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Nonlocal field theories which arise from p-adic string theories have vacuum soliton solutions. We find

the soliton solutions at finite temperature. These solutions become important for the partition function

when the temperature exceedsms=g
2
o, wherems is the string mass scale and go is the open string coupling.
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I. INTRODUCTION

There is a special class of nonlocal field theories char-
acterized by an infinite number of derivative terms in the
form of an exponential. These field theories describe the
open string tachyon in p-adic string theories [1–4]. In
several recent papers we studied these nonlocal theories
at finite temperature [5,6]. These theories have no true
particle degrees of freedom. All contributions to the equa-
tion of state arise from interactions. Perturbation theory
can be used to study the thermodynamics up to a tempera-
ture on the order of ms=g

2
o, where ms is the string mass

scale and go is the open string coupling. Thereafter, the
perturbative expansion breaks down and higher order terms
become important. In addition, the vacuum energy density
is positive and hierarchically suppressed with respect to the
Planck scale, leading to the possibility that it may contrib-
ute to the cosmological constant.

These nonlocal field theories are known to have vacuum
soliton solutions. In this context soliton refers to a local-
ized nonsingular solution to the classical field equation
with finite action. They have an energy proportional to
ms=g

2
o and therefore will contribute substantially to the

partition function for temperatures of that order and higher.
In this paper we study finite temperature classical solutions
to the p-adic string theories. These solutions are nonana-
lytic in the open string coupling go and therefore cannot be
calculated using perturbation theory. Hence they extend the
results obtained in [5,6].

The action for the p-adic theory is given by [1–4]

S ¼ mD
s

g2p

Z
dDx

�
� 1

2
�e�h=M2

�þ 1

pþ 1
�pþ1

�
; (1)

where h ¼ �@2t þr2
D�1 in flat space, and we have

defined

1

g2p
� 1

g2o

p2

p� 1
and M2 � 2m2

s

lnp
: (2)

The dimensionless scalar field �ðxÞ describes the open
string tachyon,ms is the string mass scale, defined bym2

s ¼
1=2�0 with �0 the string tension, and go is the open string
coupling constant. Though the action (1) was originally

derived for p a prime number, in this paper we allow it to
be any odd integer equal to or greater than 3. For constant
fields, the resulting potential takes the form

U ¼ mD
s

g2p

�
1

2
�2 � 1

pþ 1
�pþ1

�
: (3)

Its shape is shown in Fig. 1.
At finite temperature the scalar field must be a periodic

function of imaginary time � with a period equal to the
inverse temperature � ¼ 1=T, namely, �ð�þ �;xÞ ¼
�ð�;xÞ [7]. The classical equation of motion is

e�h=M2
� ¼ �p; (4)

where h ¼ @2=@�2 þr2. Substitution into the action

gives S � �~S with

~S ¼ 1

2

�
p� 1

pþ 1

�
mD

s

g2p

Z
V
dD�1x

Z �=2

��=2
d��pþ1ð�;xÞ: (5)

The quantity ~S is obviously non-negative for p an odd
integer. The classical equation of motion extremizes the

action, which in this case means that it minimizes ~S.
All of the finite temperature calculations in our previous

papers were done around the perturbative vacuum � ¼ 0,
which is of course a trivial solution to the classical equa-
tions of motion. Generally, a nontrivial solution �s will
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FIG. 1 (color online). Inverted potential of the p-adic tachyon
for p ¼ 3, 7 and p ! 1.
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have an action with ~Ss > 0. If, for example, these solutions
are thought of as solitons, and the centers of the solitons are
widely separated in space-time, then they contribute to the
partition function as a dilute gas. In the usual way [7] this
leads to

Zs ¼
X1
n¼0

1

n!
½�VK expð�~SsÞ�n (6)

or

lnZs ¼ �VK expð�~SsÞ: (7)

HereK is the factor due to quantum fluctuations around the
classical solution. The factor �V arises because the soliton
could be centered anywhere within the spatial volume V
and imaginary time interval �. The nontrivial solutions are
exponentially suppressed according to the actual value of
their action relative to the trivial solution. Calculation of
the factor K is beyond the scope of this paper.

