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I explain a generalization of Bjorken flow where the medium has finite transverse size and expands both

radially and along the beam axis. If one assumes that the equations of viscous hydrodynamics can be used,

with p ¼ �=3 and zero bulk viscosity, then the flow I describe can be developed into an exact solution of

the relativistic Navier-Stokes equations. The local four-velocity in the flow is entirely determined by the

assumption of symmetry under a subgroup of the conformal group.
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I. INTRODUCTION

Bjorken flow [1] is an attempt to describe the average
motion of partons after a collision of heavy ions. Three
assumptions that go into the treatment of [1] are approxi-
mate boost invariance along the beam line near midrapid-
ity, translation invariance in the transverse plane, and
rotation invariance in that plane. If Minkowski space is
parametrized1 as

ds2 ¼ �d�2 þ �2d�2 þ dx2? þ x2?d�
2; (1)

then translation and rotation invariance in the transverse
plane imply that nothing can depend on x? or �, while
boost invariance (if exact) implies that nothing depends on
�. Together with invariance under reflections � ! ��,
these symmetries imply that the local four-velocity vector
is u� ¼ ð1; 0; 0; 0Þ in the ð�; �; x?; �Þ coordinate system.
One does not need any information about the equation of
state to determine the four-velocity profile. Symmetry
considerations alone fix it. The medium need not even be
equilibrated for u� ¼ ð1; 0; 0; 0Þ to be a well-motivated
choice for the average four-velocity in the midrapidity
region. If the medium is equilibrated and has equation of
state p ¼ �=3, then the energy density in the local rest

frame scales as 1=�4=3.
Translation invariance in the transverse plane is, of

course, highly unrealistic, since the nucleus is only about
13 fm across. Treatments based on the Bjorken picture
often assume that the medium has no average local velocity
in the x? direction (radial flow) until after it thermalizes.
This is probably wrong, even for perfectly central colli-
sions, and one might worry that it significantly distorts the
subsequent hydrodynamical flows on which much of
heavy-ion phenomenology depends. Indications that the
absence of initial radial flow could be problematic can be
found, for example, in [2,3]; see also [4–6]. The question
naturally arises, can we estimate in some way deviations
from the Bjorken picture, based on the finite size of the

colliding nuclei, which lead to nonzero u?? The aim of this
paper is to present a generalization of Bjorken flow, which
does exactly that.
The approach I will follow is based mostly on symmetry

considerations, and it requires that the initial state and the
dynamics of the collision perfectly respect relativistic con-
formal invariance. Also, I am limited to perfectly central
collisions. Obviously, these assumptions are by no means
exactly satisfied in real collisions. However, quantum chro-
modynamics (QCD) processes well above the confinement
scale are close to conformally invariant because the cou-
pling runs only logarithmically with scale. So, conformally
invariant dynamics, especially in early stages of the colli-
sions, is an interesting start point. The key input which
allows me to extract a velocity profile solely from symme-
try considerations is the assumption that translations in the
transverse plane can be replaced by certain special confor-
mal transformations which, in combination with rotations
around the beam line, form an SOð3Þ subgroup of the full
conformal group. The significance of this SOð3Þ subgroup
was previously noted in calculations [7] based on the
gauge-string duality [8–10]. Indeed, ideas in [7,11] (see
also [12,13]) strongly underlie the proposal in this paper.
But, I do not depend on any of the dynamical information
that the gauge-string duality provides. This is in contrast to
[14], where a gauge-string dual description of Bjorken flow
was found by constructing an approximate solution to
Einstein’s equations in AdS5. The main calculations in
this paper rely only on symmetries and hydrodynamics.
The organization of the rest of the paper is as follows. In

Sec. II, I will explain the aspects of conformal symmetry
that I am going to use. In Sec. III, I use conformal sym-
metry to pick out a special four-velocity profile. In Sec. IV,
I will use conformal symmetry again to help find an energy
density which, along with the special four-velocity profile,
solves the equations of inviscid, conformally invariant
relativistic hydrodynamics. In Sec. V, I extend the result
to the case of nonzero shear viscosity. The exact solution of
the Navier-Stokes equations that I find generalizes the

result � / 1=�4=3 for Bjorken flow. Unless the viscosity is
identically zero, there is a pathology in the solution at very
early times and/or very large radius. This pathology can be
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1More properly, the coordinates (1) cover a wedge of R3;1,

which is the causal future of the collision plane.
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understood as the breakdown of a hydrodynamical descrip-
tion. In Sec. VI, I characterize the colliding shock waves
which respect the same conformal symmetries as the spe-
cial four-velocity profile after the collision. In Sec. VII, I
use results on total multiplicity to estimate numerical
parameters in the hydrodynamical flows found in previous
subsections. In Sec. VIII, I explain how some of the
features of the flow are more transparent when one maps
it to S3 �R, which is the covering space of Minkowski
space, R3;1. Readers wishing to skip the motivations and
technical detail can find a brief summary of the main
results in Sec. IX.

II. AN SOð3Þ SUBGROUP OF
THE CONFORMAL GROUP

The conformal group in four dimensions is an extension
of the Poincaré group ISOð3; 1Þ to SOð4; 2Þ. The generators
of the Lie algebra underlying SOð4; 2Þ are (essentially in
the notation of [15]):

(i) Translations: �� ¼ a�, where a� is constant.
(ii) Rotations and boosts: �� ¼ !�

�x
�, where !�� is

constant and antisymmetric.
(iii) Scale transformations: �� ¼ x�.
(iv) Special conformal transformations: �� ¼ x�x�b

��
2b�x�x

�, where b� is constant.

Obviously, the first two classes of symmetries belong to the
Poincaré group, ISOð3; 1Þ. Geometrically, they are Killing
vectors, satisfying L�g�� ¼ 0, where L� denotes the Lie

derivative and g�� is the standard metric of R3;1 with

mostly plus signature.2 The vector fields associated with
scale transformations and special conformal transforma-
tions are not Killing vectors, but rather conformal Killing
vectors, satisfying

L �g�� ¼ 1

2
ðr��

�Þg��: (3)

Often, I will follow conventions of differential geometry in
specifying a vector in terms of a combination of deriva-
tives: for example, � ¼ a� @

@x� corresponds to �� ¼ a�.

