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We analytically find the exact propagation modes of the electromagnetic and the Kalb-Ramond fields

together in a five-dimensional curved space-time. The existence and localization of gauge particles into

our four-dimensional world (4D) is studied in detail on a brane-world scenario in which two gauge fields

interact with a dilaton and a gravitational background. The coupling to the dilaton is different in each case

causing the splitting between gauge spectra. The gauge-field zero-modes and an infinite tower of Kaluza-

Klein massive states are analytically obtained. Relevant conditions on the dilaton coupling constant are

found in order to identify with precision every finite tensor and vector eigenstate in the theory. An exact

quantization condition on the whole mass spectrum, depending on the dilaton coupling constant and the

bulk Planck mass, is inherited from the extra-dimension. This allows finding an exact rule to prevent

tachyons in the theory and, by the same token, predicting a possible tensor zero-mode in 4D world. We

also show that KK massive-modes contributions onto 4D physics are strongly suppressed.
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I. INTRODUCTION

Together with the mass question, one of the most diffi-
cult issues to understand in the standard model is how the
electroweak scale can be perturbatively stable at 17 orders
of magnitude below the Planck scale: in other words,
whether there is a way to bring the quantum gravity scale
below �1 TeV.

Recent proposals involving high-dimensional models
and brane-world scenarios raise possible solutions to
such a hierarchy problem of gauge couplings [1]. Ten-
dimensional superstring theory allows these kinds of
frameworks to get embedded within a theory of everything.
Since extra-dimensional theories present more degrees of
freedom than four-dimensional (4D) ones, they provide a
richer framework to approach physical phenomena. The
problem is that the parameter space to be covered is much
wider, and calculations in higher dimensional gravity are
technically very difficult.

The main goal of high-dimensional theories being the
inclusion of gravity together with the standard model
interactions introduces nontrivial changes in all sectors,
so gauge forces have to be proven to exist as needed in the
ordinary space slice. In the gauge sector the analysis of
localization becomes crucial to have a 4D effective result
with massless photons. Modeling our Universe as a domain
wall has been motivated by the D-brane solutions of string
theory. Gauge fields are deposited on D-branes from open
strings ending on them. However, domain walls can be
constructed in field theoretic frameworks with no direct
possibility to localize gauge fields. As a matter of fact, in
5D we shall need not only gravitational fields, but also a
dilaton field to properly accomplish this task [2,3]. Since
simple domain walls cannot hold gauge fields in [4], this
scalar will show to be essential to guarantee the existence

of U(1) gauge fields localized in the four-dimensional
world.
Current interest in theories with bosonic fields of differ-

ent spin arise as a result of their existence on conformally
flat spaces of any dimensionality (D � 4) such as anti-de
Sitter geometries. The role of tensor bosons in the context of
AdS/CFT correspondence, is particularly important when
coupled to gravity [5]. String theory is so far mainly based
on its low spin excitations and their low-energy interac-
tions. The low-energy 4D effective field theory action of
string theory [6] contains twomassless fields: a second rank
antisymmetric tensor from the Neveu-Schwarz (NS-NS)
sector of the underlying string theory known as Kalb-
Ramond field [7], and a scalar field called dilaton. The
Kalb-Ramond field, provided the Lagrangian is invariant
under a second gauge transformation, has three free com-
ponents. However, it is known that classically a free anti-
symmetric tensor field is dual to a scalar which involves just
one degree of freedom. Indeed, the third rank field-strength
corresponding to the Kalb-Ramond field is dual to a pseu-
doscalar in 4D so-called axion. Consequences of the pres-
ence of the axion in a curved space-time on some physical
phenomena have been investigated in view of possible
indirect evidences of string theory at low energies [8].
Here, we will focus on both Maxwell and Kalb-Ramond

gauge fields together, in a warped five-dimensional bulk
with a dilaton and a brane defect that mimics the ordinary
world. This thick brane configuration results from a field
action with a (deformed) sine-Gordon potential that de-
pends on two scalars. One of these is a kink representing
the membrane itself and the other the dilaton in a field
theoretic scenario. Metric, dilaton and brane configura-
tions are geometrically consistent solutions of the world
action. On such an interesting background, we shall ana-
lytically obtain all the eigenstates for both gauge fields,
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viz. zero-modes, massive-modes, and tachyons building
both whole spectra.

Regarding the propagating modes of the Kalb-Ramond
field, so far only simple qualitative calculations have been
obtained in this context. In the present paper, we perform a
systematic search by means of an analytical approach.
Furthermore, we include the electromagnetic field together,
in order to exhibit their actual differences. We thus show
that vector and tensor spectra are analogous but not equal
as a consequence of their different coupling to the dilaton.
In both cases, the full tower of gauge massive-modes, so far
invisible in the ordinary world, are proven to be strongly
suppressed in 4D. We also predict that a localized zero-
mode is not only possible for the 5D electromagnetic field
but also for a 5D Kalb-Ramond field, provided the dilaton
coupling constant is above a certain value. This value is
precisely that needed to exclude tachyons in the theory. All
of this amounts to show that the model presented here is an
interesting arena to discuss extra-dimensional physics, and
that our ordinary 4D world seems to be compatible with a
higher-dimensional universe, apparently of a 4D stringy
brane nature.

The paper is organized as follows. In the next Section,
we present the geometrical background. Along with a
conveniently warped metric, this includes a sine-Gordon
potential depending on the brane and the dilaton fields. In
previous treatments, a Higgs like potential has been pre-
ferred, so we shall briefly address this case as a warm up.
In Section III, we introduce the action for the gauge fields
in the bulk, Maxwell and Kalb-Ramond, coupled to a
warped gravity and dilaton background. We next derive
the bulk equations of motion and separate the extra coor-
dinate from the four-dimensional world coordinates. Then,
in Section IV, we find a condition for localization and
transform the equations of motion for the gauge fields
into a couple of Schrödinger-like equations. In the follow-
ing sections we analytically discuss the Maxwell and
Kalb-Ramond spectra as a function of the dilaton coupling
constant. We particularly emphasize the Sturm-Liouville
nature of the differential equations resulting from the map-
ping of the original problem, and show significant conse-
quences on the space of solutions. In Section V, we obtain
exact expressions for the full spectrum of eigenstates of the
problem. Analyticity constraints on massive-modes, zero-
modes, and tachyons are discussed. Kaluza-Klein eigen-
states are fully exhibited and we show that massive-modes
are strongly suppressed on the brane so that ordinary
four-dimensional gauge interactions are not significantly
modified in the present set up. Finally, in Section VI, we
draw our conclusions.

