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We propose a method for constructing Yukawa terms for noncommutative SO(10) and E6 GUTs when

these GUTs are formulated within the enveloping-algebra formalism. The most general noncommutative

Yukawa term that we propose contains, at first order in ���, the most general Becchi-Rouet-Stora invariant

Yukawa contribution whose only dimensionful parameter is the noncommutativity parameter. This

noncommutative Yukawa interaction is thus renormalizable at first order in ���.
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I. INTRODUCTION

The SO(10) and E6 GUTs, which were introduced [1–3]
in the mid 1970’s, are the most popular GUTs in four
dimensional space-time. They incorporate right-handed
neutrinos in the fermionic multiplets and realize the idea
of family unification—each standard model family snugly
fits into an irreducible multiplet, in addition to gauge
coupling unification. These theories can be made super-
symmetric to achieve gauge coupling unification after
crossing the desert [4,5] but may also –at least in the
SO(10) case—lead to nonsupersymmetric unification, if
intermediate symmetry breaking scales (oases are thus
created in the desert) are introduced between the electro-
weak scale and the GUT scale [5,6]. In view of all the
results obtained so far, and reviewed in [4,5], that GUTs
may be relevant in the understanding of the data which will
come out of the LHC is a thought that one cannot be rid of
easily. This is a thought that is also prompted by the fact
that SO(10) and E6 GUTs arise naturally F theory [7].

More than a decade [8,9] has gone by since it became
clear that field theories on noncommutative space-time—
which are named noncommutative field theories—are to be
considered in earnest. The formulation of noncommutative
gauge theories, which are deformations of ordinary theo-
ries with simple gauge groups in arbitrary representations,
demanded the introduction of the enveloping-algebra for-
malism [10–12]—a formalism which may find stringy
accommodation in F theory [13]. The main feature of
this formalism—see Ref. [14] for a review—is that both
noncommutative gauge fields and infinitesimal noncom-
mutative gauge transformations take values on the univer-
sal enveloping algebra of the corresponding Lie algebra
and are functions of the ordinary gauge fields, these func-
tions defining the corresponding Seiberg-Witten maps. The
formulation of a noncommutative generalization—called
the noncommutative standard model—of the standard
model demands the use of the enveloping-algebra formal-
ism, if no new particles are introduced—for noncommuta-
tive generalisations of the standard model outside the
enveloping-algebra formalism see Refs. [15–17]. The non-
commutative standard model was put forward in Ref. [18],

and a fair amount of phenomenological consequences—
which might be tested against the data from the LHC—
have been drawn from it, Refs. [19–23] to quote only a
few—the reader may wish to find further information in
Ref. [24]. Renormalizability [25–29], anomaly freedom
[30,31], and existence of classical solutions [32–34] are
other issues which have been studied for noncommutative
gauge theories formulated within the enveloping-algebra
formalism.
The general procedure to construct the noncommutative

counterpart of the ordinary SO(10) GUT within the
enveloping-algebra formalism was laid down in
Ref. [35]—see also Ref. [36]. However, the relevance in
its phenomenological applications—footprints of a non-
commutative space-time may be found at the LHC—of
the Yukawa and Higgs sectors of this theory demands that a
detailed analysis and construction of these sectors be car-
ried out. At this point, we would like to stress that, against
all odds, theories which contain the fermionic and gauge
sectors—but have no Higgses—of the noncommutative
SO(10) and E6 GUTs are one-loop renormalizable at first
order in the noncommutativity parameter—see Ref. [37].
So, it is a pressing issue to carry out a detailed construction
of the first-order-in-� Yukawa and Higgs sectors of these
theories, if the renormalizability properties of phenomeno-
logical relevant noncommutative GUTs are to be studied.
In this paper, we shall remedy this state of affairs and
propose a new strategy to construct the noncommutative
counterparts of the ordinary SO(10) andE6 Yukawa terms
that are renormalizable at first order in the noncommuta-
tivity parameter. The ideas introduced here will be cer-
tainly of help in the construction of the Higgs potential of
noncommutative SO(10) and E6 GUTs, but its construction
will not be tackled here, since it is very involved and surely
deserves to be carried out separately.
The layout of this paper is as follows. In Sec. II, we put

forward our procedure to construct noncommutative
Yukawa terms for SO(10) and E6 GUTs. In Sec. III, we
work out our noncommutative Yukawa terms at first order
in the noncommutativity parameter taking into account the
symmetry properties, under the exchange of the fermionic
multiplets, of the invariant tensor that occur in the ordinary
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Yukawa terms. Section IV is devoted to the discussion of
redundant Yukawa terms. In Sec. V, we state our
conclusions.

