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Application of the AdS/CFT correspondence to the Randall-Sundrum models may predict that there is

no static solution for black holes with a radius larger than the bulk curvature scale. When the black hole

has an extremal horizon, however, the correspondence suggests that the black hole can stay static. We

focus on the effects of cosmological constant on the brane on such extremal brane-localized black holes.

We observe that the positive cosmological constant restricts the black hole size on the brane as in ordinary

four-dimensional general relativity. The maximum black hole size differs from that in four-dimensional

general relativity case due to the nonlinear term in the effective Einstein equation. In the negative

cosmological constant case, we obtain an implication on the Newton constant in the Karch-Randall model.
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I. INTRODUCTION

The braneworld model is a phenomenological model
which describes our four-dimensional universe in higher-
dimensional theory. In this model, we are living on a four-
dimensional membrane, and only gravity propagates to the
extra dimension. Among several models for braneworlds,
Randall-Sundrum- (RS) type models are interesting be-
cause they provide us many phenomenological predictions
[1–3]. In these models, extra dimension is warped due to
the self-gravity of the branes. Because of this warping, it is
found in some RS-type models that gravity can be confined
near the brane and becomes four-dimensional even when
the extra dimension is noncompact [4,5].

Although many studies on the RS model have been
done, there are still some open issues. One of them is
that static solutions of black holes localized on the brane
are missing. Though numerical solutions of such brane-
localized black holes are constructed when the black hole
size is smaller than the bulk curvature scale [6,7], no
solutions are found when the size is large. For this issue,
the following conjecture has been proposed based on the
AdS/CFT correspondence [8–10] (see also Ref. [11] for
related issues). According to the correspondence, a five-
dimensional classical brane-localized black hole is dual to
a four-dimensional black hole that emits the Hawking
radiation. Since the latter one cannot be static due to the
Hawking radiation emission, it is suggested by the duality
that there is no static brane-localized black hole which is
larger than the bulk curvature radius.

Here, one might realize that the AdS/CFT correspon-
dence also tells that static solutions may present when the

black hole horizon is extreme [12] since the horizon tem-
perature is zero and the Hawking radiation will not be
emitted. Indeed, the authors of Ref. [12] constructed the
near-horizon geometry of such extreme charged static
black hole localized on the asymptotically flat brane and
studied its properties. In this paper, we shall consider the
near-horizon geometry of extreme charged black hole
localized on the brane with nonvanishing cosmological
constant to study the properties of the brane-localized
black holes in more generalized settings. We also intend
to reveal the nontrivial property of the gravity in the brane-
world model with negative cosmological constant, the
Karch-Randall model.
The rest of this paper is organized as follows. In Sec. II,

we describe the model we study. We sketch the metric form
for the near-horizon geometry in Sec. III, and we present
numerical solutions in Sec. IV. In Sec. V, we give analytic
arguments for relatively large black holes. Finally, we give
summary and discussion in Sec. VI.

II. MODELS

The model we consider in this paper is the RS brane-
world model, which consists of five-dimensional asymp-
totically anti-de Sitter (AdS) bulk spacetime and a four-
dimensional brane with positive tension in it. The action of
this model is given by

S ¼ 1
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where M is the bulk spacetime and @M is its outer bound-
ary. h�� is the induced metric on the brane. �2

5 ¼ 8�G5

and �2
4 ¼ 8�G4 are the five- and four-dimensional gravi-

tational coupling, respectively. l is the bulk curvature
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radius. � and F�� are the brane tension and the field

strength of the Maxwell field on the brane. K is the trace
of the extrinsic curvature K�� ¼ 1

2Lnh�� of @M, where

Ln is the Lie derivative with the unit normal vector n of the
brane. We impose the Z2 symmetry about the brane.

From the above action, we obtain the five-dimensional
Einstein equation in the bulk as

RMN � 1

2
RgMN ¼ 4

l2
gMN: (2)

Under the Z2 symmetry, the Israel’s junction condition on
the brane is given by [13]

K�� � Kh�� ¼ 1

2
�2
5T��; (3)

where T�� is the energy-momentum tensor on the brane,

which is given as

T�� ¼ ��h�� þ 2

�2
4

�
F��F�

� � 1

4
F2h��

�
: (4)

The Maxwell equation and the Bianchi equation are

d � F ¼ 0; dF ¼ 0; (5)

where � is the Hodge dual in four dimensions.

III. NEAR-HORIZON GEOMETRY, BULK
EQUATIONS AND BOUNDARY CONDITIONS

A. Near-horizon geometry

We consider a static brane-localized black hole whose
horizon is made to be extreme by the Maxwell field on the
brane. A static black hole has constant surface gravity on
its horizon. Then, when the horizon is extremal on the
intersection with the brane, the whole part of the horizon
in the bulk will also be extremal. For such an extremal
horizon, we can take the near-horizon limit and analyze its
properties. It is proved that the near-horizon geometry
of a static extreme black hole can be written in a warped
product of a two-dimensional Lorentzian space and a
compact manifold as [14]

ds2 ¼ AðxÞ2d�2 þ gabdx
adxb; (6)

where d�2 is a two-dimensional Lorentzian metric M2 of
constant curvature 2k. When the metric describes the black
hole spacetime, k should be negative and then M2 is two-
dimensional AdS spacetime (AdS2). We also assume that
gabdx

adxb has SOð3Þ symmetry. Choosing the coordinates
xa ¼ ð�; �;	Þ, the near-horizon geometry becomes

ds2 ¼ Að�Þ2d�2 þ d�2 þ Rð�Þ2d�2; (7)

where d�2 is the metric of the two-dimensional unit
sphere.