As reviewed in the introduction, the symmetries of
Bjorken flow are:
(1) Rotation invariance around the beam line, � ¼

x1 @
@x2

� x2 @
@x1

. Of course, this is an exact symmetry

only in the vanishingly rare case of a perfectly head-
on collision.

(2) Translation invariance in the transverse plane,
� ¼ @

@x1
and � ¼ @

@x2
. This is the symmetry I am

most interested in relaxing, since it forbids radial
flow in the transverse plane.

(3) Boost invariance along the beam line, � ¼ x3 @
@t þ

t @
@x3

. This symmetry is the key feature of Bjorken’s

treatment. It is based on a model where the Lorentz-
flattened nuclei largely pass through one another
and leave behind a medium in the wedge jx3j< t.
The boost invariance is supposed to hold only in
some neighborhood of midrapidity—which is to
say, for jx3=tj not too close to 1.

In order to show that these three symmetries, together with
symmetry under the Z2 group reflecting x3 ! �x3, com-
pletely fix the local four-velocity u�, the equations we
solve are ½�; u� ¼ 0, where � is any of the symmetries in
the numbered list above. The only solution consistent with
the Z2 symmetry is u ¼ @

@� , where we pass to coordinates

ð�; �; x?; �Þ defined as

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � ðx3Þ2

q
� ¼ arctanh

x3

t

x? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1Þ2 þ ðx2Þ2

q
� ¼ arctan

x2

x1
:

(4)

A formal phrasing of what makes u ¼ @
@� special is that it is

the only timelike unit vector which is invariant under the
ISOð2Þ symmetry of the transverse x1-x2 plane, the
SOð1; 1Þ boost symmetry in the x3 direction, and the Z2

symmetry that reflects through the collision plane.3

The ISOð2Þ � SOð1; 1Þ symmetry also implies that �,
the energy density in the local rest frame of the medium,
can depend only on �. But, in order to actually determine
the functional dependence �ð�Þ, one needs much more
information. For example, if hydrodynamics is assumed
to be valid, then one needs conservation of the stress-
energy tensor, constitutive relations, the equation of state,
and a choice of shear and bulk viscosity.

2Readers unfamiliar with Lie derivatives can understand the
main points by interpreting L� as an operator which measures
how a tensor changes due to a coordinate transformation x� !
x� þ ��, treated to linear order in ��. The main properties of
L� are linearity, the Leibniz rule for products, and the following
definitions:

L �� � �� @�

@x�
for scalars �;

L�u
� � �� @u

�

@x�
� u�

@��

@x�
for vectors u�;

L�	� � ��
@	�

@x�
þ 	�

@��

@x�
for 1-forms 	�:

(2)

While L� is usually defined in terms of partial derivatives
@=@x�, one may instead use the covariant derivative r�, defined
in terms of the Christoffel connection, without changing the
results. A particularly useful result is L�g�� ¼ r��� þr���
for the metric tensor g��.
It is also good to note that L�u

� ¼ �Lu�
�. One often denotes

L�u by ½�; u�, also known as the Lie bracket, or simply as the
commutator of � and u.

3Relaxing our insistence on the Z2 symmetry while preserving
the continuous symmetries would allow nonzero u�. This is a
mild generalization because one could perform an overall boost
to restore the Z2 symmetry.
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I am interested in modifying the symmetry constraints in
order to accommodate finite transverse size and radial flow.
After some thought, starting from the treatment [7,11] of
colliding shocks in AdS5,

4 I concluded that the way to
proceed is to replace translation invariance by invariance
under

�i4 ¼ @

@xi
þ q2

�
2xix�

@

@x�
� x�x�

@

@xi

�
; (5)

where i ¼ 1 or 2 and q is a quantity with dimensions of
inverse length. The vector �14 (and analogously �24) is so
named because it is inherited from a symmetry of AdS5,
embedded in R4;2 by the equation5

�ðX�1Þ2 �ðX0Þ2 þðX1Þ2 þðX2Þ2 þðX3Þ2 þðX4Þ2 ¼�1;

(6)

and this symmetry acts on X1 and X4 as an ordinary
rotation. Even without reference to AdS5, (5) is a more
obvious thing to try than any other conformal transforma-
tion outside of ISOð3; 1Þ, because it is a combination, for
i ¼ 1, of translation by a� ¼ 
�

1 with a special conformal

transformation with b� / 

�
1 . It is easily checked that the

commutator of �14 and �24 is proportional to
@
@� , which is

rotation around the beam axis. Indeed, �14, �24, and
@
@�

generate an SOð3Þ subgroup of SOð4; 2Þ which commutes
with the SOð1; 1Þ subgroup generated by � ¼ x3 @

@t þ t @
@x3

.

The particular choice of the SOð3Þ is controlled by the
parameter q, and as q ! 0, the SOð3Þ degenerates to the
ISOð2Þ symmetry of Bjorken flow. Let us call the group
generated by �i4 and �� SOð3Þq to remind ourselves that it

depends on q in an interesting way.
In order to consider SOð3Þq symmetry further, it will be

convenient to recast one of the conformal Killing vectors
(5) in terms of the coordinates (4):

	 � �14

¼ 2q2�x? cos�
@

@�
þ ð1þ q2�2 þ q2x2?Þ cos�

@

@x?