II. NONCOMMUTATIVE YUKAWA
TERMS FOR SO(10) AND E6

In ordinary SO(10) and E6 GUTs the fermionic degrees
of freedom are given by three fermionic field multiplets
c �Af–f ¼ 1, 2, 3, labels the three fermionic families of the

GUT. For each ‘‘ A’’ and ‘‘f,’’ c �Af, � ¼ 1, and 2, denote,

respectively, the components of a left-handed Weyl spinor,
here we follow the conventions of Ref. [38]; whereas for
each ‘‘�’’ and f the index A labels the components of the
fermionic multiplet carrying certain—the 16 for SO(10)
and the 27 for E6—irreducible representations of the GUT
gauge group. The ordinary Becchi-Rouet-Stora (BRS)
transformations of c �Af are defined as follows:

sc �Af ¼ i�ðc Þ
AB c �Bf;

s�ðc Þ
AB ¼ i�ðc Þ

AC �
ðc Þ
CB ;

�ðc Þ
AB ¼ �a�a

AB;

(2.1)

where �a
AB stands for a generic generator of the gauge

group in the representation furnished by the fermionic
multiplet of each family. We shall denote by �i the com-
ponents of a generic Higgs multiplet which couples in the
Yukawa terms to the fermions of our theory. We shall
assume that this multiplet carries an irreducible represen-
tation of the GUT gauge group. The BRS transformation of
�i is given by

s�i ¼ i�ð�Þ
ij �j;

s�ð�Þ
ij ¼ i�ð�Þ

ik �ð�Þ
kj ;

�ð�Þ
ij ¼ �aMa

ij;

(2.2)

where Ma
ij denotes a generic generator of the GUT gauge

group in the irreducible representation supplied by the
Higgs multiplet. As is well known, for SO(10), �i will

transform under either the 10 or the 120 or the 126,
whereas the 27, the 3510, and the 351 are the representa-
tions that may carry the Higgs multiplets in a Yukawa term
of the E6 GUT.

The ordinary Yukawa YðordÞ term for the gauge groups
SO(10) and E6 reads

Y ðordÞ ¼
Z

d4xYff0CAiB ~c
�
Afc �Bf0�i; (2.3)

where Yff0 denotes the Yukawa couplings and CAiB is a

group invariant three-index tensor, i.e.,

~� a
ACCCiB þ CAjBMa

ji þ CAjC�a
CB ¼ 0; (2.4)

where ~�a
AC � �a

CA. For later convenience, we have ex-

pressedYðordÞ in terms of the A component of the transpose

of the fermionic multiplet c �
f :

~c �
f ¼ ðc �

f Þ>—of course,

~c �
Af ¼ c �

Af. The ordinary gauge transformations act on

~c �
f on the right by means of the transpose matrix. Hence,

the BRS variation of ~c �
Af reads

s ~c �Af ¼ i ~c �Bf
~�ðc Þ
BA ;

s~�ðc Þ
BA ¼ �i~�ðc Þ

BC
~�ðc Þ
CA ;

~�ðc Þ
BA ¼ �a ~�a

BA;

~�a ¼ ð�aÞ>:

(2.5)

Let us now introduce the following fields: �AB, ~c �
iBf,

and c �Aif0 , which are defined as follows

�AB ¼ CAiB�i;

~c �
iBf ¼ ~c �

AfCAiB;

c �Aif0 ¼ CAiBc �Bif0 :

(2.6)

To construct noncommutative versions of YðordÞ in

Eq. (2.3), we shall find it useful to have YðordÞ expressed
in terms of the fields �AB, ~c

�
iBf, and c �Aif0 :

YðordÞ
1 � YðordÞ ¼

Z
d4xYff0 ~c

�
Af�ABc �Bf0 ;

YðordÞ
2 � YðordÞ ¼

Z
d4xYff0

~�i
~c �
iBfc �Bf0 ;

YðordÞ
3 � YðordÞ ¼

Z
d4xYff0 ~c

�
Afc �Aif0�i;

(2.7)

where, for later convenience, we have introduced ~�i,
which is the ‘‘i’’component of the transpose of the

