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We formulate a Ginsparg-Wilson relation on a fuzzy 2-sphere for matter in the adjoint representation of

the gauge group. Because of the Ginsparg-Wilson relation, an index theorem is satisfied. Our formulation

is applicable to topologically nontrivial configurations as monopoles. It gives a solid basis for obtaining

chiral fermions, which are an important ingredient of the standard model, from matrix model formulations

of the superstring theory, such as the IIB matrix model, by considering topological configurations in the

extra dimensions. We finally discuss whether this mechanism really works.
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I. INTRODUCTION

Matrix models are a promising candidate to formulate
the superstring theory nonperturbatively [1,2], and they
indeed include quantum gravity and gauge theory. One
of the important subjects in such studies is to connect
these models to phenomenology. Spacetime structures
can be analyzed dynamically in the IIB matrix model [3],
and four dimensionality seems to be preferred [3,4].
Assuming four-dimensional spacetime is obtained, we
next want to show the standard model of particle physics
on it. A crucial issue for it is to realize chiral fermions,
which also ensures the existence of massless fermions.
Without chiral symmetries, quantum corrections would
induce mass of order of the Planck scale in general.

A way to obtain chiral spectrum in our spacetime is to
consider topologically nontrivial configurations in the ex-
tra dimensions.1 Owing to the index theorem [8], topologi-
cal charge of the background provides the index of the
Dirac operator, i.e., the difference of the numbers of chiral
zero modes, which then produce massless chiral fermions
in our spacetime. Generalizations of the index theorem to
matrix models or noncommutative spaces are, however,
mostly formulated in spaces with an infinite size, and it
is widely believed that topological charges cannot be de-
fined in a system with finite degrees of freedom.

The situation is similar to the lattice gauge theories,
where the theory is defined on a finite number of lattice
points. There a problem to properly define the chiral sym-
metry and the index theorem arises due to the doubling
problem [9]. The problem has been solved successfully by
introducing Dirac operators satisfying a Ginsparg-Wilson
(GW) relation [10]. While all the gauge field configurations
are continuously connected and there seems to be no room
for defining separate topological sectors, the configuration

space becomes disconnected by introducing the admissibil-
ity condition and the various topological sectors can then be
realized [11].
The ideas of using the GW relation were applied to

matrix models or noncommutative geometries. In
Ref. [12], we have provided a general prescription to
construct a GW Dirac operator with coupling to back-
ground gauge fields. As a concrete example, a GW Dirac
operator on a fuzzy 2-sphere [13] was given.2 As topologi-
cally nontrivial configurations, ’t Hooft–Polyakov (TP)
monopole configurations were introduced [15,16], and an
index theorem for those backgrounds was formulated by
introducing a projection operator [17]. This index theorem
was further extended to general configurations, which
enabled us to define all of the topological sectors in a
single theory [17,18].
While our formulation has been given so far to fermionic

fields with the fundamental representation of the gauge
group, the matrix models of superstrings, such as the IIB
matrix model, have fermions with the adjoint representa-
tion. It is then desirable to provide formulations for the
adjoint matter. Since it is a highly delicate problem to
formulate GW relations in each concrete case, we will
study it in this paper. We further extend our formulation
to configurations where the UðPpkpÞ gauge symmetry is

broken down to
Q

pUðkpÞ, which seem phenomenologi-

cally interesting.
The formulations using the GW relation provide a firm

foundation for studying the above mentioned mechanism
of obtaining chiral fermions by embedding topological
configurations in the extra dimensions. Indeed, the GW
relation ensures the existence of chiral zero modes against
any perturbations since the index is a topological quantity.
However, one should study carefully whether the chiral
zero modes in the extra dimensions really give chiral
spectrum in our spacetime. By considering TP monopole-
type configurations, where the gauge symmetry is broken*haoki@cc.saga-u.ac.jp

1Having this mechanism in mind, we analyzed dynamics of a
model on a fuzzy 2-sphere and showed that topologically non-
trivial configurations are indeed realized [5]. Models of four-
dimensional field theory with fuzzy extra dimensions were
studied in [6,7].

2A GW Dirac operator without gauge field backgrounds was
given earlier in [14].
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down to a smaller one, bifundamental fermions are ob-
tained from an adjoint one, but fields with the conjugate
representations arise in pairs. Whether they give chiral
spectrum in our spacetime in total is a problem and will
be also discussed in this paper.

In Sec. II, we formulate the GW relation for matter in the
adjoint representation of the gauge group. In Sec. III, we
introduce TP monopole configurations and provide the
index theorem for those backgrounds. We then extend it
to general configurations in Sec. IV. We study configura-
tions with UðPpkpÞ=

Q
pUðkpÞ in Sec. V. In Sec. VI, we

discuss whether topological configurations in the extra
dimensions really provide chiral fermions in our space-
time. Section VII is devoted to conclusions and discus-
sions. In Appendix A, we show calculations for taking the
commutative limits of the Dirac operator and the topologi-
cal charge. In Appendix B, we study general configurations
with UðPpkpÞ=

Q
pUðkpÞ. In Appendix C, we study the

charge conjugation and the Majorana condition in ten
dimensions in detail.

II. GW RELATION ON FUZZY S2

WITH ADJOINT MATTER

In this section, we provide a GW Dirac operator and an
index theorem for matter in the adjoint representation of
the gauge group, by following the general prescription
given in [12].

Noncommutative coordinates of a fuzzy 2-sphere are
given by xi ¼ �Li, where � is a noncommutative parame-
ter, and Li is the n-dimensional irreducible representation
matrix of the SUð2Þ algebra. One then has the relation

ðxiÞ2 ¼ �2 n2�1
4 1n ¼ �21n, where � ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn2 � 1Þ=4p
ex-

presses the radius of the sphere. The commutative limit is
taken by � ! 0, n ! 1 with � fixed.

In our formulation of the GW relation, we first define
two chirality operators as3

� ¼ HrffiffiffiffiffiffiffiffiffiffiffiffiðHrÞ2
p ; Hr ¼ �iA

R
i � 1

2
; (2.1)

�̂ ¼ HlffiffiffiffiffiffiffiffiffiffiffiðHlÞ2
p ; Hl ¼ �iA

L
i þ 1

2
; (2.2)

with covariant coordinates

Ai ¼ Li þ �ai: (2.3)

The superscript R (L) in AR
i (AL

i ) means that this operator
acts from the right (left) on matrices: ALM � AM, ARM �
MA. The matrices �i are the Pauli matrices acting on the
spinor indices, and the matrices ai in (2.3) represent the
gauge fields. UðkÞ gauge symmetry is introduced by taking

