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We investigate the UV fixed-point structure of the three-dimensional Thirring model by means of the

functional renormalization group. We classify all possible 4-fermi interactions compatible with the

present chiral and discrete symmetries and calculate the purely fermionic renormalization group flow

using a full basis of fermionic four-point functions in the pointlike limit. Our results show that the UV

complete (asymptotically safe) Thirring model lies in a two-dimensional coupling plane which reduces to

the conventional Thirring coupling only in the strict large-Nf limit. In addition to the Thirring universality

class, which is characterized by one relevant direction (also at finite Nf), two further interacting fixed

points occur which may define new universality classes of second-order phase transitions also involving

parity-broken phases. The Nf dependence of the Thirring fixed point sheds further light on the existence of

an Nf-controlled quantum phase transition above which chiral symmetry remains unbroken for arbitrary

large coupling, even though a definite answer will require a direct computation of competing orders.
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I. INTRODUCTION

Three-dimensional relativistic fermionic systems have
extensively been investigated in the literature in a variety
of scenarios. On the one hand, they are, per se, interesting
field theories with unconventional features, on the other
hand they allow for fascinating applications to condensed-
matter systems. In particular, three-dimensional quantum
electrodynamics (QED3) or the Thirring model [1] are
actively discussed, e.g., as effective theories describing
different regions of the phase diagram of high-Tc cuprate
superconductors [2–4] and, recently, the electronic proper-
ties of graphene [5–9]. Especially graphene, since its first
synthesis in 2004 [10], is being lively discussed in the
rapidly growing literature on this subject, also because it
offers the appealing opportunity for a comparatively sim-
ple experimental realization of some, up to now, unob-
served quantum relativistic phenomena, such as the Klein
paradox [11] or Zitterbewegung [12]; for reviews, see
[13,14]. More exotically, some features of 3d relativistic
fermion systems can serve as toy models, e.g., for the
standard model of particle physics [15], or a possible
candidate for a ‘‘theory of everything’’ [16].

However, QED3 [17–23] and the three-dimensional
Thirring model [24–31] are likewise intrinsically interest-
ing, in particular, because the ground states in these theo-
ries are expected to show a sensitivity to the number of
fermion flavors Nf . Several approximate solutions of the
Dyson-Schwinger equations (DSE) predict that chiral sym-
metry breaking (�SB) is prohibited onceNf is larger than a
critical value Ncr

f [26,28,29]. A similar quantum critical

phenomenon has also been identified in many-flavorQCD4

[32,33], being currently under intense investigation also

because of its potential relevance for technicolor
scenarios [34] and its implications for the thermal phase
boundary [35].
The search for the quantum critical point in the Thirring

model has so far been rather challenging: different DSE
approaches, e.g., have yielded values between Ncr

f ’ 3:24
[26] and Ncr

f ¼ 1 [27]. Recent extensive lattice simula-

tions now point to Ncr
f ’ 6:6 [31]. For physical graphene

and cuprates, the number of flavors is Nf ¼ 2, such that the
true value of Ncr

f may be of profound importance for

physical effects corresponding to chiral symmetry break-
ing in the effective theories. In fact, a dynamically induced
mass gap in the band structure of graphene, corresponding
to a semimetal-Mott insulator quantum phase transition,
could provide extraordinary applications for graphene-
based electronics, offering a possible new candidate mate-
rial to take over from Si-based technology [13].
In this work, we take a more fundamental viewpoint in

order to investigate the amount of universality that can be
attached to a possible value for Ncr

f . Naively, a universal

answer for Ncr
f may not be apparent as 3d fermion models

are perturbatively nonrenormalizable. Nevertheless, renor-
malizability of the 3d Thirring model to any order in a
large-Nf expansion has been shown in [24–27], with a
diagrammar being very similar to QED3. This has been
taken as an indication that the Thirring model can indeed
be defined nonperturbatively in 3d, providing the same
amount of universality as any perturbatively renormaliz-
able theory.
Universality and, more profoundly, UV completeness

can, in fact, be analyzed within Weinberg’s scenario of
asymptotic safety [36,37], in which a UV complete
infinite-cutoff limit can be taken at a potentially non-
Gaussian fixed point. The resulting theories are predictive
and exhibit universality, if the number of renormalization
group (RG) relevant directions at the fixed point are finite.
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In this work, we reexamine renormalizability of the 3d
Thirring model from this viewpoint by means of the func-
tional renormalization group formulated in terms of the
Wetterich equation [38]. Using a purely fermionic RG as a
first step, the UV fixed-point structure can indeed be
mapped out, on the one hand confirming the large-Nf

results, but also revealing interesting deviations from the
large-Nf asymptotics. For instance, we can identify a non-
Gaussian UV fixed point that defines a ‘‘Thirring universal-
ity class’’ which, however, corresponds to a pure Thirring
coupling only in the strict large-Nf limit. In addition, we
find further fixed points which may be associated with
phase transitions (and corresponding new universality
classes), e.g., toward a parity-broken phase.

This paper is organized as follows. In Sec. II, we analyze
the discrete and continuous symmetries of the classical
theory. We classify the different possible mass terms as
well as all possible fermionic interaction channels in the
pointlike four-fermion limit. With the aid of the functional
RG, we investigate the purely fermionic RG flow in
Sec. III, followed by an analysis of the fixed-point structure
of the given class of models for varying number of fermion
flavors in Sec. IV. In Sec. V, we classify the resulting RG
trajectories to the long-range physics, pointing to the ex-
istence of various phases with dynamical mass generation,
and obtain a first glance at a possible mechanism for the
formation of a critical flavor number, above which chiral
symmetry breaking disappears. We give our conclusions in
Sec. VI.

II. SYMMETRIES OF THE THIRRING MODEL

The Lagrangian for the massless Thirring model in three
Euclidean space-time dimensions is

L ¼ �c ai6@c a þ �g

2Nf

ð �c a��c
aÞ2; (1)

satisfying Osterwalder-Schrader positivity.1 The index a
runs over Nf distinct fermion flavors. In three dimensions,
we could use 2� 2matrices (e.g., the Pauli matrices) as an
irreducible representation of the Euclidean Dirac algebra

f��; ��g ¼ 2���; (2)

but this representation does not permit a chiral symmetry.
We therefore work exclusively with a 4� 4 reducible
representation of the Dirac algebra; an explicit representa-
tion is given by

�� ¼ 0 �i��

i�� 0

� �
; � ¼ 1; 2; 3; (3)

with f�1; �2; �3g being the 2� 2 Pauli matrices. Thus c a

represents a four-component Dirac spinor. Now there are
two further 4� 4 matrices which anticommute with all ��

as well as with each other,

�4¼ 0 1
1 0

� �
and �5¼�1�2�3�4¼ 1 0

0 �1
� �

: (4)

The massless Lagrangian (1) then is invariant under the
axial transformations

U�4
ð1Þ: c � ei��4c ; �c � �c ei��4 ; (5)

U�5
ð1Þ: c � ei��5c ; �c � �c ei��5 ; (6)

as well as the vector transformations

U1ð1Þ: c � ei#c ; �c � �c e�i#; (7)