� 1þ q2�2 � q2x2?
x?

sin�
@

@�
: (7)

III. A SPECIAL FOUR-VELOCITY PROFILE

A definite problem is now almost formulated: I
want to find a four-velocity profile in R3;1 which
respects SOð3Þq � SOð1; 1Þ � Z2 symmetry instead of

the ISOð2Þ � SOð1; 1Þ � Z2 symmetry of Bjorken flow.
(As before, the Z2 symmetry is the reflection x3 ! �x3,
or equivalently � ! ��.) I expect that symmetry con-
straints will completely determine u�. Invariance under
@
@� ,

@
@� , and � ! �� requires

u ¼ cosh�ð�; x?Þ @

@�
þ sinh�ð�; x?Þ @

@x?
: (8)

Readers familiar with the literature on hydrodynamical
treatments of heavy-ion collisions will recognize (8) as a
rewriting of the standard parametrization

u ¼ �?
�
@

@�
þ vx

@

@x
þ vy

@

@y

�
; (9)

where

�? ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

?
q and v? ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
x þ v2

y

q
: (10)

For clarity of comparison with the literature, in (9) and (10)
I have parametrized the transverse plane with ðx; yÞ instead
of ðx1; x2Þ. The quantity v? is known as the transverse
velocity. Comparing (8) and (9) leads immediately to

u� ¼ cosh� ¼ �?
u?

u�
¼ tanh� ¼ v?: (11)

Clearly, the vector u in (8) commutes with @
@� and @

@� :

this is what ‘‘invariance under @
@� and

@
@�’’ means. But there

is no choice of �ð�; x?Þ that will get u to commute with 	 .
The closest one can come is to choose

� ¼ arctanh
2q2�x?

1þ q2�2 þ q2x2?
; (12)

in which case, one finds

L 	u� ¼ 1

4
ðr�	

�Þu�: (13)

The result (13) at first seems discouraging, but in fact it is
ideal. Let us refer to a tensor Q�1�2���

�1�2��� as having 	-weight
equal to 
 if

L 	Q
�1�2���
�1�2��� ¼ �


4
ðr�	

�ÞQ�1�2���
�1�2���: (14)

According to (13), u� has 	-weight �1, and according to

(3), the metric g�� has 	-weight �2. Thus, the projection

tensor g�� þ u�u� has 	-weight �2. This projection ten-

sor enters so ubiquitously into hydrodynamical equations
that we should be delighted to see it transform as simply as
possible under the symmetry generated by 	 . As I will
explain in Sec. VIII, 	-weight is closely related to the more
general notion of conformal weight.

4Already, in [7,11], the hope was expressed that heavy-ion
collisions might be approximately invariant under an Oð3Þ
symmetry (or an Oð2Þ subgroup for off-center collisions) gen-
erated as explained here. Failure of motivation and insight, in
some combination, prevented me from actually writing down the
key Eq. (13) for almost two years.

5More properly, AdS5 is the universal cover of the solution
space to (6).
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IV. THE INVISCID CASE

Having decided upon a four-velocity profile, the next
step is to consider what the energy density � should be. Let
us start by requiring that � is invariant under @

@� and @
@� :

thus, � ¼ �ð�; x?Þ. In the case q ¼ 0, demanding that also
	�@�� ¼ 0 would lead immediately to the conclusion that

� depends only on �. It is tempting to require 	�@�� ¼ 0

even when q � 0, but the experience of finding (13) in-
stead of the more obvious condition L	u� ¼ 0 is a hint

that a slightly more elastic notion of symmetry is appro-
priate. Let us therefore consider the equation

L 	� ¼ �


4
ðr�	

�Þ�: (15)

Understanding � as a scalar quantity, this equation can be
read as saying that the function �ð�; x?Þ has 	-weight 
. It
is easy to see that the general solution to (15) is

� ¼ �̂ðgÞ
�


; where g ¼ 1� q2�2 þ q2x2?
2q�

(16)

and �̂ðgÞ is an arbitrary function. If one works to leading
order in small q, one has g / 1=�, and (16) reduces to the
original conclusion that the energy density should depend
only on �.

Some dynamical information is required to pin down
what �̂ðgÞ is. The standard equations of viscous relativistic
hydrodynamics are

r�T�� ¼ 0; (17)

where

T�� � �u�u� þ pP�� � 2���� � 	ðr�u
�ÞP��

��� � P�

P�

�

�r
u� þr�u

2

� g
�
3

r�u
�

�

P�� � g�� þ u�u�:

(18)

To complete the equations, we must specify how the pres-
sure p, the shear viscosity �, and the bulk viscosity 	
depend on �. Let us start with the simplest case:

p ¼ �

3
� ¼ 	 ¼ 0: (19)

The stress tensor is then traceless, as conformal invariance
demands. The conservation Eqs. (17) overconstrain �
because both the � ¼ � and � ¼ x? equations are non-
trivial. By inspection, I found that these equations are
consistent iff 
 ¼ 4.6 Then, they reduce to

d log�̂

dg
¼ � 8g=3

1þ g2
; (20)

whose solution is

�̂ ¼ �̂0

ð1þ g2Þ4=3 : (21)

Using (16), one finds immediately

� ¼ �̂0

�4=3
ð2qÞ8=3

½1þ 2q2ð�2 þ x2?Þ þ q4ð�2 � x2?Þ2�4=3
; (22)

where �̂0 is an integration constant. Recall that through (8)
and (12), we have already completely fixed u�. Also note

that if we take q ! 0with �̂0q
8=3 held fixed, then from (22)

we recover the standard result � / 1=�4=3 for Bjorken flow.
Thus, (22) together with (8) and (12) provide an exact
solution of the equations of relativistic inviscid hydrody-
namics with p ¼ �=3, which becomes Bjorken flow in the
limit q ! 0, but at finite q describes a medium which has
integrable falloff in the x? direction. It is amusing to see an
additional Z2 symmetry emerge which seems to have
nothing to do with conformal symmetry: Based on (8),

(12), and (22), the quantities �4=3�, �, u�, and u? are all
invariant under the exchange of � and x?.