Since the equation of motion is nonlinear, there may be
multiple nontrivial solutions at any given temperature, or
none. Our goal is to find the solutions with the minimum

value of ~S at finite temperature since the others will be
exponentially suppressed in comparison.

The outline of our paper is as follows. In Sec. II we
derive differential and integral equations to be solved at
finite temperature. In Sec. III we extend the diffusion
equation method to finite temperature. In Sec. IV we
deduce from general considerations three types of solu-
tions at finite temperature. In Secs. V and VI we calculate
solutions at all temperatures which are even and odd in
imaginary time, respectively. In Sec. VII we calculate the
value of the action for all these solutions to determine
which are most important as a function of the temperature.
In Sec. VIII we conclude with a summary of results ob-
tained and potential future directions.

II. DIFFERENTIAL AND INTEGRAL EQUATIONS

The classical equation of motion has soliton solutions, as
first discovered in Euclidean space at zero temperature [3].
Recall that

e�h=M2
� ¼ �p: (8)

This has the trivial solutions � ¼ 0, � ¼ 1, and � ¼ �1
(if p is an odd integer). Now make the ansatz

�ð�;xÞ ¼ f0ð�Þf1ðxÞf2ðyÞf3ðzÞ (9)

so that each f satisfies

exp

�
� 1

M2

d2

dx2

�
fðxÞ ¼ fpðxÞ: (10)

Taking the Fourier transform, it is easily verified that f
must satisfy

fðxÞ ¼ M

2
ffiffiffiffi
�

p
Z 1

�1
dx0e�M2ðx0�xÞ2=4fpðx0Þ: (11)

In this paper we are only interested in soliton solutions
which are continuous, smooth, and bounded. Therefore, a
solution of the differential equation, where the exponential
of the differential operator is defined by its Taylor series
expansion, should also be a solution of the integral equa-
tion and vice versa [8]. Once again, trivial solutions include
f ¼ 0, f ¼ 1, and f ¼ �1 (if p is an odd integer).
A nontrivial solution is

fðxÞ ¼ �p1=2ðp�1Þe�ðp�1ÞM2x2=4p: (12)

Multiplying the f’s together results in a soliton in one, two,
three, or four dimensions.
For T > 0 the scalar field must be periodic in � with

period � [7]. The ansatz above is applicable, and the
solutions in the three space directions are still valid. In
the imaginary time direction the differential equation is
still

exp

�
� 1

M2

d2

d�2

�
fð�Þ ¼ fpð�Þ; (13)

but now fð�þ �Þ ¼ fð�Þ.
Any periodic function can be expanded in a Fourier

series.

fð�Þ ¼ X1
n¼�1

cne
i!n�: (14)

Here!n ¼ 2�Tn is the Matsubara frequency. Substitution
into the differential equation results in

fpð�Þ ¼ X1
n¼�1

cne
!2

n=M
2
ei!n�: (15)

On the other hand,Z �=2

��=2
d�fpð�Þe�i!m� ¼ �cme

!2
m=M

2
(16)

which implies that

cn ¼ e�!2
n=M

2
T
Z �=2

��=2
d�fpð�Þe�i!n�: (17)

The integral equation at finite temperature is therefore

fð�Þ¼ X1
n¼�1

e�!2
n=M

2
ei!n�T

Z �=2

��=2
d�0e�i!n�

0
fpð�0Þ: (18)

One may also expand fð�Þ in sines and cosines instead of
complex exponentials.

fð�Þ ¼ A0 þ
X1
n¼1

½An cosð!n�Þ þ Bn sinð!n�Þ�: (19)

In the usual way, this leads to
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fð�Þ ¼ T
Z �=2

��=2
d�0fpð�0Þ þ 2T

X1
n¼1

e�!2
n=M

2

�
cosð!n�Þ

�
Z �=2

��=2
d�0fpð�0Þ cosð!n�

0Þ þ sinð!n�Þ

�
Z �=2

��=2
d�0fpð�0Þ sinð!n�

0Þ
�
: (20)