B. Bulk equations

For the metric ansatz of Eq. (7), the bulk Einstein
equations, Eq. (2), becomes

k

A2
� A02

A2
� 2A0R0

AR
� A00

A
¼ � 4

l2
; (8)

A00

A
þ R00

R
¼ 2

l2
(9)
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1
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R2
� 2A0R0

AR
� R00

R
¼ � 4

l2
; (10)

where prime stands for the derivative with respect to �.
From these, we obtain

k

A2
þ 1

R2
¼ A02

A2
þ R02

R2
þ 4A0R0

AR
� 6

l2
; (11)

which is the Hamiltonian constraint.
We assume the horizon to be compact, which implies

that Rð�Þ vanishes somewhere. Then, we set the ‘‘origin’’
of � as Rð� ¼ 0Þ ¼ 0. The smoothness of the horizon at
the origin requires R0ð0Þ ¼ 1 and A0ð0Þ ¼ 0. Then, the only
free parameter under the boundary condition at � ¼ 0 is
Að0Þ ¼ A0. After all, the bulk equations have three free
parameters fA0; k; lg.
Here, note that the equations have two families of scal-

ing invariance: ðA; kÞ ! ð
1A; 

2
1kÞ and ðR; l; �; kÞ !

ð
2R; 
2l; 
2�; 

�2
2 kÞ. Then, we can set A0 ¼ 1 and

l ¼ 1 without loss of generality, and then, the only free

parameter will be k.1 After getting a solution ð ~Að~�Þ; ~Rð~�ÞÞ,
we can recover a dimensionful solution as ðA0

~Aðl�1�Þ;
l ~Rðl�1�ÞÞ.

C. Junction condition

From Eq. (3), the junction condition determines the
extrinsic curvature K�� on the brane as

K��jbrane ¼ �2
5�

6
h�� þ �2

5

�2
4

�
F��F�

� � 1

4
F2h��

�
: (12)

In our metric, the extrinsic curvature is given by K�� ¼
� 1

2@�g��. The induced cosmological constant on the

brane �4 is given as [15]

�4 � � 3

l2
þ �4

5�
2

12
: (13)

From this expression, however, we see that �4 is bounded
from below as �4 � �3=l2. In Ref. [12], the brane tension

1There is difference between our treatment and that in
Ref. [12]. We choose k as the free parameter for the convenience
of our analysis, especially for de Sitter brane cases. On the other
hand, the authors of Ref. [12] set k ¼ �1 and choose A0 as the
free parameter. Our k is related to their A0 through A0

! 1=
ffiffiffiffiffiffijkjp

.
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is tuned to make the brane asymptotically flat. In our
current paper, we will not impose such tuning. Then, the
brane geometry will be asymptotically de Sitter, anti-
de Sitter, or Minkowski spacetimes depending the value
of �4. For convenience, we introduce the following di-
mensionless parameter

� � �

�RS

; (14)

where �RS � 6=�2
5l is the value of the tension when the

brane geometry is asymptotically Minkowski spacetime.
� ¼ 1 corresponds to �4 ¼ 0. By the definition of � and
�4, they are related as

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2�4

3

s
¼ l�2

5�

6
: (15)

Note that �> 1ð�< 1Þ for �4 > 0ð�4 < 0Þ.
Now, we suppose that the brane is located at � ¼ �0.

Then, the Israel junction condition (12) becomes

Að�0Þ0
Að�0Þ

¼ �� �2
5

�2
4

Q2

2L4
2

;
Rð�0Þ0
Rð�0Þ ¼ �þ �2

5

�2
4

Q2

2L4
2

:

(16)

Here, we used a notation for the induced metric on the
brane such that

ds2brane ¼ jkjL2
1d�

2 þ L2
2d�

2; (17)

where L1 and L2 are proper radii of M2 and S2 defined by

L2
1 � jkj�1Að�0Þ2; L2

2 � Rð�0Þ2: (18)

Moreover, we used the solution for the Maxwell field

� F ¼ Qd�; (19)

where Q is the total charge on the brane given by

Q ¼ 1

4�

Z
S2
�F: (20)

From Eq. (11) and the junction condition, we have
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2

;

(21)

where signðkÞ is equal to 1, 0, or �1 when k is positive,
zero, or negative. From Eq. (21), we find some restrictions
on the near-horizon geometry. When � � 1, k is always
negative. When �> 1, on the other hand, k can be positive
for some large enough values of �.

D. Gravitational couplings

Here, we would like to make a comment on the relation
between the four- and five-dimensional gravitational
couplings. From several analyses [16], it is sure that the
relation for the cases with �4 � 0 (� � 1) is given by

�2
4 ¼

�4
5�

6
¼ �2

5�

l
: (22)

On the other hand, we do not have a definite answer for the
case of �4 < 0. This case is called Karch-Randall model.
When AdS4 curvature radius scale is sufficiently larger
than the bulk curvature scale l, however, it is expected
that �2

4 � �2
5=l holds [17]. For the moment, we will use the

relation �2
4 ¼ �2

5=l for all ranges of �4. We will ask this

issue again in Sec. VD.