V. THE VISCOUS CASE

The obvious thing to try next is to generalize to nonzero
viscosity while preserving conformal invariance of the
theory—that is,

p ¼ �

3
� ¼ H0�

3=4 	 ¼ 0: (23)

The �3=4 dependence is necessary because only then is H0

dimensionless. In searching for a solution with nonzero
shear viscosity, I am not going to change u� at all: recall
that u� is fixed entirely by the requirement that u� should
have 	-weight equal to �1. I am also not going to change
the requirement that � should have 	-weight equal to 4: this
is just the generalization to nonzero q of the condition that
� should be constant across the transverse plane. In
other words, I am going to assume (8), (12), and (22)
with 
 ¼ 4, and plug everything into (17) and (23) to get
equations for �̂ðgÞ. Happily, the conservation equations are
still consistent with one another for nonzero H0. The
equation they imply for �̂ðgÞ is simpler to state in terms of

T̂ðgÞ ¼
ffiffiffiffiffiffiffiffiffi
�̂ðgÞ4

q
; (24)

which is related to the local temperature of the fluid. The
conservation equations imply

3ð1þ g2Þ3=2 dT̂
dg

þ 2g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

q
T̂ þ g2H0 ¼ 0; (25)

whose general solution is

6In retrospect, it seems obvious that 
 ¼ 4: then, if �̂ is
dimensionless, (22) leads correctly to the conclusion that � has
dimension 4.
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T̂ðgÞ ¼ T̂0

ð1þ g2Þ1=3 þ
H0gffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p
�
1� ð1þ g2Þ1=6

� 2F1

�
1

2
;
1

6
;
3

2
;�g2

��
; (26)

where T̂0 is an integration constant and 2F1 denotes a
hypergeometric function:

2F1ð
;�;�;zÞ

� 1þ
�

c
zþ
ð
þ 1Þ�ð�þ 1Þ

�ð�þ 1Þ
z2

2

þ
ð
þ 1Þð
þ 2Þ�ð�þ 1Þð�þ 2Þ
�ð�þ 1Þð�þ 2Þ

z3

3!
þ . . . : (27)

There is a pathology in the solution (26): T̂ is negative for

large enough g. In fact, T̂ has a single real root g�, and
T̂ < 0 when g > g�. In other words, the T̂ < 0 pathology
arises when � is too small and/or x? is too big. It should not
dismay us unduly, since a similar pathology already arises
in the q ! 0 limit. To see this, expand (26) at large g
(which is equivalent to small q) to find

T̂ðgÞ
�

¼
�
T̂0�H0

�ð1=2Þ�ð�1=3Þ
2�ð1=6Þ

� ð2qÞ2=3
�1=3

�H0

2�
þOðg�2Þ:

(28)

Scaling q ! 0 and T̂0 ! 1 so that T̂0q
2=3 remains finite,

one finds

ffiffiffiffiffiffiffiffiffi
�ð�Þ4

p
¼ T̂

�
¼ e0

�1=3
� H0

2�
: (29)

It can be checked that all the corrections to (29) from the
terms labeledOðg�2Þ in (28) come with positive powers of
q after the scaling just mentioned. Therefore, (29) com-
bined with the q ! 0 limit of the four-velocity profile,
namely u ¼ @�, forms an exact solution to the equations
of conformal viscous hydrodynamics. This is viscous
Bjorken flow. The pathology at � ¼ ��, where

�� ¼
�
H0

2e0

�
3=2

; (30)

can be understood as an indication that as � approaches ��
from above, eventually hydrodynamics cannot be used,
because the shear is so strong that the viscous correction
is more important than the pressure. In such a situation, it
must be expected that higher derivative corrections also
become important. The difficulties one anticipates as g
approaches g� from below in the finite q case are essen-
tially the same as when � approaches �� from above for
q ¼ 0.

VI. BEFORE THE COLLISION

I would now like to inquire what kind of nonhydrody-
namical initial state might lead, at least in some

approximation, to the hydrodynamical flow that I ex-
plained in the previous subsections. A natural ansatz in
heavy-ion collisions is to assume that the state before the
collision can be described as sum of left- and right-moving
parts, each of which moves at the speed of light:

Tuu ¼ Tuuðu; x?Þ Tvv ¼ Tvvðv; x?Þ; (31)

where

u ¼ t� x3 v ¼ tþ x3: (32)

All components of the stress tensor other than Tuu and Tvv

are assumed to be zero in the coordinate system
ðu; v; x?; �Þ on R3;1.
In order for the initial state (31) to lead approximately to

an SOð3Þq � SOð1; 1Þ � Z2 invariant hydrodynamical

flow, it would help for the initial state to preserve as
much of this symmetry group as possible. The SOð1; 1Þ
boost symmetry cannot possibly be preserved, because
boosting a lightlike collision changes the total energy of
the two participants multiplicatively while preserving the
product of their energies. SOð1; 1Þ symmetry is supposed
to emerge in the midrapidity region through some post-
collision dynamics. But, SOð3Þq symmetry, as the analog

of ISOð2Þ symmetry in the transverse plane, is something
we might sensibly demand of the initial state in a perfectly
central collision. Let us inquire what constraints on Tuu and
Tvv arise when we do require SOð3Þq symmetry.

The ansatz (31) is trivially invariant under � rotations,
so the only issue is how to implement symmetry under
the conformal Killing vector 	 , which, in ðu; v; x?; �Þ
coordinates, reads

	 ¼ 2q2x? cos�

�
u
@

@u
þ v

@

@v

�
þ ð1þ q2uvþ q2x2?Þ

� cos�
@

@x?
� 1þ q2uv� q2x2?

x?
sin�

@

@�
: (33)

We have learned from previous sections that the useful
notion of symmetry under 	 involves 	-weights. When �
has 	-weight 4, u� has 	-weight�1, and g�� has 	-weight

�2, the hydrodynamical stress tensor T�� has 	-weight 2.