Li ¼ Li � 1k and ai ¼ aai t
a in (2.3), where ta’s are

the generators of UðkÞ and aai ’s are functions of the
coordinates Li.
The gauge transformation for the fermionic fields c in

the adjoint representation is given by

c ! UcUy; (2.4)

where U is UðnkÞ matrices. The gauge field ai is trans-
formed as ai ! UaiU

y þ 1
� ðULiU

y � LiÞ, so that the co-

variant coordinate Ai is transformed as

Ai ! UAiU
y: (2.5)

Hence, both �c and �̂c are transformed covariantly as

�c ! U�cUy and �̂c ! U�̂cUy, where a relation
ðABÞRc ¼ BRARc ¼ cAB was used.
The chirality operators (2.1) and (2.2) satisfy

�y ¼ �; �̂y ¼ �̂; �2 ¼ �̂2 ¼ 1: (2.6)

In the commutative limit, both � and �̂ become the chi-
rality operator on the commutative 2-sphere, � ¼ ni�i,
where ni ¼ xi=� is a unit vector.
We then define a GW Dirac operator as

DGW ¼ �a�1�ð1� ��̂Þ; (2.7)

where a ¼ 2=n is a noncummutative analog of the lattice
spacing. By the definition, a GW relation

�DGW þDGW�̂ ¼ 0 (2.8)

is satisfied. Hence, the index, i.e., the difference of the
numbers of the chiral zero modes, is given by the trace of
the chirality operators as

index ðDGWÞ ¼ 1
2T r½�þ �̂�; (2.9)

where T r is the trace over the whole configuration space,
that is, over the spinor index, the gauge group space, and
the matrix space representing the coordinates. Since the

definition of � and �̂ depends on the gauge fields ai, the
right-hand side (rhs) of (2.9) is a functional of the gauge
field configurations. It also takes only integer values. It
then gives a noncommutative generalization of the topo-
logical charge of the gauge field backgrounds. Thus,
Eq. (2.9) gives an index theorem on the fuzzy 2-sphere.
In the commutative limit, the GW Dirac operator (2.7)

becomes

DGW ! �iðLi þ �Pij~ajÞ þ 1; (2.10)

as will be shown in Appendix A. Here Li ¼ �i�ijkxj@k is

the derivative operator along the Killing vectors on the
sphere, ~ai is the adjoint operator of ai, i.e., ~aic ¼ ½ai; c �,
and Pij ¼ �ij � ninj is the projector to the tangential

directions on the sphere. The gauge fields ai can be decom-
posed into the tangential components on the sphere a0i and
the normal component � as

a0i ¼ �ijknjak; � ¼ niai; (2.11)

3In the case of fundamental matter, we took � ¼ að�iL
R
i � 1

2Þ
instead of (2.1), where a ¼ 2=n is a noncommutative analog of
the lattice spacing. �̂ was identical with (2.2).
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, ai ¼ ��ijknja
0
k þ ni�: (2.12)

The normal component � is a scalar field on the sphere.
The operator (2.10) is the Dirac operator of the adjoint
matter on the commutative 2-sphere without a coupling to
the scalar field �. The absence of the Yukawa coupling is
reasonable since such a coupling would violate the chiral
symmetry on the sphere and contradict with the GW
relation.

The commutative limit of the topological charge, the rhs
of (2.9), becomes

1

2
T r½�þ �̂� ! ��2

Z d�

4�
trð�ijknkFijÞ

þ �2
Z d�

4�
trð�ijknkFijÞ; (2.13)

as shown in Appendix A. Here tr is the trace over the gauge
group space, and the field strength Fij is defined as

Fij ¼ @ia
0
j � @ja

0
i � i½a0i; a0j� with a0i given in (2.11). The

first and the second terms on the rhs of (2.13) come from

T r½�� and T r½�̂�, respectively. Each term gives the
integral of the 1st Chern character on the commutative
2-sphere. They cancel each other and vanish for any gauge
field configurations, which is appropriate since we now
consider the adjoint matter.

In summary, our formulation manifestly has the gauge
invariance and the SOð3Þ Poincare invariance on the
fuzzy 2-sphere. Because of the GW relation, the index
theorem (2.9) is satisfied, and the topological charge, the
rhs of (2.9), takes only integer values. The commutative
limits of the chirality operators, the Dirac operator, and the
topological charge have the correct forms.

III. TP MONOPOLE CONFIGURATIONS

As topologically nontrivial configurations in the Uð2Þ
gauge theory on the fuzzy 2-sphere, the following configu-
rations were provided [15,16]:

Ai ¼ LðnþmÞ
i

Lðn�mÞ
i

 !
; (3.1)

where Ai is the covariant coordinate (2.3), and Lðn�mÞ
i are

the (n�m)-dimensional irreducible representations of the
SUð2Þ algebra. The m ¼ 0 case corresponds to two coin-
cident fuzzy 2-spheres, whose effective action is the Uð2Þ
gauge theory. The cases with general m correspond to two
fuzzy 2-spheres with different radii. They correspond to
the TP monopole configurations with magnetic charge
�jmj, where the Uð2Þ gauge symmetry is broken down
to Uð1Þ �Uð1Þ.

For the m ¼ 1 case, (3.1) is unitarily equivalent to

Ai ¼: LðnÞ
i � 12 þ 1n � 	i

2
: (3.2)

Comparing with (2.3), the gauge field is

ai ¼ 1

�
1n � 	i

2
: (3.3)

By taking the commutative limit and making the decom-
position (2.11), we obtain

a0ai ¼ 1

�
�ijanj; �a ¼ 1

�
na; (3.4)

which is precisely the TP monopole configuration [16].

We now define projection operators Pð�Þ to pick up the
n� jmj-dimensional spaces that the operator (3.1) acts. It
is written as

Pð�Þ ¼ 1
2ð1� TÞ; (3.5)

with

T ¼ 2

njmj
�
A2
i �

n2 þm2 � 1

4

�
(3.6)

¼ m

jmj
1nþm

�1n�m

� �
: (3.7)

Since T commutes with the chirality operators and the
Dirac operator, the index theorem (2.9) is satisfied in each

space projected by Pð�Þ as

index ðPð�ÞLPð�ÞRDGWÞ ¼ 1
2T r½Pð�ÞLPð�ÞRð�þ �̂Þ�;

(3.8)

where the superscript L (R) means that the operator acts
from the left (right) on matrices as before. The � signs in

Pð�ÞL and Pð�ÞR do not necessarily coincide. Each sign
combination picks up one of the following blocks in the
fermionic field c in the adjoint representation:

c ¼ c ðþþÞ c ðþ�Þ
c ð�þÞ c ð��Þ

 !
(3.9)

for m> 0, if we decompose c into the blocks in the
same way as (3.1). The signs in (3.9) should be reversed
for m< 0.
For the backgrounds (3.1), the rhs of (3.8) becomes

1

2
T r½Pð�ÞLPð�ÞRð�þ �̂Þ�¼

8><
>:
0 for c ðþþÞ;c ð��Þ;
�2jmj for c ðþ�Þ;
2jmj for c ð�þÞ;

(3.10)

as shown by the following calculations: For (3.1), the

chirality operator �̂ becomes

�̂ ¼
2

nþm ð� � LðnþmÞ þ 1
2Þ

2
n�m ð� � Lðn�mÞ þ 1

2Þ
 !