This naturally separates into one integral equation if the
solution is even,

feð�Þ ¼ T
X1

n¼�1
e�!2

n=M
2
cosð!n�Þ

�
Z �=2

��=2
d�0fpe ð�0Þ cosð!n�

0Þ; (21)

and another if the solution is odd,

foð�Þ ¼ 2T
X1
n¼1

e�!2
n=M

2
sinð!n�Þ

�
Z �=2

��=2
d�0fpo ð�0Þ sinð!n�

0Þ: (22)

This separation also follows from Eq. (18).
The kernel of the integral equation (18) is just the theta

function of the third kind,

�3ðu; qÞ ¼
X1

n¼�1
qn

2
e2uni; (23)

so that in more compact notation

fð�Þ ¼ T
Z �=2

��=2
d�0�3ð�Tð�� �0Þ; e�ð2�TÞ2=M2Þfpð�0Þ:

(24)

Now it is helpful to use the identity

�3ðu; e�x2Þ ¼ e�u2=x2
ffiffiffiffi
�

p
x

�3

�
i�u

x2
; e��2=x2

�
(25)

to write

fð�Þ¼ M

2
ffiffiffiffi
�

p X1
n¼�1

Z �=2

��=2
d�0fpð�0Þe�M2ð�0��þ�nÞ2=4: (26)

This is an alternative to an expansion in terms of trigono-
metric functions.

The expression (26) can be written as

fð�Þ ¼ M

2
ffiffiffiffi
�

p X1
n¼�1

�
Z ðnþ1=2Þ�

ðn�1=2Þ�
d�nf

pð�n � n�Þe�M2ð�n��Þ2=4; (27)

where �n � �0 þ n�, then as

fð�Þ¼ M

2
ffiffiffiffi
�

p X1
n¼�1

Z ðnþ1=2Þ�

ðn�1=2Þ�
d�nf

pð�nÞe�M2ð�n��Þ2=4 (28)

since fð�þ �Þ ¼ fð�Þ, and finally as

fð�Þ ¼ M

2
ffiffiffiffi
�

p X1
n¼�1

Z ðnþ1=2Þ�

ðn�1=2Þ�
d�0fpð�0Þe�M2ð�0��Þ2=4

¼ M

2
ffiffiffiffi
�

p
Z 1

�1
d�0fpð�0Þe�M2ð�0��Þ2=4: (29)

Thus we recover the general integral equation (11), but
(26) is potentially more useful since it embeds the required
periodicity of the solution explicitly while (11) does not. In
the above derivation we assumed that the integral and the
summation commute. This is justified since the infinite
sum clearly converges, and the individual integrals are
finite (as long as f is nonsingular).
In this section we have derived several integral equations

which give solutions to the original differential equation.
These equations may involve either trigonometric func-
tions, such as Eqs. (18) and (20)–(22), or Gaussians, such
as Eqs. (11) and (26).

III. DIFFUSION EQUATION

Yet another approach is to cast the problem in terms of a
diffusion equation [9–11]. This can be accomplished by
introducing an extra dimension labeled by the variable r.
The original differential equation is written as

exp

�
�2r�

d2

d�2

�
fð�Þ ¼ fpð�Þ; (30)

where r� ¼ 1=2M2. Now introduce a new function Fð�; rÞ
which satisfies the diffusion equation

@2

@�2
Fð�; rÞ ¼ �

@

@r
Fð�; rÞ; (31)

where � is an as yet unspecified constant which can be
chosen later. This function must be periodic in � and can be
expanded in trigonometric functions just as in Eq. (19)
except that now An and Bn depend upon r. Substitution
into the diffusion equation determines those functions to be

A0ðrÞ ¼ a0; AnðrÞ ¼ ane
�!2

nr=�; n � 1;

BnðrÞ ¼ bne
�!2

nr=�; n � 1; (32)

where the an and bn are constants.
The relationship to the original ordinary differential

equation is found by examining the operation

FINITE TEMPERATURE SOLITONS IN NONLOCAL FIELD . . . PHYSICAL REVIEW D 82, 085028 (2010)

085028-3



exp

�
�2r�

@2

@�2

�
Fð�; rÞ ¼ X1

k¼0

ð�2r�Þk
k!