II. THE SPACE-TIME BACKGROUND:
GRAVITATIONALWARPING AND DILATON

We start our analysis by studying the appropriate space-
time framework for the description of a consistent gauge

theory. In this Section, we will show how one proceeds
with both vector and tensor gauge fields in order to look for
zero-modes that can be localized in a four-dimensional
membrane embedded in a five-dimensional space-time.
Here, the extra dimension is not necessarily an orbifold
and will be assumed infinite. Furthermore, the brane is not
included in the model as a static external source, but it is
dynamically obtained as a solution to the Einstein equa-
tions for gravity coupled to (two) scalar fields. One of these
scalars is for creating a domain wall defect (a thick brane)
while the other is the dilaton field.
It is worth noting that either gravitational and fermionic

massless quanta can be trapped in four-dimensional (4D)
domain walls lying within a five-dimensional (5D) bulk
with some AdS like metric [2,9]. On the other hand, it is
known that vector gauge bosons in these kinds of scenarios
are not localizable unless the coupling constant is dynami-
cally modified. The reason is that gauge-field theory is
conformal [10], so that all of the information coming
from the metric warping factors automatically drops out,
resulting in a non-normalizable zero-mode. Fortunately,
the coupling of the dilaton to the gauge field in the kinetic
term modifies the rescaling properties allowing for the
localization of the vector zero-mode [2] and tensor zero-
mode [11], respectively (see also [12]).
Following this approach and motivated by low-energy

string theories, here we will discuss both Maxwell and
Kalb-Ramond gauge fields together, coupled to a gravita-
tional background and a consistent dilaton configuration.
In what follows, we shall obtain close expressions for the
gauge modes in the 5D space-time. This will be in order to
analytically discuss the phenomenological consequences,
not only of zero-modes but also of massive states.
First, it is necessary to obtain a solution to the equations

of motion of the gravitational field for a potential func-
tional depending on both the dilaton and membrane field
variables [2]. We therefore analyze the following action for
two real scalar fields

SB ¼
Z

d4xdy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detGMN

p �
2M3R� 1

2
ð@�Þ2

� 1

2
ð@�Þ2 �V ð�;�Þ

�
; (1)

where M is the Planck constant in 5D, and R is the Ricci
scalar. The solution for � is the membrane kinking on our
4D-world. The corresponding field solution for � will be
the dilaton configuration consistent with the metric and the
kink. As usual, we adopt latin capitals on the bulk and
greek lower case letters on 4D.
We next shall assume some ansatz for the space-time

metric

ds2 ¼ e2�ðyÞ���dx
�dx� þ e2�ðyÞdy2; (2)

where � and � are warp functions that depend just on the
extra (fifth) coordinate, and diagð�Þ ¼ ð�1; 1; 1; 1Þ. The
equations of motion for action (1) are
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1

2
ð�0Þ2 þ 1

2
ð�0Þ2 � e2�ðyÞV ð�;�Þ ¼ 24M3ð�0Þ2; (3)

1

2
ð�0Þ2 þ 1

2
ð�0Þ2 þ e2�ðyÞV ð�;�Þ

¼ �12M3�00 � 24M3ð�0Þ2 þ 12M3�0�0;

and

�00 þ ð4�0 � �0Þ�0 ¼ e2�
@V
@�

;

�00 þ ð4�0 ��0Þ�0 ¼ e2�
@V
@�

:

(4)

where the prime means derivative with respect to x5 ¼ y
(note the correction in Eq. (4) with respect to Ref. [2]).

In order to solve this system, we use a supergravity
motivated [13] potential functional W ð�Þ. This so-called
superpotential is applicable to nonsupersymmetric domain
walls [14] as the present one, and is defined by

�0 ¼ dW
d�

: (5)

In the absence of gravity, for a double-well potential of
the Higgs type Vð�Þ ¼ �

4 ð�2 � v2Þ2, the simplest possible

static membrane configuration dependent on the fifth
coordinate is a bounce

�ðyÞ ¼ v tanhð�yÞ (6)

[2], consistent with the superpotential

W ð�Þ ¼ v��

�
1� �2

3v2

�
; (7)

where �2 ¼ �v2=2.
Putting into scene the metric ansatz (2), the dilaton field

�ðyÞ, and taking into account the equations of motion,
the necessary potential consistent with the bounce can be
written as

V ð�;�Þ ¼ expð�=
ffiffiffiffiffiffiffiffiffiffiffiffi
12M3

p
Þ

�
�
1

2

�
dW
d�

�
2 � 5

32M3
W ð�Þ2

�
: (8)

Now, one obtains the following solution to the equations
of motion, Eq. (3) and (4), consistent with the bounce
configuration Eq. (6) and the potential Eq. (8)

�ðyÞ ¼ 4�ðyÞ ¼ ��ðyÞffiffiffiffiffiffiffiffiffiffi
3M3

p

¼ ��

�
ln cosh2ð�yÞ þ 1

2
tanh2ð�yÞ

�
; (9)

where � ¼ v2=36M3.
The possibility of considering a stack of traveling branes

of this kind, or even colliding branes, can be addressed by
means of a sine-Gordon potential, which in the absence of
gravity is very well known and has the form

Vð�Þ ¼ 1

b2
ð1� cosðb�ÞÞ: (10)

Here, b is a free parameter which shall be related to the
asymptotic curvature when the theory includes gravity.
With this potential, new solutions connecting separate
vacua are possible. One-soliton solutions for this potential
read

�ðyÞ ¼ 4

b
arctaney (11)

(we shall assume it static for simplicity). Now, in a gravi-
tational background it is still possible that this bounce
represents a legitimate brane-world. Considering the gravi-
tational ansatz (2), the equations of motion (3) and (4) are
compatible with this solution provided we somehow mod-
ify the potential functional. Taking into account Eq. (5), we
now obtain the superpotential

W ð�Þ ¼ � 4

b2
cos

�
b

2
�

�
: (12)

From (8) we get the following background potential

V ð�;�Þ ¼ � expð�=
ffiffiffiffiffiffiffiffiffiffiffiffi
12M3

p
Þ �

�
4

b2
sin2

�
b

2
�

�

þ 5

2M3b4
cos2

�
b

2
�

��
(13)

which can also be written as a function of � by means of

V ð�Þ ¼ � 4

b2

�
sin

�
b

2
�

�
1=6M3b2

�

�
�
1þ

�
5

8M3b2
� 1

�
cos2

�
b

2
�

��
; (14)

both exhibiting a highly nontrivial dependence on the
scalar fields (see Fig. 1).
By writing the Hamiltonian à la Bogomol’nyi, it can be

deduced that V is consistent with the following relations
among the warping, dilaton and superpotential
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FIG. 1 (color online). Modified background potential V ð�Þ
(Eq. (14)) for different values of a ¼ 1=6M3b2: a ¼ 1 (dashed
red line), a ¼ 2 (solid blue line), a ¼ 3 (dash-dotted black line).
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� ¼ �
ffiffiffiffiffiffiffiffiffiffi
3M3

p
�; � ¼ �=4; �0 ¼ �W =12M3:

(15)

Solving the equations of motion, the explicit dependence
of the dilaton field on the extra dimension is given by

�ðyÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
3M3

p
b2

ln coshy; (16)

from which we can readily obtain all the other field dis-
tributions of the background configuration.