:

(3.11)

Since the terms with � � L vanish after taking the trace, we
obtain
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T r½Pð�ÞLPð�ÞR�̂� ¼ TrL;�½Pð�ÞL�̂� � TrR½Pð�ÞR�
¼ 1

n� jmj 2ðn� jmjÞ � ðn� jmjÞ
¼ 2ðn� jmjÞ; (3.12)

where TrL;� is the trace over the space on which AL
i and �i

act, and TrR is the trace over the space on which AR
i act.

The� sign in the last line refers to that in Pð�ÞR. Similarly,
we can show

T r½Pð�ÞLPð�ÞR�� ¼ �2ðn� jmjÞ; (3.13)

where the � sign in the rhs refers to that in Pð�ÞL. By
adding (3.12) and (3.13), we obtain (3.10).

We now give an interpretation for (3.10). In the repre-
sentation (2.3), (3.6) is written as

T ¼ 2

njmj
�
�fLi; aig þ �2a2i �

m2

4

�
: (3.14)

In the commutative limit, T becomes 2�
jmj� where � is

the scalar field defined in (2.11). It is also normalized as
T2 ¼ 12n. Then, T corresponds to a normalized scalar
field. Recalling that the TP monopole configuration breaks
the SUð2Þ gauge symmetry down to Uð1Þ, T is the genera-
tor of this unbroken Uð1Þ, the electric charge operator of
the unbroken Uð1Þ. [The Uð1Þ of Uð2Þ ’ SUð2Þ �Uð1Þ is
ignored since it is decoupled in the commutative limit.]
By the gauge symmetry braking SUð2Þ=Uð1Þ, fields with
various electric charges of the unbroken Uð1Þ arise.
Equation (3.8) gives the index theorem for each field.

For instance, c ðþþÞ in (3.9) is in the adjoint representa-
tion of the unbrokenUð1Þwith electric chargeþ1=2, and it

has a vanishing index. On the other hand, c ðþ�Þ is in the
bifundamental representation of the unbroken Uð1Þ with
charge þ1=2 and�1=2, that is, the fundamental represen-
tation with charge þ1. It therefore has the index �2jmj.
Although the whole fermionic field c has a vanishing
index since it is in the adjoint representation, the field in
each projected block can have nonzero index. As was
shown in (2.13), topological charge is an analog of the
1st Chern character, which is proportional to the electric

charge of the matter. Then, c ðþ�Þ and c ð�þÞ, having the
opposite electric charge, have the opposite topological
charge and the opposite index.

We finally give two comments. First, we can define a
topological charge multiplied by the electric charge,
such as

1

16
T r½ðTL � TRÞð�þ �̂Þ�; (3.15)

so that contributions from the blocks in (3.9) do not cancel
but are added. By using the result (3.10), (3.15) becomes
�jmj for the backgrounds (3.1), which agrees with the
topological charge of the TP monopoles. We will develop
this argument further in the next section.

Second, as seen above, fermions in the conjugate repre-
sentations under the unbroken gauge group have opposite
indices if one considers topological configurations in two
dimensions, or more generally, in 2 (mod 4) dimensions.
We can then expect that by embedding these configurations
in the extra dimensions, chiral spectrum is obtained in our
spacetime in low energy effective theory. We will discuss
this issue in Sec. VI.

IV. GENERAL CONFIGURATIONS
WITH Uð2Þ=Uð1Þ2

We now extend the formulation in the previous section
to general configurations where the Uð2Þ gauge group is
broken down to Uð1Þ �Uð1Þ through the Higgs mecha-
nism, i.e., a nonzero vacuum expectation value of the scalar
field. This will enable us to survey the whole configuration
space with all topological sectors.
Since the definition of the electric charge operator T in

(3.6) was specific to the backgrounds (3.1), we first gen-
eralize it as

T0 ¼ ðAiÞ2 � n2�1
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðAiÞ2 � n2�1
4 �2

q : (4.1)

This is valid for general configurations Ai unless
the denominator has zero modes. For the configurations
(3.1), T0 reduces to the previous one (3.7). For general
configurations

ðT0Þy ¼ T0; ðT0Þ2 ¼ 1 (4.2)

are satisfied. The commutative limit of T0 becomes the
normalized scalar field as

T0 ! 2�0 ¼ 2�0a 	
a

2
; (4.3)

where �0 is normalized as
P

að�0aÞ2 ¼ 1.
We next define modified chirality operators as

�0
r ¼ fT0R;�gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifT0R;�g2p ; (4.4)

�̂ 0
r ¼ T0R�̂; (4.5)

�0
l ¼ T0L�; (4.6)

�̂ 0
l ¼

fT0L; �̂gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fT0L; �̂g2

q ; (4.7)

where � and �̂ are defined in (2.1) and (2.2). The super-
script R (L) in T0R (T0LÞ means that this operator acts from
right (left) on matrices. The chirality operators satisfy the
relations

ð�0
rÞy ¼�0

r; ð�̂0
rÞy ¼ �̂0

r; ð�0
rÞ2¼ð�̂0

rÞ2¼1; (4.8)
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ð�0
lÞy ¼�0

l; ð�̂0
lÞy ¼ �̂0

l; ð�0
lÞ2¼ð�̂0

lÞ2¼1: (4.9)

Since the chirality operators are weighted by the electric

charge operator T0, the commutative limits of �0
r and �̂0

r

become �0
r ¼ tR�, and those of �0

l and �̂0
l become

�0
l ¼ tL�. Here t is the electric charge operator of the

unbroken Uð1Þ gauge group, the superscript R (L) means
that the operator acts from right (left) in the gauge group
space, and � ¼ n � � is the chirality operator on the
2-sphere.

We then define modified GW Dirac operators as

D0
r ¼ �a�1�0

rð1� �0
r�̂

0
rÞ; (4.10)

D0
l ¼ �a�1�0

lð1� �0
l�̂

0
lÞ: (4.11)

By definition, these Dirac operators satisfy GW relations

�0
rD

0
r þD0

r�̂
0
r ¼ 0; (4.12)

�0
lD

0
l þD0

l�̂
0
l ¼ 0: (4.13)

Then, index theorems

index ðD0
rÞ ¼ 1

2T r½�0
r þ �̂0

r�; (4.14)

index ðD0
lÞ ¼ 1

2T r½�0
l þ �̂0

l�; (4.15)

are satisfied as well. By using the rhs of (4.14) and (4.15),
we can also define a topological charge

1

16
T r½�0

l þ �̂0
l � �0

r � �̂0
r�; (4.16)

which is a generalization of (3.15).
For the configurations (3.1), since the generalized elec-

tric charge operator (4.1) reduces to the previous one (3.7),
we can calculate the rhs of (4.14) and (4.15) as we did
below (3.10), giving

1
2T r½�0

r þ �̂0
r� ¼ 4jmj; (4.17)

1
2T r½�0

l þ �̂0
l� ¼ �4jmj: (4.18)

In (3.10), c ðþ�Þ and c ð�þÞ have index �2jmj and 2jmj,
respectively. However, since the chirality operators �0

r and

�̂0
r are multiplied by �1 for c ðþ�Þ, we obtain (4.17).