IV. THE SOLUTIONS

Let us solve the bulk equations from � ¼ 0 to � ¼ �0

for fixed values of k. In this Section, we employ the unit of
l ¼ 1 and also set A0 ¼ 1. From the Israel junction condi-
tion (16), Q and � are determined as

� ¼ 1

2

�
A0

A
þ R0

R

����������¼�0

(23)

and

Q2 ¼ �2
4

�2
5

R4

�
R0

R
� A0

A

����������¼�0

: (24)

As shown in Ref. [12], there are analytic solutions of
Eqs. (8)–(10) for some special values of k. One of them is

Að�Þ ¼ 1; Rð�Þ ¼ 1ffiffiffi
2
p sinhð ffiffiffi

2
p

�Þ (25)

for k ¼ �4. k ¼ �1 yields another exact solution as

Að�Þ ¼ cosh�; Rð�Þ ¼ sinh�: (26)

For these exact solutions, the geometry on the brane is
somewhat restricted. Substituting the above solutions into
Eq. (23), we find

� ¼ 1ffiffiffi
2
p cothð ffiffiffi

2
p

�0Þ ¼�0!1 1ffiffiffi
2
p ; (27)

for k ¼ �4, and

� ¼ 1

2
ðtanh�0 þ coth�0Þ> 1 (28)

for k ¼ �1. From Eq. (28), we see that there are no
solutions for which �< 1 when k ¼ �1. That is, we
cannot obtain a brane with �4 � 0 in this case. On the
other hand, when k ¼ �4, we see from Eq. (27) that we
can realize a brane with �4 < 0 if we choose sufficiently
large �0.
For general k, the bulk solution behaves as follows:
(1) k <�4 case: Að�Þ monotonically decreases and

vanishes at a point �1. At this point, Rð�Þ diverges
and a curvature singularity appears. Therefore, the
brane position �0 must be smaller than �1.
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(2) �4< k <�1 case: Both Að�Þ and Rð�Þ increase
exponentially. � has a minimum between 1=

ffiffiffi
2
p

and
1, and tends to 1 for �0 ! 1.

(3) �1< k case: Both Að�Þ and Rð�Þ increase expo-
nentially. � decreases monotonically and tends to 1
for �0 ! 1.

We show the behaviors of Að�Þ and Rð�Þ in Fig. 1 and
that of � in Fig. 2. Solutions for k ¼ 0 are not black hole
solutions, while they are limiting solutions for black hole
solution sequences with k < 0.

From Fig. 2, we can see that there is an upper bound
on the four-dimensional horizon size on the brane, L2 ¼
Rð�0Þ, for �> 1. Such an upper bound on the horizon size
also appears in the ordinary general relativity for black

holes in the de Sitter universe [18–20]. We will examine
this feature later in Sec. VB.
Next, we study the ratio between the five-dimensional

and four-dimensional black hole entropies. This ratio
should become the unity if the bulk/boundary correspon-
dence works, and this expectation is confirmed to be cor-
rect for the flat brane case in the large black hole limit [12].
We would like to extend this study on the duality to the
nonflat brane case.
The five- and four-dimensional black hole entropies are

defined as

S5 ¼ ðArea of 5D horizonÞ
4G5

¼ 2�

G5

Z �0

0
Rð�Þ2d� (29)

and

S4 ¼ ðArea of 4D horizonÞ
4G4

¼ �

G4

Rð�0Þ2; (30)

respectively. The ratio between them is given by

S5
S4
¼ G4

G5

2

Rð�0Þ2
Z �0

0
Rð�Þ2d�: (31)

We show Rð�0Þ dependence of entropy ratio in Fig. 3. The
upper panel is of the solutions for � � 1 with asymptoti-
cally AdS or Minkowski branes, and the lower is for �> 1
with asymptotically de Sitter branes. As we explained in
Sec. III D, we used G4=G5 ¼ 1 in the plot for �< 1 while
G4=G5 ¼ � in the plot for �> 1. In the �> 1 case, we
can see that the ratio tends to the unity if the four-
dimensional black hole radius L2 is larger than the bulk
curvature scale. In the � � 1 case, on the other hand, the
ratio tends to some constant smaller than the unity as L2

becomes large. We will study on these properties again in
Secs. VB, VC, and VD.

FIG. 1. Profiles of Að�Þ and Rð�Þ. In the left panel for Að�Þ, the curves from top to bottom represent the solutions for k ¼ 0,�1,�3,
�4, �6, and �32, respectively. For Rð�Þ, the curves from bottom to top are for k ¼ 0, �1, �3, �4, �6, and �32. When k <�4, a
solution has a singularity.

FIG. 2. L2 ¼ Rð�0Þ dependence of �. L2 is the horizon radius
on the brane for each k. The dark solid line corresponds to the
k ¼ 0 solution. The lines that run above it, including the light
dashed line for k ¼ 100, are for k > 0. Those solutions for k > 0
do not represent black holes. The dark-dashed lines represent
the solutions for k ¼ �1 and �4 from the top, and the light-
solid lines represent those for k ¼ �2,�3:5,�4:1, and�5 from
the top.
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V. LARGE BLACK HOLE LIMIT

When the black hole radius is much larger than the bulk
curvature scale l, the brane is near the bulk conformal
boundary and then the behavior of the black hole on
the brane is expected to coincide with one in the ordinary
four-dimensional general relativity. In this Section, we
will discuss the large black hole limits with partial
help of numerical analysis. Throughout this Section, we
set l ¼ 1.