As usual with dilaton configurations related to D-brane
solutions, these functions are singular as jyj ! 1.
However, since the metric vanishes exponentially and
both dilaton and warp factors operate by means of a nega-
tive exponential coupling, at the end of the day the model is
free of divergences. Indeed, as we will see in the next
Section, the effective action remains finite precisely thanks
to the dilaton configuration. Note that the curvature of the
metric with dilaton, as given by the Ricci scalar, now reads

RðyÞ ¼ �½8�00ðyÞ þ 18ð�0ðyÞÞ2� exp
�
�ðyÞ
2

ffiffiffiffiffiffiffiffiffiffi
3M3

p
�
; (17)

which for the background just obtained results in

RðyÞ ¼ 16a ðcoshyÞa�2

�
1� 9

2
sinh2y

�
; (18)

where a ¼ 1=6M3b2. Since the dilaton contribution
amounts to a redefinition of the effective four-dimensional
Planck scale, Eq. (18) exhibits a negative growing behavior
far from the membrane. However, this problem disappears
when we lift the metric solution up to D ¼ 6 [15], where
the dilaton represents the radius of the new extra dimension
as happens in type II string theory with D4 branes when
lifted into D ¼ 11 supergravity. As explained in [2], in

six dimensions ds26 ¼ e3AðyÞ=2ð�dt2 þ dx21 þ dx22 þ dx23 þ
dz2Þ þ dy2, where z parametrize an extra S1 direction, and
this metric results everywhere regular for the solutions
given above.

Studying as well the fluctuations of the metric about the
above configuration, it is possible to see that this model
supports a massless zero-mode of the gravitational field
localized on the membrane even in the dilaton background.
In order to prove the stability of the background solution,
we would have to show that there are no negative mass
solutions to the equations of motion of a perturbation h��

of the metric. Actually, a graviton massive spectrum
appears starting from zero and presenting no gap. This
can be easily seen by means of a supersymmetric type
expression of the Schrödinger type operator which results
after an appropriate change of variables and decomposition
of the graviton field (see [2,16] for details). The issue of the
coupling of these massive modes to the brane has been
analyzed in detail in [17].

III. VECTOR AND TENSOR GAUGE FIELDS IN A
WARPED SPACE WITH DILATON

Now let us consider the system of five-dimensional
electromagnetic AN and Kalb-Ramond BNP gauge fields
coupled to the dilaton in a warped space-time. We will
adopt the following 5D action

Sg ¼
Z

dyd4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detGAB

p
e�ð�=2Þ�

�
�
1

12
e�ð�=2Þ�HMNPH

MNP � 1

4
FMNF

MN

�
; (19)

where HMNP ¼ @½MBNP� and FMN ¼ @½MAN�.
Assuming that the gauge-field energy density should

not strongly modify the geometrical background, we can
study the behavior of propagating modes in the back-
ground of the topological configuration studied in the
previous section. In this respect, for example, Das et al.
[18] derived an exact solution for the metric of a
Randall-Sundrum (RS) approach with a Kalb-Ramond
term (with no dilaton) and showed a negligible deviation
from the pure RS solution without gauge fields. The new
metric depends on the energy density of the Kalb-
Ramond field and goes smoothly to the RS solution in
the limit of Kalb-Ramond energy density tending to
zero. This scenario solves the hierarchy problem not
just for the orbifold radius predicted by RS, but for
any value greater than the RS value. However, the
important point here is that the Kalb-Ramond energy
density is insignificant, amounting to �10�62. Indeed,
this value matches remarkably well with the Kalb-
Ramond energy density on the visible brane, calculated
from the solution of the Kalb-Ramond field in a Randall-
Sundrum brane-world in a previous work [19]. In gen-
eral, most of the attempts to stabilize 5D brane worlds
by means of a scalar field in the bulk do not take into
account the back-reaction of the scalar field on the
background metric [2,16,17,20] and those in order to
compute the scalar back-reaction on the metric were
unsuccessful except in a few special cases.
The dilaton �ðyÞ couples exponentially with the kinetic

terms of both gauge fields BMN and AM [22]. This is related

to the fact that the combination
ffiffiffiffi
G

p
exp� can be inter-

preted as a change in the integration measure. Still, differ-
ent coupling constants (� and �=2) are assigned to the
3-rank tensor HMNP and the electromagnetic field-strength
FMN respectively [23]. This will be the origin of two
different equations of motion for either gauge field as we
now show.
It is easy to see that action (19) is invariant under gauge

transformations �BMN ¼ @½M�N�, �AM ¼ @M!. In five

dimensions, the equations of motion for BMN and AM are
given by
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1ffiffiffiffiffiffiffiffi�G
p @MðGMRGNPFRP

ffiffiffiffiffiffiffiffi�G
p

e�ð�=2Þ�ðyÞÞ ¼ 0

1ffiffiffiffiffiffiffiffi�G
p @MðGMRGNSGPQHRSQ

ffiffiffiffiffiffiffiffi�G
p

e���ðyÞÞ ¼ 0;

(20)

where diag GMN ¼ ðe2����; e
2�Þ.

In order to solve these equations, we adopt the following
gauge choices

A5¼0; @�A
�¼0; B�5¼0; @�B

��¼0: (21)

Next, we write down the equations in contravariant
components (TMNP... ¼ GMRGNSGPQ . . .TRSQ...) and sepa-

rate the fifth from the other coordinates as follows

A�ðx;yÞ¼a�ðxÞuðyÞ; B��ðx;yÞ¼b��ðxÞwðyÞ: (22)

Now, from Eq. (20) we just get�
hþ 1

uf
@5ðf@5uÞ

�
a� ¼ 0 (23)

�
hþ 1

wg
@5ðg@5wÞ

�
b�� ¼ 0: (24)

Note that the metric deforms the otherwise trivial solutions
of this system of equations through the warping functions
and the dilaton field by means of the factors

fðyÞ ¼ exp½4�þ �� ��=2�;
gðyÞ ¼ f exp½���=2�

acting on uðyÞ and wðyÞ, respectively.
We may reduce the space of solutions to a rather special

case. If we assume uðyÞ ¼ u0 and wðyÞ ¼ w0, normaliz-
able zero-modes for the gauge fields can be obtained
when u0 and w0 are (nonzero) constants. On the other
hand, Kaluza-Klein modes result from the solution of the
general case

@5ðf@5uÞ ¼ �m2
A fu; @5ðg@5wÞ ¼ �m2

B gw; (25)

where m2
A, m

2
B are arbitrary constants representing the 4D

squared bosons masses of vector and tensor gauge fields,
respectively. It means that a� ¼ eipx with ���p�p� ¼
p2 ¼ �m2

A, and b�� ¼ eikx with k2 ¼ �m2
B. Below, we

will show that these constants are indeed quantized ein-
genvalues of a Schrödinger -like equation. Furthermore,
we will show that uðyÞ ¼ u0 and wðyÞ ¼ w0 are not just
some special case but the unique zero-modes of the theory.

Explicitly, the most general y-dependent equations of
motion from action (19) for the modified sine-Gordon
potential (14) read

u00ðyÞ þ að1� 2c1Þ tanhy u0ðyÞ þm2
A cosh�ay uðyÞ ¼ 0

(26)

w00ðyÞ þ að1� 2c2Þ tanhy w0ðyÞ þm2
B cosh�ay wðyÞ ¼ 0;

(27)

where c1 ¼ ð17þ 2�
ffiffiffiffiffiffiffiffiffiffi
3M3

p Þ=4 and c2 ¼ ð17þ
4�

ffiffiffiffiffiffiffiffiffiffi
3M3

p Þ=4. We can see that the different dilaton coupling
to the Maxwell and Kalb-Ramond fields is responsible for
the different massive modes of vector and tensor bosons.
Zero modes, however, are identical for both fields in this
model. Nevertheless, as we will show later on, they are not
necessarily localizable together.