Equation (4.18) is obtained similarly. From (4.17) and
(4.18), the topological charge (4.16) becomes �jmj, as
expected since (3.15) gave �jmj.

In the commutative limit, the GW Dirac operator (4.10)
becomes

D0
r ! 1

2f2�0R; ð�iLi þ 1Þg þ 1
2f2�0R; ��iPija

L
j g

� 1
2f2�0R; ��iPija

R
j g; (4.19)

where the superscript R (L) means that the operator acts

from right (left) in the gauge group space:�0R ¼ �0að�Þ�
ð	aÞR
2 , etc. In the �0að�Þ ¼ ð0; 0; 1Þ gauge, (4.19) becomes

ð	3ÞR
�
�iLi þ 1þ ��iPij

�
a3j

~	3

2
þ a1j

ð	1ÞL
2

þ a2j
ð	2ÞL
2

��
� D0

r;com; (4.20)

where ~	3 means the adjoint operator of 	3. This Dirac
operator indeed has the adjoint coupling of the unbroken
Uð1Þ gauge field a3i . It also satisfies a chiral relation

fD0
r;com; �

0
rg ¼ 0; (4.21)

with �0
r ¼ ð	3ÞR� the chirality operator multiplied by the

unbroken Uð1Þ charge, as expected from the GW relation
(4.12). The same arguments hold also for D0

l.

Our remarkable result is that, by the same calculations in
(2.13), the commutative limit of the rhs in (4.14) becomes

1

2
T r½�0

r þ �̂0
r� ! �4

�2

8�

Z
d��ijknið�0aFa

jk

� �abc�
0aðDj�

0ÞbðDk�
0ÞcÞ; (4.22)

where Fjk ¼ Fa
jk	

a=2 is the field strength defined as Fjk ¼
@ja

0
k � @ka

0
j � i½a0j; a0k�, and Dj is the covariant derivative

defined as Dj ¼ @j � i½a0j; �, with a0j given in (2.11). As

T rð�̂Þ gave the second term in the rhs of (2.13), T rð�̂0
rÞ

gives a similar term, but with TrRð1Þ ¼ 2n replaced by

TrRðT0RÞ � 2m, giving an extra 1=n factor. Then, T rð�̂0
rÞ

does not contribute to the commutative limit. On the other
hand,T rð�0

rÞ gives a similar term as the first term in the rhs
of (2.13), but with the T0R in the same trace. Moreover, as
shown in Ref. [18], the denominator in (4.4) yields the
second term on the rhs of (4.22).
Similarly, we obtain

1

2
T r½�0

l þ �̂0
l� ! 4

�2

8�

Z
d��ijknið�0aFa

jk

� �abc�
0aðDj�

0ÞbðDk�
0ÞcÞ: (4.23)

Equations (4.22) and (4.23) are precisely the topological
charge given by ’t Hooft [19], multiplied by 	4, respec-
tively. Since each of (4.22) and (4.23) has contributions

from c ðþ�Þ and c ð�þÞ, and their electric charge is twice
the usual case, the result is multiplied by 	4.

V. CONFIGURATIONS WITH UðPpkpÞ=
Q

pUðkpÞ
We now consider configurations as follows:

Ai ¼
Lðn1Þ
i � 1k1

Lðn2Þ
i � 1k2

. .
.

LðnhÞ
i � 1kh

0
BBBBB@

1
CCCCCA;

(5.1)

where the gauge symmetry UðPh
p¼1 kpÞ, which the con-

figurations Ai ¼ Li � 1Ph
p¼1

kp
would have, is broken down
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to
Q

h
p¼1 UðkpÞ. They are a generalization of the configu-

rations (3.1) with Uð2Þ=Uð1Þ2. They are phenomenologi-
cally attractive since they have gauge group close to that of
the standard model.4 Such configurations are also used for
embedding fiber bundles in matrix models [21]. We here
study whether index theorems can be formulated in these
backgrounds as before.

We then define projection operators as

Pp ¼
0Pp�1

q¼1
nqkq

1npkp

0Ph
q¼pþ1

nqkq

0
BB@

1
CCA (5.2)

for p ¼ 1; . . . ; h, which pick up the pth block with dimen-
sions npkp. Since the projection operators (5.2) commute

with the chirality operators and the Dirac operator, the
index theorem (2.9) is satisfied in each projected space as

index ðPL
pP

R
qDGWÞ ¼ 1

2T r½PL
pP

R
q ð�þ �̂Þ� (5.3)

for 1 
 p, q 
 h. Here �, �̂, and DGW are defined in (2.1),
(2.2), and (2.7), and the superscript L (R) means that the
operator acts from the left (right).

For the backgrounds (5.1), the rhs of (5.3) becomes

1
2T r½PL

pP
R
q ð�þ �̂Þ� ¼ �kpkqðnp � nqÞ; (5.4)

by following the same calculations below (3.10). For h ¼ 2
and k1 ¼ k2 ¼ 1, this reproduces the previous result (3.10).
Since the field projected by PL

p and PR
q is in the bifunda-

mental representation ðkp; �kqÞ of the unbroken gauge group
UðkpÞ �UðkqÞ, its index is multiplied by kpkq.

We can also extend the formulation to general configu-
rations. As in (4.1), we define electric charge operators of
the unbroken Uð1Þ’s as

T0
p ¼ ðAiÞ2 � cpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðAiÞ2 � cp�2
q (5.5)

for p ¼ 1; . . . ; h� 1. The numbers cp are taken between

n2p � 1

4
> cp >

n2pþ1 � 1

4
;

where we assume n1 > n2 > � � �> nh. For the configura-
tions (5.1), T0

p becomes

1Pp
q¼1

nqkq

�1Ph

q¼pþ1
nqkq

0
@

1
A: (5.6)

They are the generators of Uð1Þ’s contained in the unbro-
ken gauge group

Q
pUðkpÞ. Note that there exist the grand

unified theory monopoles when a simple gauge group is
broken down to a smaller group containing Uð1Þ factors.

We then define modified chirality operators as (4.4)–(4.7),
for each T0

p with p ¼ 1; . . . ; h� 1. GW Dirac operators,

GW relations, and index theorems are defined as (4.10)–
(4.15). As we show in Appendix B, the commutative limits
of the GW Dirac operators and the topological charges
have similar forms as (4.19)–(4.23).

