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We show that in a sufficiently strong magnetic field the QCD vacuum may undergo a transition to a new

phase where charged �� mesons are condensed. In this phase the vacuum behaves as an anisotropic

inhomogeneous superconductor which supports superconductivity along the axis of the magnetic field. In

the directions transverse to the magnetic field the superconductivity is absent. The magnetic-field-induced

anisotropic superconductivity—which is realized in the cold vacuum, i.e. at zero temperature and

density—is a consequence of a nonminimal coupling of the � mesons to the electromagnetic field. The

onset of the superconductivity of the charged �� mesons should also induce an inhomogeneous super-

fluidity of the neutral �0 mesons. We also argue that due to simple kinematical reasons a strong enough

magnetic field makes the lifetime of the � mesons longer by closing the main channels of the strong

decays of the � mesons into charged pions.
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I. INTRODUCTION

Properties of QCD matter subjected to very strong mag-
netic fields have recently attracted increasing interest of the
community. The interest is motivated by the possibility to
create strong magnetic fields in the heavy-ion collisions
at RHIC and LHC. The strength of the magnetic field
is estimated to be of the hadronic scale [1], eB�
ð1 . . . 15Þm2

�, or even higher (here m� � 140 MeV is the
pion mass). The duration of the magnetic field ‘‘flashes’’ is
expected to be rather short (a few fm=c).

Both analytical calculations [2–4] and lattice simula-
tions [5] indicate that the QCD phase diagram is affected
by the strong magnetic field. In particular, the external
magnetic field splits the chiral and deconfinement transi-
tions [3,4]. In a constant magnetic field of the typical LHC
magnitude, eB� 15m2

� [1], the splitting between the criti-
cal temperatures of these transitions reaches 10 MeV [3].

In the quark-gluon plasma the strong magnetic field
may also lead to the chiral magnetic effect [6]. This effect
generates an electric current of quarks along the magnetic
field axis provided the densities of left- and right-handed
quarks are not equal.

In the cold matter the external magnetic field may create
spatially inhomogeneous structures which are made of
quark condensates [7].

A recent lattice simulation has revealed that in the cold
confinement phase the external magnetic field induces
nonzero electric conductivity along the direction of the
field, thus transforming the QCD vacuum from an insulator
into an anisotropic conductor [8]. In our paper we argue
that there is a chance that a stronger magnetic field may be
able to make the QCD vacuum unstable toward creation of

a superconducting state. We would like to stress that we
discuss here the electromagnetic superconductivity which
should be distinguished from the color superconductivity
in the dense matter [9]. We discuss a superconducting
state which may presumably be formed in the cold vacuum,
i.e. at zero temperature and density.
Basically, we follow the works of Ambjørn, Nielsen, and

Olesen on two subjects: (i) on the condensate of color
magnetic flux tubes (‘‘spaghetti states’’) [10] created by
an unstable gluonic mode in the QCD vacuum [11]; and
(ii) on the condensation of the W bosons in the standard
electroweak model due to sufficiently strong external mag-
netic field [12,13]. The key idea of Refs. [10–13] is that the
vacuum of charged vector particles is unstable in the
background of a sufficiently strong magnetic field provided
these particles have anomalously large gyromagnetic ratio
g ¼ 2. The large value of g guarantees that the magnetic
moment of such particles is too large to withstand a spon-
taneous condensation at sufficiently strong external mag-
netic fields.
As we have mentioned, there are at least two examples

of such instabilities. A strong enough chromomagnetic
field leads to the instability of the gluonic QCD vacuum
since the gluon is the vector particle with the (color)
gyromagnetic ratio g ¼ 2 [11]. As a result of the instabil-
ity, a spaghetti of the chromomagnetic flux tubes is formed.
These flux tubes tend to arrange themselves into a lattice
structure similar to the Abrikosov lattice which is realized
in a mixed state of a type-II superconductor subjected to a
near-critical external magnetic field [10].
The second example is suggested to be realized in the

standard electroweak model. The gyromagnetic ratio of the
W boson is also large, g ¼ 2, so that in the strong magnetic
field the vacuum of the electroweak theory is unstable
toward formation of the condensate of the W bosons. The*On leave from ITEP, Moscow, Russia.
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W condensate is accompanied by a similar lattice vortex
state [12,13]. Note that in the second example the
external field is the electromagnetic field and not the color
(gluon) one.