IV. ANALYSIS OF THE GAUGE-BOSONS SPECTRA

In this section, we will discuss the existence of gauge-
field solutions to the model and their localization on the
membrane. We can probe the localization of the gauge-
field modes by verifying that the corresponding action is
finite. Note that from Eqs. (21) and (22), it follows
H��� ¼ h���wðyÞ and F�� ¼ f��uðyÞ, so that

Sg½sol:�¼
Z
dyu2ðyÞe4�ðyÞþ�ðyÞ���ðyÞ=2Z d4x

1

4
f��f

��

�
Z
dy

1

12
w2ðyÞe4�ðyÞþ�ðyÞ���ðyÞZ d4xh��	h

��	:

(28)

For constant uðyÞ ¼ u0 and wðyÞ ¼ w0, which satisfy the
Eqs. (26) and (27) for zero mass, this integral can be
analytically proved to be finite. This shows that zero-
modes associated with the Maxwell and Kalb-Ramond
fields in the dilaton background can be localized on the
four-dimensional space-time of a kink. Using the solutions
found in Eq. (11) and equations thereafter, we have

�
Z

dy e4�ðyÞþð1=4Þ�ðyÞþð�=2Þ
ffiffiffiffiffiffiffi
3M3

p
�ðyÞ (29)

which according to the solution

�ðyÞ ¼ 2a ln sechy (30)

[c.f. Eqs. (15) and (16)] and the definition of constants a
and c1, results inZ

dy ec1� ¼
Z

dy cosh�2ac1y <1 (31)

provided c1 > 0, namely � >� 17

2
ffiffiffiffiffiffiffi
3M3

p ¼ �0. If c2 > 0,

then � > �0=2, and there should be also localized zero-
modes for the Kalb-Ramon field for any possible value of �
in this interval.
Regarding Kaluza-Klein modes, Eqs. (26) and (27)

could be numerically solved to have an idea about some
particular cases. However, since an ordinary differential
equation can always be put into its normal form, we can
have a deeper insight on the whole problem. For this, let us
then make the following transformation in Eq. (26) (see
e.g. [1,2])

uðyÞ ¼ e�	�=2UðzÞ; dz

dy
¼ e��� (32)

where 	 and � are arbitrary parameters. We now set 	 ¼
c1 � 1=4 and � ¼ �1=4 in order to eliminate the first
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derivative term in U and to have a pure mass term. This
brings Eq. (26) into a simplest case of the Sturm-Liouville
equation (with respect to a weight function 1). This is
precisely a Schrödinger -like equation in the variable z

�
� d2

dz2
þVðzÞ

�
UðzÞ ¼ m2

AUðzÞ; (33)

whereVðzÞ ¼ e��=2ð	2 �00 � 
�02Þ and 
 ¼ 1
4	ð12 � 	Þ. If

we now choose a ¼ 2, we arrive at the following expres-
sion for such analog nonrelativistic potential

V ðzÞ ¼ �2	½1� ð2	� 1Þtan2z�; (34)

which is a fully tractable function as we will see in what
follows. Equation (27) can be dealt with identically, and we
let it be considered in the next Sections.

An exact subset of eigenstates

Interestingly, the Schrödinger equation we have just
identified has been recently discussed in the literature in
a very different context. In [24] exact bound states have
been analytically found for arbitrary 	 � 1=2. Actually,
bound states should be also possible for 	 � 0 (besides,
localization of zero-modes precludes the region 	 �
�1=4) but this will be discussed in the next Section.
Since VðzÞ is defined within ��=2� 2�k < z < �=2þ
2�k, k 2 N, bound eigenstates of Eq. (33) have to vanish
at the endpoints, i.e. UðzÞjz¼�ð�=2þ2�kÞ ¼ 0. The reflection
symmetry of the potential indicates that the eigenfunctions
are exactly classified into two classes, symmetric and
antisymmetric. These bound states are of course normal-
izable. However, in order to study normalization in the real
bulk, we have to antitransform the solution back to the uðyÞ
space. It can be seen that there the only situation could
arise in the case of positive 	 for large values of y; how-
ever, these correspond to values of z close to �=2 (and
multiples), which are forbidden places for such a potential.

The symmetric eigenstates of Eq. (33) can be generally
written in an exact way in terms of Gaussian hypergeo-
metric functions

U2nðz;	Þ ¼ A2nð	ÞðcoszÞ2	

� 2F1

�
�n; 2	þ n; 2	þ 1

2
; cos2z

�
; (35)

where

2F1ða; b; c; dÞ ¼ 1þ abd

c1!
þ aðaþ 1Þbðbþ 1Þd2

cðcþ 1Þ2! þ . . . ;

and A2nð	Þ is a normalization constant.
In the case of antisymmetric eigenstates, the exact solu-

tions read

U2nþ1ðz;	Þ¼A2nþ1ð	Þsinz ðcoszÞ2	

� 2F1

�
�n;2	þnþ1;2	þ1

2
;cos2z

�
; (36)

for n ¼ 0; 1; 2; 3 . . . (see Figs. 2 and 3).
These functions are fully normalizable for n 2 N since

the hypergeometric functions reduce to a polynomial of
degree n in cos2z.
The corresponding analytical expression for both even

and odd-indexed mass levels can be combined in a single
expression

m2
A ¼ lð4	þ lÞ; l ¼ 0; 1; 2; . . . (37)

for l, even and odd, respectively. It is worth noting that this
result exhibits an exact quantization condition on the
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FIG. 3 (color online). Antisymmetric U2nþ1ðzÞ functions for
	 ¼ 1 and n ¼ 0 (blue solid line) n ¼ 1 (red dashed line), n ¼ 2
(yellow thin solid line), n ¼ 3 (green solid line).
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FIG. 2 (color online). Symmetric U2nðzÞ functions for 	 ¼ 1
andn ¼ 0 (blue solid line),n ¼ 1 (red dashed line),n ¼ 2 (yellow
solid line), n ¼ 3 (green short-dashed line).
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massive modes of tensor and vector gauge fields inherited
from the extra dimension.

In the original y variable, these sets of solutions read

u2nðy;	Þ ¼ a2nð	Þ 2F1

�
�n; 2	þ n; 2	þ 1

2
; sech2y

�
;

(38)

and

u2nþ1ðy;	Þ ¼ a2nþ1ð	Þ ðtanhyÞ
� 2F1

�
�n; 2	þ nþ 1; 2	þ 1

2
; sech2y

�
;

(39)

respectively, and are both finite polynomials in sech2y;
a2nð	Þ and a2nþ1ð	Þ are normalization constants (see
Figs. 4 and 5).

Since Eq. (33) involves a Hermitian operator, for each
value of 	, the spectrum is real and the above set of
solutions is complete.