�
@2

@�2

�
k
Fð�; rÞ

¼ X1
k¼0

ð�2r��Þk
k!

�
@

@r

�
k
Fð�; rÞ

¼ Fð�; r� 2r��Þ
on account of the fact that F obeys the diffusion equation.
Hence the operation of the exponential operator in � is just
a translation in the coordinate r. The desired solution f is
related to F only at the point r�, namely, fð�Þ ¼ Fð�; r�Þ.
Hence the proper equation of motion can be phrased as

Fð�; ð1� 2�Þr�Þ ¼ Fpð�; r�Þ: (34)

Solutions to the original differential equation have been
found by evolving some initial nontrivial configuration
Fð�; 0Þ to the final one Fð�; r�Þ via the diffusion equation.
Although this is an interesting approach, so far we have not
found any advantage over the solution of the original
differential or integral equations in one variable.

IV. GENERAL CONSIDERATIONS

One can prove some general theorems analogous to the
theorems for periodic solutions in real time [12]. Suppose
we have a periodic solution satisfying

fmin � fð�Þ � fmax (35)

with fmin < fmax. Let us first assume that fmax > 0. Then
using Eq. (11) we find that

fð�Þ< M

2
ffiffiffiffi
�

p
Z 1

�1
d�0e�M2ð�0��Þ2=4fpmax ¼ fpmax: (36)

Taking the maximum value of fð�Þ on the left side, we infer
that fmax < fpmax, which further implies that fmax > 1.
On the other hand, if fmax < 0, then we infer that
�1< fmax < 0.

Now consider the lower limit of the oscillation.

fð�Þ> M

2
ffiffiffiffi
�

p
Z 1

�1
d�0e�M2ð�0��Þ2=4fpmin ¼ fpmin: (37)

First assume that fmin > 0. Taking the minimum value of
fð�Þ on the left side, we infer that fmin > fpmin, which

further implies that fmin < 1. On the other hand, if fmin <
0, then we infer that fmin <�1.

Therefore, we conclude that there could exist three
types of oscillations: (i) 0< fmin < 1 and fmax > 1,
(ii) fmin <�1 and fmax > 1, and (iii) fmin <�1 and�1<
fmax < 0. These results are rather intuitive, and correspond
to oscillations about � ¼ 1, � ¼ 0, and � ¼ �1, respec-
tively. Furthermore, note that there are conditions on the
amplitudes of the oscillations, which are a result of the
nonlinearity of the original differential equation.

V. EVEN SOLUTIONS IN IMAGINARY TIME

In this section we consider solutions that are even in �.
First consider the low temperature limit when T 	 M.
Then the width of a vacuum soliton, 1=M, is much less
than �. This means that one can have a dilute gas of
solitons. When ��=2< �<�=2, only the n ¼ 0 term
will contribute significantly in Eq. (26). When � 
 �,
only the n ¼ 1 term will contribute. When � 
 2�, only
the n ¼ 2 term will contribute, and so on and so forth.
Then the periodic approximate solution to the integral and
differential equations is

fð�Þ ¼ �p1=2ðp�1Þ X1
n¼�1

e�ðp�1ÞM2ð���nÞ2=4p: (38)

In the limit�!1with��=2	 �	�=2, only the n ¼ 0
term survives and the vacuum solution (12) is recovered.
An alternative approach in the low temperature limit is

to substitute the vacuum solution into Eq. (21) and extend
the limits of integration to infinity. This gives

fð�Þ ¼ �2p1=2ðp�1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p�

p� 1

s
T

M

� X1
n¼�1

e�p!2
n=ðp�1ÞM2

cosð!n�Þ

¼ �2p1=2ðp�1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p�

p� 1

s
T

M
�3ð�T�; e�pð2�TÞ2=ðp�1ÞM2Þ:

(39)

Applying the identity (25) to this results in Eq. (38).
Since we have seen that oscillations can only exist

around the points � ¼ 0, �1, let us start by looking at
small oscillations around� ¼ 1 at some arbitrary tempera-
ture. To capture these let us make a truncated harmonic
series expansion.