Our work is based on the fact that the � meson is the
charged vector particle with the gyromagnetic ratio g ¼ 2
so that this particle may condense in a background of
strong enough magnetic field. It is important to stress
that in all discussed cases of the spontaneous condensa-
tion—we mentioned the gluons in QCD [11], theW bosons
in the electroweak theory [12,13], and the � mesons in
QCD (this paper)—the condensation takes place in the
vacuum at zero temperature (as opposed to dense and/or
hot environment).

The structure of the paper is as follows. In Sec. II we
outline the basic idea of the �-meson condensation. In the
same section we argue that the � mesons are (at least,
partially) stabilized by the strong magnetic field back-
ground. This is an important property which should make
the � condensate ‘‘intrinsically’’ stable against decays of
the � mesons (the � mesons have a very short lifetime in
the absence of the external fields). In Sec. III we describe
the quantum electrodynamics of the � mesons. Section IV
is devoted to a short overview of basic features of the
Ginzburg-Landau model of the superconductivity (homo-
geneity, isotropy, effects of the magnetic field, the
Abrikosov vortices, the Meissner effect, the London equa-
tions). In Sec. V we discuss the same features in the
superconducting state of condensed � mesons in QCD
and find a few similarities and many surprising dissimilar-
ities with the ordinary superconductivity. The last section
is devoted to our conclusions.

II. � MESONS IN STRONG MAGNETIC FIELD:
CONDENSATION AND LONGER LIFE

A. Condensation of charged � mesons

The basic idea of our work is as follows. Consider a
charged relativistic spin-s particle moving in a background
of an external magnetic field. Without loss of generality we

assume that the magnetic field ~Bext ¼ ð0; 0; BextÞ is directed
along the z axis, Bext � 0 and we consider spatially uni-
form and time-independent external fields only. The energy
levels " of the free particle of the mass m in the magnetic
field are characterized by three parameters: the nonnega-
tive integer n � 0, the spin projection on the field’s axis
sz ¼ �s; . . . ; s, and the particle momentum along the
field’s axis, pz:

"2n;szðpzÞ ¼ p2
z þ ð2n� 2sz þ 1ÞeBext þm2: (1)

In this work we consider the charged particles, pions (s ¼
0) and the vector particles, � mesons (s ¼ 1), for reasons
that will be clear later. For a moment, we assume that these
particles are free, so that their (squared) minimal effective
masses, corresponding to lowest energy states (1) with
pz ¼ 0, are respectively,

m2
��ðBextÞ ¼ m2

�� þ eBext; (2)

m2
��ðBextÞ ¼ m2

�� � eBext: (3)

The zero-field vacuum masses of the �� and �� mesons
are, respectively [14],

m� ¼ 139:6 MeV; m� ¼ 775:5 MeV: (4)

Equation (3) implies that the lowest energy of the
charged � meson in the external magnetic field may be-
come purely imaginary if the magnetic field exceeds the
following critical value:

Bc ¼
m2

�

e
� 1016 Tesla: (5)

This observation indicates that the strong magnetic field
(Bext > Bc) makes the QCD vacuum unstable toward con-
densation of the charged �mesons. This new QCD effect is
very similar to the magnetic-field-induced condensation of
theW bosons which was predicted by Ambjørn and Olesen
[12,13]. The behavior of the lowest mass (3) of the charged
�� meson in the region 0 � Bext � Bc is shown in Fig. 1
by the solid line.
The subtle point of Eq. (3) [and of Eq. (1) for s ¼ 1 as

well] is that the gyromagnetic ratio of the vector �� meson
is set to be g ¼ 2. In fact, this g-factor is ‘‘anomalously’’
large compared to the standard gyromagnetic ratio gmin ¼
1 of a charged vector particle which is minimally coupled
to the electromagnetism. Notice, that it is the anomalous
gyromagnetic ratio gW ¼ 2 which drives the condensation
of the W bosons in the strong magnetic field [12,13]. The
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FIG. 1 (color online). Masses of the lowest�-meson eigenstates
and of the products of their dominant decay modes as functions of
the external magnetic field B � Bext. The left (red) point and the
middle (blue) point mark the onsets of the��-stability regions for
the neutral (11) and charged (9) �mesons, respectively. The right
(green) point marks the critical field Bc which corresponds to the
onset of the �� condensation (5).
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large g-factor for the W boson is a direct consequence of
the non-Abelian nature of the electroweak gauge group.