U�45
ð1Þ: c � ei’�45c ; �c � �c e�i’�45 ; (8)

with �45 :¼ i�4�5. For each flavor a ¼ 1; . . . ; Nf , the the-
ory thus has a global U(2) symmetry with the Hermitian
generators 	j, j ¼ 1; . . . ; 4,

	j ¼ 1; �4; �5; �45: (9)

This symmetry transformations together with flavor rota-
tions form a larger symmetry of the classical massless
Lagrangian, corresponding to the group Uð2NfÞ with the
ð2NfÞ2 generators


i � 	j; i ¼ 1; . . . ; N2
f ; j ¼ 1; . . . ; 4: (10)

Here, f
1; . . . ; 
N2
f
�1g are the generalized Nf � Nf Gell-

Mann matrices, and 
N2
f
:¼ 1Nf

is the identity. In other

words, combining the Nf four-component spinors c a ¼
ðc a

L; c
a
RÞT (each consisting of 2 two-component Weyl

spinors c L, c R) into one collective 4Nf-component spinor

� :¼ ðc 1
L; c

1
R; . . . ; c

Nf

L ; c Nf

R ÞT

(consisting of 2Nf two-component Weyl spinors), the the-
ory is invariant under

� � U�; �� � ��Uy; U 2 Uð2NfÞ; (11)

where the entries of the unitary ð2NfÞ � ð2NfÞ matrix U
are complex numbers times the 2� 2 identity matrix 12.
Because of the reducible representation of the Dirac

algebra, discrete transformations can be implemented in
various ways [26]. Let us define

C : c � ð �cC�ÞT;
�c � �ðCy�c ÞT ðcharge conjugationÞ;
P : c � P�c ; �c � �cPy� ðparity inversionÞ;
T : c � Tc ; �c � �cTy ðtime reversalÞ;

1For Osterwalder-Schrader positivity [39], we require invari-
ance of the action under (generalized) complex conjugation
defined by c y :¼ i �c�3 together with reflection of the
(Euclidean) time coordinate (which we choose to be x3). For a
detailed discussion of our chiral conventions, see, e.g., Ref. [40].
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where C and P are unitary and T is antiunitary. The
arguments of the transformed fields are ~x :¼ ð�x1; x2; x3Þ
in the case of parity, and x̂ :¼ ðx1; x2;�x3Þ in the case of
time reversal. C�, P� , and T are unitary 4� 4 matrices

given by

C� ¼ 1
2½ð1þ �Þ�2�4 þ ið1� �Þ�2�5�; (12)

P� ¼ 1
2½ð1þ �Þ�1�4 þ ið1� �Þ�1�5�; (13)

T ¼ 1
2½ð1þ Þ�1 þ ið1� Þ�2�3�; (14)

depending on the pure phases �, � ,  with j�j ¼ j�j ¼
jj ¼ 1. Recall that �1 and �3 are antisymmetric and
purely imaginary, whereas �2, �4, and �5 are symmetric
and real. We thus see that on the classical level our theory
is invariant under any of the discrete transformations C, P ,
andT individually, irrespective of the values of the phases
�, � , and .

Let us now consider building blocks of the effective
action, starting at the two-fermion level. There are, in
fact, four possible mass terms �c 	jc with 	j given in

Eq. (9) and a diagonal flavor structure. (We shall suppress
the flavor index a as long as it is not needed.) However, the
term �c ðimþm0�4Þc transforms under c � ei��4c into
a parity even mass term / �c c if � is chosen to satisfy
2� ¼ arctanðm0=mÞ. The analogous statement holds for
the mass term involving �5. More generally, any mass
term can be transformed by a Uð2NfÞ rotation into2

i �c ðmþ ~m�45Þc : (15)

A dynamically generated mass m � 0 spontaneously
breaks the Uð2NfÞ symmetry down to a residual
U1þ�45

ðNfÞ � U1��45
ðNfÞ ⊊Uð2NfÞ generated by 
b �

ð1� �45Þ, b ¼ 1; . . . ; N2
f [cf. Eq. (10)], but leaves the

discrete space-time symmetries C, P , and T intact, in
agreement with the analogous discussion in the context
of QED3 [17]. A nonvanishing mass ~m in contrast does not
break the Uð2NfÞ symmetry, since �45 anticommutes with
�4 and�5. However, as can be read off from Eqs. (12)–(14),
such a mass term is odd under parity inversion since �45

anticommutes with P� . Because of f�45; C�g ¼ 0 and

ð�45ÞT ¼ ��45 it is even under charge conjugation; since
½�45; T� ¼ 0 and ði�45Þ� ¼ i�45 it is also even under time

reversal.
A complete basis of the 4� 4 Dirac algebra is given by

the 16 matrices

f�Ag16A¼1 ¼ f1; ��; ���=
ffiffiffi
2
p

; i���4; i���5; �4; �5; �45g;
(16)

where we have introduced the generators of the Lorentz
transformation of the four-component Dirac spinors

��� :¼ i
2 ½��; ���. In Eq. (16), we only count those matri-

ces ��� with �< �. A bilinear �c�Ac is invariant under

Uð2NfÞ transformations if and only if �A anticommutes
with the generators of U�4

ð1Þ and U�5
ð1Þ while it com-

mutes with the generators of U1ð1Þ and U�45
ð1Þ. Obviously,

this is only the case for �c��c and �c�45c . Imposing an

invariance underUð2NfÞ as well as C,P , andT , there is no
bilinear to zeroth derivative order. In particular, no mass
term is permitted. To first order, only the standard kinetic
term

L kin ¼ i �c 6@c (17)

can appear. Consequently, on the level of four-fermion
interactions, the Thirring interaction is not the only fermi-
onic 4-point function in the pointlike limit (i.e., with mo-
mentum independent couplings) which is invariant under
the presentUð2NfÞ flavor symmetry and the discrete space-
time symmetries. In fact, the possible interactions are

S2� :¼ ð �c a��c
aÞ2 and S2 :¼ ð �c a�45c

aÞ2; (18)

as well as the two interaction terms with nonsinglet flavor
structure

V2 :¼ ð �c ac bÞ2 � ð �c a�4c
bÞ2 � ð �c a�5c

bÞ2
þ ð �c a�45c

bÞ2; (19)

V2
� :¼ ð �c a��c

bÞ2 þ
�
�c a

���ffiffiffi
2
p c b

�
2

� ð �c ai���4c
bÞ2 � ð �c ai���5c

bÞ2; (20)

where we define ð �c ac bÞ2 � �c ac b �c bc a, etc. However,
the terms in Eqs. (19) and (20), are not independent of
those in Eq. (18) but can be mapped onto each other by
means of Fierz transformations. We find that the scalar/
pseudoscalar interaction in Eq. (19) is equal to V2 ¼
�S2� � S2 and the axial/vector-type interaction in (20)

obeys V2
� ¼ S2� � 3S2; see Appendix A. This generalizes

the discussion of [7] to larger flavor number Nf .
To summarize: in addition to the Thirring coupling S2�, a

second pointlike linearly independent four-fermi coupling
S2 satisfies the symmetries of the Thirring model. In a RG
analysis, it has to be included on the same fundamental
level as the Thirring interaction.