This is not trivial to verify when the shear viscosity is
nonzero, but it is true.7 The only sensible way to respect
symmetry under 	 prior to the collision is to demand that
T�� should again have 	-weight 2—that is,

L 	T�� ¼ � 1

2
ðr�	

�ÞT��: (34)

In short, the problem to be solved in this section is to find a
solution to (34) of the form (31). For simplicity, I will also
demand that the initial state preserve the Z2 symmetry,
which exchanges u and v: this just means that the left- and

7The Weyl covariant derivative introduced in [16] makes it
substantially easier to check that ��� has 	-weight �1.
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right-moving participants are identical. The answer can be
anticipated from AdS/CFT: directly from [7], we can read
off the result

Tuu ¼ 2q2E

�ð1þ q2x2?Þ3

ðuÞ Tvv ¼ 2q2E

�ð1þ q2x2?Þ3

ðvÞ:
(35)

Here, E is the energy in one of the shocks.
Let me now show how (35) follows directly from (34),

together with the ansatz (31). In ðu; v; x?; �Þ coordinates,
the � ¼ u, � ¼ x? component of (34) vanishes only if
uTuu ¼ 0. So Tuu ¼ eðx?Þ
ðuÞ for some function eðx?Þ.
Plugging this expression into the� ¼ u, � ¼ u component
of (34) leads immediately to

ð1þq2x2?Þe0ðx?Þ
ðuÞþ2q2x?eðx?Þð4
ðuÞþu
0ðuÞÞ ¼ 0:

(36)

This can be simplified by using the distributional identity
u
0ðuÞ ¼ �
ðuÞ: (36) then becomes

ð1þ q2x2?Þe0ðx?Þ þ 6q2x?eðx?Þ ¼ 0; (37)

which can easily be solved to find the expression for Tuu

given in (35). A similar argument applies to Tvv, based on
the vx? and vv components of (34). It is straightforward to
check that all other components of Eq. (34) are satisfied.

Already in [7], it was remarked that the transverse
profile of Tuu in (35) differs significantly from a highly
boosted Woods-Saxon profile: see, in particular, Fig. 4 of
that work. If q is chosen so that the energy-weighted
root mean square (rms) value of x? is the same between
the SOð3Þq-symmetric and Woods-Saxon profiles, then the

principal difference between the two is that there is
more weight near x? ¼ 0 in the SOð3Þq-symmetric profile.

It is also significant that the large x? tail of the
SOð3Þq-symmetric profile is qualitatively larger than for

Woods-Saxon: power-law falloff as compared to exponen-
tial. Ideally, one should develop a theory of how deviations
from SOð3Þq symmetry in the initial state propagate to the

hydrodynamical stage of the collision.

VII. PLUGGING IN APPROXIMATE NUMBERS

Because my motivation was to understand the hydro-
dynamic phase of the quark-gluon plasma produced in
heavy-ion collisions, I would now like to plug in numbers
which are at least approximately representative of a real-
world gold-gold collision at top RHIC energies. For some
of the simpler quantities, I will follow [7]:

1

q
¼ 4:3 fm E¼ Ebeam ¼ 19:7 TeV f� � �

T4
¼ 11:

(38)

If the inviscid flow (22) is our goal, then it remains only to
provide a value for the dimensionless quantity �̂0. If we
want to discuss the viscous solution (26) quantitatively,

then we must instead provide values for the dimensionless

quantities T̂0 and H0.

An obvious plan for getting at �̂0 or T̂0 is to compute the
entropy per unit rapidity in the fluid and then compare with
phenomenological estimates of the same quantity.8 In the
final, hadronized state, entropy is related to the number of
charged tracks:

dS

d�
� 7:5

dNcharged

d�
� 5000: (39)

The reader interested in details of where (39) comes from
is again referred to [7] and references therein, particularly
[17]. dNcharged=d� is directly measurable, and for the most

central collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV, a reasonable figure
is dNcharged=d� ¼ 660 [18]. This is the figure that went

into the second approximate equality in (39).9

The entropy density can be determined from the energy
density:

s ¼ �0�
3=4 where �0 ¼ 4

3
f1=4� ¼ 2:43: (40)

In order to compute dS=d� for the hydrodynamical flows
found in previous sections, we must use the entropy
current,

s� ¼ su�; (41)

where s is given by (40). If M is a codimension 1 surface,
with coordinates y
, whose induced metric is h
� and

whose unit normal vector n� is everywhere timelike,
then the entropy on M is

SM ¼
Z
M
d3y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
deth
�

q
n�s�: (42)

If we takeM to be a slice of constant �, and use coordinates
y
 ¼ ð�; x?; �Þ, then the integral in (42) diverges because
the integrand is �-independent—due precisely to the
boost symmetry. But, we can define the entropy per unit
rapidity as

dS

d�
¼ 2��

Z 1

0
x?dx?s� ¼ 2��0�

Z 1

0
x?dx?�3=4u�:

(43)

For the inviscid flow, where we take � from (22) and
u� from (8) and (12), the integral in (43) can be done
explicitly, and one finds

8In the interests of a compact presentation, I will not distin-
guish between rapidity and pseudorapidity.

9Because (39) refers to final-state entropy, the entropy of the
fluid per unit rapidity might be significantly lower. Indeed, using
the estimates of energy density in [19], one finds ðdS=d�Þfluid �
3000 (see Appendix). To be more systematic in my treatment of
dS=d�, I would have to introduce some definite assumptions
about hadronization. This would take me too far afield from my
main purpose, which is to obtain approximate numbers for the
hydrodynamical flows I have found.
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dS

d�
¼ 4��0�̂

3=4
0 : (44)

There is no � dependence because entropy is conserved by
inviscid flows. There is also no dependence on q in (44),
which could be anticipated, since q is dimensionful and
none of the other quantities are. Comparing (39) and (44),
and using (40), one finds

�̂ 0 ¼ 1

f1=3�

�
3

16�

dS

d�

�
4=3 � 880: (45)

To treat viscous flow, we must decide on a value for
the shear viscosity. I will take as a representative number
the lattice result �=s ¼ 0:134 for SUð3Þ gluodynamics
[20]—a bit larger than the value �=s ¼ 1=4� found in
[21,22]. Thus,

H 0 ¼ �

s
�0 ¼ 0:33: (46)

