS/CFT duality [4-6],
due to supersymmetry and conformal invariance, cor-
relators of supergravity and 1/2 Bogomol’nyi-Prasad-
Sommerfeld monopoles (BPS) states reduce to calculation
of free matrix model overlaps [7,8] or consideration of
related matrix Hamiltonians [9]. For stringy states, in the
context of the Berenstein-Maldacena-Nastase (BMN) limit
[10] and N = 4 Super Yang-Mills (SYM), similar con-
siderations apply [11-13]. A plane-wave matrix theory
[14] is related to the N =4 SYM dilatation operator
[15]. Recently, multimatrix, multitrace operators with
diagonal-free two point functions have been identified
[16,17]. In earlier works [18-20] it has been argued that
QCD can be reduced to a finite number of matrices with
quenched momenta.

In this communication we will consider the quantum
mechanics of two Hermitian matrices with harmonic po-
tentials, interacting through a standard Yang-Mills quartic
potential.

We will use the approach, first developed in [21], of
treating one of the matrices, which generates the large N
planar background, in a coordinate representation, and the
other in a creation/annihilation basis. This was done in the
context of 1/2 BPS states and a dual- free harmonic
Hamiltonian [8,9] with the matrix generating the back-
ground being the holomorphic component of a complex
matrix. A precise phase space identification between the
collective density description of the dynamics of this ma-
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trix [22], and the droplet description of the Lin-Lunin-
Maldacena (LLM) [23] metric is obtained [21]. The gen-
eralization of this approach to include gyy; interactions
was developed in [24]. By considering the planar back-
ground generated by of one of the two Hermitian matrices,
further properties of the spectrum were established in [25].

In [21,24,25], a supersymmetric setting was always
assumed, allowing one to consistently neglect normal
ordering terms. As a result, the planar background is
harmonic, and gvy); independent.

In this communication we explore the consequences of
not requiring supersymmetry, and establish a gvy; depen-
dent density description of a planar sector of the large N
limit of the system. The communication is organized as
follows: in Sec. II, the Hamiltonian of the two interacting
harmonic matrices is introduced. It is shown how a
Bogoliubov transformation brings the Hamiltonian to a
form quadratic in the creation/annihilation oscillators of
one of the matrices, with frequencies having a square root
dependence on the eigenvalues of the other matrix [24].2
The sector of the Hamiltonian contributing to the planar
large N background is identified, and it corresponds to the
ground state of the creation/annihilation sector. Several
important subtleties are pointed out and addressed, and
an Hamiltonian which depends only on degrees of freedom
of the first matrix is derived. In Sec. III, the planar back-
ground for this Hamiltonian, in terms of its density of
eigenvalues, is obtained implicitly through a nonlinear
integral equation. In Sec. IV, the strong coupling limit of
the background is obtained explicitly. In Sec. V, the rele-
vance of this strong coupling limit to the system of two
massless Hermitian matrices interacting through the Yang-
Mills potential is highlighted. This background is free of
infrared divergences. Section VI is reserved for a summary
and discussions.

2See also [26]
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II. MODEL HAMILTONIAN AND PLANAR
LARGE N SECTOR

We consider the quantum mechanical Hamiltonian

aq

1 w2 1 w2
3 Tr(P?) + > Tr(X?) + 3 Tr(P3) + > Tr(X3)
— gynTr([X,, X, 11X, X)), (1)

where X; and X, are two N X N Hermitian matrices, and
Py and P, their conjugate momenta, respectively.

We will consider the system to be gauged, i.e., we
restrict ourselves to (residual) gauge invariant states.

One can think of (1) as associated with two of the six
Higgs scalars of the bosonic sector of N = 4 SYM, in the
leading Kaluza-Klein compactification on S X R. The
harmonic potential results from the coupling to the curva-
ture of the manifold. It should be borne in mind that we do
not require supersymmetry. Alternatively, compactification
of QCD, on a sphere results in a similar Hamiltonian.