fð�Þ ¼ A0 þ A1 cosð!�Þ: (40)

Substituting (40) in the field equation (13), and using
trigonometric identities, we find that at the same level of
truncation

Ap�1
0 þ pðp� 1Þ

4
Ap�3
0 A2

1 ¼ 1; (41)

pAp�1
0 þ pðp� 1Þðp� 2Þ

8
Ap�3
0 A2

1 ¼ e!
2=M2

; (42)

where both higher harmonics and terms of higher order in
A1 have been dropped. In the lowest order approximation,
A2
1 	 1, we find the usual harmonic oscillations around the

minimum to be

A0 ¼ 1; !2 ¼ M2 lnp: (43)

Because the solutions must be periodic in imaginary time
with period �, we must have ! ¼ 2�mT, where m is an
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integer which, without loss of generality, we may assume
to be positive. The smallest frequency corresponds to
m ¼ 1. This means that the solitons correspond to only a
particular temperature Tc � M

ffiffiffiffiffiffiffiffi
lnp

p
=2�. How do we get

solitons with other temperatures? This is where the anhar-
monicity comes into play, and one realizes that the fre-
quency changes as we change the amplitude of the
oscillations. Going to the next order we have

A0 ¼ 1� p

4
A2
1 þ � � � ; (44)

!2 ¼ M2 ln

�
p� pðpþ 2Þðp� 1Þ

8
A2
1 þ � � �

�
: (45)

This means that the temperature decreases as the amplitude
is increased.

In the above analysis higher harmonics were neglected.
The first overtone can be included by writing

fð�Þ ¼ A0 þ A1 cosð!�Þ þ A2 cosð2!�Þ: (46)

Proceeding as before we find

fð�Þ ¼ 1� 1

4
pA2

1 þ A1 cosð!�Þ

þ 1

4ðp2 þ pþ 1ÞA
2
1 cosð2!�Þ þ � � � : (47)

The expression for the frequency in terms of the amplitude
is the same as before.

The solution that is even in � evolves with temperature
in the following way. At T ¼ 0 the soliton solution is the
Gaussian given by Eq. (12). When T 	 M a periodic
solution is constructed from widely spaced Gaussians as
expressed by Eq. (38). As the temperature increases further
the tails of the Gaussians begin to overlap and the solution
becomes more uniform. Eventually it evolves into the form
of Eq. (46) with A0 � A1 � A2 and A0 ! 1. The solution
goes to the constant 1 at the well-defined critical tempera-
ture Tc ¼ M

ffiffiffiffiffiffiffiffi
lnp

p
=2�; thereafter, there is only the trivial

solution f ¼ 1. Exactly the same evolution happens for
negative f. This behavior is in accord with the general
considerations delineated earlier.

Precise solutions for the full range of T can only be done
numerically. It is convenient to use dimensionless variables
t � T=M and u � T�. The integral equation to solve,
Eq. (21), assumes the solution is an even function.

fðuÞ ¼ 2
Z 1=2

0
du0fpðu0Þ þ 4

X1
n¼1

e�ð2�ntÞ2 cosð2�nuÞ

�
Z 1=2

0
du0fpðu0Þ cosð2�nu0Þ: (48)

There are no general methods for solving nonlinear differ-
ential or integral equations, and the fact that the differential
equation under consideration has an infinite number of
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FIG. 2 (color online). Even soliton profile for p ¼ 3 as a
function of imaginary time � for different temperatures: T=Tc ¼
0:01, 0.10, 0.30, 0.50, 0.75, 0.85, 0.9 5. For T=Tc � 1 the solution
is exactly 1. As the temperature increases, the solution transi-
tions from a narrow Gaussian, to a cosine wave, to the constant
1 at Tc.
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FIG. 3 (color online). Even soliton profile for p ¼ 3 as a
function of imaginary time � for different temperatures: T=Tc ¼
0:10, 0.30, 0.75, 0.85, 0.95, 1.00, from top left to bottom right, in
units of the p-adic string scale M.
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derivatives means that the problem is infinitely nonlocal. A
straightforward iteration of the integral equation, starting
with a low temperature or high temperature trial solution,
does not converge. The reason is that the solutions always
have a region where f > 1, and if the trial solution is too
large by a small amount, then raising it to a power p > 1
will take it even further away from the true solution. An
important observation is to note a constraint that follows
from Eq. (48), which isZ 1=2