Now, regarding the second of Eqs. (26), the procedure
for the tensor massive modes can be performed on the same
footing. By means of the transformation

dz

dy
¼ e��2�; wðyÞ ¼ e�	2�=2WðzÞ (40)

we obtain similar, though not identical, modes for the
Kalb-Ramond field. The difference results from the change

	 ! 	2 ¼ 4þ �
ffiffiffiffiffiffiffiffiffiffi
3M3

p
which modifies the spectrum and

the eigenstates. This can be directly seen from the set of
equations above by replacing	 by	2. We include them for
the sake of completeness

w2nðy;	2Þ ¼ b2nð	2Þ
� 2F1

�
�n; 2	2 þ n; 2	2 þ 1

2
; sech2y

�
;

(41)

and

w2nþ1ðy;	2Þ¼b2nþ1ð	2Þ ðtanhyÞ
� 2F1

�
�n;2	2þnþ1;2	2þ1

2
;sech2y

�
;

(42)

where anð	2Þ and bnð	2Þ are the normalization con-
stants of the Kalb-Ramond modes, and the corresponding
spectrum is

m2
B ¼ lð4	2 þ lÞ; l ¼ 0; 1; 2; . . . : (43)

for l even and odd respectively.

V. THE COMPLETE ANALYSIS

There is an important question to be clarified regarding
the solution of our problem. Often in the literature, the
dimensional reduction procedure leads to the above situ-
ation in which the original differential equation for the
quantum fields is mapped onto a Schrödinger equation by
means of a transformation like (32). The calculation is then
performed but not rarely without due care of the mislead-
ing nonrelativistic quantum-mechanical aspect of the prob-
lem at hand. Indeed, following [24], in the last section we
have limited our analysis to solutions that are constrained
by the quantum-mechanical features of Eq. (33) and (34).
However, although the differential equation for U is given

by a Schrödinger operator, in the present context ½� d2

dz2
þ

VðzÞ� is not of true Hamiltonian nature, as it is the case in
actual Quantum Mechanics. This implies that a quantum-
mechanical reasoning may be physically incomplete, or
even wrong in several aspects. In fact, in the real transverse
physical space the equation of motion is (26) which is
not Schrödinger at all. Furthermore, for any 	< 0 it can
be verified that the m2 ¼ 0 eigenvalue would not even
be allowed by the potential because the corresponding
’energy’ (E ¼ 2	) is below its minimum. It would be
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FIG. 4 (color online). Symmetric solutions u2nðyÞ for 	 ¼ 1
and n ¼ 0 (blue solid line), n ¼ 1 (red dashed line), n ¼ 2
(yellow thin-solid line), n ¼ 3 (green short-dashed line);
n ¼ 0 corresponds to the massless mode.
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FIG. 5 (color online). Antisymmetric solutions u2nþ1ðyÞ for
	 ¼ 1 and n ¼ 0 (blue solid line), n ¼ 1 (red dashed line),
n ¼ 2 (yellow thin-solid line).
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in principle a wrong restriction since the zero-modes of
Eq. (26) do exist and are simply given by u ¼ cons, which
is consistent with U ¼ Acos2	z for any value of 	 2 R
provided the hypergeometric functions are well-defined
(analogously for w ¼ cons and W ¼ Bcos2	2z). Thus,
the Hamiltonian criterion is not justified since Eq. (33)
does not describe any nonrelativistic quantum particle.
Therefore, the existence and localization of a Maxwell
zero-mode is possible in a wider range than just 	 � 1=2
as implicitly assumed in the solutions found in the previous
Section (see e.g. Figs. 6–9). In order to constrain the values
of the coupling constant, we shall take into account the
analyticity of the solutions in the y space, and other physi-
cal reasons such as localization of zero-modes and the
absence of tachyons in the theory. The Kalb-Ramond field
will be analyzed as well by means of 	2.

Let us emphasize that the spectrum given by Eqs. (38)
and (39) is complete provided one imposes boundary

conditions consistent with the Hamiltonian problem,
namely, vanishing solutions UðzÞ at z ¼ ��=2 (in the
z-space). Since it is not enough to fully describe what is
going on in the y-space, we need to release these boundary
conditions. Actually, in order to study all the relevant
solutions of the Sturm-Liouville problem (33) related to
the original differential equation, we should admit all the
boundary conditions compatible with finiteness of the u;w
functions in the y space. For this, we should first relax
nullification at z ¼ ��=2 and just require convergence in
the open interval ð��=2; �=2Þ admitting divergencies at
the end points, provided we get finite values after mapping
back to the y space. This can be done by completely
relaxing the parameters in the Schrödinger equation above,
irrespective of quantum interpretations in the z-space. We
will thus just focus on uðyÞ solutions which are the actual
and direct 5D factors of physical gauge fields.
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FIG. 6 (color online). Symmetric UðzÞ type functions for 	 ¼
1=4 and n ¼ 0 (blue solid line), n ¼ 1 (red dashed line), n ¼ 2
(yellow thin-solid line), n ¼ 3 (green short-dashed line); n ¼ 0
is for the massless mode.

4 2 2 4

0.4

0.2

0.2

0.4

0.6

0.8

1.0

FIG. 7 (color online). Symmetric uð1ÞevenðyÞ solutions for 	 ¼
1=4 and n ¼ 0 (blue solid line), n ¼ 1 (red dashed line), n ¼ 2
(yellow thin-solid line), n ¼ 3 (green short-dashed line); the
constant corresponds to the massless gauge mode 5D factor
(n ¼ 0, solid blue line).
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FIG. 8 (color online). Symmetric UðzÞ functions for 	 ¼
�1=8 and n ¼ 0 (blue solid line), n ¼ 1 (red dashed line),
n ¼ 2 (yellow thin-solid line), n ¼ 3 (green short-dashed line).
Note that all of them are divergent at z ¼ ��=2.
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FIG. 9 (color online). Symmetric uð1ÞevenðyÞ solutions for 	 ¼
�1=8 and n ¼ 0 (blue solid line), n ¼ 1 (red dashed line), n ¼ 2
(yellow thin-solid line), n ¼ 3 (green short-dashed line). All are
fully convergent in the y space despite the divergences in the z
coordinate. The constant corresponds to n ¼ 0 (solid blue line).
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A. Full gauge-field spectrum

To start, note that in Section IVA the so-called second
solution of the differential equation has been just disre-
garded because it does not vanish at z ¼ ��=2 as expected
for quantum-mechanical bound-states. Now, as a result of
our discussion above, we will hereafter include this kind of
solutions.

1. Symmetric eigenstates

As a matter of fact, in the case of even states the
complete set of eigenfunctions to be considered is not
just given by Eq. (38) but by both

uð1Þevenðy;	;nÞ ¼ að1Þevenð	;nÞ
� 2F1

�
�n;2	þn;2	þ1

2
;sech2y

�
; (44)

and

uð2Þevenðy;	;nÞ¼að2Þevenð	;nÞðsechyÞ1�4	

�2F1

�
1

2
þn;�2	þ1

2
�n;�2	þ3

2
;sech2y

�
;

(45)

in order to cover the whole space of solutions of the
differential operator. Now, notice that nothing prevents n
from being a full real number independently of 	, which is
also in R. The only restriction concerns the points where
the Gaussian functions are not well defined, namely 	 ¼
� 1

4 ;� 3
4 ;� 5

4 ; . . . and 	 ¼ 3
4 ;

5
4 ;

7
4 ; . . . , for the first and

second functions, respectively. In fact, in the second case
	> 1=4 is already excluded due to the ðsechyÞ1�4	 factor
and, in both, 	 � �1=4 is unimportant for we are not
interested in values which do not admit a localizable
zero-mode.