We will follow the approach first suggested in [21] of
treating one of the matrices, X, in coordinate space and
exactly (in the large N limit), and the other, X,, in a
creation/annihilation basis. Letting

1

o= ral)  p— S -ah

the Hamiltonian (1) takes the form

AW t 2 VW
A =3 Te(P}) + = Tr(X]) + wTr(AJAy) + N2

2
8
- % Tr(z[Xl: A;][le Az] + [Xl,Az]z

2 2
+ 1, A1) + S5 i) — 0 o, )

As the interaction is quadratic in the oscillators, one can
perform a Bogoliubov transformation

(VTAZV)U = cosh(¢;;)B;; — Sinh(qsij)B;.ri S
with
i (), — A,
w + g%TM(/\,‘ - /\j)z

tanh(2¢;;) = , (5)

where the A;’s are the eigenvalues of the matrix X; and V
is the unitary matrix that diagonalizes X;. Then (3) takes
the form

N 1 w2 N
A =3 TP + = Tr(x}) + S W+ 28(A — A2

ij=1

1
1.
X (BUB it 5). (6)

We are interested in the leading large N configuration of
the system and, in particular, for the purposes of this
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communication, in the sector with no B quanta. This comes
from the zero point energies of the B, BT oscillators, and
we are therefore lead to the Hamiltonian

A1 5 w? )
HO = E TI'(PI) + 7 TI'(XI)

1 N
=3 V28, - A2 (D)
=

This seemingly simple Hamiltonian, however, hides at
least two facts: first, the oscillators B, Bt depend on
degrees of freedom of X;. As a result, for instance, P,
does not commute with B or Bt. Secondly, the state with no
B impurities also contains dependence on the eigenvalues
A i of X 1-

The Hamiltonian (7) therefore requires careful treat-
ment. We start, in the next subsection, by first deriving a
canonical transformation that restores the standard com-
mutators with appropriately shifted operators.

A. Canonical transformation

Rather than working in a creation/annihilation basis, we
note that B, B;rj are the creation and annihilation operators
associated with the scalar fields

X,=vix,y P,=vip,V.

We find it easier to work with (P,);; and (X,);;, instead of
B, Bt. The commutator of (P,),> with these scalar fields is
nonzero, and has the form

[(P))a (X2)B] = —iFEC(X,)c, (8)

[(P))a, (P))B] = —iF§C(Py)c. 9

Therefore, we perform a canonical transformation of P, to
get its commutator with P, and X, equal to zero. This
canonical transformation is given as

(P)a = (P + FB(X5)p(Py) . (10)

It can be shown that the commutator of (P,) 4 with (P,)8
and (X,)? is indeed zero, provided F,2¢ = —F,CB.
The explicit form of F,5¢ follows from (8), and it takes
the form

ch paim — ch,qp,ml
ViV
_ ﬁ(] — 5,00,
V{jdvcl 58
+ )lq — )\1(1 - ql) pm-* (11)

3We have introduced a double index notation and metric, i.e.,
if A= (l]), TA = T’J and TA = le
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This is the expression for F ABC, with A = (cd),
= (pq) and C = (Im). Tt can be easily verified that
F ABC =—F,°

B. Effective X; Hamiltonian
For the P,, X, sector of (7), the ground state configura-
tion with “no X, impurities” is given by

| o
Wy = exp(; X ey — 3 0aT)(X) - (12)
A

with

N
Wy = w; = X AW+ 20— A)2. (13)
lj=1

Given the dependence of W, on A;, P, ¥, # 0. This will
result in a shift of the kinetic term in the “1”° sector of the
Hamiltonian, in addition to the shift resulting from the
canonical transformation of P; discussed in the previous
subsection.

We are then led to introduce the effective X;
Hamiltonian defined as

A, = [d}?zllfo(/\, Xo)HoWo(A, X5) (14)

which now acts on functions of X; only.
As a result of the canonical transformation obtained in
the previous subsection, one has

1
EP/?PM\I’O()\, X5)

1
— E(P? — FABCX,5Pyc)

X (Pig = F\BC X Pyc)Wo(A, X>)

1
= E(P?Pm [P}, F B X5 Poc] — 2F \BC X3 Py Pt

+ FABCX o Py F 4P Xop Pac) Wo (A, X5) (15)

where, for simplicity of notation, we have dropped the
bar sign.