III. FERMIONIC RG FLOW

All physical information of a quantum field theory is
stored in correlation functions which in turn can be ex-
tracted from a generating functional. By a Legendre trans-
form of the latter, one obtains the effective action �, which
governs the dynamics of the field expectation value, taking
the effects of all quantum fluctuations into account.

2Note that due to our chiral conventions a nonzero expectation
value h �c c i or h �c�45c i is purely imaginary [40].
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In other words, a given theory is solved, once � is com-
puted. Instead of integrating out all fluctuations at once, we
can implement Wilson’s idea of integrating out modes
momentum shell by momentum shell, leading us to the
scale dependent effective average action �k, with a
momentum-shell parameter k. �k corresponds to the bare
action S ¼ R

d3xL for k approaching the UV cutoff �,

while the full quantum action � is approached for k! 0.
The scale dependence of �k (as a functional of only
fermionic degrees of freedom in our case) is governed by
the Wetterich equation [38]

@t�k½ �c ; c � ¼ � 1

2
Tr

�
@tRk

�ð2Þk ½ �c ; c � þ Rk

�
; @t � k

@

@k
;

(21)

where the trace is meant to be taken over all internal
degrees of freedom (flavor, spinor, momentum). Here,

�ð2Þk ½ �c ; c � is the second functional derivative with respect

to �c and c , and Rk denotes a momentum-dependent
regulator function, ensuring that IR modes below the mo-
mentum scale k are suppressed. The minus sign on the
right-hand side of Eq. (21) is due to the Grassmann nature
of �c and c . For reviews, see e.g., [41–43]. With the
Wetterich equation being an exact equation, consistent
approximation schemes can be devised that allow for a
systematic nonperturbative investigation of the given
model. In this work, we use a simple derivative expansion
of the effective action in terms of purely fermionic degrees
of freedom with pointlike interactions,

�k½ �c ; c � ¼
Z

d3x

�
Zk

�c ai6@c a þ ~�gk
2Nf

ð �c a�45c
aÞ2

þ �gk
2Nf

ð �c a��c
aÞ2

�
: (22)

In addition to the interaction terms discussed above, we
have included a wave function renormalization Zk. All
parameters in the effective average action are under-
stood to be scale dependent which is indicated by the
momentum-scale index k. This truncation corresponds to
a next-to-leading order derivative expansion, which can
consistently be extended to higher orders and thus defines
a systematic nonperturbative approximation scheme. As
discussed in the previous section, the truncation (22) rep-
resents a full basis of fermionic 4-point functions in the
pointlike limit, which are compatible with the present
chiral and discrete symmetries. Such a pointlike truncation
can be a reasonable approximation in the chirally symmet-
ric regime, as has been quantitatively confirmed for the
zero-temperature chiral phase transition in many-flavor
QCD [33].

Inserting Eq. (22) into Eq. (21), we obtain the flow
equations (i.e., � functions) for the 4-fermi couplings �gk
and ~�gk and the wave function renormalization Zk via
suitable projections onto the associated operators. For the

explicit computations, we refer the reader to Appendix B.
In terms of renormalized fields

c � Z�1=2k c k; �c � Z�1=2k
�c k; (23)

and dimensionless renormalized couplings

g ¼ Z2
kk
�1 �gk; ~g ¼ Z2

kk
�1~�gk; (24)

we obtain the beta functions as

@t~g ¼ ~g� 4‘ðFÞ1

�2

�
2Nf � 1

2Nf

~g2 � 3

2Nf

~gg� 1

Nf

g2
�
; (25)

@tg ¼ gþ 4‘ðFÞ1

�2

�
1

2Nf

~ggþ 2Nf þ 1

6Nf

g2
�
: (26)

Within the present truncation of pointlike interactions, the
anomalous dimension remains k :¼ �@t lnZk � 0. These

flows involve the threshold function ‘ðFÞ1 which encodes

the details of the regularization scheme as specified by the
dimensionless regulator shape function rðq2=k2Þ defined
by RkðqÞ ¼ Zkqrðq2=k2Þ,

‘ðFÞ1
:¼ � @

@k

Z �

0
djqj 1

½1þ rðq2=k2Þ�2 : (27)

For a given regulator function, this integral in the present
truncation boils down to a simple number. For instance, for
the sharp cutoff

rscðq2=k2Þ ¼
�1 for q2 < k2;
0 for q2 > k2;

(28)

we obtain ‘ðFÞ1 ¼ 1. For a linear cutoff which satisfies a

regulator optimization criterion [44],

roptðq2=k2Þ ¼
� ffiffiffiffiffi

k2

q2

s
� 1

�
�ð1� q2=k2Þ; (29)

we obtain ‘ðFÞ1 ¼ 2=3. By another rescaling g � g�2=4‘ðFÞ1

and ~g � ~g�2=4‘ðFÞ1 , this multiplicative regulator depen-
dence drops out

@t~g ¼ ~g� 2Nf � 1

2Nf

~g2 þ 3

2Nf

~ggþ 1

Nf

g2; (30)

@tg ¼ gþ 1

2Nf

~ggþ 2Nf þ 1

6Nf

g2: (31)

For Nf ¼ 1, our result coincides with the result found via a
perturbative RG approach [7] in the context of interacting
electrons on the honeycomb lattice.

IV. FIXED POINTS AND CRITICAL EXPONENTS

From the coupling flows, it is straightforward to analyze
the fixed-point structure in order to study possible asymp-
totically safe UV trajectories of the RG flow. A fixed-point
g� is defined by
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8i: �iðg�1; g�2; . . .Þ ¼ 0; (32)

with �i � @tgi. Whereas the fixed-point values are
regulator-scheme-dependent, see above, the linearized
flow in the vicinity of the fixed point is universal as
quantified by the critical exponents. More specifically,
the Jacobian Bi

j of the linearized flow near a fixed point,

@tgi ¼ Bi
jðgj � g�j Þ þ . . . ; Bi

j ¼ @�i

@gj

��������g¼g�
; (33)

defines the stability matrix. The associated eigenvectors v
govern the evolution of small deviations from the fixed
point according to @tv ¼ Bv ¼ ��v. The corresponding
eigenvalues (including a minus sign) � are universal and
can be associated with thermodynamic critical exponents if
the fixed point corresponds to a critical point of a 2nd order
phase transition. For brevity, all �’s are referred to as
critical exponents. The solution to the linearized flow
v / k�� implies that positive �> 0 correspond to RG
relevant, i.e., infrared repulsive, directions and negative
�< 0 correspond to RG irrelevant, i.e., infrared attractive,
directions.