Higgs multiplet: ~� ¼ ð�Þ>. The fields �AB, ~c �
iBf, and

c �Aif0 do not carry irreducible representations of the

GUT gauge group, but they carry the very same number

of physical degrees of freedom as do �i, ~c
�
Bf, and c �Af0 ,

respectively. The BRS transformations of �AB, ~c
�
iBf, and

c �Aif0 are

s�AB ¼ �i~�ðc Þ
AC�CB � i�AC�

ðc Þ
CB ;

s ~c �
iBf ¼ �i~�ð�Þ

ij
~c �
jBf � i ~c �

iCf�
ðc Þ
CB ;

sc �Aif0 ¼ �i~�ðc Þ
AC c �Cif0 � ic �Ajf0�

ð�Þ
ji :

(2.8)

In our notation, ~�ð�Þ
ij ¼ �ð�Þ

ji . The BRS transformations in

the previous Eq. are a by-product of the BRS transforma-
tions in Eqs. (2.2), (2.5), and (2.1) and of CAiB being, as
shown in Eq. (2.4), a group invariant tensor.
It can be seen [35] that the naive noncommutative

version of YðordÞ as defined in Eq. (2.3) would not do,
since, on the one hand, the ? product is noncommutative
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and, on the other hand, the fact that the noncommutative
gauge transformations are valued on the universal envel-
oping algebra of the Lie algebra yields the conclusion
that Eq. (2.4) only leads to gauge invariance at zero
order in the noncommutative parameter. By the naive

noncommutative version of YðordÞ, we mean the
expression

Z
d4xYff0CAiB ~�

�
Af ?��Bf0 ?�i;

where ~��
Af, ��Bf0 , and �i are defined in terms of the

ordinary fields by means of the standard—see Eq. (3.3)
in Ref. [12]—Seiberg-Witten maps. However, if we in-
clude in our formalism the notion of hybrid Seiberg-
Witten map introduced in Ref. [39], one can naturally

associate a noncommutative Yukawa term to each YðordÞ
n ,

n ¼ 1, 2, 3, in Eq. (2.7). We shall see that the three
noncommutative Yukawa terms so obtained are not equal
to one another, so our most general noncommutative
Yukawa term will be the sum of them all.

To obtain the noncommutative version of YðordÞ
1 in

Eq. (2.7), one first introduces three noncommutative fields
~��
Af, �AB, and ��Bf0 , which are, respectively, the non-

commutative counterparts of the ordinary fields ~c �
Af, �AB,

and c �Bf0 in YðordÞ
1 . The noncommutative fields are func-

tions of the ordinary fields and ��� that solve the Seiberg-
Witten map equations and go to its ordinary counterpart as
��� ! 0. To define the Seiberg-Witten map equations, one
first introduces the noncommutative BRS transformations

of ~��
Af, �AB, and ��Bf0 :

snc ~�
�
Af ¼ i ~��

Bf ?
~�ðc Þ
BA ; snc��Bf0 ¼ i�ðc Þ

BC ?��Cf0 ;

snc�AB ¼ �i~�ðc Þ
AC ?�CB � i�AC ?�ðc Þ

CB ;

snc ~�
ðc Þ
BA ¼ �i~�ðc Þ

BC ? ~�ðc Þ
CA ; snc�

ðc Þ
BC ¼ i�ðc Þ

BD ?�ðc Þ
DC:

(2.9)

Let us stress that we have defined the noncommutative BRS

transformation of ~��
Af by acting, via the ? product, with

~�ðc Þ
BA on the right of ~��

Af. Hence, by definition, the non-

commutative gauge transformations act on ~��
Af on the right.

We shall see below that this right action makes the non-
commutative Yukawa term gauge invariant, and it is to be
compared with the noncommutative BRS transformation of
��Bf, which is defined by left action with the ? product.

The Seiberg-Witten map equations, which give

~� �
Af½~aðc Þ

� ; ~c �
Bf; �

���; �AB½~aðc Þ
� ; aðc Þ

� ;�AB; �
���;

��Bf0 ½aðc Þ
� ; c �

�Cf0 ; �
���;

~�ðc Þ
BA ½~aðc Þ

� ; ~�ðc Þ; ���� and �ðc Þ
BC ½aðc Þ

� ; �ðc Þ; ����

as a function of their arguments, are the following:

snc ~�
ðc Þ
BA ¼ s~�ðc Þ

BA ; snc�
ðc Þ
BA ¼ s�ðc Þ

BA ;

snc ~�
�
Af ¼ s ~��

Af; snc��Bf0 ¼ s��Bf0 ;

snc�AB ¼ s�AB:

(2.10)

The symbol s denotes the ordinary BRS operator defined in
Eqs. (2.1), (2.2), (2.5), and (2.8), along with

s~aðc Þ
�AB ¼ @� ~�ðc Þ

AB þ i½~aðc Þ
� ; ~�ðc Þ�AB; ~aðc Þ

�AB ¼ aa�
~�a
AB;

saðc Þ
�AB ¼ @��

ðc Þ
AB � i½aðc Þ

� ; �ðc Þ�AB; aðc Þ
�AB ¼ aa��

a
AB:

(2.11)

Recall that ~�a
AB ¼ �a

BA.
Solutions to the Seiberg-Witten map equations in

Eq. (2.10) can be obtained as formal powers series in
���. Up to first order, these solutions, which define the
corresponding Seiberg-Witten maps, read

~�ðc Þ
BA ¼ ~�ðc Þ

BA þ 1

4
���f~aðc Þ

� ; @� ~�
ðc ÞgBA þOð�2Þ;

�ðc Þ
BC ¼ �ðc Þ

BC � 1

4
���faðc Þ

� ; @��
ðc ÞgBC þOð�2Þ;

~��
Af ¼ ~c �

Af �
1

2
���@� ~c �

Bf~a
ðc Þ
�BA

þ i

4
��� ~c �

Cf~a
ðc Þ
�CB~a

ðc Þ
�BA þOð�2Þ;

�AB ¼ �AB þ 1

2
���~aðc Þ

�AC@��CB þ i

4
���~aðc Þ

�AC~a
ðc Þ
�CD�DB

þ 1

2
���@��ACa

ðc Þ
�CB þ i

4
����ACa

ðc Þ
�CDa

ðc Þ
�DB

þ i

2
���~aðc Þ

�AC�CDa
ðc Þ
�DB þOð�2Þ;

��Bf0 ¼ c �Bf0 � 1

2
���aðc Þ

�BC@�c �Cf0

þ i

4
���aðc Þ

�BCa
ðc Þ
�CDc

�
Df0 þOð�2Þ: (2.12)

Notice that �AB is defined by a hybrid Seiberg-Witten
map, a notion which was put forward in Ref. [39].
We are now in the position to introduce and—using

Eq. (2.12)—compute up to first order in ��� the noncom-

mutative counterpart, YðncÞ
1 , of YðordÞ

1 in Eq. (2.7):
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Y ðncÞ
1 ¼

Z
d4xYð1Þ

ff0
~��
Af ?�AB?��Bf0

¼
Z
d4xYð1Þ

ff0CAiB
~c �
Af�ic �Bf0

þ
Z
d4x

�
� i

2

�
���Yð1Þ

ff0CAiBðD�
~c �
f ÞA�iðD�c �f0 ÞB

þ
Z
d4x

�
�1

4

�
ðYð1Þ

ff0CAiB

�Yð1Þ
f0fCBiAÞ����i

~c �
Aff

ðc Þ
��BCc �Cf0 þOð�2Þ;

(2.13)

where ðD�
~c �
f ÞA ¼ @� ~c �

Af � i ~c �
Bf~a

ðc Þ
�BA, ðD�c �f0 ÞB ¼

@�c �Bf0 � iaðc Þ
�BCc �Cf0 and fðc Þ

�� ¼ @�a
ðc Þ
� � @�a

ðc Þ
� �

i½aðc Þ
� ; aðc Þ

� �. It is apparent that YðncÞ
1 is invariant under

the noncommutative BRS variations defined in Eq. (2.9).

Next, we define the noncommutative counterpart, YðncÞ
2 , of

YðordÞ
2 in Eq. (2.7):

Y ðncÞ
2 ¼

Z
d4xYð2Þ

ff0
~�i ? ~��

iBf ?��Bf0 ; (2.14)

where

~�i ¼ ~�i � 1

2
���@� ~�j~a

ð�Þ
�ji þ

i

4
��� ~�j~a

ð�Þ
�jk~a

ð�Þ
�ki þOð�2Þ;

~��
iBf ¼ ~c �

iBf þ
1

2
���~að�Þ

�ij@�
~c �
jBf þ

i

4
���~að�Þ

�ik~a
ð�Þ
�kj

~c �
jBf

þ 1

2
���@� ~c �

iCfa
ðc Þ
�CB þ i

4
��� ~c �

iDfa
ðc Þ
�DCa

ðc Þ
�CB

þ i

2
���~að�Þ

�ij
~c �
jCfa

ðc Þ
�CB þOð�2Þ;