Details of the computation of the expectation values
required by (14) are given in the Appendix. The result is

i 1 | we
SPiP,— EP?PM ~3 ZFABCFABC(l - _>
ABC Wp

2
1
+E6A lanE)Alna)B. (16)

The above equation can be simplified using the explicit
expression for F, 8¢ given in (11), yielding

ZFABCFAB _ (1 - 5pm)5ql (1 - 6q1)8pm

A ¢ ()lp - )\m)z ()\q - Al)z

Therefore,
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S pm)
ng BCFABc(l_ ) Z(/\ _f)z

ABC p Lm
X (1 — %>
(l)[p
Thus, from (16), we finally obtain

1 1 -0 ) W
—PAP,— P P P ( —'")
2 “ " p%n (A- - Am)z Wip

1
+—68Alna)36A IIICUB (17)

and we arrive at the following expression for H:

A 1 8 ) )
- 1)
1= 5" p%u —2,,)? Wi,
1
+1—68Alnw36‘41na)3+§§a)14. (18)

It is important to note that the effective potential depends
only on the eigenvalues of X, and therefore one can use
standard collective field theory techniques to obtain an
effective Hamiltonian in terms of the density of these
eigenvalues.

ITI. A SELF CONSISTENT NONLINEAR INTEGRAL
EQUATION FOR THE LARGE
N BACKGROUND

Considering the effective Hamiltonian (18), written as

A 1 ) w? )
Hl = = Tr(Pl) + 7 Tr(Xl)

+ Z \/a)2 + 2gYM()t )

1}1

- Z(A —ifm))z( Z—Z)

plm

1
+E8A lan8A lan, (19)
we note that

1 1
1—16(9A Inwgd* Inwy = gZT(“'g%(M)Z()‘b =A%

bc W

Hence,
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A 1 5 w? ’
Hl = - Tr(Pl) + 7 Tr(Xl)

+ z \/wz +2g3m(A; — A))?

l]l

- Z(/\ —;m))2< Z_llr:)

plm

1
+ §Z—4(4g§m>2ub — A% (20)
bc Wy

Recall that w;; is defined in (13).

This Hamlltoman describes the dynamics of a single
Hermitian matrix, and the large N background can be
described in terms of the density of eigenvalues

Px) = Z&(x - A),
as the minimum of the cubic field effective potential [22]

Vg = %2 fdx¢3(x) + %2 [dxgz’;(x)x2

- ,u([dxqﬁ(x) - N)
w5 [ax [anfor+ 26, =p

< o)~ [ax [ay [a:6we0100)
1 _o(zy)
8 (x —y)? (1 w(z x))
+ [ ax 2 20— w2 1)

where the Lagrange multiplier u enforces the constraint

[ dx¢(x) = N. To exhibit explicitly the N dependence, we
rescale
x — /Nx d(x) = VN m—Nu. (22)

Under the above rescaling, we see that the last term in (21)
is of order N, and therefore is subleading. Thus, we obtain

Vg = N2|:7%2 fdx¢3(x) + %2 '/-dxqb(x)x2

—u [ arato 1)

+ % [dxfdy\/wz +2A(x = y) () B(y)

4 [ [ar [ azoaomonr
(-2 .

where A = g%,(N is the usual 't Hooft’s coupling.
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As N — oo, the large N background configuration mini-
mizes (23), yielding the following self-consistent integral
equation for the density

T BA(x) = 24 — a2 =2 f dyJw? + 20(x — )2 o(y)

+fav | dz¢<y>¢<z)ﬁ
_lw(z,y)_lw(z,x)
XO Y0l 2wmw)
1 1 _ oy
+5 [az60160 (y—z)2<1 w(x,z>)' (24)

IV. STRONG COUPLING SOLUTION

A perturbative expansion of (24) can be carried out [27].
One should not expect moments of the type [ dxx?¢(x) to
agree perturbatively with corresponding large N correla-
tors <TrX? >y_, , as we project onto the X, sector
ground state. However, one expects the additional terms
that shift the kinetic energy as a result of the canonical
transformation and of the dependence on X; degrees of
freedom of the X, sector eigenstates to be universal. As
evident from the last lines of Eqgs. (24) and (23), these
additional terms are subleading in a strong coupling
expansion.”