For the present set of flow equations, a general property
of the fixed points and their critical exponents can be
proven [45]: the beta functions all are of the form

�i ¼ gi þ gkA
kl
i gl ) Bi

j ¼ �i
j þ 2g�kA

kj
i ; (34)

with matrices Akl
i which are symmetric in the upper in-

dices. We now see that for every interacting fixed point
g� � 0 the fixed-point vector itself is an eigenvector of B,
v ¼ g�, with the critical exponent � ¼ 1,

Bi
jg�j ¼ g�i þ 2g�kA

kj
i g
�
j ¼ �g�i : (35)

Here, we have made use of the fixed-point equation
�jðg�Þ ¼ 0. We conclude that every fixed point besides

the Gaussian fixed point g� ¼ 0 has at least one relevant
and thus infrared repulsive direction. Each non-Gaussian
fixed point is therefore a candidate for a possible UV
completion, potentially defining an own universality class
[45]. For the Gaussian fixed point g� ¼ 0, the stability
matrix is just the identity Bi

j ¼ �i
j, such that the

Gaussian fixed point is infrared attractive in every direction
with � ¼ �1, giving rise to only trivial theories at long
ranges.

For fixed gj�i, the beta function �i corresponds graphi-

cally to a parabola, such that we expect for our truncation
exactly 22 ¼ 4 (possibly complex or degenerate) solutions
of the fixed-point equations. For anyNf 2 N, we find them
to be real and nondegenerate; the explicit solutions ð~g�; g�Þ
for the Gaussian fixed point O and the three non-Gaussian
fixed points A, B, C are

O : ð0; 0Þ; (36)

A :

�
2Nf

2Nf � 1
; 0

�
; (37)

B:

0
@Nfð14� 7Nfþ 2Nf

2þð1þ 2NfÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ 28NfþNf

2
q

Þ
�5þ 8Nfþ 2Nf

2þ 4Nf
3

;

� 12Nf
2

4þ 4Nf þ 4Nf
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ 28Nf þNf

2
q

1
A; (38)

C:

0
@Nfð14� 7Nf þ 2Nf

2� ð1þ 2NfÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ 28Nf þNf

2
q

Þ
�5þ 8Nf þ 2Nf

2þ 4Nf
3

;

� 12Nf
2

4þ 4Nf þ 4Nf
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ 28Nf þNf

2
q

1
A: (39)

It is straightforward to derive the eigenvectors and eigen-
values of the stability matrix [and thus the critical expo-
nents and the RG (ir-)relevant directions] analytically; but
as the general formulas may not provide much physical
insight, we present the results graphically: in Fig. 1, we
plot the positions of the fixed points in theory space
(spanned by the two couplings ~g and g) together with the
corresponding eigenvectors of the stability matrix Bi

j for
various flavor numbers Nf . In Fig. 2, the (nontrivial) criti-
cal exponents� for the interacting fixed points are given as
a function of Nf . For any Nf , fixed point B has two RG
relevant directions, whereas the interacting fixed pointsA
and C have one relevant and one irrelevant direction. As the
number of relevant directions corresponds to the number
of physical parameters to be fixed, theories emanating from
A and C are fully determined, once the initial condi-
tion for this relevant direction is fixed. In the sense of

−1 1 2 3

−5

−4

−3

−2

−1
Nf = 1

Nf = 1

Nf = 1

Nf = 100

Nf = 100

Nf = 100

g̃

g

FIG. 1 (color online). Positions of RG fixed points and (ir-)
relevant directions for flavor numbers Nf ¼ 1, 2, 4, 10, 100.
Arrows denote the RG flow toward the IR. In agreement with
Eq. (35), one relevant direction of every interacting fixed point
points toward the Gaussian fixed point O.
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dimensional transmutation, fixing this one parameter can
be viewed as fixing a total scale for the system. Therefore,
theories belonging to these universality classes defined by
A and C are fully predictive, once a global scale is fixed.
Theories emanating from B are fixed by a mass scale and
one further parameter, e.g., a dimensionless coupling ratio,
whereas O does not support an interacting system at long
ranges.

At this point, let us already stress that no interacting fixed
point is on the pure Thirring axis (~g ¼ 0) for any finite Nf .
In fact, as discussed below, we associate the Thirring
universality class with fixed-point C which approaches
the pure Thirring coupling only in the asymptotic limit
Nf ! 1. For any finite Nf , the renormalized UV trajectory
of the Thirringmodel will have to pass through the full two-
dimensional coupling plane, even though the long-range
physics does depend only on one physical parameter (e.g.,
the value of the Thirring coupling at a certain scale).

V. PHASE TRANSITIONS AND
LONG-RANGE PHYSICS

A technical means for the discussion of long-range
phases are the separatrices, i.e., those RG trajectories that
interpolate between two fixed points. They subdivide the
theory space into separate flow regions, providing a classi-
fication which can potentially be related to spontaneous
symmetry breaking in the long-range limit. At this point,
we stress that the fermionic truncation is not sufficient for a
complete discussion of long-range physics which is ex-
pected to be dominated by composite bosonic degrees of
freedom such as condensates and excitations on top of
condensates.

Let us start with a closer look at the one-flavor case
Nf ¼ 1. Differences occurring for larger Nf will be
stressed below. The separatrices subdivide the theory space
into distinct sections defined by their IR and UV behavior;
in Fig. 3, we plot the RG flow using Eqs. (30) and (31).

A classification of RG trajectories is listed in Table I. The
IR behavior of the theories in the regions I, IIIa, and IIIb is
governed by the Gaussian fixed point O. In these regions,
both couplings ~g and g are irrelevant, leading to noninter-
acting theories in the IR. The regions IIa and IVa are
characterized by an irrelevant Thirring coupling g,
limk!0g ¼ 0. We thus expect that the bosonic channel S�
�c a�45c

a becomes critical at a sufficiently large ~g,
dynamically generating a parity breaking mass ~m /
h �c�45c i. If so, the fixed pointA governs the spontaneous
breaking of parity, potentially being associated with a 2nd
order phase transition defining a new universality class.
By contrast, both ~g and g diverge in the regions IIb and

IVb in the infrared limit. To interpret this behavior, let us
rewrite the interaction terms by means of the Fierz theo-
rem as

~g

2Nf

S2 þ g

2Nf

S2� ¼ 1

4Nf

fð2g� ~gÞð �c a��c
aÞ2

� ~g½ð �c ac aÞ2 � ð �c a�4c
aÞ2

� ð �c a�5c
aÞ2� þ ~g½ð �c a�45c

aÞ2
� ð �c a�45c

bÞ2�g; (40)

which holds for arbitrary Nf 	 1, cf. Eqs. (18)–(20) and
Appendix A. In the one-flavor case Nf ¼ 1, the last two

5 10 15 20
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−2.0

2

−1.5
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−1.0
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8

10

Nf

FIG. 2 (color online). Critical exponents � as a function of
flavor number Nf for the interacting fixed points A, B, C. The
value of the corresponding other critical exponent is� ¼ 1 for all
Nf . Note that the scale of the vertical axis changes at � ¼ �1.