VI. EMBEDDINGS IN IIB MATRIX MODEL

As we mentioned in the Introduction, when topologi-
cally nontrivial configurations are embedded in the extra
dimensions in the matrix model formulations of super-
string theory, such as the IIB matrix model, chiral fermions
can be obtained in our spacetime. In this section, we
discuss whether this mechanism really works or not.

A. M4 � Xn � M4þn

Let us first consider general cases, theories in (4þ n)-
dimensional Minkowski space M4þn, compactified to
n-dimensional space Xn with Euclidean signature, while
M4 is our spacetime with Lorentzian signature. We then
embed n-dimensional topological configurations in Xn. In
particular, we assume configurations of the TP monopole
type, where the gauge symmetry is broken down, which
yields fields that are in the conjugate representations under

the unbroken gauge group. We now denote them as c ðrÞ

and c ð �rÞ, which correspond to c ðþ�Þ and c ð�þÞ in (3.9).
For n ¼ 2 (mod 4), as we mentioned at the end of

Sec. III, topological charge becomes an analog of the lth
Chern character with l ¼ n=2 an odd integer, which gives

c ðrÞ and c ð�rÞ opposite indices. We denote the correspond-

ing chiral zero modes as c ðrÞ
R and c ð �rÞ

L , where the subscripts

R and L stand for the chirality. [Choosing c ðrÞ
L and c ð �rÞ

R

instead would give the identical results below.] Taking
spinors ’ in M4 as well, we obtain four possible Weyl
spinors as follows:

’R � c ðrÞ
R ; (6.1)

’L � c ð �rÞ
L ; (6.2)

’L � c ðrÞ
R ; (6.3)

’R � c ð �rÞ
L : (6.4)

The spinors (6.1) and (6.2) are in the charge conjugate
representations to each other. So are (6.3) and (6.4). Here
one should note that Weyl spinors in Lorentzian and
Euclidean spaces are as shown in Table I.
If we consider chiral theories in M4þn originally, (6.1)

and (6.2) are chosen. [Choosing (6.3) and (6.4) would give
the identical results.] Since ’R in (6.1) and ’L in (6.2) are
in the different representations of the gauge group, we
obtain chiral spectrum inM4, although we have a doubling
of (6.1) and (6.2). If we further impose the Majorana

4A phenomenological study based on such configurations was
given in [20].
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condition in M4þn, which is possible for 4þ n ¼ 2
(mod 8), (6.1) and (6.2) are identified and the doubling
problem is resolved.

On the contrary, for n ¼ 0 (mod 4), topological configu-

rations give c ðrÞ and c ð �rÞ the same index. We denote the

corresponding chiral zero modes as c ðrÞ
R and c ð �rÞ

R . Taking
spinors ’ in M4 as well, we obtain

’R � c ðrÞ
R ; (6.5)

’L � c ð �rÞ
R ; (6.6)

’L � c ðrÞ
R ; (6.7)

’R � c ð�rÞ
R : (6.8)

The spinors (6.5) and (6.6) are in the charge conjugate
representations. So are (6.7) and (6.8). If we consider chiral
theories in M4þn originally, (6.5) and (6.8) are chosen.
Since ’R in (6.5) and ’R in (6.8) are in the conjugate
representations of the gauge group to each other, we are
left with nonchiral spectrum inM4. Even if we consider the
Majorana fermions inM4þn instead, we obtain a nonchiral
spectrum in M4.

B. M4 � S2 � S2 in IIB matrix model

We now move to the IIB matrix model. The action of the
IIB matrix model is given by

SIIBMM ¼ � 1

g2
Tr

�
1

4
½AM; AN�½AM; AN�

þ 1

2
�c�M½AM; c �

�
; (6.9)

where AM is a ten-dimensional vector, c is a ten-
dimensional Majorana-Weyl spinor5 and they are also
traceless Hermitian matrices. Since the action is written
in terms of the commutators, matter in the adjoint repre-
sentation appears naturally.

As an application of what we studied about the fuzzy
2-sphere in this paper, let us consider a compactification
to M4 � S2 � S2 and an embedding of the following
configurations:

A
 ¼ x
 � 1n11n
2
1þn12n

2
2
;

Ai ¼ 1 �
L
ðn11Þ
i � 1n2

1

L
ðn1

2
Þ

i � 1n2
2

0
B@

1
CA;

Aj ¼ 1 �
1n11

� L
ðn2

1
Þ

j

1n1
2
� L

ðn2
2
Þ

j

0
B@

1
CA;

(6.10)

where 
 ¼ 0, 1, 2, 3, i ¼ 4, 5, 6, and j ¼ 7, 8, 9. x
 is our

spacetime background. Either commutative backgrounds
as ½x
; x�� ¼ 0 or noncommutative backgrounds as

½x
; x�� ¼ i�
� can be considered.6

The second factor in (6.10)7 represents monopole con-
figurations wrapping around S2 � S2. The off-diagonal

blocks of matter, c ðþ�Þ and c ð�þÞ in (3.9), are in the
conjugate representations of the unbroken gauge group.

We now write them as c ðrÞ and c ð�rÞ. Since the topological
configurations in four-dimensional S2 � S2 give c ðrÞ and
c ð�rÞ the same index, we denote the corresponding chiral

zero modes as c ðrÞ
R and c ð �rÞ

R .
We now introduce the following Dirac gamma matrices

in M10, which are suitable for M4 � S2 � S2:

�
 ¼ �
 � 12 � 12 � �3;

�i ¼ 14 � �i � 12 � �1;

�j ¼ 14 � 12 � �j � �2;

(6.11)

where �
 is the gammamatrices inM4. The second and the

third factors act on spinors on S2 � S2, such as the chiral

zero modes c ðrÞ
R and c ð�rÞ

R . Besides the spinors ’ inM4, we
should also introduce spinors 
 on which the final factor
acts. We then obtain the following possible Weyl spinors:

’R � c ðrÞ
R � 
R; ’L � c ð�rÞ

R � 
L; (6.12)

’L � c ðrÞ
R � 
L; ’R � c ð �rÞ

R � 
R; (6.13)

’R � c ðrÞ
R � 
L; ’L � c ð �rÞ

R � 
R; (6.14)

’L � c ðrÞ
R � 
R; ’R � c ð�rÞ

R � 
L: (6.15)

The two spinors in (6.12) are in the charge conjugate
representations to each other. So are those in (6.13),
(6.14), and (6.15). We show it in detail in Appendix C.

TABLE I. Weyl representations of SOðd� 1; 1Þ and SOðdÞ.
SOðd� 1; 1Þ SOðdÞ

d ¼ 0 (mod 4) Complex Self-conjugate

d ¼ 2 (mod 4) Self-conjugate Complex

5They are Wick rotated to the SOð10Þ vector and spinor. In this
paper, however, we use Lorentzian notation, such as M10, since
we discuss spinors.