As for the � mesons, the electrodynamics of these
particles has also elements of a non-Abelian structure
which is visible in phenomenological Lagrangians
[15–17]. The vector dominance hypothesis [18] as well
as the QCD sum rules [19] point out that the g-factor of the
�mesons is 2. We discuss the quantum electrodynamics for
these vector mesons in more detail in Sec. III.

B. Larger lifetime of charged and neutral � mesons

In the absence of the external magnetic field both
the charged and neutral � mesons are very unstable
particles characterized by the mean lifetime �� � 4:5�
10�24 s � 1:35 fm=c which corresponds to the full
width [14]

��!all ¼ 149:1� 0:8 MeV: (6)

Thus, one may incorrectly conclude that if even the
�-meson condensate is formed at the strong magnetic
fields, then it will be unstable due to the intrinsic instability
of the � mesons themselves. Below we show that this
statement is incorrect.

1. Charged vector mesons

Consider first the charged vector mesons. All known
decays of the �� mesons are going via the modes [14]:

�� ! ��X; X ¼ �0; �; �; ���: (7)

The fraction of the primary decay mode,X ¼ �0, is greater
than 99%.

As the strength of the background magnetic field in-
creases, the product of the decay, the charged pion [which
is always created in the known decay modes of the ��
mesons (7)] becomes heavier (2) while the decaying par-
ticle, the lowest state of the �� meson, becomes lighter (3).
Obviously, at a certain magnetic field B�� the masses of

the initial and final states in the dominant channel, �� !
���0, should become equal,

m��ðB��Þ ¼ m��ðB��Þ þm�0 ; (8)

and the fast strong decays (7) of the charged � mesons
should eventually become impossible due to obvious kine-
matical reasons. The strength of this ‘‘��-stabilizing’’
field is approximately 3 times weaker1 compared to the
critical field of the � condensation (5),

B�� ¼ 1

2e
½m2

� �m2
� �m�ðm2

� þ 2m2
�Þ1=2	 ’ 0:36Bc: (9)

The left- and right-hand sides of Eq. (8) are shown by the
solid and dot-dashed lines in Fig. 1. The point of the
intersection of these lines gives us the critical field (9).
At B> B�� the charged � mesons may in principle

decay via other slower (and undetected so far) channels
that avoid fast gluon-mediated �� production. On the
other side, the QCD string (which confines the quarks
and antiquarks into mesons and baryons) is partially stabi-
lized by the external magnetic field [20]. Thus, in the
sufficiently strong magnetic field the allowed modes of
the decays of the charged � mesons should be much
slower. As a result, the lifetime of the �� mesons should
be much longer compared to the lifetime of these particles
in the absence of the external magnetic field.
One can also make a qualitative prediction for the be-

havior of the spectral function of the charged � meson in
the strong magnetic field. Expected behavior of the lowest-
mass peak is plotted in Fig. 2 as a function of an invariant
mass. At zero magnetic field the �� meson is seen as a
broad resonance (the right peak in Fig. 2). As we switch on
the background magnetic field, the single peak should split
into multiple peaks corresponding to different levels of the
charged vector particle (s ¼ 1) in the external magnetic
field (1). The increase of the strength of the background
magnetic field leads to the kinematical suppression of the �
meson decay modes and, consequently, to a narrower
lowest-mass peak in the corresponding spectral function
(the peak in the middle of Fig. 2). At B � Bc, the onset of
the condensation of the �mesons occurs. This effect can be
seen as the appearance of a singularity of the �-function–
type located at the zero invariant mass (the left peak
in Fig. 2).
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FIG. 2 (color online). Prediction: a qualitative effect of the
external magnetic field on the lowest-mass peak in the spectral
function of the �� mesons vs the invariant mass. As the
magnetic field strength B � Bext increases, the broad peak in
the unstable low-B phase (right) turns into a much narrower peak
in the ��-stable phase (middle). At the onset of the condensation
of the � mesons the peak transforms into the �-function–like
singularity located at the vanishing invariant mass. Features at
higher invariant masses are not shown.