FIG. 3 (color online). Classification of Thirring-like 4-fermi
theories determined by the fixed-point positions and the corre-
sponding RG trajectories for Nf ¼ 1 (arrows denote the flow
towards the IR). Red (solid) lines depict separatrices that inter-
polate between fixed points and separate different regions. The
vertical axis ~g ¼ 0 corresponds to models with a pure Thirring
coupling. The dashed line (g ¼ ~g=2) marks a generalized NJL
model, see text.
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terms (proportional to þ~g) cancel each other. The interac-
tion then simply is a linear combination of the Thirring
interactionwith coupling 2g� ~g and a generalizedNambu-
Jona-Lasinio (NJL)–type [46] interaction with coupling
�~g. Along the straight line through O and C which may
govern the IR behavior of the trajectories IIb and IVb for
Nf ¼ 1 the NJL–type interaction in fact dominates,
j~gj=j2g� ~gj 
 4:24� 1. To illustrate this, we have also
plotted in Fig. 3 the line of vanishing Thirring interaction
2g� ~g ¼ 0 in the Fierz-transformed form as a dashed line.
This resulting NJL-type line is fairly close to the separatrix
through O and C (red/solid line). We thus expect that at a
large coupling on this separatrix the NJL–type channel
eventually becomes critical, inducing a symmetry-broken
state with

m / h �c c i � 0:

This is equivalent to saying that h �c�4c i � 0 or
h �c�5c i � 0 is expected to be favored in this state. For
Nf ¼ 1, we therefore identify the fixed point C with the
critical point governing the phase transition into the chiral
symmetry-broken phase for all theories of the regions IIb
and IVb, in agreement with [7]. This is precisely the
behavior which is expected in the Nf ¼ 1 Thirring model,
hence we associate all trajectories emanating from C
with UV complete fully renormalized versions of the 3d
Nf ¼ 1 Thirring model.

Provided the last two terms in Eq. (40) proportional to
þ~g do not dominate even for higher number of flavors, we
may extend the preceding discussion to larger Nf 	 1.

In Fig. 4, we show how the positions of the fixed points
and the separatrices behave for an increasing flavor num-
ber. For Nf ! 1 region I turns into a rectangle with the
vertices ð~g; gÞ ¼ ð0; 0Þ and ð1;�3Þ. The Thirring fixed
point C hence moves to ð0;�3Þ and becomes a pure
Thirring coupling, cf. also Fig. 1. Thus, for increasing Nf ,
the IR attractive line OC does no longer coincide with the
NJL-type line (dashed line in Fig. 3) but approaches the
Thirring axis ~g ¼ 0. Hence we expect the Thirring inter-
action with coupling 2g� ~g in Eq. (40) to dominate for
larger flavor number. In fact, e.g., for Nf ’ 10, the ratio
of the NJL–type versus the Thirring coupling along the
separatrix OC is j~gj=j2g� ~gj 
 0:13� 1.
Along this line of coupling values, we thus expect the

flow to be dominated no longer by the NJL–type channel
but now by the vector channel �c a��c

a which agrees

precisely with the dominant bosonic degree of freedom
in a large-Nf analysis [24–27]. As there is no chiral sym-
metry breaking at largeNf , it is natural to expect a quantum
phase transition to occur for increasing Nf while the line
OC undergoes a transition from the NJL regime j~gj=j2g�
~gj � 1 to the large-Nf regime where j~gj=j2g� ~gj � 1.
Put differently, once the number of fermion flavors is
greater than a critical value Ncr

f , the expected large-

Nf-dominant vector channel inhibits �SB also in the limit
of infinite Thirring coupling. Unfortunately, a more quanti-
tative picture of thisNf-controlled quantumphase transition
is difficult to obtain in the purely fermionic language. A
quantitative RG analysis requires the inclusion of dynami-
cal chiral (i.e., NJL–type) and vector bosonic degrees of
freedom in order to study the interplay of these competing
orders as a function of Nf . This is left for future work.
For the remainder of this section, we shall be satisfied

with a simple estimate of the transition region. As a rough

TABLE I. Classification of all RG trajectories for Nf ¼ 1,
cf. Fig. 3. Whereas the fixed-point and UV/IR classification
holds for all Nf , the IR symmetry breaking pattern determining
the universality class may change for larger Nf . We denote the
separatrix between regions I and IIa by ‘‘I-IIa separ.,’’ etc.

Type

UV behavior

limk!0ð~g; gÞ
IR behavior

limk!�ð~g; gÞ
Universality class

for Nf ¼ 1

I B O noninteracting

I-IIa separ. B A
I-IIb separ. B C
I-IIIa separ. A O noninteracting

I-IIIb separ. C O noninteracting

IIa B ð1; 0Þ parity breaking

IIa-IIb separ. B B  1
IIa-IVa separ. A ð1; 0Þ parity breaking

IIb B C  1 chirality breaking

IIb-IVb separ. C C  1 chirality breaking

IIIa ð�CÞ  1 O noninteracting

IIIa-IIIb separ. ð�BÞ  1 O noninteracting

IIIa-IVa separ. ð�CÞ  1 A
IIIb ð�1; 0Þ O noninteracting

IIIb-IVb separ. ð�1; 0Þ C
IVa ð�CÞ  1 ð1; 0Þ parity breaking

IVb ð�1; 0Þ C  1 chirality breaking

FIG. 4 (color online). Fixed-point positions and separatrices in
the ðg; ~gÞ coupling plane as a function of the flavor number for
1 � Nf � 7. The horizontal slice atNf ¼ 1 is equivalent to Fig. 3.
For larger Nf , the IR attractive line OC approaches the Thirring
axis ~g ¼ 0, where the vector channel is expected to dominate
toward the infrared, inhibiting chiral symmetry breaking.
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criterion, let us determine the flavor number where the
separatrix OC is half way in-between the generalized
NJL model on the one hand and the pure Thirring coupling
on the other hand. This value of Nf follows from

j~gj
j2g� ~gj

��������C
¼ 3

Nf � 7þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ 28Nf þ Nf

2
q 
 1; (41)

and is given by Nf 
 7=4. We stress that this number
should not be viewed as a direct estimate of Ncr

f , as the

onset of true critical behavior can easily provide further
correction factors of order Oð1Þ.

It is instructive to compare our results with those ob-
tained by other methods such as Monte Carlo simulations
or truncated DSEs. A variety of studies have computed the
modulus of the critical Thirring coupling which is a nec-
essarily required for chiral symmetry breaking (but not
sufficient beyond the critical flavor number). Two cau-
tionary remarks are in order: first of all, these critical
couplings similarly as the fixed-point values are not uni-
versal, such that the choice of the regularization scheme
can have a strong quantitative influence on the estimated
values. Second, most other studies have defined the micro-
scopic Thirring model exactly on the Thirring axis ~g ¼ 0;
in principle, the full coupling plane has to be considered
such that the critical coupling on the axis may be different
(larger in modulus) from a corresponding estimate directly
at the fixed-point.