6Fluctuations around the background (6.10) provide matter
fields. Expansions of the action (6.9) give superficially renorma-
lizable theories, but with nonlocality such as noncommutativity.
The maximal supersymmetry possessed by the IIB matrix model
might suppress peculiar properties caused by the nonlocality,
such as the UV/IR mixing.

7Similar backgrounds were studied in [7,22].
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Since the IIB matrix model has the ten-dimensional
Majorana-Weyl spinor, we now impose these conditions.
By the Weyl condition, (6.12) and (6.13) or (6.14) and
(6.15) are chosen. By the Majorana condition, the two
spinors in (6.12), (6.13), (6.14), and (6.15) are identified.
We still have two spinors, however. We then obtain non-
chiral spectrum.

There are two reasons why we could not obtain chiral
spectrum. First, since we now consider four-dimensional
topological configurations, the zero modes of the same

chirality, c ðrÞ
R and c ð�rÞ

R , are obtained. As the case M4 �
X4 � M8 gave nonchiral spectrum in M4, now the first
spinor in (6.12) and the second spinor in (6.13) necessarily
arise and give nonchiral spectrum.

Second, the remainder two dimensions M10=ðM4 �
S2 � S2Þ interrupt. In the gamma matrices (6.11), the ten-
dimensional chirality operator becomes

�11 ¼ �5 � 12 � 12 � �3: (6.16)

Then, even if �11 ¼ þ is imposed, both ð�5; �3Þ ¼ ðþ;þÞ
and ð�5; �3Þ ¼ ð�;�Þ are allowed. For instance, the first
spinor in (6.12) and the first spinor in (6.13) appear.

Actually, the chirality on S2 � S2, i.e., whether one takes

c ðrÞ
R and c ð �rÞ

R or c ðrÞ
L and c ð�rÞ

L , gives no difference.
Moreover, the chirality on each S2 is irrelevant. While
the chirality operator on S2 is � ¼ n � �, the gammamatrix
in the direction normal to S2 is also �? ¼ n � �, and their
product gives ��? ¼ 12 in (6.16). Then, even if one con-
siders a chiral mode on S2, either �c ¼ þc or �c ¼
�c , it gives no effect on (6.16).

VII. CONCLUSIONS AND DISCUSSIONS

In this paper, we provided the GW Dirac operators and
the index theorems on the fuzzy 2-sphere for matter in
the adjoint representation of the gauge group. We extended
our formulation to topologically nontrivial configurations,
such as the TP monopoles, the general configurations
with Uð2Þ=Uð1Þ2, and the configurations with
UðPpkpÞ=

Q
pUðkpÞ. We can also extend it to fuzzy S2 �

S2, S2 � S2 � S2, and so on. The topological charge de-
fined on fuzzy ðS2Þl in this way gives us a noncommutative
generalization of the lth Chern character on ðS2Þl, as was
shown in [22] for the fundamental matter. Wewill report on
it in a separate paper.

We then studied the embeddings of topological configu-
rations in higher dimensional matrix models, such as the
IIB matrix model, and discussed whether chiral spectrum is
really obtained in our spacetime. The formulations using
the GW relation gave a firm foundation to such studies.
The GW relation indeed ensures the existence of chiral
zero modes against any variations since the index is a
topological quantity. As a practical advantage, we can
calculate exact chiral zero modes, not approximate ones.
Unfortunately, however, we could not obtain chiral

spectrum by the M4 � S2 � S2 embeddings in the IIB
matrix model. We now discuss how to resolve this
problem.
One may consider decoupling dynamically one of the

fields ’R � c ðrÞ
R � 
R and ’R � c ð�rÞ

R � 
R. (See, for in-

stance, Ref. [23].) By introducing strong coupling inter-
actions, such as four-Fermi interactions, to only one of
them, confinement may take place, which makes all the
composites massive and decoupled. The other partner re-
mains chiral and massless. However, introducing those
interactions seems artificial and unnatural from the view-
point that we derive everything from the IIB matrix model,
though it is allowed for formulating chiral gauge theories
on the lattice as in [23].
A simple way to obtain chiral spectrum in our spacetime

is to consider topological configurations in the entire extra
six dimensions, as we studied M4 � X6 � M10 in Sec. VI.
Coset space constructions, which cause the ‘‘remainder’’
dimensions, are not suitable for it. Torus is possible to
construct in the same way as we did in this paper.8 Six-
dimensional curved spaces can be described within six
matrices in the formulation given in [28]. One may also
consider situations similar to the intersecting D-branes
[29], where one has no remainder dimensions normal to
all of the D-branes which are intersecting to one another.
By T-duality, those situations are essentially equivalent to
the above ones. We can also consider orbifolds in six
dimensions [30,31]. Imposing orbifold conditions plays
the same role as the topological configurations giving the
index. We will report on these studies in future
publications.
While we assumed the specific backgrounds in this

paper, we can in principle analyze whether such configu-
rations are realized dynamically, as we did in the analyses
for the spacetime structures in the IIB matrix model and in
the analyses for the fuzzy spheres. From such studies, we
might be able to find that the standard model or its exten-
sion is obtained as a unique solution from the IIB matrix
model or its variants. Or, more complicated structures of
the vacuum, such as the landscape, might be found, but
with the definite measure which enables us to discuss
entropy. Anyway, the matrix models make these studies
possible.
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8The GW relation was implemented on the noncommutative
torus by using the Neuberger’s overlap Dirac operator [24]. In
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topological aspects in gauge theory on the noncommutative torus
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APPENDIX A: COMMUTATIVE LIMITS OF DIRAC
OPERATOR AND TOPOLOGICAL CHARGE

In this Appendix, we take the commutative limits of the
Dirac operator and the topological charge, and provide
(2.10) and (2.13). While similar calculations were given

in [12,16] for T r½�̂�, a coefficient becomes slightly differ-

ent in this case, and the calculation of T r½�̂� is also
instructive for that of T r½��. We then show both calcu-
lations in a self-contained manner.

By substituting (2.3) into (2.2), we obtain

Hl ¼ � � LL þ 1
2 þ �� � aL; (A1)

ðHlÞ2 ¼ n2

4
þ �ðfLL

i ; a
L
i g þ i�ijk�k½LL

i ; a
L
j � þ � � aLÞ

þ �2ð� � aLÞ2; (A2)

and

�̂ ¼ að� � LL þ 1
2 þ �� � aLÞ � 1

2a
3�� � LLfLL

i ; a
L
i g

� 1
2a

3�� � LLði�ijk�k½LL
i ; a

L
j � þ � � aL

þ �ð� � aLÞ2 � 3
4a

2�fLL
i ; a

L
i g2Þ

� 1
2a

3�ð12 þ �� � aLÞfLL
i ; a

L
i g þOðn�3Þ; (A3)

with a ¼ 2
n . Similarly, by substituting (2.3) into (2.1), we

obtain

� ¼ að� � LR � 1
2 þ �� � aRÞ � 1

2a
3�� � LRfLR

i ; a
R
i g

� 1
2a

3�� � LRði�ijk�k½LR
i ; a

R
j � � � � aR

þ �ð� � aRÞ2 � 3
4a

2�fLR
i ; a

R
i g2Þ

� 1
2a

3�ð�1
2 þ �� � aRÞfLR

i ; a
R
i g þOðn�3Þ: (A4)

For the commutative limit of the Dirac operator (2.7), it is
enough to take terms up to order n�1 in (A3) and (A4). We
then easily obtain (2.10).