It is therefore of great interest to investigate the A — oo
of (24) and (23). In this limit

mpi(x) =2u — 2\/2_)\[dy|x = yldo(y), (25)

= N2|:7%2 fa’xd)o(x) +— fdxfdylx
1o | 26)

We find it useful to introduce

F) = V2R [ dylx = ylo(y).
P20 = 2w — f(x)

27)

which satisfies

700 =2 [t s s )

“We have presented an argument in terms of (23), which results
from an effective Hamiltonian. Alternatively, we can redefine
Xop — Joa X, to exhibit explicitly all w, dependence in the
Hamiltonian, and the Hamiltonian terms associated with the
kinetic energy shift are indeed observed to be subleading in A.
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As it was the case in perturbation theory, we assume that
¢ (x) remains an even, single cut function defined in the
interval [ —xg, xo]. To show that this is a consistent ansatz,
we note that then

f<x>=J§X(|x| bo(y)dy +2 [ ¢o<y>ydy) (29)

= x|

Hence f(x) is also even, establishing the consistency of
the ansatz.
Using

alx =yl =28(x —y),

Eq. (28) becomes’

IC R P (30)

This can be integrated in the usual way, to yield

8v/A

1
SO+ S (p = [P = 3D
2 3w
The “‘energy” constant is fixed by the condition
d.f(0) = 0. Denoting f(0) = f,, one obtains
d 4A‘/
=TV 0 — PR G

The normalization condition

1—/ dxdo(x) —2/ dxpo(x) _2j dfdm(f)

dx

fixes

(w = fo? = (3;))\1/2

and hence (32) takes the form
4 \/EX\/ |- (
dx

We will not need to invert (33) and obtain f(x) explicitly,
as all results presented in this paper will be expressed in
terms of known definite integrals.

Of particular interest is the large N ground state energy.
From (26) and (27) this can be written as

W[ [+ ] [[assoso)]

= N{% - 71T—22 j dxqag(x)]. (34)

32 satisfies a very similar equation.

TRy

© = fo
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One needs to know u, or f, independently. From (29),
one obtain

= V2Axo — (& = fo) M= N2Ax.
From (33) one obtains
V2Axg =

(- fo)fm

=2(p _fo)ﬁ) \/ﬁ
Also,

Y s (T
= %(u - fo)/o tdiv'1 — 7.

These integrals are tabulated [28],
Therefore

6 (37\2/3
= N[5 (5) [ ]
o 7 1-7

SR O] o

we now consider the correlator

and are finite.

¢o(f)

dx

(TrX?) = N? f dxxdy = 2N? [ " 20 df.
fo

By a sequence of integrations by parts, we obtain
2 2
<TrX;> = N[ o \/_[ i f]

el )

2 ]
S5Jo1-7
2
_ Ni<3_77)4/3);<1/3>
m3 3

CECOY )]

V. INTERACTING MASSLESS MATRICES

The results of the previous section could have also
been obtained by taking the limit w — O of the planar
Hamiltonian (7). It is therefore relevant to discuss the
relevance of these results for the system

N 1 1
H = 3 Tr(P}) + 3 Tr(P3) — g3, Tr([(X,, X, 1[X,, X5)),
(37)
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which results from the dimensional reduction of
massless Higgs or non-Abelian vector potentials. The
Hamiltonian (37) has a single dimensionful parameter,
A = g3\, and therefore all observable quantities should
depend only on well defined powers of A. However, as is
well known, perturbation theory is plagued with infrared
divergences. In this context, w can be thought of as a
standard “mass’ regulator.

The results of the previous section are therefore remark-
able, as they are finite and free of any infrared divergences,
and depend only on the appropriate power of A which is
expected from dimension considerations.

It has already been pointed out the expression (7) has a
smooth w — 0 limit. The only place where this limit is
potentially ill defined is in the transformation (4), where w
has to be kept finite, if small, to ensure that the trans-
formation is canonical. However, once the Bogoliubov
transformation is implemented and the Hamiltonian (1) is
recast in the form (6), its w — O limit should provide a
correct description of the system (37).

The results of the previous section provide further sup-
port for the expectation that strong coupling dynamics,
appropriately resummed through the large N limit, is free
of infrared divergences.

VI. SUMMARY

In this communication, we obtained a sector of the large
N planar background of two Hermitian matrices, in an
harmonic potential, interacting through a Yang-Mills
potential, in terms of the density of eigenvalues of one of
the matrices. This background is shown to satisfy a self-
consistent gvy; dependent integral equation. Of particular
physical interest is the strong coupling limit of this back-
ground. The self-consistent integral equation is solved
explicitly in this limit, and the ground state energy and
examples of correlators were to be finite and free of
infrared divergences. We argue that this is related to the
planar solution of the Hamiltonian of two ‘“‘massless™
matrices (i.e., without the harmonic potential, or in the
zero curvature limit) with a Yang-Mills interaction.
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APPENDIX