To circumvent the second caveat, we also consider the
coupling on the Thirring axis ~g ¼ 0 with an initial value of
the coupling g above the separatrix which interpolates
between the fixed points B and C. Then the theory is in
the region I or IIIa, depending on the sign of g, such that
the RG flow drives the couplings to the free theory at
Gaussian fixed-point O. Therefore, the absolute value of
the g coordinate of the intersection point of this separatrix
with the Thirring axis provides a lower bound for the
absolute value of the critical coupling gcr at which the
�SB phase transition occurs. We compare this lower bound
for different regulator functions Rk with the values of the
critical coupling obtained by Monte Carlo simulations
[30,31] and different sequences of truncated DSE ap-
proaches [27–29]. In Fig. 5, we plot this inverse coupling
1=gcr for a varying number of flavors 0<Nf � 6. For the
sharp cutoff as well as for the linear cutoff our results lie
well above the values obtained by DSE approaches but
below the values from lattice-regularized Monte Carlo
simulations. Note that similar to the lattice and one of
the DSE results, we do not observe a sharp decay of the
inverse critical coupling. This behavior would indicate a
sharp growth of gcr above a certain number of flavors,
corresponding to a critical flavor number in the infinite
coupling limit. Instead, we observe a rather smooth depen-
dence on Nf as on the lattice for Nf & 6, which is compat-
ible with our expectation that the quantum phase transition
towards the chirally symmetric phase occurs because of

competing large-Nf degrees of freedom and not because of
a change in the UV critical structure.

VI. CONCLUSIONS

In this work, we have investigated 3d relativistic fermi-
onic models in a theory space, defined by chiral and a set of
discrete symmetries and pointlike interactions. Even
though the construction of these models has been inspired
by the uniquely fixed 2d Thirring model, the corresponding
3d symmetries involving a reducible 4-component Dirac
spinor representation enlarge the minimal coupling space
and give room for a larger fixed-point structure and thus for
different microscopic realizations of such fermion models.
We have classified all pointlike interactions satisfying

the symmetry constraints and determined their RG flow in
a systematic next-to-leading order derivative expansion.
The fact that leading-order and next-to-leading order re-
sults are identical as the anomalous dimension remains
zero can be interpreted as a signature for the convergence
of the expansion, as long as no further composite channels
develop a strong RG flow.
The resulting flow equations for the two independent

fermionic couplings generate a fixed-point structure of one
trivial Gaussian and three interacting fixed pointsA,B, C
which can be classified by their critical exponents. We
associate all RG trajectories emanating from the fixed
point C with fully renormalized UV complete versions of
the 3d Thirring model; as this fixed point has one RG
relevant direction, fixing one physical scale suffices to
obtain a fully IR predictive quantum field theory in the
Thirring universality class.

0 1 2 3 4 5 6
0.001

0.01

0.1

1

10

Nf

1
g c

r

FIG. 5 (color online). Comparison of nonuniversal critical
Thirring couplings from different methods. Solid lines display
the critical couplings from this work taken as the g coordinate of
the intersection point of the separatrix BC with the Thirring axis
~g ¼ 0 for the sharp cutoff (upper solid/brown line) or the linear
regulator (lower solid/red line). Dotted lines: Monte Carlo results
(magenta with circles: [30], purple with squares: [31]). Dashed
lines: DSE approaches (from right to left: green/right [27], cyan/
middle [28], and blue/left [29]).
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Fixed-point A which, incidentally, lives in an RG in-
variant submanifold of theory space (defined by g ¼ 0) is
also characterized by only one RG relevant direction. From
the nature of the scalar channel associated with this
coupling direction, we conjecture that this fixed point can
be related to a critical point of a 2nd order phase transition
to a phase with broken parity. The third interacting fixed
point B has two relevant directions; depending on the
initial conditions, theories emanating from this fixed point
can flow to the Thirring phase as well as to the parity-
broken or symmetric phases.

Unfortunately, our purely fermionic RG analysis does,
so far, not permit us to reliably run toward or into the
symmetry-broken phases. Such a quantitative description
is required in order to analyze the true IR behavior of the
Thirring phase. From the structure of the fermionic flow, in
particular, from the behavior of the separatrix OC, we
conjecture that the long-range dynamics is characterized
by a competition between NJL–type chiral condensation
channels on the one hand and large-Nf-type vector bosons
on the other hand. As the vector-boson fluctuations generi-
cally inhibit chiral symmetry breaking, we expect the
occurrence of a quantum phase transition of the Thirring
model at a critical flavor number Ncr

f , separating a broken

phase for small Nf from a disordered phase for large Nf .
Our very rough estimate of the transition region in any case
is compatible with the findings from lattice simulations
indicating that Ncr

f ’ 6:6 [31].

Our results on the position of the Thirring fixed point C
being actually away from the pure Thirring axis ~g ¼ 0 for
any finite Nf provokes an important comment: both lattice
simulations as well as DSE studies build on a microscopic
definition of the 3d Thirring model which is fixed only with
the Thirring coupling, i.e., by a pure bare Thirring-like
action. Our fixed-point results indeed provide a fundamen-
tal justification for this, as the Thirring fixed point indeed is
characterized by only one relevant direction. As long as the
microscopic actions chosen in other formulations are in a
sufficiently attractive domain of the Thirring fixed point,
universality guarantees that the long-range physics is in-
deed purely governed by the Thirring fixed point. We
expect this to hold also for the determination of the critical
flavor number (there is no universality for quantities such
as the scheme-dependent critical coupling, see Fig. 5).
Nevertheless, one caveat should be emphasized: this con-
clusion about universality only holds as long as the micro-
scopic bare actions indeed are in the attractive domain of
the Thirring fixed point. For instance, if by accident a
lattice formulation turned out to be influenced by fixed-
point B, the simulation would simply describe a model
different from the Thirring model potentially exhibiting a
different quantum phase transition as a function of Ncr

f . As

the fixed-point positions are not universal, our results are
unfortunately not directly transferable to the lattice theory
space. However, provided that the fixed-point structure is

qualitatively similar, our results can be taken as a support
for the implicit assumption that the lattice simulations have
indeed been performed in the real Thirring universality
class.
Given the importance of the quantitative value of the

critical flavor numberNcr
f of the Thirring model in the light

of condensed-matter applications, a natural next step of our
studies will be the inclusion of composite degrees of free-
dom in order to study the competition among the various
bosonic channels. Within the functional RG, this can con-
veniently be investigated by means of partial or dynamical
bosonization [42,47]. As the problem of competing order is
a paradigmatic one in (quantum) critical phenomena and
statistical physics [48], we consider the relativistic 3d
Thirring model as an ideal test case.
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APPENDIX A: FIERZ TRANSFORMATIONS

Let ð�A; �BÞ :¼ Trð�A�BÞ define an inner product on the
space of 4� 4 Dirac matrices. The 16 matrices f�Ag in
Eq. (16) are orthogonal with respect to this product,

Tr ð�A�BÞ ¼ 4�AB; (A1)

and thus define a complete basis of the 4� 4 Dirac
matrices (which generically have 16 independent matrix
elements),

X16
A¼1

1

4
�A
m‘�

A
ik ¼ �mk�i‘: (A2)

The Fierz transformations are straightforwardly obtained
by multiplying the completeness relation (A2) by each of
the 4-fermi terms �c a

mð�Ac
bÞk �c c

i ð�Ac
dÞ‘ and, where ap-

propriate, decomposing multiple products of Dirac matri-
ces into basis elements �A. We find

ð �c a�Ac
bÞð �c c�Ac

dÞ ¼ X16
B¼1

CABð �c a�Bc
dÞð �c c�Bc

bÞ;

(A3)

with

ðCABÞ ¼ 1

4

�1 �1 �1 �1 �1 �1 �1 �1
�3 1 3 1 �1 �1 �3 3
�1 1 �1 �1 1 �1 1 1
�3 1 �3 1 1 1 �3 �3
�3 �1 3 1 1 �1 3 �3
�3 �1 �3 1 �1 1 3 3
�1 �1 1 �1 1 1 �1 1
�1 1 1 �1 �1 1 1 �1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
;

(A4)
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and ð�AÞ ¼ ð1; ��; �4;
���ffiffi
2
p ; i���4; i���5; �45; �5ÞT. With

these preliminaries one can simply read off the Fierz
relations between the invariant 4-fermi interactions in
Eqs. (18)–(20).