Nonzero shear viscosity implies that entropy increases with
time. Because (39) refers to final-state entropy, we should
compare it with dS=d� on a fairly late time slice. I will
again evaluate entropy on a surface M at constant �.
Recalling that the temperature formally becomes negative
at large enough x?, I see that I have to cut M off at some
limiting value x?�. To find x?�, one must solve the equation

g� ¼
1� q2�2 þ q2x2?�

2q�
(47)

for x?�, where g� is the unique real root of the equation

T̂ðgÞ ¼ 0. In short,

dS

d�
¼ 2��

Z x?�

0
x?dx?s�; (48)

where s� is computed as before, only using the full viscous
solution (26). In order to have (48) match the result (39)
with H0 ¼ 0:33, one needs

T̂ 0 ¼ 5:55: (49)

This is to be compared to
ffiffiffiffiffi
�̂0

4
p ¼ 5:45 from the inviscid

flow based on (45). In Fig. 1, I show the time evolution of
�ð�; x?Þ for several values of x?. For energy density, I have
used the standard units GeV=fm3. To convert to units of
fm�4, one need only recall that ℏc ¼ 0:197 327 GeV fm
and set ℏ ¼ c ¼ 1. In Fig. 2, I show the direction of the
hydrodynamic flow and contours of constant temperature
for the viscous flow. In Fig. 3, I show the dependence of
transverse velocity v? ¼ tanh� and the temperature T on
x? for several fixed values of �, using the viscous flow.
Phenomenologically oriented readers will notice in

these last plots undesirably large v? and T for large x?.
These tails are a consequence of assuming exact conformal
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FIG. 1 (color online). Left: � as a function of � for different values of x? at zero viscosity, with parameters chosen as in (38) and (45).
Right: � for nonzero viscosity, with parameters chosen as in (38), (46), and (49). The bold red line shows the dependence � ¼ 5:4=�3,
where � is in GeV=fm3 and � is in fm=c. The estimate � ¼ 5:4 GeV=fm3 at � ¼ 1 fm=c is taken from [19].
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FIG. 2 (color online). The vector field u� and the temperature
profile for the viscous flow, with parameters chosen as in (38),
(46), and (49). To improve readability I have plotted not ðu�; u?Þ
but instead ðu�; u?Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu�Þ2 þ ðu?Þ2

p
. The thick red contour is

T ¼ 130 MeV. The cooler parts of the plot have little to do with
heavy-ion phenomenology, but they help illustrate the nature of
the flow.
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symmetry in the underlying state and of supplying initial
states whose stress tensor has only power-law falloff at
large x?. To understand the tails better, let us consider what
they look like at fixed � > 0. From (12), one sees imme-
diately that v? / 1=x? for large x?. From (26) it follows
that the temperature falls to 0 at the limiting value x?�
discussed around (48). This strange behavior is associated
with a complete breakdown of the derivative expansion on
which hydrodynamics is based.

In more practical terms, the region of the flows where
T < 130 MeV should probably be regarded as phenom-
enologically unuseful: 130 MeV is approximately the tem-
perature of decoupling in a Cooper-Frye treatment, and it is
significantly below Tc � 170 MeV, so neither the confor-
mal approximation nor the hydrodynamic approximation is
any good when T < 130 MeV. In short, one could regard
the surface T ¼ 130 MeV as a freeze-out surface beyond
which the true degrees of freedom are nearly free hadrons
rather than a locally equilibrated fluid. It is worth noting
that at early times, most of the energy is in the region where
T > 130 MeV, even though the region x? < x?� is sub-
stantially larger. In particular, for the viscous flow at � ¼
0:5 fm=c, slightly more than 97% of the energy is inside
the freeze-out surface, which is at x? ¼ 8:4 fm, whereas T
[as defined from (26)] drops to zero at x?� ¼ 29:5 fm.

The value of q in (38) is the onewhich makes the energy-
weighted rms transverse radius match between the
SOð3Þq-invariant stress tensor profile (35) and the highly

boosted Woods-Saxon profile of a gold nucleus. In other
words, I chose the SOð3Þq symmetry to be the one most

nearly realized by the precollision state, and then I used
that symmetry (assumed to be exact and to be preserved by
the underlying dynamics) to constrain u� and T�� after the

collision. While this idea seems suitably straightforward for
a first attempt, it could be in need of refinement to account
for effects of evolution of the parton distribution function,
initial state radiation, and other early time dynamics.

As (44) makes clear, �̂0 for the inviscid flow is entirely
independent of q. Also, H0 is independent of q because it

amounted simply to a choice of �=s. Finally, T̂0 is only
weakly dependent on q when it is determined by matching
(48) with the observed multiplicity per unit rapidity. Thus,
we can think of varying q independently of these other
parameters. An interesting quantity which depends strongly
on q is the transverse velocity

v? ¼ tanh� ¼ 2q2�x?
1þ q2�2 þ q2x2?

: (50)

In Fig. 4, I plot v? at � ¼ 0:6 fm for several different
values of q and show for comparison a radial flow profile
studied in [2]. The comparison seems to favor 1=q some-
what larger than 4.3 fm. Energy density, entropy density,
and temperature get smaller when 1=q is made larger,
simply because we are expanding the flow in all space-
time dimensions without increasing total entropy. However,
the freeze-out surface changes only slowly with 1=q.
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FIG. 3 (color online). Left: The transverse velocity v? ¼ tanh� as a function of x? for selected values of �, measured in fm=c, with
1=q ¼ 4:3 fm as in (38). Right: The local temperature T as a function of x? for selected values of � with nonzero viscosity, with
parameters chosen as in (38), (46), and (49). In both plots, the red dots show where T ¼ 130 MeV. For � * 4:6 fm=c, the temperature
is below 130 MeV everywhere.
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FIG. 4 (color online). The transverse velocity v? as a function
of transverse radius x? at � ¼ 0:6 fm=c for several values of
1=q, measured in fm. The dark line is the phenomenological
proposal v? ¼ tanhx?50 of [2].
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It would be interesting to work through a more systematic
study of single-particle spectra and Hanbury Brown–Twiss
radii with (50) as an initial condition for the hydrodynamic
flow: then, one could establish a preferred value of q purely
from final-state observables.