For the commutative limit of the topological charge, the
rhs of (2.9), however, we should take terms up to order n�2

in (A3) and (A4), sinceT r gives a contribution of order n2.

We first consider T r½�̂�. Taking the trace over the spinor
index, we obtain

T r½�̂� ¼ T r0
�
2

n
� a3�

�
LL
k i�ijk½LL

i ; a
L
j � þ LL

i a
L
i

þ i��ijkL
L
i a

L
j a

L
k þ 1

2
fLL

i ; a
L
i g
��

; (A5)

where T r0 is the trace over the whole configuration space
without the spinor index. It is rewritten as T r0 ¼
trLtrtL trRtrtR , where trL is the trace over the space on which

LL
i act, trtL is the trace over the space on which the gauge

group generators ðtaÞL act, and so on. In the commutative

limit, 1n trLðMLÞ is replaced by R d�L

4� Mð�LÞ, and 1
n trRðMRÞ

by
R d�R

4� Mð�RÞ. Then, T r0 becomes n2
R d�L

4� �R d�R

4� trtL trtR . It then follows that

T r½�̂� !
Z d�L

4�

Z d�R

4�
trtL trtRð2nþ 2�2�ijkn

L
i F

L
jkÞ

¼ 2nk2 þ 2�2
Z d�

4�
trð�ijkniFjkÞ; (A6)

whereFij ¼ @ia
0
j � @ja

0
i � i½a0i; a0j�with a0i given in (2.11).

In the last line, we used a simple expression tr ¼ trtL trtR .

Similarly, we obtain

T r½�� ¼ T r0
�
� 2

n
� a3�

�
LR
k i�ijk½LR

i ; a
R
j � � LR

i a
R
i

þ i��ijkL
R
i a

R
j a

R
k � 1

2
fLR

i ; a
R
i g
��

; (A7)

and then

T r½�� !
Z d�L

4�

Z d�R

4�
trtL trtRð�2n� 2�2�ijkn

R
i F

R
jkÞ

¼ �2nk2 � 2�2
Z d�

4�
trð�ijkniFjkÞ: (A8)

Because of the relation ½AR; BR� ¼ �½A; B�R, there arose
the minus sign in front of the field strength Fjk in (A8),

compared with (A6). Adding (A6) and (A8), we finally
obtain (2.13).

APPENDIX B: GENERAL CONFIGURATIONS
WITH UðPpkpÞ=

Q
pUðkpÞ

In this Appendix, we study formulations for general
configurations with UðPpkpÞ=

Q
pUðkpÞ. In particular, we

show that the commutative limits of the GW Dirac opera-
tors and the topological charges have similar forms as
(4.19)–(4.23).
As we mentioned at the end of Sec. V, for each electric

charge operator T0
p with p ¼ 1; . . . ; h� 1, given by (5.5),

we define modified chirality operators �0
pr, �̂

0
pr, �

0
pl, and

�̂0
pl by (4.4)–(4.7). We then define modified GW Dirac

operators D0
pr and D0

pl by (4.10) and (4.11). They satisfy

the GW relations as (4.12) and (4.13), and the index
theorems as (4.14) and (4.15).
We now study the commutative limits. Following (4.3),

we write the commutative limits of the electric charge
operators T0

p as

T0
p ! 2�0

p ¼ X
a

2�0a
p t

a; (B1)

where ta are the generators of the gauge groupUðPh
p¼1 kpÞ.

Because of ðT0
pÞ2 ¼ 1,

X
a;b

�0a
p �

0b
p t

atb ¼ 1

4
(B2)

should be satisfied at the commutative level as well. The
rhs is the identity operator in the gauge group space and the
coordinate space of the sphere. Then, unlike the Uð2Þ case,
�0a

p ¼ ð1; 0; . . . ; 0Þ gauge does not exist in general, though
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we have gauges where all of �0a
p are constant and indepen-

dent of the sphere coordinate �.
The commutative limit of the GW Dirac operator D0

pr

becomes

D0
pr ! 1

2f2�0R
p ; ð�iLi þ 1Þg þ 1

2f2�0R
p ; ��iPija

L
j g

� 1
2f2�0R

p ; ��iPija
R
j g; (B3)

as (4.19). The superscript R (L) means that the operator
acts from right (left) in the gauge group space: �0R

p ¼
�0a

p ð�ÞðtaÞR, etc. In the gauges �0a
p ð�Þ ¼ �0a

p , where �0a
p

are constant, (B3) becomes

2�0R
p ð�iLi þ 1þ ��iPija

L
j Þ ��0a

p ��iPija
b
j fta; tbgR

� D0
pr;com: (B4)

This Dirac operator has the adjoint coupling of the unbro-
ken Uð1Þ gauge field

P
a�

0a
p a

a
j ðtaÞRð~taÞ. It also satisfies a

chiral relation

fD0
pr;com; �

0
prg ¼ 0; (B5)

where �0
pr ¼ 2�0R

p � is the chirality operator multiplied by

the unbroken Uð1Þ charge. The same arguments hold also
for D0

pl.

As (4.22) and (4.23), the commutative limits of the
topological charges become

1

2
T r½�0

pr þ �̂0
pr� ! �2k

�2

8�

Z
d��ijknið�0a

p F
a
jk

� fabc�
0a
p ðDj�

0
pÞbðDk�

0
pÞcÞ; (B6)

1

2
T r½�0

pl þ �̂0
pl� ! 2k

�2

8�

Z
d��ijknið�0a

p F
a
jk

� fabc�
0a
p ðDj�

0
pÞbðDk�

0
pÞcÞ; (B7)

where k ¼ P
h
p¼1 kp and fabc are the structure constants

of UðPh
p¼1 kpÞ. The field strength Fjk ¼ Fa

jkt
a is defined

as Fjk ¼ @ja
0
k � @ka

0
j � i½a0j; a0k�, and the covariant

derivative Dj is defined as Dj ¼ @j � i½a0j; �, with a0j
given in (2.11). In the gauges �0a

p ð�Þ ¼ �0a
p , where �0a

p

are constant, the integrand of (B6) and (B7) indeed gives
the Abelian flux in the unbroken Uð1Þ direction
�0a

p ð@ja0ak � @ka
0a
j Þ.