APPENDIX B: DERIVATION OF
FLOW EQUATIONS

Consider the right-hand side of the flow equation (21).
By introducing the derivative ~@t, acting per definition only
on the t dependence of the regulator Rk, we may expand

@tRk

�ð2Þk þ Rk

¼ ~@t lnð�ð2Þk;0 þ Rk þ��ð2Þk Þ (B1)

¼ ~@t lnð�ð2Þk;0 þ RkÞ þ ~@t

�
��ð2Þk

�ð2Þk;0 þ Rk

�

� 1

2
~@t

�
��ð2Þk

�ð2Þk;0 þ Rk

�
2 þ . . . ; (B2)

with��ð2Þk containing the field-dependent parts of �ð2Þk , and

��ð2Þk;0 containing the field-independent (propagator) part,

such that �ð2Þk ¼ �ð2Þk;0 þ��ð2Þk . The Hessian of the average

effective action in terms of Fourier transformed fields
c ðqÞ � c q and �c ðqÞ � �c q is given by

�ð2Þk ðp; qÞ ¼
~�

�c a�p T �k
�
 

�c b
q

~�
�c a�p T �k

�
 

� �c b�q T

~�
� �c a

p
�k

�
 

�c b
q

~�
� �c a

p
�k

�
 

� �c b�q T

0
B@

1
CA: (B3)

The corresponding fluctuation matrix results in

��ð2Þk ðp;qÞ¼
~�gk
Nf

�R
p1
ð �c a

p1
�45ÞTð �c b

q�p�p1
�45Þ

R
p1
fð �c a

p1
�45ÞTð�45c

b
p�qþp1

ÞT�ð �c p1
�45c p�qþp1

Þ�T
45�

abgR
p1
fð �c p1

�45c p�qþp1
Þ�45�

abþð�45c
a
p1
Þð �c b

q�pþp1
�45Þg �R

p1
ð�45c

a
p1
Þð�45c

b
p�q�p1

ÞT

0
@

1
A

þ termwithð~�gk;�45Þ$ð �gk;��Þ; (B4)

with
R
p1
� R d3p1

ð2�Þ3 , and for the propagator

ð�ð2Þk;0 þ RkÞ�1 ¼ � ð2�Þ3�ð3Þp�q�ab

Zkq
2ð1þ rðq2=k2ÞÞ

0 q
qT 0

� �
; (B5)

with RkðqÞ ¼ Zkqrðq2=k2Þ.
Anomalous dimension—The flow of the wave function

renormalization Zk is obtained by a suitable projection of
the Wetterich equation (21),

@tZk ¼ 1

24
Tr

�
��

@

@p0�

Z
q0

~�

� �c 1
p0

��
@tRk

�ð2Þk þ Rk

��

� �
 

�c 1
q0

��������c¼ �c¼0

�
: (B6)

Using the expansion (B2), we observe that only the term

linear in ��ð2Þk survives the projection. Since this term is

traceless, the flow of the wave function renormalization in
this order of the expansion vanishes

k ¼ �@t lnZk � 0: (B7)

This line of argument is reminiscent to a similar observa-
tion of the vanishing of the anomalous dimension in scalar
OðNÞ models in the symmetric regime at next-to-leading
order derivative expansion.

Four-fermi couplings—Obviously only the term in

Eq. (B2) being quadratic in ��ð2Þk leads to 4-fermi terms

on the right-hand side of the Wetterich equation (21),
contributing to the flow of the 4-fermi couplings.
Evaluating this term for constant fields and taking the trace
over flavor, spinor, and momentum degrees of freedom, we
infer

1

2
Tr

�
1

2
~@t

�
��ð2Þk

�ð2Þk;0 þ Rk

�
2
�

¼ 2�

Nf�
2

Z
djqj~@t 1

Z2
k½1þ rðq2=k2Þ�2

�
��

2Nf � 1

2Nf

~�g2k �
3

2Nf

�gk~�gk � 1

Nf

�g2k

�
ð �c�45c Þ2

þ
�
� 1

2Nf

�gk~�gk � 2Nf þ 1

6Nf

�g2k

�
ð �c��c Þ2

�
; (B8)

with � being the space-time volume. The desired beta
functions for ~�gk and �gk, respectively, are simply given by
2Nf=� times the coefficient of the corresponding 4-fermi
term in Eq. (B8). For Zk � 1 and by taking the regulator-

dependent constant ‘ðFÞ1 from Eq. (27) into account, we end
up with the flows of the dimensionless couplings ~g and g
[Eq. (24)] as displayed in Eqs. (25) and (26).
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Functional Renormalization Group (Springer, Berlin,
2010).

[44] D. F. Litim, Phys. Rev. D 64, 105007 (2001).
[45] H. Gies, J. Jaeckel, and C. Wetterich, Phys. Rev. D 69,

105008 (2004).
[46] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345

(1961); 124, 246 (1961).
[47] H. Gies and C. Wetterich, Phys. Rev. D 65, 065001 (2002);

S. Floerchinger and C. Wetterich, Phys. Lett. B 680, 371
(2009).

[48] M. Salmhofer, C. Honerkamp, W. Metzner, O. Lauscher,
Prog. Theor. Phys. 112, 943 (2004); P. Strack, S. Takei,
and W. Metzner, Phys. Rev. B 81, 125103 (2010).