Still, we can only accept continuous and differentiable
gauge fields, so we have to analyze their behavior at the
origin (Gaussian hypergeometric functions are convergent
at any point else). In case of Eq. (44), right and left
derivatives at y ¼ 0 are

duð1Þeven

dy

��������y¼0�
¼ �

ffiffiffiffi
�

p
4nðnþ 2	Þ�ð3=2þ 2	Þ

ð1þ 4	Þ�ð1� nÞ�ð1þ nþ 2	Þ :
(46)

Thus, derivatives are continuous only if

n ¼ 0; 1; 2; . . . ; or nþ 2	 ¼ 0;�1;�2; . . . : (47)

It shows that we can obtain well-behaved uð1Þeven solutions
(and localizable zero modes) not only for n 2 N, but also
for n 2 R, provided it is related to 	 by n ¼ �k� 2	,
k 2 N, with 	 2 R� f	 � �1=4g. In fact, solutions

uð1ÞevenðyÞ are symmetric under the change nþ 2	⇆ � n.
Thus, in any such cases, solutions will be identical.

In case of Eq. (45), right and left derivatives at y ¼ 0 are

duð2Þeven

dy

��������y¼0�
¼ �

ffiffiffiffi
�

p ð4n2 þ 8n	þ 4	� 1Þ�ð5=2� 2	Þ
ð4	� 3Þ�ð3=2þ nÞ�ð3=2� n� 2	Þ :

(48)

These derivatives are continuous provided

n ¼ �1=2;�3=2; . . . ; or nþ 2	 ¼ 1=2; 3=2; . . .

(49)

and we can also have well-behaved uð2Þeven solutions (and
localizable zero modes) for n real when n ¼ �k=2 or n ¼
k=2� 2	, k 2 N0, with 	 2 ð�1=4<	 � 1=4�. See

Figs. 10 and 11. Solutions uð2ÞevenðyÞ are also symmetric
under the change nþ 2	⇆� n.
In order to identify symmetric zero-modes, we analyze

the even spectrum, which is given by

m2 ¼ 4nðnþ 2	Þ: (50)

From this we can pick the following possibilities:

uð1Þevenðn ¼ 0; 	 >�1=4Þ, uð1Þevenðn ¼ �2	;	 >�1=4Þ,
uð2Þevenðn ¼ 0; 	 ¼ 1=4Þ, and uð2Þevenðn ¼ �1=2; 	 ¼ 1=4Þ,
where analyticity together with the localization restriction
have been assumed. Note that these are in fact constants for
every value of 	, as already pointed out.
If we now look for a massive spectrum free of tachyons,

other constraints will restrict the space of legal solutions.
Since the even spectrum is given by Eq. (50), tachyons are
avoided only in the following cases

ðn ¼ 1; 	 >�1=2Þ; ðn ¼ 2; 	 >�1Þ; . . . (51)

ðn ¼ �1� 2	;	 >�1=2Þ; ðn ¼ �2� 2	;	 >�1Þ; . . .
for uð1Þeven, and
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FIG. 10 (color online). Second-symmetric solutions uð2ÞevenðyÞ
for 	 ¼ �1=8 and n ¼ �1=2� p where p ¼ 0 (blue solid
line), p ¼ 1 (red dashed line), p ¼ 2 (yellow short-dashed line).
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ðn ¼ �1=2; 	 < 1=4Þ; ðn ¼ �3=2; 	 < 3=4Þ;
ðn ¼ �5=2; 	 � 5=4Þ; . . . (52)

ðn ¼ 1=2� 2	;	 < 1=4Þ; ðn ¼ 3=2� 2	;	 < 3=4Þ;
ðn ¼ 5=2� 2	;	 < 5=4Þ; . . .
for uð2Þeven. In each case, these additional constraints have to
be considered on top of the corresponding analyticity re-
strictions shown above. This demonstrates that there is no
risk of tachyons among analytic symmetric eigenstates
when localized zero modes are demanded in the theory.
There is however an important remark to be done in this
respect when just one of the gauge fields is demanded to
deposit zero modes on the brane.Wewill come to this point
in Section VB.

2. Antisymmetric eigenstates

Regarding antisymmetric eigenfunctions, the complete
set of solutions is

uð1ÞASðy;	;nÞ¼að1ÞASð	;nÞ ðtanhyÞ
�2F1

�
�n;2	þnþ1;2	þ1

2
;sech2y

�
; (53)

and

uð2ÞASðy;	; nÞ ¼ að2ÞASð	; nÞðsechyÞ1�4	ðtanhyÞ
� 2F1

�
1=2þ n;�2	� nþ 1

2
;�2	þ 3

2
; sech2y

�
:

(54)

The first of these is not defined for 	 ¼ � 1
4 ;� 3

4 ;� 5
4 ; . . .

and the second for 	 ¼ 3
4 ;

5
4 ;

7
4 ; . . . . As before, in the

second case 	> 1=4 is excluded due to the divergency
of ðsechyÞ1�4	 tanhy, while 	 � �1=4 is unimportant in
both cases, for we will not be interested in values which do
not admit localizable zero-modes. Representatives of anti-
symmetric eigenfunctions of first and second kind can be
seen in Figs. 12–15
Unlike even functions, antisymmetric functions can be

discontinuous at the origin. Actually, we have

uð1ÞASðy ¼ 0�Þ ¼ �
ffiffiffiffi
�

p
�ð1=2þ 2	Þ

�ð�nÞ�ð1þ nþ 2	Þ (55)

although left and right derivatives coincide

duð1ÞAS

dy

��������y¼0�
¼ 2F1

�
�n; 2	þ nþ 1; 2	þ 1

2
; 1

�
: (56)

2 1 1 2

2

1

1

2

FIG. 12 (color online). Antisymmetric solution uð1ÞASðyÞ for 	 ¼
�1=8 and n ¼ 0 (blue solid line), n ¼ 1 (red dashed line), n ¼ 2
(yellow short-dashed line).
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FIG. 13 (color online). Antisymmetric solution uð1ÞASðyÞ for 	 ¼
3=8 and n ¼ 0 (blue solid line), n ¼ 1 (red dashed line), n ¼ 2
(yellow short dashed line).
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FIG. 11 (color online). Second-symmetric solutions uð2ÞevenðyÞ
for 	 ¼ 1=4 and n ¼ �1=2� p where p ¼ 0 (blue solid
line), p ¼ 1 (red dashed line), p ¼ 2 (yellow short-dashed
line). Note the presence of a zero-mode for p ¼ 0 (blue
solid line).
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Thus, in order to avoid discontinuities of the gauge field,
we require

n ¼ 0; 1; 2; . . . ; or nþ 2	 ¼ �1;�2; . . . : (57)

and 	 � � 1
4 which is already forbidden.