1Here and below we always neglect the difference between the
masses of the charged �� and �� mesons, and their neutral
counterparts, �0 and �0, respectively.
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2. Neutral vector mesons

Similarly to its charged counterpart, the neutral �0 me-
son should also be ��-stabilized in a sufficiently strong
magnetic field background. The primary channel of the �0

decay �0 ! �þ�� (it corresponds to more than 99% of
the decays) becomes inoperative due to the same kinemati-
cal reasons provided Bext � B�0 , where

m�0ðB�0Þ ¼ 2m��ðB�0Þ: (10)

The �0 mass is expected to be practically independent of
the magnetic field,2 m�0ðBÞ ’ m�0ðB ¼ 0Þ, so that

B�0 ¼ m2
� � 4m2

�

4e
’ 0:22Bc: (11)

The left- and right-hand sides of Eq. (10) are shown by the
dashed and dotted lines in Fig. 1. The intersection of these
lines occurs at the critical field (11).

In the absence of the external magnetic field the neutral
�0 meson has also other decay channels which do not
involve the production of the charged �� pions. Such
decay modes, however, are much slower compared to the
primary decay �� modes like �0 ! �þ��. For example,
the most effective ��-less decay of �0 is �0 ! �0�, with
the width

��0!�0� ¼ 0:089� 0:012 MeV; (12)

which is more than 3 orders of magnitude narrower com-
pared to the full width (6). In this paper we are not discus-
sing how the ��-less decays are affected by the strong
magnetic field. However, it is clear that the electromagneti-
cally driven decay channels should be slower compared to
the strongly mediated ones. Thus, there are good kinemati-
cal reasons to believe that the prolongation of the �-meson
life—induced by the strong magnetic field background—
should be substantial.

As for the evolution of the �0 peak in the spectral
function, we expect that the background magnetic
field makes it narrower, while its position is largely un-
affected by the external field. As will be clear from the
results reported below, at Bext >Bc we may expect an
appearance of a singular peak at zero �0-meson mass
due to (quite weak, though) condensation of the neutral
�0 mesons.

3. Reversed decays and effects of chiral condensates

The estimations of the values of the critical fields
(5), (9), and (11) are obviously approximate, as one may
expect systematic corrections coming from other effects of
the strong magnetic field on the mass spectrum of the
mesons. For example, in our qualitative considerations

we do not take into account effects of mixing of the �0

meson with the neutral ! and ’ mesons. We also neglect
influence of the magnetic field on the � mesons and pions
at the quark level. However, the latter effect may be
estimated, at least partially. Indeed, the background mag-
netic field enhances the chiral symmetry breaking [21].
According to a leading order of the chiral perturbation
theory [22] (confirmed by the results of the recent lattice
simulations [23]) the chiral condensate � is a linearly
increasing function of the strength of the external magnetic
field Bext:

�ðBextÞ ¼ �ð0Þ
�
1þ ln2

32�2f2�
eBext

�
; (13)

where f� ¼ 92:4 MeV is the pion decay constant. At the
critical fields (5), (9), and (11) the corrections (13) to
the chiral condensate are 16%, 6%, and 3%, respectively.
We expect that uncertainties in our estimations of the
critical values (11), (9), and (5) may be of the same scale
at least.
One should also note that our considerations imply that

at B> B�� (B> B�0) the charged pions may decay into

the charged (neutral) � mesons. The statement, that the
presence of the strong enough magnetic field interchanges
the decaying and created particles, should not be disap-
pointing. For example, it is known that the magnetic field
may reverse the � decay of the neutron because at the
background magnetic fields with the strength greater than
5 
 1014 T � 0:1m2

e=e the proton becomes heavier than the
neutron. As a consequence, the proton may decay into the
neutron by positron emission [24].
Summarizing this section, the charged and neutral �

mesons are very unstable particles provided the magnetic
field is weaker than the critical values B�� , Eq. (9), and

B�0 , Eq. (11), respectively (Fig. 1). We expect, however,

that as the external field becomes stronger than these
critical values, the corresponding � mesons get stabilized
with respect to the vast majority of the strong decays
which are going via the production of the �� mesons
(we call these regions of the magnetic field intensities the
‘‘��-stable’’ phases both for the charged and neutral �
mesons). If the background field surpasses the critical
value (5), Bext >Bc, the condensation of the charged ��
mesons should occur. Below we show that at the same
point Bext ¼ Bc the neutral �

0 mesons may simultaneously
form an inhomogeneous superfluid.