A. Some basics: metric and extrinsic curvature

When k >�4, both Að�Þ and Rð�Þ behave like e� for
large �, as we showed in Sec. IV. So we can write A!
A1e�, R! R1e�. A1 and R1 are determined by solving
the equations for each k. Then, the metric becomes

ds2 ’ d�2 þ e2�R21ða2d�2 þ d�2Þ; (32)

where a � A1=R1, which is a function of k. Note that we
can know its function form only after solving the bulk
equation numerically from � ¼ 0 to � ¼ �0. Figure 4
shows the k dependence of a2. a2 converges to a positive
constant for k! 0 and approaches zero as k! �4.
Let us introduce a new convenient coordinate defined by

r � r0e
�2� to solve the five-dimensional Einstein equation

approximately. In this coordinate, the conformal boundary
is at r ¼ 0. The metric is written as

ds2 ¼ dr2

4r2
þ AðrÞ2d�þ RðrÞ2d�2

’ dr2

4r2
þ R21r0

r
ða2d�2 þ d�2Þ: (33)

Hereafter, we take r0 ¼ R�21 for convenience, and we will
focus on r ¼ �� 1 limit. Following Ref. [21], we obtain
the analytic solutions for AðrÞ and RðrÞ near the conformal
boundary as2

AðrÞ2 ¼ a2

r

�
1þ

�
1

6
� k

3a2

�
r� 1

48

�
1� k2

a4

�
r2 logr

þ
�

5

288
� k

36a2
þ 5k2

288a4
þ 


�
r2 þ � � �

�
(34)

FIG. 3. L2 ¼ Rð�0Þ dependence of the entropy ratio S5=S4.
The upper panel is for the brane solutions which are asymptoti-
cally AdS (�< 1) or flat (� ¼ 1). Each lines correspond to � ¼
1, 0.9995, 0.995, 0.99, 0.985, 0.98, 0.97, and 0.96 from the top.
The lower panel is for the brane solutions which are asymptoti-
cally de Sitter (�> 1). The dashed line is k ¼ 0 case. The solid
lines correspond to � ¼ 1:001, 1.01, and 1.1 from the right.

FIG. 4. k dependence of a2. a2 converges to a finite value
aðk ¼ 0Þ 	 1:53419 as k! 0, becomes unity for k ¼ �1 as
suggested by Eq. (26), and approaches zero for k! �4.

2In Ref. [12], Eqs. (2.25) and (2.26) contain a minor typo. The
left-hand side there should be squared. Since they are rather
minor, the result obtained in Ref. [12] does not change.
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and

RðrÞ2 ¼ 1

r

�
1�

�
1

3
� k

6a2

�
rþ 1

48

�
1� k2

a4

�
r2 logr

þ
�
5

288
� k

36a2
þ 5k2

288a4
� 


�
r2 þ . . .

�
; (35)

where 
 is an integral constant determined by k. Then, the
extrinsic curvature

K��dx
�dx� ¼ K1d�

2 þ K2d�
2 (36)

is computed as

K1 ¼ a2
�
1

r
þ 1

48

�
1� k2

a4

�
r logrþ

�
1

48

�
1� k2

a4

�

� 5

288
þ k

36a2
� 5k2

288a4
� 


�
rþ � � �

�
(37)

and

K2 ¼ 1

r
� 1

48

�
1� k2

a4

�
r logrþ

�
� 1

48

�
1� k2

a4

�

� 5

288
þ k

36a2
� 5k2

288a4
þ 


�
rþ � � � : (38)

Using K1 and K2, Eqs. (23) and (24) are rewritten as

� ¼ 1

2

�
K1

Að�Þ2 þ
K2

Rð�Þ2
�

(39)

and

Q2 ¼ �2
4

�2
5

Rð�Þ4
�

K2

Rð�Þ2 �
K1

Að�Þ2
�
: (40)

B. � > 1 case: de Sitter brane

In the �> 1 case, a positive cosmological constant is
induced on the brane, and the brane geometry becomes
asymptotically de Sitter spacetime. From Fig. 2, we can
see that there is a restriction on the black hole size in the
sense that the black hole size Rð�0Þ has an upper bound
which depends on �. The size of the black hole horizon
in de Sitter spacetime is known to be restricted by the
cosmological constant in the ordinary general relativity
[18–20]. From our result, we can confirm that the same
restriction holds even in the braneworld setup.

Comparing the braneworld upper limit �BW
max with the

upper limit �4D
max in the ordinary four-dimensional general

relativity (see Fig. 5), we can see that

�BW
max >�4D

max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

6L2
2

s
(41)

is satisfied. It tells us that the restriction on the black hole
size is weaker in the braneworld model. The value of �BW

max

is given by k ¼ 0 solution.

Let us study the difference between �BW
max and �4D

max in
more detail. First of all, we check that �4D

max is smaller than
�BW
max. To focus on�

BW
max, we set k to zero. Then, we see from

Eqs. (34), (35), (37), and (38) that

K1

A2
¼ 1� 1

6
�þ 1

24
�2 log�þ

�
1

72
� 2


�
�2 þOð�3 log�Þ

(42)

and

K2

R2
¼ 1þ 1

3
�� 1

24
�2 log�þ

�
1

18
þ 2


�
�2

þOð�3 log�Þ: (43)

Then, Eqs. (39) yields

�BW
max ¼ 1þ 1

12
�þ 5

144
�2 þOð�3 log�Þ: (44)

To find the expression for �4D
max, we should find that

for L2 first. Since �k=a2 ! 0 for k! 0, we find from
Eq. (35) that

L2
2 ¼ R2ð�0Þ ¼ 1

�
� 1

3
þ 1

48
� log�þOð�Þ: (45)

Replacing L2 by � in Eq. (41), we find the expression of
�4D
max as

�4D
max ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

6L2
2

s
¼ 1þ 1

12
�þ 7

288
�2 þOð�3 log�Þ:

(46)

Then, we can confirm that �4D
max is smaller than �BW

max:

�BW
max � �4D

max ¼ 1

96
�2 þOð�3 log�Þ: (47)

Next, we give an interpretation of the difference between
them using the effective Einstein equations [15]. The trace
of effective Einstein equations becomes

FIG. 5. Dependence of �BW
max (solid line) and �

4D
max (dashed line)

about the horizon radius L2.
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� ð4ÞR ¼ �4�4 þ Q4

ð�BW
maxÞ2L8

2

(48)

and we can see that the nonlinear term, Q4=ð�BW
maxÞ2L8

2,

weakens the effect of the cosmological constant. This
nonlinear term is evaluated in terms of � as follows.
From Eqs. (42) and (43), we find that Q2 of Eq. (40)
becomes

Q2 ¼ 1

2�
� 1

12
log�þOð1Þ: (49)

Then, we find from Eqs. (44), (45), and (49) that

Q2

�BW
maxL

4
2

¼ 1

2
�� 1

12
�2 log�þOð�2Þ: (50)

From Eq. (48), we can read off the difference between�4D
4

and �BW
4 as

��4 ’ � Q4

4ð�BW
maxÞ2L8

2

’ � 1

16L4
2

: (51)

In the above, we used Eqs. (45) and (50). This matches
with the value that is evaluated from Eqs. (44) and (46) at
the leading order, which is given as

�4D
4 ��BW

4 ¼ 3ðð�4D
maxÞ2 � ð�BW

maxÞ2Þ ’ � 1

16L4
2

: (52)

C. � < 1 case: anti-de Sitter brane

In this subsection, we consider �< 1 case in which the
brane geometry is asymptotically anti-de Sitter spacetime.
This is the so called Karch-Randall (KR) model [5]. In this
model, it is expected that the relation G4=G5 ¼ 1 holds
approximately when the four-dimensional AdS curvature
radius L is sufficiently larger than the bulk curvature scale.
In this section, we fix G4=G5 ¼ 1 for any L though we
guess that this relation does not hold in general. We will
address this issue later in Sec. VD.

We compare the braneworld solution with four-
dimensional extreme anti-de Sitter Reissner-Nordström
(AdS-RN) solution in the general relativity which share
the same horizon radius L2 and four-dimensional cosmo-
logical constant �4. For sufficiently large L2, the AdS2
radius for this AdS-RN solution, L1ð4DÞ, becomes (see

Appendix A)

L1ð4DÞ
2 ¼ L2

2

1� 2�4L
2
2

’ 1

�2�4

¼ 1

6ð1� �2Þ : (53)

Figure 6 shows L2 dependence of L1 ¼ jkj�1=2Að�0Þ for
the braneworld black hole solutions. From this, we can see
that the size of AdS2, L1, tends to the values of four-
dimensional AdS-RN black hole, L1ð4DÞ, when �4 is suffi-

ciently close to zero.
Charge Q for the extreme AdS-RN black hole in the

general relativity is given in terms of L2 as

Q4D
2 ¼ �L4

2�4 þ L2
2: (54)

Let us compare it with that of the braneworld black hole.
We show L2 dependence ofQ=Q4D in Fig. 7. In this figure,
we see that Q and Q4D coincide when �4 is sufficiently
close to zero. Thus, the large braneworld extreme black
hole has the same near-horizon geometry as four-
dimensional AdS-RN black hole in the limit of vanishing
�4. This figure also suggests that the discrepancy between
Q and Q4D can be nonzero when �4 is nonzero, and it
becomes a constant independent of L2.
Using the large black hole limit, we can evaluate L1 and

Q in terms of 1� �, that is, in terms of �4. We consider
the case that both of l� L and l� L2 holds, where l and

L � ð�3=�4Þ1=2 are five- and four-dimensional curvature
scales and L2 is four-dimensional horizon size on the
brane. We expect that the bulk/brane duality would work

FIG. 6. L2 dependence of L1 ¼ jkj�1=2Að�0Þ for fixed values
of �. L1 is normalized by L1ð4DÞ. The lines from top to bottom at

large L2 regime are for � ¼ 0:9995, 0.995, 0.99, 0.985, 0.98,
0.97, and 0.96, respectively.

FIG. 7. L2 dependence of Q2=Q2
4D. The lines from top to

bottom are for � ¼ 0:9995, 0.995, 0.99, 0.985, 0.98, 0.97, and
0.96, respectively.
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under these conditions. In the following, we focus on L�
L2 regime (see Appendix B 1 for the results in L
 L2

regime).
In the L� L2 regime, L1 	Oðð1� �Þ�1Þ holds as we

can see in Fig. 6 and Eq. (53). Then, from Eqs. (34) and
(35) and the definitions of L1 and L2, we find ��
�k�=a2 	 1� �� 1. This regime is realized in the limit
of k! �4, for which a tends to zero as shown in Fig. 4.
After some calculations in this regime, we find for �! 0
that (see Appendix B 2 for derivations of the following
equations)

L2
1

L1ð4DÞ
2 ¼ 1� 3

2
ð1��ÞþOðð1��Þ2 logð1��ÞÞ: (55)

From this equation, as �! 1, we can see that L2
1 ap-

proaches that of the four-dimensional extreme AdS-RN
solution, which is given by Eq. (53).