The second antisymmetric solution can also be discon-
tinuous depending on the value of the parameters. The
analytical right and left expressions are

uð2ÞASðy ¼ 0�Þ ¼ �
ffiffiffiffi
�

p
�ð3=2� 2	Þ

�ð3=2þ nÞ�ð1=2� n� 2	Þ ; (58)

so that these eigenfunctions are continuous only for

n ¼ �3=2;�5=2; . . . ; or nþ 2	 ¼ 1=2; 3=2; . . .

(59)

and 	 � 3=4; 5=4; . . . , all of which are above the region of
convergence of the hyperbolic overall factor. The exact
derivatives of this family of eigenstates are

duð2ÞAS

dy

��������y¼0�
¼ 2F1

�
3=2þ n;�2	� nþ 1

2
;�2	þ 3

2
; 1

�

(60)

which are well defined for all 	 � 3
4 ;

5
4 ; . . . (these are all

bigger than 1=4 and thus outside the range of convergence

of uð2ÞASðy;	; nÞ as already signaled).

In the antisymmetric case, the mass spectrum is given by

m2 ¼ ð2nþ 1Þð2nþ 1þ 4	Þ (61)

so zero-modes are not possible considering the analyticity
restrictions of these eigenfunctions.
In order to avoid tachyons, besides conditions for exis-

tence and localization, in the case of uð1ÞAS we shall require

ðn ¼ 0; 	 >�1=4Þ; ðn ¼ 1; 	 >�3=4Þ;
ðn ¼ 2; 	 >�5=4Þ; . . .

ðn ¼ �1� 2	;	 >�1=4Þ;
ðn ¼ �2� 2	;	 >�3=4Þ; . . . (62)

while, regarding uð2ÞAS, the nontachyon constraints are

ðn ¼ �3=2; 	 < 1=2Þ; ðn ¼ �5=2; 	 < 1Þ; . . .
ðn ¼ 1=2� 2	;	Þ; ðn ¼ 3=2� 2	;	Þ; . . . : (63)

Tachyons are again impossible considering the analyticity
constraints of the functions and the restrictions on 	 due to
localization of zero modes.
All of this analysis can be straightforwardly repeated for

the Kalb-Ramond field just by changing the parameter
	 ! 	2.

B. Phase interpretation picture

The present field theory can be classified into different
phase configurations depending on the value of the dilaton
coupling constant. Since the exact value of this coupling
constant should be specified by an ascendant theory we
will again consider the whole range for this analysis. In
order to characterize the possible different phases in the
theory, we can use the shape of the analog potential func-
tions (34) appearing in Eq. (33).
In the parameter region 	 � 1=2 or 	 � 0, Eq. (33)

defines a bounding analog potential VðzÞ � 0 (see
Fig. 16). On the contrary, in the complementary region of
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FIG. 14 (color online). Second-antisymmetric solution uð2ÞASðyÞ
for 	 ¼ �1=5 and n ¼ �3=2� p where p ¼ 0 (blue solid
line), p ¼ 1 (red dashed line), p ¼ 2 (yellow short-dashed line).
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FIG. 15 (color online). Second-antisymmetric solution uð2ÞASðyÞ
for 	 ¼ 1=5 and n ¼ �3=2� p where p ¼ 0 (blue solid line),
p ¼ 1 (red dashed line), p ¼ 2 (yellow short-dashed line).
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the 	 parameter, namely 0<	< 1=2, VðzÞ is negative
allowing for a different physical picture (see Fig. 17). Even
in this case, when the mass is zero, we get, as announced, a
constant value for the u solution in the y space (note that
this legal mode is forbidden in a strictly Hamiltonian
interpretation of the problem).

If 	 � �1=4, then � � �0 and a localized gauge zero-
mode is impossible as pointed out earlier. However, if
	2 � �1=4 the coupling is � � �0=2 and then, although
no Kalb-Ramond zero-mode is localized, there can be a
Maxwell zero-mode deposited on the membrane. If 0<
	< 1=2, then 16

17�0 < �< 14
17�0, which lies also between

�0 < �< �0=2 and again no Kalb-Ramond, but just a
Maxwell zero-mode has a (finite) contribution to the ef-
fective action. If 0<	2 < 1=2, then both zero-modes
should be localizable. Note that, if the energy criterion
was valid, a Maxwell zero-mode would only exist for � >
16
17�0 and, on the same footing a localized zero-mode for

the Kalb-Ramond field would only exist provided 	2 > 0,
namely � > 8

17�0.

In terms of the dilaton coupling constant, the simulta-
neous analysis of both gauge fields results in the following
conclusion: a gauge zero-mode exists and is localizable
provided � > �0 with the following details. (i) In 16

17�0 <

�< 14
17�0, the theory possesses a localized Maxwell

zero-mode and a tower of normalizable massive Maxwell
modes resulting from an analog potential VAðzÞ> 0, to-
gether with normalizable Kalb-Ramond massive states
related to an analog potential VBðzÞ< 0. (ii) In 14

17�0 <

�< 1
2�0, there is a Maxwell zero-mode and normalizable

massive Maxwell modes related to VAðzÞ< 0 together
with normalizable Kalb-Ramond massive states related to
VBðzÞ< 0. (iii) In 1

2�0 < �< 8
17�0, a Kalb-Ramond zero-

mode is also deposited on the previous configuration.
(iv) In 8

17�0 < �< 7
17�0, the model presents a Maxwell

zero-mode and massive Maxwell modes as resulting from
VAðzÞ> 0, together with a Kalb-Ramond zero-mode and
massive Kalb-Ramond states coming from a potential
VBðzÞ< 0. (v) If � > 7

17�0, both Maxwell and Kalb-

Ramond zero-modes are localized and normalizable
Kaluza-Klein eigenstates can be related to VA;BðzÞ> 0.
We thus conclude that, depending on the value of the

dilaton coupling, the theory sits in one among several
phases, which are given by the global sign of the analog
potentials defined in transverse space. The two potentials
change dramatically as 	 (or 	2) take values on one side
or another of 0 and 1=2. Thus, from � ¼ 16

17�0 � � to � ¼
16
17�0 þ �, the analog potential flips from Fig. 16 (solid

line) to Fig. 17, and for � ¼ 14
17�0 þ � instead of 14

17�0 � �,

the analog potential is that of Fig. 16 (dashed line) instead
of Fig. 17. Analogously, from 8

17�0 þ � to 8
17�0 � �, the

potential for Kalb-Ramond modes VBðzÞ would invert its
concavity, but it would be back the same for � above 7

17�0.