III. ELECTRODYNAMICS OF � MESONS

A. The DSGS Lagrangian

The self-consistent quantum electrodynamics for the
� mesons was recently constructed by Djukanovic,
Schindler, Gegelia, and Scherer (DSGS) in Ref. [16] start-
ing from an effective Lagrangian for vector mesons devel-
oped by Weinberg [15] long ago. The chiral, Lorentz and

2Here we ignore a weak coupling of the magnetic field to the
magnetic dipole moment of the �0 meson. This coupling makes
the critical field (11) slightly stronger.
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discrete symmetries of the Weinberg Lagrangian were
extended to the Maxwellian Uð1Þ sector by adding all
allowed interactions with electromagnetic fields. In terms
of the renormalized fields the bosonic part of the DSGS
Lagrangian reads as follows [16]:

L ¼ � 1

4
F�	F

�	 � 1

2
�y
�	��	 þm2

��
y
��

�

� 1

4
�ð0Þ
�	�ð0Þ�	 þm2

�

2
�ð0Þ
� �ð0Þ� þ e

2gs
F�	�ð0Þ

�	; (14)

where A� is the photon field, �� ¼ ð�ð1Þ
� � i�ð2Þ

� Þ= ffiffiffi
2

p
and

�ð0Þ
� � �ð3Þ

� are, respectively, the fields of the (negatively)
charged and neutral vector mesons3 characterized by the
mass m�. The DSGS Lagrangian possesses the Uð1Þ gauge
invariance

Uð1Þem:
8><
>:
�ð0Þ
� ðxÞ ! �ð0Þ

� ðxÞ;
��ðxÞ ! ei!ðxÞ��ðxÞ;
A�ðxÞ ! A�ðxÞ þ @�!ðxÞ;

(15)

where ‘‘em’’ represents ‘‘electromagnetic.’’
The tensor quantities in (14) are

F�	 ¼ @�A	 � @	A�; (16a)

fð0Þ�	 ¼ @��
ð0Þ
	 � @	�

ð0Þ
� ; (16b)

�ð0Þ
�	 ¼ fð0Þ�	 � igsð�y

��	 � ���
y
	Þ; (16c)

��	 ¼ D��	 �D	��; (16d)

and the covariant derivative is

D� ¼ @� þ igs�
ð0Þ
� � ieA�: (17)

Equation (16) indicates that ��
� � �� and �þ

� � �y
�

meson fields carry the electric charges �e and þe respec-
tively (here e ¼ jej is the elementary electric charge).
The coupling constant gs can be estimated [16,17] from
the Kawarabayashi-Suzuki-Riadzuddin-Fayyazuddin rela-
tion [25]:

gs � g��� ¼ m�ffiffiffi
2

p
f�

¼ 5:88; (18)

so that gs � e � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�
em

p � 0:303.
The most important fact for us is that the last term of the

DSGS Lagrangian (14) describes a nonminimal coupling
of the �mesons to the electromagnetic field. This term has
two parts,

�L ¼ �Lð0Þ þ �Lch; (19)

�Lð0Þ ¼ e

2gs
ð@��ð0Þ

	 � @	�
ð0Þ
� ÞF�	; (20)

�Lch ¼ ie���
y
	F�	: (21)

where the first part �Lð0Þ corresponds to the coupling of
the electromagnetic field to the magnetic dipole moment
of the �0 meson, while the second part �Lch describes the
nonminimal coupling of the charged �� mesons to the
electromagnetic field. The presence of the former may
lead to an instability of the vacuum of the neutral vector

particles (�ð0Þ mesons in our case) [26], while the latter
implies the anomalous gyromagnetic ratio (g ¼ 2) of the
charged �� mesons, so that the magnetic dipole moment of
the �� mesons is

~� �� ¼ �2 
 e

2m�

~s (22)

(here ~s is the meson’s spin). It is the coupling (21) that
plays a dominant effect in our paper while the interaction
(20) makes a subleading contribution.
As we have already discussed in Sec. II A, spin-one

particles with the gyromagnetic ratio g ¼ 2 in strong
enough external magnetic field should experience a
tachyonic instability toward development of a Bose-
Einstein condensate. Since the condensed particles are
charged, the condensate should be superconducting, and
this fact is our central observation which is discussed in
detail below.