VIII. MAPPING TO THE COVERING SPACE

Exact solutions to the Navier-Stokes equations are few
and far between. I was able to get hold of the one described
in this paper because I imposed enough symmetry con-
straints so that there was effectively only one independent
variable left, namely g defined in (22). This variable is
essentially the only combination of the coordinates onR3;1

which is invariant under SOð3Þq � SOð1; 1Þ. It is instruc-
tive to understand what g looks like when we conformally
embed Minkowski space in its covering space S3 �R. An
explicit mapping to accomplish this can be found, for
example, in [23], and can be characterized as follows.
Parametrize R3;1 by ðt; r; �;�Þ, where t is the usual lab

time, r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx1Þ2 þ ðx2Þ2 þ ðx3Þ2p
, and ð�;�Þ are standard

coordinates on S2. Parametrize S3 �R by ð�;�; �;�Þ,
where � is global time (for the R piece), ð�;�Þ are
coordinates on S2 as before, and � is an angle describing
the dimension orthogonal to the S2 parametrized by ð�;�Þ.
Let us make all quantities on S3 �R dimensionless, so
that the metric is

ds2 ¼ �d�2 þ d�2 þ sin2�ðd�2 þ sin2�d�2Þ: (51)

Then, the embedding of R3;1 into S3 �R is specified by

qt ¼ W sin� qr ¼ W sin�; (52)

where

W ¼ 1

cos�þ cos�
: (53)

It appears from (52) and (53) that � is an angular coor-
dinate, to be identified modulo 2�. In fact, one period of �
is enough to cover R3;1.

One can obviously embed S3 in R4, as

y1
y2
y3
y4

0
BBB@

1
CCCA ¼

sin� sin� cos�
sin� sin� sin�
sin� cos�
cos�

0
BBB@

1
CCCA: (54)

What I have called SOð3Þq is simply the SOð3Þ which

rotates y1, y2, and y4 among themselves while leaving y3
fixed. Slightly tedious manipulations starting from (52) and
(53), together with x3 ¼ r cos�, lead to

g � 1þ q2x2? � q2�2

2q�
¼ cos�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2�� y23

q : (55)

The last expression is obviously SOð3Þ-invariant, since �
and y3 are (separately). But SOð1; 1Þ-invariance, which is

obvious from the middle expression in (55), is far from
obvious in the coordinates on S3 �R. When r ¼ 0, then
also x? ¼ y3 ¼ 0, and g ¼ cot� is a function simply of
global time. Away from r ¼ 0, g depends also on the
‘‘latitude’’ variable y3 on S3. Note that slices of constant
y3 on S

3 are two-spheres, though not the ones parametrized
by ð�;�Þ. The SOð3Þ symmetry acts to rotate these
two-spheres.
To further understand the geometry of the flow, let us

start with a general description of conformal mappings and
conformal weights. Given two manifolds with metrics,
ðM;g��Þ and ð ~M; ~g��Þ, a conformal map from M to ~M is

a smooth bijection x� ! ~x� such that

~g�� ¼ 1

W2

@x�

@~x�
@x�

@~x�
g��; (56)

whereW is the conformal factor. IfW ¼ 1, then the map is
an isometry. For the map (52), the conformal factor is given
in (53). A tensor Q�1�2���

�1�2��� on M maps to a new tensor
~Q�1�2���
�1�2��� on ~M with conformal weight 
 iff

~Q
�1�2���
�1�2��� ¼ W
 @x�1

@~x�1

@x�2

@~x�2
� � � @~x

�1

@x�1

@~x�2

@x�2
� � �Q�1�2���

�1�2���:

(57)

My previous notion of 	-weight is in a sense a special case
of (57):Q�1�2���

�1�2��� onR3;1 has 	-weight 
 iff it maps to itself
with conformal weight 
 upon the conformal map x� !
x� þ #	�, where # is an infinitesimal parameter which
formally squares to 0.
The four-velocity vector u� is naturally a tensor of

conformal weight �1, because then its image ~u� is a
timelike unit vector with respect to the new metric ~g��.

One can check that for the conformal mapR3;1 ! S3 �R
discussed above, the only nonzero components of ~u� are in
the � direction and the latitude direction, orthogonal to
surfaces of constant y3.

10 One can also check that the initial
shock wave states discussed in Sec. VI get mapped to
shocks whose energy density is uniform across 2-spheres
of fixed y3 and which reach y3 ¼ 0 at global time � ¼ 0.
Thus, the overall picture on S3 �R is as much like the
original Bjorken picture as it can be: uniform lightlike
shocks collide, and a boost-invariant fluid results which
is uniform in the transverse directions.

10One can go further and show that if a tensor on R3;1 respects
the SOð3Þq symmetry with 	-weight 
, then mapping it with
conformal weight 
 to S3 �R with conformal weight 
 results
in a tensor on S3 �R which has vanishing Lie derivative under
the Killing vectors that generate the SOð3Þ that preserves sur-
faces of constant y3. A special case of this general claim is that
the energy density on S3 (ignoring the conformal anomaly of the
stress tensor) is ~� ¼ W4� ¼ W4

�4
�̂, which is SOð3Þ-invariant

because both �̂ and W
� ¼ qðsin2�� y23Þ�1=2 are SOð3Þ-invariant.
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IX. SUMMARY

In order to accommodate finite transverse size and non-
zero radial velocity in collisions of heavy ions, I propose to
replace translation invariance in the transverse plane by
symmetry under special conformal transformations, one of
which is

	 ¼ @

@x1
þ q2

�
2x1x�

@

@x�
� x�x�

@

@x1

�
; (58)

where q is a parameter with dimensions of inverse length.
Along with rotations around the beam line, these special
conformal transformations fill out an SOð3Þ subgroup of
the conformal group SOð4; 2Þ, which is an approximate
symmetry of QCD at high energies. I denote this SOð3Þ
subgroup SOð3Þq. A shock wave traveling at the speed of

light in theþx3 direction which respects SOð3Þq must take

the form

Tuu ¼ 2q2E

�ð1þ q2x2?Þ3

ðuÞ; (59)

where E is the energy of the shock wave. Comparing with a
boosted nucleus whose energy density is assumed to follow
the Woods-Saxon profile that describes gold nuclei, one
finds 1=q ¼ 4:3 fm in order to get the same energy-
weighted root-mean-square transverse radius. The form
(59) can be derived straightforwardly from the gauge-
string duality as the dual of a point-sourced shock wave
in AdS5 [7]; however, like all the results in this paper, it
does not depend at all on the dynamical content of the
gauge-string duality.