We can analyze behavior of the charge Q in the same
way. The result is

Q2

Q4D
2
¼ 1þ 2ð1� �Þ logð1� �Þ þOð1� �Þ; (56)

and we find thatQ approaches that of the four-dimensional
AdS-RN solution, Eq. (54), in the limit of �! 1.

D. Gravitational coupling for AdS branes

If the AdS/CFT correspondence holds in the KR model,
it is natural to expect that S5 ¼ S4 holds, at least in the
large black hole limit. In this paper, however, we observed
that S5 � S4 in that limit when we suppose G4=G5 ¼ 1. In
this subsection, we would like to propose a formula for
G4=G5 which makes S5 equal to S4 for any �4.

In Fig. 8, we show � dependence of the ratio S5=S4 in
the large black hole limit. This entropy ratio is proportional
to G4=G5 as shown in Eq. (31). Then, the value of G4=G5

that makes the entropy ratio to be unity will be inverse of
the value of S5=S4 shown in Fig. 8.
Let us study this value of G4=G5 in the limit of �! 1.

In this limit, we can expand A5 as (see Appendix B 2)

A5 ¼ 4�

�
ð1þ 2ð1� �Þ logð1� �Þ þOð1� �ÞÞ: (57)

Then, we obtain

S5
S4
¼ G4

G5

A5

A4

¼ G4

G5

ð1þ 2ð1� �Þ logð1� �Þ þOð1� �ÞÞ: (58)

In order that this ratio is equal to unity, we should set
G5=G4 as

G5

G4

¼ 1þ 2ð1� �Þ logð1� �Þ þ � � �

¼ 1þ l2

L2
log

�
2l2

L2

�
þ � � � : (59)

Since the charge Q is also proportional to G4=G5, as
seen in Eq. (24), we may determine the value of G4=G5

requiring that the charge ratio Q=Q4D becomes unity as
�! 1. Interestingly, the expression of G4=G5 determined
in this way coincides with Eq. (59) at least up to subleading
order in the �! 1 limit [see Eq. (56)]. This fact may
imply that G4 and G5 should be related by Eq. (59) for
general �, that is, for general �4.

VI. SUMMERYAND DISCUSSION

In this paper, we analyzed the near-horizon geometry of
charged extreme black holes localized on the brane with
nonvanishing cosmological constant in the RS-type brane-
world models. In the de Sitter brane case, we find that
there is an upper bound on the black hole size and that the
bound is determined by the cosmological constant on the
brane. This restriction on the horizon size also appeared in
the ordinary four-dimensional general relativity, while the
restriction was found to be weaker in the braneworld case
due to the nonlinear term in the effective Einstein equation
on the brane.
In the anti-de Sitter brane case, we observed discrep-

ancies between the near-horizon geometry of the brane-
localized black hole from that of the four-dimensional
extreme AdS-RN black hole. We found that the AdS2
radius and the charge are smaller than those of four-
dimensional AdS-RN black holes, and confirmed that those
discrepancies vanish in the flat brane limit (�! 1). We
also calculated the five- and four-dimensional black hole
entropies assuming G4=G5 ¼ 1. As a result, it turned out
that S5=S4 becomes smaller as the cosmological constant
on the brane becomes larger.
In the Karch-Randall model, it is suggested by

Ref. [17] that the four-dimensional gravity weakens as
FIG. 8. � dependence of the entropy ratio S5=S4 calculated in
the large black hole limit �0 ! 1.
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G4=G5 � 1�Oðl2=L3ÞR for L & R & L3=l2, where R
is the separation of two gravitating objects, due to small
four-dimensional graviton mass. However, the formula for
G4=G5 we proposed in this paper, Eq. (59), has a different
form from it. It may be peculiar that our formula is inde-
pendent of the black hole size, while the formula of
Ref. [17] depends on propagation distance R of the grav-
ity. It will be interesting to investigate whether these two
formulae are compatible or not.

There are many remaining issues. In our work, we
addressed the near-horizon geometry only. To justify our
result, we have to construct the full bulk solutions.
Perturbative approaches for the solution construction
like Ref. [22] or numerical solution construction methods
like Ref. [6] may give fruitful results. In Ref. [7], it is
pointed out that nonsystematic error increases as taking
the asymptotic boundary farther from the horizon even if
the black hole radius is smaller than the AdS curvature
radius, which could imply the singularity formation in the
bulk. It is also valuable to examine whether such non-
systematic errors exist in the extremal case. Another
interesting subject is the near-horizon geometry of a
rotating extreme black hole localized on the brane. Such
a black hole has the spontaneous emission through the
superradiant modes [23], although its temperature is zero.
Thus, the AdS/CFT correspondence about the braneworld
models may suggest that such a black hole will be dy-
namical. It is meaningful to address if it is true or not.
These studies will be helpful for understanding the black
hole solutions in higher-dimensional spacetime models
and also the AdS/CFT correspondence in generalized
situations.
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APPENDIX A: 4D REISSNER-NORDSTRÖM
BLACK HOLE

In this Appendix, we summarize the fundamental fea-
tures of the extreme static charged black hole solutions in
the four-dimensional ordinary general relativity. We use
this solution as a fiducial to compare with the brane-
localized charged black holes in this paper.