B. Equations of motion

Avariation of the DSGS Lagrangian (14) with respect to
the electromagnetic potential A� provides us with the

Maxwell-type equation of motion,

@	F	� ¼ �J�; (23)

where the electric current J� contains two contributions,

J� ¼ Jch� þ Jð0Þ� ; (24)

coming from the charged and neutral mesons,

Jch� ¼ ie½�	y�	� � �	�y
	� þ @	ð�y

	�� � �y
��	Þ	 (25a)

� ie½ðD��
	Þy�	 � �	yD��	

þ @	ð�y
	�� � �y

��	Þ þ �y
	D	��

� ðD	��Þy�		; Jð0Þ�

¼ � e

gs
@	fð0Þ	�; (25b)

respectively. The currents (25) are separately conserved,

@�J� ¼ @�Jch� ¼ @�Jð0Þ� ¼ 0: (26)

Avariation of the DSGS Lagrangian (14) with respect to

the field �ð0Þ
� gives us the second equation of motion,

@	�ð0Þ
	� þm2

��
ð0Þ
� � e

gs
@	F	�

� igsð�y
�	�	 � ��	�

	yÞ ¼ 0: (27)

It can be rewritten as follows [we used (23)–(25)]:

ð@	@	 þm2
�ð0Þ Þ�ð0Þ

� � @�@
	�ð0Þ

	 � gs
e
Jch� ¼ 0; (28)

3We denote the field of the neutral meson as �ð0ÞðxÞ in order to
discriminate it from the timelike component �0ðxÞ of the charged
��-meson field.
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so that Eq. (26) gives us

@��ð0Þ
� ¼ 0: (29)

Equation (28) provides us with the mass of the neutral

�ð0Þ meson,

m0 � m�ð0Þ ¼ m�

�
1� e2

g2s

��ð1=2Þ
: (30)

Using Eqs. (24), (25), and (28) one can get a well-known
relation (emerged originally in the scope of vector domi-
nance models long time ago [18]) between the electromag-

netic current J� and the neutral meson field �ð0Þ
� ,

J� ¼ em2
0

gs
�ð0Þ
� (31)

(notice that in our notations e ¼ jej> 0).
The third equation of motion is

D	�	� þm2
��� þ iðgs�ð0Þ

�	 � eF�	Þ�	 ¼ 0: (32)

Using the identity ½D�;D		 ¼ iðgsfð0Þ�	 � eF�	Þ, one gets
½ðD
D
 þm2

�Þg�	 �D�D	

þ iðgs�ð0Þ
�	 þ gsf

ð0Þ
�	 � 2eF�	Þ	�	 ¼ 0: (33)

Equations (31) and (32) imply that

ð@� � ieA�Þ�� �
�
D� � ig2s

em2
�ð0Þ

J�

�
�� ¼ 0: (34)

The linear part of Eq. (33) gives us the mass of the
charged �� meson,

m�� ¼ m�: (35)

The neutral vector �ð0Þ meson is heavier compared to its
charged counterpart ��. According to Eqs. (18), (30), and
(35), the difference in the masses is very small [16],

�m� � m0 �m�� ’ 4�
emf
2
�

m�

� 1 MeV: (36)

This mass difference is consistent with the available ex-
perimental bounds [14].

IV. EXAMPLE: GINZBURG-LANDAU MODEL

In Sec. V we analyze the condensation of the � mesons
in the strong magnetic field, starting from the phenomeno-
logical field-theoretical DSGS Lagrangian (14). However,
before going into the details of the � condensation in QCD,
it is very useful to discuss a few basic properties of con-
ventional superconductivity in the condensed matter phys-
ics. Below we concentrate on the Ginzburg-Landau (GL)
model which provides us with a simplest phenomenologi-
cal description of the superconductivity.

A. The Ginzburg-Landau Lagrangian

The relativistic version of the GL Lagrangian for a
superconductor is

L GL ¼ � 1

4
F�	F

�	 þ ðD��Þ�D��� �ðj�j2 � �2Þ2;
(37)

where D� ¼ @� � ieA� is the covariant derivative and

� is the complex scalar field carrying a unit4 electric
charge e.
The ground state of the model (37) is characterized by

the homogeneous condensate of the scalar field,�0 ¼ h�i
with j�0j ¼ �. In the condensed state the mass of the
scalar excitation, �� ¼ ���0, and the mass of the
photon field A� are, respectively, as follows:

m� ¼ ffiffiffiffiffiffi
4�

p
�; mA ¼ ffiffiffi

2
p

e�: (38)

The classical equations of motion of the GL model are

D �D
��þ 2�ðj�j2 � �2Þ� ¼ 0; (39)