We finally give a comment. We here obtained the h� 1

topological charges T r½�0
pr þ �̂0

pr� with 1 
 p 
 h� 1,

while we had hðh�1Þ
2 ones (5.3) for 1 
 p < q 
 h. The lack

of information is covered by defining chirality operators

�0
p;q ¼ T0L

p

fT0R
q ;�gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fT0R
q ;�g2

q ; (B8)

�̂ 0
p;q ¼

fT0L
p ; �̂gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fT0L
p ; �̂g2

q T0R
q ; (B9)

and GW Dirac operators

D0
p;q ¼ �a�1�0

p;qð1� �0
p;q�̂

0
p;qÞ; (B10)

for 1 
 p, q 
 h� 1. They satisfy GW relations and then
index theorems

index ðD0
p;qÞ ¼ 1

2T r½�0
p;q þ �̂0

p;q�; (B11)

which indeed provide ðh�1Þðh�2Þ
2 topological charges. While

T rð�0
p;qÞ and T rð�̂0

p;qÞ vanish for the Uð2Þ=Uð1Þ2 case of
Sec. IV, they give nontrivial results in the present case of
UðPpkpÞ=

Q
pUðkpÞ.

APPENDIX C: CHARGE CONJUGATION

In this Appendix we show that the two spinors in (6.12)–
(6.15) are in the charge conjugate representations to each
other. We also show that the Majorana condition in ten
dimensions can be written as the decomposition into each
subspace, as in the Weyl condition.
We first introduce unitary matrices B1 and B2 acting on

SOð9; 1Þ spinors, which satisfy

B1�MB
�1
1 ¼ ð�MÞ�; (C1)

B2�MB
�1
2 ¼ �ð�MÞ�; (C2)

forM ¼ 0; . . . ; 9. (We follow the notation in Appendix B.1
in [32].) For the representation of gamma matrices (6.11),
they are written as

B1 ¼ Bð4Þ
1 � �2 � �2 � �2; (C3)

B2 ¼ Bð4Þ
2 � �2 � �2 � �1; (C4)

where Bð4Þ
1 and Bð4Þ

2 satisfy

Bð4Þ
1 �
ðBð4Þ

1 Þ�1 ¼ �ð�
Þ�; (C5)

Bð4Þ
2 �
ðBð4Þ

2 Þ�1 ¼ ð�
Þ�: (C6)

The charge conjugation of SOð9; 1Þ spinors is defined as

�C � B�1��; (C7)

for either B ¼ B1 or B ¼ B2.
For the gamma matrices (6.11), the chirality operator in

M10 is written as

�11 ¼ �5 � 12 � 12 � �3; (C8)

where the chirality operator in M4 is

�5 ¼ �i�0�1�2�3: (C9)

As usual,
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B�11B
�1 ¼ ð�11Þ� (C10)

is satisfied for both B1 and B2, while

Bð4Þ�5ðBð4ÞÞ�1 ¼ �ð�5Þ� (C11)

is satisfied for both Bð4Þ
1 and Bð4Þ

2 . Then, the Weyl spinor in
M10 is self-conjugate and that in M4 is complex.

We may define a chirality operator in the second and the
third factors in (C8) as

�ðR3�R3Þ ¼ 12 � 12: (C12)

We can also define chirality operators in this space as

�ðS2�S2Þ ¼ n � � � n � �; (C13)

�ðS2Þ ¼ n � � � 12; (C14)

�ðS20Þ ¼ 12 � n � �: (C15)

The charge conjugation matrix in this space is

A ¼ �2 � �2 (C16)

for either (C3) or (C4). The Weyl spinor in terms of the
chirality (C12) is self-conjugate because

A�ðR3�R3ÞA�1 ¼ ð�ðR3�R3ÞÞ� (C17)

is satisfied. That of (C13) is self-conjugate:

A�ðS2�S2ÞA�1 ¼ ð�ðS2�S2ÞÞ�; (C18)

and those of (C14) and (C15) are complex:

A�ðS2ÞA�1 ¼ �ð�ðS2ÞÞ�: (C19)

We should also define a chirality operator in the fourth
factor in (C8) as

�ðeÞ ¼ �3: (C20)

The charge conjugation matrix in this space is

AðeÞ
1 ¼ �2; AðeÞ

2 ¼ �1 (C21)

for (C3) and (C4), respectively. For either AðeÞ
1 or AðeÞ

2 , the

Weyl spinor is complex because

AðeÞ�ðeÞðAðeÞÞ�1 ¼ �ð�ðeÞÞ�: (C22)

It follows from (C11), (C18), and (C22) that the two
spinors in (6.12)–(6.15) are in the charge conjugate repre-
sentations to each other.

In the remainder of this Appendix, we discuss the
Majorana condition. The Majorana condition in ten
dimensions

� ¼ �C � B�1�� (C23)

can be imposed since B�B ¼ 1 is satisfied for either
B ¼ B1 in (C1) or B ¼ B2 in (C2).
By decomposing the spinor as

� ¼ ’ � c � 
; (C24)

the Majorana condition (C23) with B2 in (C4) is written as

’� � c � � 
� ¼ Bð4Þ
2 ’ � Ac � AðeÞ

2 
: (C25)

This is satisfied by imposing the conditions

’� ¼ �Bð4Þ
2 ’; (C26)

c � ¼ �Ac ; (C27)


� ¼ �AðeÞ
2 
; (C28)

where the three signs should satisfy ð�Þð�Þð�Þ ¼ þ.

Since ðBð4Þ
2 Þ�Bð4Þ

2 ¼ 1 and ðAðeÞ
2 Þ�AðeÞ

2 ¼ 1 are satisfied,
(C26) and (C28) can be imposed. While the reality condi-
tion, the Euclidean version of the Majorana condition,
cannot be imposed on the SOð3Þ spinors, which are in
the pseudoreal representation, the product of two pseudor-
eal representations is real. This trick is used in (C27),
where A�A ¼ 1 is satisfied.
Similarly, the Majorana condition (C23) with B1 in (C3)

is written as

’� � c � � 
� ¼ Bð4Þ
1 ’ � Ac � AðeÞ

1 
: (C29)

This is satisfied by imposing the conditions

’� � 
� ¼ �Bð4Þ
1 ’ � AðeÞ

1 
; (C30)

c � ¼ �Ac ; (C31)

where the two signs should satisfy ð�Þð�Þ ¼ þ. The trick
of doubling the pseudoreal representations is used twice, in
(C30) and in (C31).
We therefore find that the Majorana condition in ten

dimensions can be written as the decomposition into each
subspace: (C26)–(C28), or (C30) and (C31). Although
these decompositions were not used directly in the present
paper, they are useful when we study the Majorana condi-
tion in each subspace.
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