The metric of charged black hole solutions in the four-
dimensional ordinary general relativity with a cosmologi-
cal constant �4 is given as

ds2 ¼ �fðrÞdt2 þ dr2

fðrÞ þ r2d�2; (A1)

where

fðrÞ ¼ 1��4

3
r2 þQ2

r2
� 2M

r
: (A2)

The horizon radius rH is determined by fðrHÞ ¼ 0, which
implies

M ¼ 1

2

�
rH þQ2

rH
��4

3
r3H

�
: (A3)

When the black hole is extreme, f0ðrHÞ ¼ 0 holds. In this
case, we find

�4r
4
H � r2H þQ2 ¼ 0: (A4)

One of roots for this is given by

r2H ¼
1

2�4

ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�4Q

2
q

Þ; (A5)

and r ¼ rH determined by this equation will be the black
hole horizon. Now, fðrÞ is written as

fðrÞ ¼ ðr� rHÞ2 � gðrÞ
r2

; (A6)

where

gðrÞ � 1��4

3
ðr2 þ 2rHrþ 3r2HÞ: (A7)

If �4 > 0, the equation f0ðrÞ ¼ 0 has another positive
root r ¼ ~rH, which is given by

~r 2
H ¼

1

2�4

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�4Q

2
q

Þ: (A8)

The surface r ¼ ~rH is, however, not the black hole horizon
because gð~rHÞ< 0. It is rather the cosmological horizon of
the de Sitter universe.
The near-horizon geometry of this extreme black hole is

given by

ds2 ’ r2H
gðrHÞ

�
�x2dt02 þ dx2

x2

�
þ r2Hd�

2; (A9)

where we introduced new coordinates as x ¼ r� rH and

t0 ¼ gðrHÞ
rH

t. As is well known, this geometry is adS2 � S2.

The radius of each submanifold is given by

L2
1 ¼

r2H
gðrHÞ ¼

r2Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�4Q

2
p ¼ L2

2

1� 2�4L
2
2

(A10)

and
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L2
2 ¼ r2H: (A11)

APPENDIX B: LARGE BLACK HOLE LIMIT
IN ANTI-DE SITTER CASE

In this section, we give a detailed analysis on the large
black hole limit in the AdS brane case of Sec. VC. We
focus on a regime in which both of L
 l and L2 
 l are
satisfied, i.e., the regime in which the AdS/CFT correspon-
dence would work, and investigate on L2 � L and L�
L2 cases in Subsections B 1 and B 2, respectively. We set
l ¼ 1 in this section unless otherwise noted.

To facilitate the following analysis, we introduce

 � � k

a2
; � � � 1; � � 1� �: (B1)

Note that  and � are functions of k. � becomes zero for
k ¼ �1, increases monotonically as k decreases, and di-
verges as k! �4, as we can see from Fig. 4. In the case of
AdS brane with L
 l and L2 
 l, we may assume that �
and � are positive value much smaller than the unity. In
this case, we find from Eq. (39) that

� ¼ � 1

12
�� 52 þ 8þ 5

144
�2 þOð3�3 log�; �3 log�Þ

¼ 1

12
��� 5�2 þ 18�þ 18

144
�2 þOð�3�3 log�; �3 log�Þ;

(B2)

where we used Eqs. (34), (35), (37), and (38) and assumed
�� 1 so that the expansion converges. We treat �� 1
and �
 1 cases separately in the following.

1. �� 1 case and L2 � L regime

For �� 1, dominant part of Eq. (B2) is given by

� ¼ 1

12
��� 1

8
�2 þOð��2; �3 log�Þ: (B3)

This equation in terms of � has two roots for �< �2=72,
and they are given by

� ¼ �� � 1

3
ð��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 72�

q
Þ: (B4)

Let us inspect �þ first. It behaves as �þ 	 2�=3when��
�2. Since L2 ’ l=

ffiffiffi
�
p

and L ’ l=
ffiffiffiffiffiffiffi
2�
p

, ðL2=lÞ2 � L=l, and
thus L2 � L follows in this regime, that is, the four-
dimensional black hole radius on the brane becomes
much smaller than the four-dimensional curvature scale
when �� �2. In this regime, it is convenient to parame-
trize the deviation of �þ from 2�=3 as

� � 3

2
ð1þ �Þ�; (B5)

where we assume 0< �� 1. In this notation, � is related
to � as

� ¼ 1

12
��2 þOð�3 log�Þ: (B6)

The � term in the right-hand side will be dominant over
Oð�3 log�Þ term if �
 � log�. We find in this regime that
the expansion forms of L2

1, L
2
2, and Q2 become

L2
1 ¼

1

�
� 1� 3

2
�þ

�
33

16
þ 
þ 17

4
�

�
�þOð�2 log�Þ;

(B7)

L2
2 ¼

1

�
� 1

2
�

�
3

16
þ 
þ 1

4
�

�
�þOð�2 log�Þ; (B8)

Q2 ¼ 1

�
� 1

4
þ 4
þ 3

4
�þOð� log�Þ: (B9)


 in the above is a function of k and �, i.e., a function of �
and �, and it is determined so that the bulk geometry
becomes regular. Since we know that the bulk metric
reduces to that of AdS5 in the limit of �! 0 and �! 0,
we can fix the leading term of 
 as (see also Ref. [12])


j�¼0¼� ¼ 0: (B10)

Note that � or � may appear in the subleading terms
of 
. Then, we find the correct expansion forms of L2

1,
L2
2, and Q2 to be

L2
1 ¼

1

�
� 1� 3

2
�þ 33

16
�þOð
�; ��; �2 log�Þ; (B11)

L2
2 ¼

1

�
� 1

2
� 3

16
�þOð
�; ��; �2 log�Þ; (B12)

Q2 ¼ 1

�
� 1

4
þOð
; �; � log�Þ: (B13)

These expression coincide with those for the flat brane case
given in [12] in the limit of �! 0, and difference appears
only in L1 up to the order shown here. We have to clarify
subleading behavior of 
 to fix the higher-order terms of
these expansion equations, while it seems difficult to do it
analytically.
Next, we make some comments on another solution ��.