@	F
	� þ J�GL ¼ 0; (40)

where the electric current is

J
�
GL ¼ �ie½��D��� ðD��Þ��	: (41)

B. Destructive role of magnetic field

The superconducting state in the GL model is com-
pletely destroyed (� ¼ 0) in a background of the strong
magnetic field Bext, if the strength of the field exceeds the
critical value

BGL
c ¼ m2

�

2e
� 2�

e
�2: (42)

Let us assume that Bext ¼ F12 is the only nonvanishing
component of the field-strength tensor. Consider the case
when the uniform time-independent magnetic field Bext

is slightly smaller than the critical value (42), B< BGL
c ,

so that

1� Bext

BGL
c


 1: (43)

Then the condensate is very small

j�0ðBÞj 
 � (44)

and Eq. (39) can be linearized,

fðD1 � iD2ÞðD1 þ iD2Þ þ e½Bc � BðxÞ	g� ¼ 0; (45)

where BðxÞ is the field inside the superconductor (here
we consider static and z-independent solutions which

4Without loss of generality, it is convenient to consider the
singly charged bosons � instead of the usual doubly charged
bosons.
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correspond to a lowest energy of the system). In the vicin-
ity of the critical field B ’ Bext ’ Bc, so that Eq. (45)
reduces to the following equation for the condensate �:

D� ’ 0 with D ¼ D1 þ iD2: (46)

The magnetic field destroys the superconductivity in the
ordinary superconductor. On the contrary, we show below
that a strong enough magnetic field should induce the
superconductivity of the charged � mesons in the QCD
vacuum.

C. Abrikosov lattice of vortices in mixed state

The GL model (37) admits a topological stringlike so-
lution to the classical equations of motion (39) and (40),
which is known as the Abrikosov vortex [27]. The
Abrikosov vortices are formed when the superconductors
are subjected to external magnetic fields.

A single Abrikosov vortex carries the quantized mag-
netic flux (remember that we consider the condensed
bosons � which carry the electric charge e and not 2e):Z

d2x?Bðx?Þ ¼ 2�

e
; (47)

where the integral of the vortex magnetic field B is taken
over the two-dimensional coordinates x? ¼ ðx1; x2Þ of the
plane which is transverse to the infinitely long, straight,
and static vortex. In the original solution, the scalar field of
the unit-flux vortex is singular at the vortex center,

�ðx?Þ / jx?jei’ � x1 þ ix2; (48)

where ’ is the azimuthal angle in the transverse plane, and
jx?j is the distance from the vortex center. Equation (48)
corresponds to small jx?j: m�jx?j 
 1 and mAjx?j 
 1.

In a type-II superconductor [in which m� >mA or,
according to (38), 2� > e2] the Abrikosov vortices repel
each other. If the external field is strong enough [but lower
than the critical value (42)] then multiple Abrikosov vor-
tices are created. Because of the mutual repulsion, the
vortices arrange themselves in a regular structure known
as the Abrikosov lattice [28,29]. Since the normal (non-
superconducting) phase is restored inside the vortices, the
Abrikosov lattice corresponds to a ‘‘mixed state’’ of the
superconductor, in which both normal and superconduct-
ing states of matter are present.

There are various types of the Abrikosov lattices which
are characterized by different energies [29]. The stable
lattice corresponds to a minimal energy of the system. If
the magnetic field Bext approaches the critical magnetic
field (42) from below, then the simplest lattice type is given
by the square lattice solution of Eq. (46),

�ðx1; x2Þ ¼ C0 exp

�
�ðeBextÞ2

2
x21

�


 Xþ1

n¼�1
exp

�
��n2 þ 2�n

x1 þ ix2
LB

�
: (49)

In this equation the parameter C0 is independent of the
transverse coordinates x?. The intervortex distance LB is
expressed via the magnetic length ‘B,

LB ¼ ffiffiffiffiffiffiffi
2�

p
‘B; ‘B ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

eBext

p : (50)

The area of the elementary square cell (i.e., of a cell which
contains one Abrikosov vortex) is L2

B � 2�‘B. The abso-
lute value of the condensate, j�ðx?Þj, has a square sym-
metry in the solution (49) and the vortices are located at the
sites of the square lattice,

xi
LB

¼ ni þ 1

2
; ni 2 Z; i ¼ 1; 2: (51)

In this case the distance between the vortex centers is LB.
At the points (51) the condensate �ðx1; x2Þ vanishes ex-
actly and in the vicinity of these points the scalar field (49)
follows the behavior of Eq. (48).
As we will see below, the pure superconducting state

cannot be formed in the � meson superconductor contrary
to the ordinary superconductor. Instead, the Abrikosov
lattice state is created.