��Bf0 ¼ c �Af � 1

2
���aðc Þ

�BC@�c �Cf0

þ i

4
���aðc Þ

�BCa
ðc Þ
�CDc

�
Df0 þOð�2Þ; (2.15)

with ~að�Þ
�ij ¼ aa� ~Ma

ij, ~Ma
ij ¼ Ma

ji. The noncommutative

fields in the previous equation are solutions to the follow-
ing Seiberg-Witten map equations:

� i~�ð�Þ
ij ? ~��

jBf � i ~��
iCf ?�ðc Þ

CB � snc ~�
�
iBf ¼ s ~��

iBf;

i�ðc Þ
BC ?��Cf0 � snc��Bf0 ¼ s��Bf0 ;

i ~�j ? ~�ð�Þ
ji � snc ~�i ¼ s ~�i;

i�ðc Þ
AC ?�ðc Þ

CB � snc�
ðc Þ
AC ¼ s�ðc Þ

AC ;

� i~�ð�Þ
ik ? ~�ð�Þ

kj � snc ~�
ð�Þ
ij ¼ s~�ð�Þ

ij ; (2.16)

where

~�
ð�Þ
ij ¼ ~�ð�Þ

ij þ 1

4
���f~að�Þ

� ; @� ~�
ð�Þgij þOð�2Þ;

�ðc Þ
BC ¼ �ðc Þ

BC � 1

4
���faðc Þ

� ; @��
ðc ÞgBC þOð�2Þ;

with ~�ð�Þ
ij ¼ ~�a ~Ma

ij. To check that the Seiberg-Witten maps

in Eq. (2.15) are solutions to Eq. (2.16), one needs the
following results:

s~að�Þ
�ij ¼ @� ~�ð�Þ

ij þ i½~að�Þ
� ; ~�ð�Þ�ij;

sað�Þ
�ij ¼ @��

ð�Þ
ij � i½að�Þ

� ; �ð�Þ�ij;
(2.17)

where að�Þ
�ij ¼ aa�ijM

a
ij.

By using the results in Eq. (2.15), one obtains the �

expansion of YðncÞ
2 in Eq. (2.14):

Y ðncÞ
2 ¼

Z
d4xYð2Þ

ff0CAiB
~c �
Af�ic �Bf0

þ
Z

d4x

�
i

2

�
���Yð2Þ

ff0CAiBðD�
~c �
f ÞA�iðD�c �f0 ÞB

þ
Z

d4x

�
� 1

4

�
ðYð2Þ

ff0CAiB

þYð2Þ
f0fCBiAÞ����i

~c �
Aff

ðc Þ
��BCc �Cf0 þOð�2Þ:

(2.18)

In obtaining the previous result, the following equation is
of much help:

~f
ðc Þ
��ACCCiB þ CAjBf

ð�Þ
��ji þ CAiCf

ðc Þ
��CB ¼ 0: (2.19)

Notice that ~fðc Þ
�� ¼ @�~a

ðc Þ
� � @�~a

ðc Þ
� þ i½~aðc Þ

� ; ~aðc Þ
� � and

fð�Þ
�� ¼ @�a

ð�Þ
� � @�a

ð�Þ
� � i½að�Þ

� ; að�Þ
� �. Equation (2.19),

and similar equations involving aðc Þ
� and að�Þ

� , follow
from Eq. (2.4).
Finally, we shall introduce the noncommutative version

YðncÞ
3 of YðordÞ

3 in Eq. (2.7)

Y ðncÞ
3 ¼

Z
d4xYð3Þ

ff0
~��
Af ?��Aif0 ?�i: (2.20)

The fields in the previous equation are given, at first order
in �, by the following expressions:

~� �
Af ¼ ~c �

Af �
1

2
���@� ~c �

Bf~a
ðc Þ
�BA þ

i

4
��� ~c �

Cf~a
ðc Þ
�CB~a

ðc Þ
�BA

þOð�2Þ;

��Aif0 ¼ c �Aif0 þ 1

2
���~aðc Þ

�AB@�c �Bif0

þ i

4
~aðc Þ
�AB~a

ðc Þ
�BCc �Cif0 þ 1

2
���@�c �Ajf0a

ð�Þ
�ji

þ i

4
c �Akf0a

ð�Þ
�kja

ð�Þ
�ji þ

i

2
���~aðc Þ

�ABc �Bjf0a
ð�Þ
�ji

þOð�2Þ;

�i ¼ �i � 1

2
���að�Þ

�ij@��j þ i

4
���að�Þ

�ija
ð�Þ
�jk�k þOð�2Þ:

(2.21)
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The Seiberg-Witten maps in the previous set of equations
are solutions to

i ~��
Bf ?