The only four-velocity profile which respects SOð3Þq in
addition to SOð1; 1Þ boost invariance along the beam line
and the Z2 symmetry that reflects x3 ! �x3 is

u� ¼ �? ¼ 1þ q2�2 þ q2x2?
2q�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p
u? ¼ �?v? ¼ qx?ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ g2
p ;

(60)

where I have written out the nonzero components of u� in
the ð�; �; x?; �Þ coordinate system and used

g ¼ 1þ q2x2? � q2�2

2q�
; (61)

which is essentially the only combination of coordinates on
R3;1 invariant under SOð3Þq � SOð1; 1Þ. The four-velocity

(60) might be a useful starting point for hydrodynamic
simulations. In fact, a solution to the Navier-Stokes equa-
tions can be found in closed form based on the four-velocity
(60), provided the hydrodynamic stress tensor satisfies the
constraints of conformal invariance. Those constraints are
p ¼ �=3, vanishing bulk viscosity, and shear viscosity

given by � ¼ H0�
3=4 for some dimensionless constant H0.

In this solution, the temperature in the local rest frame of the
fluid is

T ¼ 1

�f1=4�

�
T̂0

ð1þ g2Þ1=3 þ
H0gffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p
�
1� ð1þ g2Þ1=6

� 2F1

�
1

2
;
1

6
;
3

2
;�g2

���
; (62)

where T̂0 is a dimensionless integration constant.
Semirealistic numbers for a central gold-gold collision atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV are T̂0 ¼ 5:55 and H0 ¼ 0:33, if we

choose 1=q ¼ 4:3 fm. A visual presentation of the flow
can be found in Fig. 2; the behavior of the energy density
as a function of � for several fixed values of x? can be found
in Fig. 1; and plots of the transverse velocity v? for several
different values of q can be found in Fig. 4.
Although my use of the SOð3Þq symmetry was inspired

by head-on collisions of point-sourced shocks in AdS5 [7],
I do not rely on strong coupling dynamics, which has been
argued to lead to rapidity-dependent final states [24,25].
Instead, outside the context of the gauge-string duality,
I am studying what might be termed ‘‘conformal colli-
sions.’’ Suppose we have two shock waves of the form
(59) colliding head-on in flat four-dimensional Minkowski
space, and suppose the underlying dynamics of the colli-
sion is a conformal field theory—but let us not make any
supposition about the strength of the interactions other than
to assume that at some point after the collision, hydro-
dynamics applies. Finally, let us assume, as Bjorken sug-
gested, that an approximate boost symmetry along the
beam axis arises near midrapidity. Then, without any fur-
ther knowledge of the dynamics prior to local equilibra-
tion, we can confidently assert that the local four-velocity
in the hydrodynamical phase is (60) (near midrapidity, of
course), and that the local temperature is (62). Naturally,
my interest in these conformal collisions stems from the
hope that central heavy-ion collisions might in some ap-
proximate sense respect SOð3Þq symmetry, at least in early

stages where the energy density is high enough for confor-
mal invariance to be a good symmetry of the underlying
QCD dynamics.
The SOð3Þq symmetry becomes more transparent when

one mapsR3;1 conformally to its covering space S3 �R: it
is just the rotational symmetry around one particular axis
through the S3. But, the SOð1; 1Þ symmetry is more ob-
scure in the S3 �R description. All the symmetries are
manifest in an AdS5 description through the gauge-string
duality. As remarked in [7,11], off-center collisions of the
lightlike shocks described in Sec. VI preserve a Uð1Þ
subgroup out of the SOð3Þq symmetry group of central

collisions. (In addition, some discrete symmetries are pre-
served.) If the impact parameter is in the x2 direction, then
the Uð1Þ symmetry is the one described in (58), generaliz-
ing translations in the x1 direction. This Uð1Þ symmetry,
combined with the hypothesis of boost symmetry along the
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beam axis, imposes significant constraints on the flow, but
it seems in the noncentral case that one can no longer
extract the local four-velocity from symmetry considera-
tions alone.
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APPENDIX: ANOTHER ENTROPY ESTIMATE

It is reasonable to assume that (39) provides an upper
bound on the entropy per unit rapidity of the fluid. Let us
consider another estimate of entropy which is more spe-
cific to the fluid. In [19] (and earlier, see, e.g., [26]), one
can find the estimate

� ¼ 5:4
GeV

fm3
at � ¼ 1 fm=c: (A1)

A conventional assumption is that at roughly this time, the
four-velocity profile of the fluid is u ¼ @� (i.e., boost-
invariant with no transverse flow), and �ð�; x?Þ is propor-
tional to a transverse distribution of nucleons determined
by the Woods-Saxon profile:

�ð�; x?Þ
�ð�; 0Þ ¼

R1
�1 dx3=½1þ eð

ffiffiffiffiffiffiffiffiffiffiffi
x3þx2?

p
�RÞ=a�R1

�1 dx3=½1þ eðjx3j�RÞ=a� ; (A2)

where R ¼ 6:38 fm and a ¼ 0:535 fm. The entropy per
unit rapidity (near midrapidity) is

dS

d�
¼ 2��

Z 1

0
x?dx?sð�; x?Þ

¼ 2���0�ð�; 0Þ3=4
Z 1

0
x?dx?

�
�ð�; x?Þ
�ð�; 0Þ

�
3=4 � 3000;

(A3)

where the final number came from plugging (40), (A1), and
(A2) into the explicit integral in (A3). It is reassuring that
the result (A3) is smaller than (39).
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