0
dufðuÞ ¼

Z 1=2

0
dufpðuÞ: (49)

The method used here starts with a trial solution and
iterates, where after each iteration, the new solution is
scaled by a constant to satisfy this constraint. In this way
convergence is achieved quite rapidly. Typically we stop
the iteration after an accuracy of at least eight significant
figures is attained.

Some illustrative results are plotted in Fig. 2 as a func-
tion of T�, and in Fig. 3 as a function of M�. Referring to
Fig. 2, the profile is described very well by the Gaussian for
T < 0:5Tc. It then transitions to a cosine before flattening
to the constant 1 for T � Tc. This is exactly the behavior
predicted by the analytical approximations.

VI. ODD SOLUTIONS IN IMAGINARY TIME

Now consider an oscillation that is odd in �. Such an
oscillation can only occur about � ¼ 0. The harmonic
expansion starts out as

fð�Þ ¼ B1 sinð!�Þ þ B3 sinð3!�Þ: (50)

In order that the solution have the required periodicity
implies that ! ¼ 2�ð2mþ 1ÞT where, without loss
of generality, m ¼ 0; 1; 2; . . . . Substitution into the differ-
ential equation, and matching only the sinð!�Þ term,
results in

B1 ¼
�ðpþ 1Þ!!

2p!!

�
1=ðp�1Þ

e!
2=ðp�1ÞM2

: (51)

Matching both the fundamental and first overtone results in

B1 ¼
�ðpþ 1Þ!!

2p!!

�
1=ðp�1Þ

e!
2=ðp�1ÞM2

�
�
1� pðp� 1Þ

ðpþ 3Þ3 e
�8!2=M2

�
;

B3 ¼
�ðpþ 1Þ!!

2p!!

�
1=ðp�1Þ

e!
2=ðp�1ÞM2

�
�
�
p� 1

pþ 3

�
e�8!2=M2

�
:

(52)

This solution has the characteristic feature predicted pre-
viously; namely, the amplitude of oscillation exceeds 1. In
fact, the amplitude grows exponentially as T2=M2, and the
fundamental frequency dominates at large temperature.
Although solutions exist for any integer value of m, the

solution with m ¼ 0 is the most important because the
others have actions which are exponentially larger.
When T >M=4� the first term in the series (50) domi-

nates. As T decreases the amplitude decreases, and more
and more terms in the series become important. There is no
known nontrivial solution at T ¼ 0, so it is interesting to
see what happens in the limit T ! 0. In fact, one can
construct a solution both periodic and odd in imaginary
time by adding the vacuum Gaussian solutions in the
following way.

fð�Þ ¼ p1=2ðp�1Þ

� X1
n¼�1

ð�1Þne�ðp�1ÞM2ð���ðnþ1=2ÞÞ2=4p: (53)

When T <M=4�, these Gaussians are spaced much fur-
ther apart than their widths, and so the differential and
integral equations are satisfied to a very good approxima-
tion. In particular, there is a positive Gaussian centered at
� ¼ �=2 and a negative Gaussian centered at � ¼ ��=2.
As T increases these naturally go over to B1 sinð2�T�Þ. As
T goes to zero, the spacing in � between adjacent
Gaussians diverges as � ¼ 1=T.
Once again, precise solutions at intermediate tempera-

tures require numerical calculation. For an odd solution the
equation to solve is

fðuÞ ¼ 4
X1
n¼1

e�ð2�ntÞ2 sinð2�nuÞ
Z 1=2

0
du0fpðu0Þ

� sinð2�nu0Þ: (54)

In this case the constraint we use takes the form

0.5 0.25 0 0.25 0.5
4
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0

2
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f

FIG. 4 (color online). Odd soliton profile for p ¼ 3 as a
function of imaginary time � for different temperatures: T=Tc ¼
0:01, 0.10, 0.50, 1.00, 1.50. As the temperature increases, the
solution transitions from a pair of narrow Gaussians to a sine
wave whose amplitude increases with temperature.
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Z 1=2

0
dufðuÞ sinð2�uÞ ¼ e�ð2�tÞ2 Z 1=2

0
dufpðuÞ sinð2�uÞ:

(55)

As with the even solutions, convergence is achieved rather
rapidly.