Let us fix � and consider � dependence of ��. Fixing �,
we can show that �� monotonically decreases as we in-
crease �, and �� takes the maximum value �=3 for � ¼
6

ffiffiffiffiffiffiffi
2�
p

. This behavior can be expressed equivalently as
L=l & ðL2=lÞ2, that is, the brane black hole size is of the
same order as or larger than the four-dimensional curvature
scale. The brane black hole size L2 grows as L2 	 12�=�
for �2 
 �. This branch of solution is smoothly connected
to that for �
 1, and we will analyze it in the next
subsection in detail.
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2. �
 1 case and L� L2 regime

We will focus on the case � and then  is much larger
than the unity in the aim of studying the black holes much
larger than the four-dimensional curvature scale. We use 
instead of � throughout this subsection.

Before solving Eq. (B2) to find the black hole radius, we
fix the leading behavior of 
 from the bulk regularity. From
Eqs. (15), (34), (35), and (37)–(39), we find

L2
1

L1ð4DÞ
2
¼ 1� 1

8
�� 1

6
2�2 log�� 1

4
�� 1

8

�



� 8
�2 þOð2�2; �2 log�Þ; (B14)

where L1ð4DÞ is the radius of four-dimensional AdS-RN

solution, which is given by Eq. (A10). For a fixed �,
this ratio should converge to some constant in the limit
of �! 0, as we can see in Fig. 6, while the third term in the
right-hand side, 2�2 log�, diverges in such a limit. We
have only 
�2 term to cancel such divergence. This 
 is a
function of  and � and may have the following leading
behavior:


 ¼ 2

48
log: (B15)

This 
 replaces the logarithmic term as log�! log�, and
the divergence is canceled. We use this leading form of 

henceforth.

When �
 1, the expression of �, Eq. (B2), can be
expressed as

� ¼ ~�

12
� �

12
� 5

144
~�2 � 1

8
�~�þOð~�3 log�; �2; 
~��2Þ;

(B16)

where we introduced ~� � �. Note that �� ~�� 1 by
assumption and then �	 ~�
 �, i.e., L2 
 L follows in
this regime. Solving Eq. (B16) as an equation of ~� and
expanding it with respect to � and �, we find a solution
which satisfies the condition ~�� 1 as

~� ¼ 12�þ 60�2 þ ð1þ 18�Þ�þOð�3; �2Þ: (B17)

Plugging this expression into Eq. (B14), we find

L2
1

L2
1ð4DÞ

¼ 1� 3

2
�� 3

8
�þO

�
�2 log�;

�2

�

�
; (B18)

and we obtain Eq. (55) by taking � to zero while keeping �
fixed. To proceed the expansion and determine the higher-
order terms, we have to know the subleading behavior of 
,
while it seems not straightforward.

In a similar manner, we can evaluate the ratio of Q of a
brane-localized black hole to Q4D of the four-dimensional

AdS-RN solution, which is given by Eq. (54). Using
Eqs. (B15) and (B16), we obtain the expansion form of
Q2=Q2

4D, Eq. (56), as

Q2

Q2
4D

¼ 1þ 1

6
~� log~�� 1

6
� log~�þOð~�Þ

¼ 1þ 2� log�þOð�; �Þ: (B19)

Finally, let us calculate the five-dimensional horizon
area and its ratio to the four-dimensional horizon area on
the brane. The area of five-dimensional horizon is given as

A5 ¼ 2
Z �ðr¼�Þ

0
4�Rð�Þ2d�

¼ 8�
Z �ðr¼1=Þ

0
Rð�Þ2d�þ 4�

Z 1=

�

RðrÞ2
r

dr; (B20)

where we divided the integral into two pieces for con-
venience of the following calculation. Note that ��
1=� 1 by assumption. Using Rð�Þ ’ R21e2� and R2 ’
1=r, which hold for �
 1 and r� 1, the first integral in
the right-hand side of Eq. (B20) becomes

8�
Z �ðr¼1=Þ

0
Rð�Þ2d� ’ 4�R2jr¼1= ¼ OðÞ ¼ O

�
~�

�

�
:

(B21)

Using Eqs. (35) and (B15), the second integral of Eq. (B20)
becomes

4�
Z 1=

�

RðrÞ2
r

dr

¼ 4�
Z 1=

�
dr

�
1

r2
� 2þ 

6r
þOð2 logðrÞ; rÞ

�

¼ 4�

�
� 1

r
� 2þ 

6
logrþOð2r logðrÞÞ

�
1=

�

¼ 1

�

�
1þ 2�þ ~�

6
log~�þOð~�Þ

�
: (B22)

Since the first integral, Eq. (B21), can be absorbed inOð~�Þ
of Eq. (B22), we find that A5 is given by Eq. (B22). Writing
it in terms of � and �, we obtain

A5 ¼ 4�

�

�
1þ 2� log�þ 1

2
� log�þOð�Þ

�
; (B23)

and it gives Eq. (57) for �! 0. It is straightforward to
calculate the ratio between the five- and four-dimensional
horizon areas, A5=A4 ¼ A5=ð4�L2

2Þ. Using Eqs. (B23) and
(35), we find

A5

A4

¼ 1þ 2� log�þ 1

2
� log�þOð�Þ: (B24)

This yields Eq. (58) for �! 0.
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