~�ðc Þ
BA � snc ~�

�
Af ¼ s ~��

Af;

�i~�ðc Þ
AC ?��Cif0 � i��Ajf0 ?�ð�Þ

ji � snc��Aif0

¼ s��Aif0 ;

i�ð�Þ
ij ?�j � snc�i ¼ s�i;

�i~�ðc Þ
AC ? ~�ðc Þ

CB � snc ~�
ðc Þ
AB ¼ s~�ðc Þ

AB ;

i�ð�Þ
ik ?�ð�Þ

kj � snc�
ð�Þ
ij ¼ s�ð�Þ

ij ;

(2.22)

if

�ð�Þ
ij ¼ �ð�Þ

ij � 1

4
���fað�Þ

� ; @��
ð�Þgij þOð�2Þ;

~�ðc Þ
AB ¼ ~�ðc Þ

AB þ 1

4
���f~aðc Þ

� ; @� ~�
ðc ÞgAB þOð�2Þ:

Now, substituting the Seiberg-Witten maps in Eq. (2.21)
in Eq. (2.20), one gets

Y ðncÞ
3 ¼

Z
d4xYð3Þ

ff0CAiB
~c �
Af�ic �Bf0

þ
Z

d4x

�
i

2

�
���Yð3Þ

ff0CAiBðD�
~c �
f ÞA�iðD�c �f0 ÞB

þ
Z

d4x

�
1

4

�
ðYð3Þ

ff0CAiB

þYð3Þ
f0fCBiAÞ����i

~c �
Aff

ðc Þ
��BCc �Cf0 þOð�2Þ:

(2.23)

We have found no reason to discard any of the YðncÞ
n ,

n ¼ 1, 2, 3, in Eqs. (2.13), (2.14), and (2.20), respectively,
as a valid noncommutative Yukawa contribution; we then

conclude that our noncommutative Yukawa term YðncÞ is
the sum of the three of them:

Y ðncÞ � YðncÞ
1 þYðncÞ

2 þYðncÞ
3 : (2.24)

Using the expansions in Eqs. (2.13), (2.18), and (2.23), one
can show that the most general functional which is linear in
���, contains one �i and two c �Af, involves the deriva-

tives of these fields, has no dimensionful parameter other
than ���, and whose BRS variation vanishes, is given by

the first order in � contribution to YðncÞ above. Hence, the
noncommutative Yukawa interaction introduced in
Eq. (2.24) is renormalizable at first order in ���, a property
not to be overlooked.

III. TAKING INTO ACCOUNT THE INDEX
SYMMETRY PROPERTIES OF CAiB

Let �i in Eq. (2.3) carry an irreducible representation of
SO(10), and let CAiB be the invariant tensor also in Eq. (2.3).
Then, the Clebsch-Gordan decomposition [40] of the

16
N

16 representation of SO(10) leads to the conclusion

that CAiB ¼ CBiA, if�i carries either the 10 or the 126 of SO
(10), and that CAiB ¼ �CBiA, if�i transforms under the 120
of SO(10). Analogously [40], that for E6 we have

27
N

27 ¼ ð27L 3510Þs L 351as implies that CAiB ¼
CBiA when the Higgs field is in either the 27 or the 3510 of
E6 and CAiB ¼ �CBiA when �i carries the 351 of E6.
That in our case CAiB has well-defined symmetry prop-

erties under the exchange of A and ‘‘B’’ leads to simplified

expressions for YðncÞ in Eq. (2.24). Indeed, if CAiB ¼ CBiA,
Eqs. (2.13), (2.18), (2.23), and (2.24) yield