The detailed calculation of Eq. (15) proceeds as
follows. Recall
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1 1
EP?PlA‘I’U()l,Xz)—'E(Pf — FA8CX,5P)c)

X(P1o—F B¢ Xpp Py ) Wo(A, X5)

1
:E(P?Pm —[P{.F B X,5Psc]

“—~—"Term1 % 2\'s “Term2

_2FABCX23P2Cp?
———~—"Term3

+ FABCX 5Py o F B C Xop Py )
b a'g “Term4

XWo(A,X,). (A1)

Term 1 of the above expression will have an additional
shift coming from the fact that P; ¢, # 0. We find that

PiaVo(A X5) = VoA, X5)(P1y — i(AY),) (A2)

where, the additional shift is given by

1
(AY)A = ZZGA lnwD(5g - 20)DX2DX2D). (A3)
D

Then Term 1 in (A1) is given as

1 1 . .
EPlAplA‘I’o(/\»Xz)=E‘I’o(P1A—Z(AY)A)(PM—Z(AY)A)
1

:E\PO(PIAPIA - i[PlA, AYA]
—i2(AY)4 P, — (AY)A(AY),). (A4)
Taking the ground state expectation value® of (A4) gives

1 r—I%A 1,—/%3
5 (PP = 2icanr, ) = Slarran,

|——————C
— AL AYLD (AS)
Term A of the above expression, multiplying P, linearly,
is equal to zero, as is required by the consistency of
this method. Using (A3), terms B and C can be calculated,
with results

Term B = — %((AY)A(AY)A>

1//1

= - 5((1 GA 11’16()3(82 - 26()BX28X2B)>

1
X (Z ('9A lna)B(Bg - 2&)3X§X23))>

1
= ——GA lanaA lna)B, (A6)

16

6ThAe ground state expectation value of any operator O is given
as (0(Xy)) 5 [dX,VE(Xy M)O(X2)Po(X,, A). In particular,

5t
2wp *

(X2 X3) = 74
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1 Now we are left to calculate term 4 in (Al) which is
TermC = —z§<[P1A, AY,]) given as
= _ll(_l)aA(lza Inw (5D —2wpX DX2 )) 1 ABC DE
2 "\44 ATEDAED bz b EF XopPrcF 4P Xop PrpWo(A, X5)

1
B 04 Inwpd* Inwp. (A7) =~ FABCF PEX, p Py c(XopiwpXop) Wy

»—A[\.)|>—t

Using these in (AS5) allows us to finally obtain term 1

— lFABCF DEg, X i50p)X
in (AD). ( Xop((—idcp)Xag

[\)

1 1 + Xop(—ibcg)) + iFBCF Pl X, 5 Xop Xop
Term 1 :EP]AP1A+RaAlanaA1an' (A8) 1
X (iwcX,0)) Wy 3 (FABCF “Fop < XopXop>
In order to calculate term 2 in (A1), we note that
+ FABCFADC(I)C < X23X2D>

PrcVy = iweXoc Wy (A9)
and hence — F," PP wcop < X23X2CX21)X215>)
. 1
ZWO(P?FABCXZBwazc) = —(FABCFACEC()E —gBE + FABCFADCCUC—gBD
. " BC 2 26()8 20)3
= iWo((PYF,"wc _ p BCRADE, <8BC 8pE | 88D 8cE
< XopXoc > +F,PC(Ploc) < XopXoc>) A EQwp 20p 205 20
. 8BE 8cD
= iU (PAF B e S5 + F,BC(Phwc) SEC +——)
o (PP, PV 52 + F, 2 (Pac) 32 qae foo))
=0 (Since F,"” = 0) T () A1)
wp
In order to calculate Term 3, we use (A2) and (A9)
to give Using (A8) and (A10)—(A12) for terms 1, 2, 3 and in (A1)
e .\  se we obtain the final expression for the shifted kinetic
—(F " XopPrcPY) Vo = Wo(—iF ,* XopwcXoc operator:
X (PlA - l(AY)A)) 1 " 1 BC
. — PP P P F, F ( )
= W(—iF fCoc < XppXoe >PA 27107 - gc wp
= F,5%0c < XopXoc(AY)A> 1
A we < XapXac(AV)T>) + — 0, Inwgd* Inwp. (A13)
=0. (Al1) 16
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