UV FIXED-POINT STRUCTURE OF THE THREE- . . . PHYSICAL REVIEW D 82, 085018 (2010)

085018-11

http://dx.doi.org/10.1016/0003-4916(58)90015-0
http://dx.doi.org/10.1103/PhysRevLett.87.257003
http://dx.doi.org/10.1103/PhysRevLett.87.257003
http://dx.doi.org/10.1103/PhysRevB.66.054535
http://dx.doi.org/10.1103/PhysRevB.66.054535
http://dx.doi.org/10.1103/PhysRevLett.88.047006
http://dx.doi.org/10.1103/PhysRevB.66.094504
http://dx.doi.org/10.1103/PhysRevB.66.094504
http://dx.doi.org/10.1103/PhysRevLett.94.237001
http://dx.doi.org/10.1103/PhysRevLett.94.237001
http://arXiv.org/abs/cond-mat/0311421
http://arXiv.org/abs/cond-mat/0311421
http://dx.doi.org/10.1103/PhysRevLett.53.2449
http://dx.doi.org/10.1103/PhysRevLett.97.146401
http://dx.doi.org/10.1103/PhysRevB.79.085116
http://dx.doi.org/10.1103/PhysRevB.79.085116
http://dx.doi.org/10.1103/PhysRevLett.102.026802
http://dx.doi.org/10.1103/PhysRevLett.102.026802
http://arXiv.org/abs/1005.5089
http://dx.doi.org/10.1103/PhysRevB.78.165423
http://dx.doi.org/10.1103/PhysRevB.78.165423
http://dx.doi.org/10.1103/PhysRevB.81.125105
http://arXiv.org/abs/0908.0118
http://dx.doi.org/10.1103/PhysRevB.82.121403
http://dx.doi.org/10.1103/PhysRevB.82.121403
http://arXiv.org/abs/1005.2528
http://arXiv.org/abs/1005.2043
http://dx.doi.org/10.1142/S0217979207038022
http://dx.doi.org/10.1142/S0217979207038022
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1007/BF01339716
http://dx.doi.org/10.1038/nphys384
http://dx.doi.org/10.1140/epjb/e2006-00203-1
http://dx.doi.org/10.1103/PhysRevLett.96.246802
http://dx.doi.org/10.1038/nmat1849
http://dx.doi.org/10.1038/nmat1849
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/PhysRevD.81.025009
http://dx.doi.org/10.1088/1367-2630/12/4/043050
http://dx.doi.org/10.1088/1367-2630/12/4/043050
http://dx.doi.org/10.1103/PhysRevD.29.2423
http://dx.doi.org/10.1103/PhysRevD.22.1452
http://dx.doi.org/10.1103/PhysRevD.33.3704
http://dx.doi.org/10.1103/PhysRevD.33.3774
http://dx.doi.org/10.1103/PhysRevD.33.3774
http://dx.doi.org/10.1103/PhysRevLett.60.2575
http://dx.doi.org/10.1103/PhysRevD.34.1194
http://dx.doi.org/10.1103/PhysRevLett.62.3024
http://dx.doi.org/10.1103/PhysRevLett.62.3024
http://dx.doi.org/10.1103/PhysRevD.54.4049
http://dx.doi.org/10.1103/PhysRevD.60.045003
http://dx.doi.org/10.1143/PTP.105.809
http://dx.doi.org/10.1143/PTP.105.809
http://dx.doi.org/10.1103/PhysRevB.71.184519
http://dx.doi.org/10.1103/PhysRevB.71.184519
http://dx.doi.org/10.1016/S0550-3213(02)00869-6
http://dx.doi.org/10.1016/S0550-3213(02)00869-6
http://dx.doi.org/10.1103/PhysRevB.70.104501
http://dx.doi.org/10.1103/PhysRevD.68.025017
http://dx.doi.org/10.1103/PhysRevD.68.025017
http://dx.doi.org/10.1103/PhysRevD.70.073007
http://dx.doi.org/10.1103/PhysRevD.70.073007
http://dx.doi.org/10.1007/s00601-009-0069-9
http://dx.doi.org/10.1007/s00601-009-0069-9
http://dx.doi.org/10.1103/PhysRevD.81.045006
http://dx.doi.org/10.1103/PhysRevD.81.045006
http://dx.doi.org/10.1016/0550-3213(75)90624-0
http://dx.doi.org/10.1143/PTP.57.785
http://dx.doi.org/10.1103/PhysRevD.51.5816
http://dx.doi.org/10.1103/PhysRevD.43.3516
http://dx.doi.org/10.1103/PhysRevD.49.5507
http://dx.doi.org/10.1143/PTP.93.417
http://dx.doi.org/10.1143/PTP.93.417
http://dx.doi.org/10.1143/PTP.97.311
http://dx.doi.org/10.1143/PTP.97.311
http://dx.doi.org/10.1016/0550-3213(95)00316-K
http://arXiv.org/abs/hep-lat/9605021
http://dx.doi.org/10.1103/PhysRevD.75.101701
http://dx.doi.org/10.1103/PhysRevD.75.101701
http://dx.doi.org/10.1016/S0550-3213(99)00258-8
http://dx.doi.org/10.1016/S0370-2693(99)00843-6
http://dx.doi.org/10.1103/PhysRevD.55.5051
http://dx.doi.org/10.1103/PhysRevD.55.5051
http://dx.doi.org/10.1103/PhysRevD.56.3768
http://dx.doi.org/10.1103/PhysRevLett.77.1214
http://dx.doi.org/10.1103/PhysRevD.58.105017
http://dx.doi.org/10.1103/PhysRevD.68.076001
http://dx.doi.org/10.1103/PhysRevD.68.076001
http://dx.doi.org/10.1103/PhysRevD.69.014507
http://dx.doi.org/10.1140/epjc/s2006-02475-0
http://dx.doi.org/10.1103/PhysRevD.78.065001
http://dx.doi.org/10.1103/PhysRevD.78.065001
http://dx.doi.org/10.1103/PhysRevD.82.035021
http://dx.doi.org/10.1103/PhysRevD.82.035021
http://dx.doi.org/10.1103/PhysRevD.82.045013
http://dx.doi.org/10.1103/PhysRevD.82.045013
http://dx.doi.org/10.1103/PhysRevD.82.014510
http://dx.doi.org/10.1007/JHEP05(2010)060
http://dx.doi.org/10.1088/1126-6708/2006/06/024
http://dx.doi.org/10.1016/j.physletb.2006.11.059
http://dx.doi.org/10.1016/j.physletb.2006.11.059
http://arXiv.org/abs/hep-th/9702027
http://arXiv.org/abs/0903.0568
http://arXiv.org/abs/0709.3851
http://arXiv.org/abs/1003.1366
http://dx.doi.org/10.1016/0370-2693(93)90726-X
http://dx.doi.org/10.1007/BF01645738
http://dx.doi.org/10.1007/BF01645738
http://arXiv.org/abs/1002.3556
http://dx.doi.org/10.1007/BF01614706
http://dx.doi.org/10.1142/S0217979200000923
http://dx.doi.org/10.2478/BF02475552
http://arXiv.org/abs/hep-ph/0611146
http://arXiv.org/abs/cond-mat/0702365
http://arXiv.org/abs/cond-mat/0702365
http://arXiv.org/abs/0710.1662
http://dx.doi.org/10.1016/j.aop.2007.01.007
http://dx.doi.org/10.1103/PhysRevD.64.105007
http://dx.doi.org/10.1103/PhysRevD.69.105008
http://dx.doi.org/10.1103/PhysRevD.69.105008
http://dx.doi.org/10.1103/PhysRev.122.345
http://dx.doi.org/10.1103/PhysRev.122.345
http://dx.doi.org/10.1103/PhysRev.124.246
http://dx.doi.org/10.1103/PhysRevD.65.065001
http://dx.doi.org/10.1016/j.physletb.2009.09.014
http://dx.doi.org/10.1016/j.physletb.2009.09.014
http://dx.doi.org/10.1143/PTP.112.943
http://dx.doi.org/10.1103/PhysRevB.81.125103