Y ðncÞ ¼
Z

d4xYðsÞ
ff0CAiB

~c �
Af�ic �Bf0 þ

Z
d4x

�
i

2

�

�ð�Yð1;asÞ
ff0 þYð2;asÞ

ff0

þYð3;asÞ
ff0 Þ���CAiBðD�

~c �
f ÞA�iðD�c �f0 ÞB

þ
Z

d4x

�
� 1

2

�
ðYð1;asÞ

ff0 þYð2;sÞ
ff0

�Yð3;sÞ
ff0 Þ���CAiB�i

~c �
Aff

ðc Þ
��BCc �Cf0 þOð�2Þ;

where YðsÞ
ff0 ¼ Yð1;sÞ

ff0 þYð2;sÞ
ff0 þYð3;sÞ

ff0 . Y
ðn;sÞ
ff0 and Yðn;asÞ

ff0 de-

note, respectively, the symmetric and antisymmetric parts

of YðnÞ
ff0 with regard to the indices f, f0. YðnÞ

ff0 , n ¼ 1, 2, 3

were introduced in Eqs. (2.13), (2.14), and (2.20).
Similarly, when CAiB ¼ �CBiA, Eq. (2.24) boils down to

Y ðncÞ ¼
Z

d4xYðasÞ
ff0 CAiB

~c �
Af�ic �Bf0 þ

Z
d4x

�
i

2

�

�ð�Yð1;sÞ
ff0 þYð2;sÞ

ff0

þYð3;sÞ
ff0 Þ���CAiBðD�

~c �
f ÞA�iðD�c �f0 ÞB

þ
Z

d4x

�
� 1

2

�
ðYð1;sÞ

ff0 þYð2;asÞ
ff0

�Yð3;asÞ
ff0 Þ���CAiB�i

~c �
Aff

ðc Þ
��BCc �Cf0 þOð�2Þ;

where YðasÞ
ff0 ¼ Yð1;asÞ

ff0 þYð2;asÞ
ff0 þYð3;asÞ

ff0 .

IV. REDUNDANT CHOICES

Recall that ~��
iBf is the noncommutative counterpart of

~c �
iBf in Eq. (2.6). The reader may rightly ask whether a

new Yukawa term can be obtained by making the following
choice—to be compared with the definition in Eq. (2.16)—

for the noncommutative BRS transformations of ~��
iBf:

snc ~�
�
iBf ¼ �i ~��

jBf ?
~�ð�Þ
ij � i�ðc Þ

CB ? ~��
iCf: (4.1)

Notice that this is a noncommutative generalization of the

BRS transformations, in Eq. (2.8), of ~c �
iBf. Also notice that

we go back to snc ~�
�
iBf in Eq. (2.16) when we change the
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order in which the �’s and ~��
iBf occur in Eq. (4.1). Since

the way in which the contracted indices occur in Eq. (4.1) is
a little odd, we shall rename the objects in that equation as
follows:

~� �
iBf � �0�

iBf;
~�ð�Þ
ij � �0ð�Þ

ji ; �ðc Þ
CB � ~�0ðc Þ

BC :

In terms of the fields we have just introduced, Eq. (4.1)
reads

snc�
0�
Bif ¼ �i ~�0�

Bjf ?�0ð�Þ
ji � i~�0ðc Þ

BC ? ~�0�
Cif: (4.2)

This equation is to be supplemented with

snc�
0ð�Þ
ji ¼ i�0ð�Þ

jk ?�0ð�Þ
ki ;

snc ~�
0ðc Þ
BC ¼ �i~�0ðc Þ

BD ? ~�0ðc Þ
DC ;

(4.3)

if we want s2nc ¼ 0.

Let us next introduce �0
i and

~�0
�iBf0 as the new non-

commutative counterparts of the ordinary �i and ~c 0
�Bf0 ¼

c 0
�Bf0 , the latter entering the ordinary Yukawa term in

Eq. (2.3). The BRS transformations of �0
i and

~�0
�iBf0 are

defined as follows:

snc ~�
0
�Af � i ~�0

�Bf ?
~�0
BA; snc�

0
i � i�0ð�Þ

ij ?�0
j:

(4.4)

Now, it is plain that

Y ðncÞ
4 ¼

Z
d4xYð4Þ

f0f
~�0�
Af0 ?�0

�Aif ?�0
i (4.5)

is invariant under noncommutative BRS transformations if
the fields in it are solutions to the following Seiberg-Witten
map equations:

snc ~�
0�
Af0 ¼ s ~�0�

Af0 ; snc�
0
�Bif ¼ s�0

�Bif;

snc�
0
i ¼ s�0

i; snc�
0ð�Þ
ji ¼ s�0ð�Þ

ji ;

snc ~�
0ðc Þ
BC ¼ s~�0ðc Þ

BC ;