Particularly interesting is the interval 8
17�0 < �< 7

17�0

where Maxwell and Kalb-Ramond fields experience to-
tally different analog potentials at the same time (see
Fig. 18) and both have zero-modes localized on the
membrane.
Finally, it is worth noting that if one just demands the

theory to possess a localized Maxwell zero-mode but no
such condition is put on the Kalb-Ramond field, there is a
full segment of possible values of the dilaton coupling
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FIG. 17 (color online). VAðzÞ for 	 ¼ 1=2� 1=10.
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FIG. 18 (color online). VAðzÞ (solid line) and VBðzÞ (dashed
line) for 	2 ¼ 1=5. It corresponds to a dilaton coupling constant
in 8

17�0 < �< 7
17�0.
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FIG. 16 (color online). VAðzÞ for 	 ¼ �1=10 (solid blue line)
and 	 ¼ 1=2þ 1=10 (red dashed line).
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constant where several kinds of gauge messengers could
coexist. Specifically, in the interval going from �0 to �0=2,
namely 	 2 ð�1=4; 15=8�. When � > �0, we can write
	 ¼ �1=4þ � and 	2 ¼ �9=2þ 2�. In this cases
Kaluza-Klein eigenstates are well defined for both fields
but some Kalb-Ramond modes are compatible with
m2

B < 0. For example, when � is sufficiently small, the

eigenfunctions uð1Þevenð	2; n; yÞ for n ¼ 5; 4; 3; 2; 1;�1�
2	2; . . . ;�5� 2	2, and the eigenfunctions uð1ÞASð	2; n; yÞ
for n ¼ 8; 7; . . . ; 1; 0;�1� 2	2;�2� 2	2; . . . ;�9�
2	2 are all well-defined tachyonic modes (for larger values
of � the number of tachyons is smaller). Thus, if the dilaton
coupling constant happens to be in ð�0; �0=2�, several
tachyons would coexist together with a tower of massive
eigenstates of both Maxwell and Kalb-Ramond fields and a
Maxwell localized zero-mode.

C. Final remarks

In order to determine that massive modes are suppressed
as compared with zero-modes, one can evaluate the varia-
tion of the effective gauge coupling as a function of the
Kaluza-Klein photonic masses. Since in the nonrelativistic
limit, the coupling of massive modes with matter on the
brane develops a Yukawa type potential, it is natural that
massive contributions are strongly attenuated as compared
with the Coulomb potential. To show that this quantity is a
decreasing function of mA we should evaluate the different
coefficients that multiply the four-dimensional action

�
Z

dy

�
u2mA¼0ðyÞ þ

X
n

u2mAðnÞðyÞ
�Z

d4xf��f
��: (64)

In order to simplify this computation we shall assume that
the coupling with the brane takes place precisely on 4D
ordinary space-time, namely, at y ¼ 0. It is there where the
relevant dynamics should be much stronger. Thus, the
effective 4D electrostatic potential would read

VðrÞ � q1q2

�
A2

r
þX

n

e�mAðnÞr

r
u2mAðnÞð0Þ

�
; (65)

where q1, q2 are two test charges separated a distance r in
ordinary 3D space and the Kaluza-Klein eigenvalues mA

grow with jnj as we have seen. See e.g. Fig. 21 where the

uð1ÞevenðyÞ modes n ¼ 0, 2, 50 are fully displayed. By ana-
lytical calculation, for some values of 	ð�Þ we can appre-
ciate that at the origin each contribution is indeed rapidly
decreasing with mass. See Figs. 19 and 20. This, together
with the negative exponential factor, essentially decouples
the massive modes from the physics on the domain wall.
Far from the membrane, all massive modes become con-
stants, as much as zero-modes are, and as a consequence,
5D phenomenology results completely modified from or-
dinary 4D electromagnetism. The same analysis can be
performed for the Kalb-Ramond modes with the same
result. See e.g. Refs. [1,17] for the study of this issue in
the case of gravity.
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FIG. 19 (color online). Sequence of ðuð1Þevenð0ÞÞ2 values for n ¼
1; 2; . . . ; 10 displays relative weights on the brane The n ¼ 0
mode is about one order bigger than n ¼ 1 and is not in the
figure.
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FIG. 21 (color online). Some uð1ÞevenðyÞ modes n ¼ 0; 2; 50
(horizontal blue line, two-minima red line, highly oscillating
yellow line) exhibit their relative weights. Here 	 ¼ 3=8.
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FIG. 20 (color online). Sequence of ðuð1Þevenð0ÞÞ2 values for
n ¼ 10; . . . ; 50 displays relative weights on the brane (	 ¼ 1=2).
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VI. CONCLUSIONS

In this paper, we have analyzed the existence and local-
ization of Maxwell and Kalb-Ramond propagation modes
in a warped extra-dimensional universe. As a result of
gauge invariance, the common knowledge is that charged
fields must be confined into a four-dimensional brane-
world while only neutral fields (under standard model
interactions) can be bulk degrees of freedom interacting
with the brane. Fermionic and gravitational fields have
been localized in the past rather easily but gauge fields
have demanded more effort. As pointed out in [2,3], the
presence of the dilaton happens to be necessary for gauge
field modes to be localized in brane-world theories. To
analyze this question in a relevant multivacua field theory,
we have studied a sine-Gordon like thick membrane that
bounces at the (noncompact) extra-coordinate origin. We
have focused a five-dimensional metric with two warping
functions and two interacting scalar fields. One of them
represents the membrane itself and the other represents the
dilaton in a field theoretic scenario. The corresponding
action includes a potential functional depending on both
scalar fields, which is a nontrivial deformation of a sine-
Gordon potential and is dynamically consistent with the
gravity background. The solution to this action represents a
universal framework that interacts with two distinct five-
dimensional gauge fields.

To the best of our knowledge, close expressions for all
the gauge modes in a 5D space-time have been obtained
here for the first time, particularly for the present com-
bination of field degrees of freedom. Regarding the
propagation modes of the Kalb-Ramond field, so far
only simple qualitative calculations have been developed
in this context. Here, besides performing an analytical
approach, we also included the electromagnetic field to
treat both of them simultaneously and exhibit their actual
differences.

After a detailed analysis of the bulk equations of
motion of Kalb-Ramond and Maxwell fields, we have
presented the full spectrum of the gauge field problem.

The exact variation of the whole set of eigenstates and
eigenvalues, with the dilaton coupling constant �, was
discussed in detail and the exact dependence of vector
and tensor gauge modes with the extra coordinate was
analytically computed in all the cases. As one of our
results, we have proven that localization of a Maxwell
zero-mode on a smooth thick domain wall embedded in
a five-dimensional world is granted for a dilaton cou-
pling constant above �0.
Depending on the value of �, different phases of the

analog potentials related to the equations of motion of
Maxwell and Kalb-Ramond fields can arise. If the dilaton
coupling constant is on one side or another of determined
particular values, the related analog potentials can be
dramatically different, allowing for an interpretation of
subjacent different physical scenarios (see Sec. VB.
Regarding finite Kaluza-Klein modes, we have analyti-
cally found the full spectra of Maxwell and Kalb-
Ramond fields and shown that massive modes are strongly
suppressed on the brane so that ordinary four-dimensional
gauge interactions are not modified in the present set up
(see Sec. VC. Among this infinite tower of massive
modes, a handful of Kalb-Ramond tachyons could not be
excluded unless the dilaton coupling happens to be greater
than �0=2. Notably, in this case the theory would loose
tachyons but would gain a localized Kalb-Ramond zero-
mode. In this way, the present model has been useful to
show that a localized zero-mode is not only possible for a
5D electromagnetic field but also for a 5D Kalb-Ramond
field, depending on just the value of the dilaton coupling
constant. As a general conclusion, the above results help
showing that the model presented here is an interesting
arena to discuss extra-dimensional physics and that our
ordinary 4D world seems to be compatible with a higher
dimensional universe, apparently of a stringy brane nature.
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