Some illustrative results are plotted in Fig. 4 as a func-
tion of T�, and in Fig. 5 as a function of M�. Referring to
Fig. 4, the profile is described very well by a pair of
Gaussians for T < 0:5Tc. It then rapidly transitions to a
sine with increasing amplitude for T > Tc. This is exactly
the behavior predicted by the analytical approximations.

VII. ACTION

As discussed in the Introduction, the contribution of
solitons to lnZ decreases exponentially with their action.
The spatial distribution of the solitons is always given by
the Gaussian of Eq. (12). Inserting this into the action gives

~SðTÞ ¼ 1

2

�
p2

pþ 1

�
1

g2o

�
2�

lnp

p2 � 1
p2p=ðp�1Þ

�ðD�1Þ=2
IðTÞ;
(56)

where the dimensionless integral

IðTÞ � ms

Z �=2

��=2
d�fpþ1ð�Þ (57)

determines the temperature dependence.
First consider the low temperature limit. For T < 0:5Tc

the even solution gives

IðTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� lnp

p2 � 1

s
pp=ðp�1Þ (58)

to a good approximation. Meanwhile the odd solution gives

IðTÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� lnp

p2 � 1

s
pp=ðp�1Þ (59)

to a good approximation, which is twice the value of the
even solution. This is because there are two Gaussian
distributions inside the interval of integration. See
Figs. 2 and 4.
Now consider the high temperature limit. For T � Tc the

exact result for the even solution is

IðTÞ ¼
ffiffiffi
2

p
�Tc

T
: (60)

For T > Tc the odd solution gives

IðTÞ ¼ �Tcffiffiffi
2

p
T

�ðpþ 1Þ!!
2p!!

�
2=ðp�1Þ

exp

��
pþ 1

p� 1

��
2�T

M

�
2
�
(61)

which increases exponentially in T2=M2.
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FIG. 5 (color online). Odd soliton profile for p ¼ 3 as a
function of imaginary time � for different temperatures: T=Tc ¼
0:10, 0.50, 1.00, 1.50, from top left to bottom right, in units of the
p-adic string scale M.
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FIG. 6 (color online). Contribution IðTÞ to the Euclidean ac-
tion of the even (top panel) and odd (bottom panel) solitons for
p ¼ 3 as a function of T=Tc. The green dashed lines show the
asymptotic behavior at low and high temperatures.
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We can compute the contributions from the classical
soliton configurations numerically. These are displayed in
Fig. 6. As discussed above, the high temperature behaviors
are opposite. The action for the even soliton solution
decreases as 1=T for T > Tc, while the action for the odd
soliton solution grows exponentially. At low temperature
the action for the odd solution is twice that of the even
solution. From these computations, we can deduce that the
odd soliton contribution is unimportant at all temperatures,
whereas the even soliton contribution is important when
T >ms=g

2
o.

VIII. DISCUSSION

In this paper we have found finite temperature soliton
solutions to a class of nonlocal field theories arising from
p-adic string theory. Analytic solutions were derived for
both low and high temperatures, delineated by a critical
temperature Tc 
ms=g

2
o. In the intermediate temperature

region numerical solutions were readily found.

These soliton solutions have finite action even at
zero temperature. This means that they will contribute to
the vacuum energy density or cosmological constant.
However, their contribution is suppressed exponentially

as e�cp=g
2
o , where cp is a number dependent upon p,

relative to the perturbative contribution [6]. Hence
they will be unimportant for open string couplings
go 	 1.
In order to quantify the soliton contributions to

the partition function, quantum fluctuations around the
classical solutions must be calculated. That work is in
progress.
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