(4.6)

where the action of the noncommutative BRS operator snc
is defined in Eqs. (4.2), (4.3), and (4.4), and the ordinary
BRS operator s is given in Eqs. (2.1), (2.2), (2.5), (2.8),
(2.11), and (2.17). However, the Yukawa term in Eq. (4.5) is
not a new Yukawa term, but it is the Yukawa term in
Eq. (2.20). Indeed, notice that i) the Seiberg-Witten map
equations in Eq. (4.6) are those in Eq. (2.22), and ii) that at
��� ¼ 0 the solutions to Eq. (4.6) must satisfy

~� 0�
Af0 ½� ¼ 0� ¼ ~c �

Af0 ;

�0
�Bif½� ¼ 0� ¼ ~c �iBf � ~c �AfCAiB;

�0
i½� ¼ 0� ¼ �i; �0ð�Þ

ji ½� ¼ 0� ¼ �ð�Þ
ji ;

~�0ðc Þ
BC ½� ¼ 0� ¼ ~�ðc Þ

BC :

Then, the fact that CAiB ¼ �CBiA—see previous section—

leads to ~c �AfCAiB ¼ �CBiAc �Af � �c �Bif, which com-

bined with i) and ii) above implies that

~� 0�
Af0 ¼ ~��

Af0 ; �0
�Bif ¼ ���Bif; �0

i ¼ �i;

(4.7)

where ~��
Af0 , ��Bif, and �i are the solutions to Eq. (2.22),

whose first-order-in-� expansions are displayed in
Eq. (2.21). Finally, by substituting Eq. (4.7) in Eq. (4.5),
one recovers Eq. (2.20). We thus conclude that the Yukawa
term in Eq. (4.5) is redundant.
Analogously, if the fields ��Aif0 and �AB—which are,

respectively, the noncommutative counterparts of the ordi-
nary fields c �Aif0 and�AB in Eq. (2.6)—are defined so that

their noncommutative BRS transformations are given by

snc��Aif0 ¼ �i��Cif0 ? ~�ðc Þ
AC � i�ð�Þ

ji ?��Ajf0 ;

snc�AB ¼ �i�CB ? ~�ðc Þ
AC � i�ðc Þ

CB ?�AC;
(4.8)

one may show that no new Yukawa terms arise out of them.
Indeed, proceeding similarly as we did above, one may
show that��Aif0 and�AB transforming as in Eq. (4.8) yield

YðncÞ
2 and YðncÞ

1 , respectively. YðncÞ
2 is given in Eq. (2.14),

and YðncÞ
1 was introduced in Eq. (2.13).

A last remark, the two �’s in the noncommutative BRS

transformations of �AB,
~��
iBf, and ��Aif0 cannot both

occur in the BRS transformation on the same side of the
corresponding field, for then s2nc will not vanish when
acting on those fields, which in turn will render mean-

ingless the Seiberg-Witten map equations for �AB,
~��
iBf,

and ��Aif0—recall that s2 ¼ 0 if s is the ordinary BRS

operator.

V. CONCLUSIONS

We have seen in this paper that noncommutative Yukawa
GUT terms can be constructed in a natural way by applying
the enveloping-algebra formalism to ordinary fields—�AB,
~c �
iBf, and c �Aif0 in Eq. (2.6), which transform under

reducible representations of the gauge group, but which
involve the very same number of physical degrees as the
ordinary irreducible multiplets they are made out of. Let us
stress that in the noncommutative case, in sharp contrast
with ordinary case, Yukawa terms cannot be constructed in
general—and in particular for SO(10) and E6—by apply-
ing the Seiberg-Witten map to ordinary irreducible multip-
lets, so other procedures such as the one put forward in this
paper are needed. Our procedure, which takes advantage of
the notion of hybrid Seiberg-Witten map introduced in
Ref. [39], yields a renormalizable Yukawa term at first
order in �, thus paving the way—in view of the results in
Ref. [37]—to constructing renormalizable noncommuta-
tive SO(1O) andE6 GUTs, at least at first order in ���. Of
course, the next challenging issue is to define a noncom-
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mutative Higgs potential which deforms the already in-
volved—see, e.g., Refs. [41,42]—ordinary GUT Higgs
potential. This, although certainly feasible within the non-
commutative GUT formalism of Ref. [35] with help from
the ideas presented in this paper, is a much involved piece
of research and deserves a separate study. Let us finally
point out that Eqs. (2.13), (2.14), and (2.20) generalize
naively to higher space-time dimensions, so the procedure
introduced in this paper to construct Yukawa terms may be

of help in formulating GUTs in higher dimensional non-
commutative space-times [13,43,44].
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