D. Homogeneous isotropic superconductivity

Let us now apply a very weak external electromagnetic
field to the superconductor. Neglecting the effect of the
external field on the condensate �0, one gets from (41)

@�J	GL � @	J�GL ¼ �m2
AF

�	; (52)

where mA is given in Eq. (38). Setting � ¼ 0 and 	 ¼ i in
Eq. (52) one gets the first London relation for an electri-
cally neutral (J0 ¼ 0) superconductor

@ ~JGL
@t

¼ m2
A
~E; (53)

where Ei � �F0i is the time-independent and uniform
electric field. Equation (53) implies a linear growth of
the electric current in the external electric field, thus in-
dicating a vanishing electric resistance of the supercon-
ducting state.
In the long-wavelength limit, j ~qj ! 0, the weak electric

field ~Eð ~x; tÞ ¼ ~E0e
ið ~x
 ~q�!tÞ induces the local current

Jkð ~x; t;!Þ ¼ X3
k¼1

�klð!ÞElð ~x; tÞ; (54)

where �kl ¼ Re�kl þ iIm�kl is the complex electric con-
ductivity. The London equation (53) indicates that

�klð!Þ ¼ �
sing
kl ð!Þ þ �

reg
kl ð!Þ; (55)

where the first contribution is a singular isotropic part
associated with the superconducting state,

�
sing
kl ð!Þ ¼ �m2

A

2

�
�ð!Þ þ 2i

�!

�
�kl: (56)
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The regular part �reg accounts for all other contributions to
the conductivity.

It is clear that the superconductivity described by
Eq. (53) is homogeneous (it is independent of the spatial
coordinate) and isotropic (it is independent of the direc-
tion). On the contrary, we will see below that a strong
enough magnetic field induces inhomogeneous and aniso-
tropic superconductivity of the charged � mesons in the
QCD vacuum.

E. Meissner effect

The spatial components of Eq. (52) give us the second
London relation,

~@� ~JGL ¼ �m2
A
~B; (57)

so that in the absence of the external electric field ( ~E ¼ 0)

one of the Maxwell equations (40), ~JGL ¼ ~@� ~B, implies

ð��þm2
AÞ ~B ¼ 0: (58)

This equation indicates that the photon inside the super-
conductor acquires the mass mA, Eq. (38). Consequently,
the superconductor tends to expel the external magnetic
field (‘‘the Meissner effect’’). Physically, the Meissner
effect is realized because the external magnetic field in-
duces the circulating superconducting currents (57) inside
the superconductor. These currents, in turn, screen the
external magnetic field since they induce their own mag-
netic field which is opposite to the external one (here we
always assume that Bext < Bc).

Aweak magnetic field which is parallel to the boundary
of the superconductor is always screened inside the bulk of
the superconductor. The perpendicular magnetic field may
penetrate the superconductor and create a mixed phase of
the Abrikosov vortices.

As we will see below, the second London equation (57)
is not realized in the superconducting phase of the QCD
vacuum contrary to the conventional superconductor.
Consequently, the Meissner effect cannot be formulated
in a self-consistent way in the suggested superconducting
phase of QCD.

V. CONDENSATION OF � MESONS

A. Homogeneous approximation

The energy density of the DSGS model (14) is


 � T00 ¼ 1

2
F2
0i þ

1

4
F2
ij þ

1

2
ð�ð0Þ

0i Þ2

þ 1

4
ð�ð0Þ

ij Þ2 þ
m2

�

2
½ð�ð0Þ

0 Þ2 þ ð�ð0Þ
i Þ2	 þ �y

0i�0i

þ 1

2
�y
ij�ij þm2

�ð�y
0�0 þ �y

i �iÞ � e

gs
F0i�

ð0Þ
0i

� e

2gs
Fij�

ð0Þ
ij ; (59)

where T�	 is the energy-momentum tensor,

T�	 ¼ 2
@L
@g�	 �Lg�	: (60)

In order to understand the phase structure of the �
mesons in the background magnetic field, it is useful to
study first the homogeneous field approximation. To this

end we ignore the kinetic terms @��
ð0Þ
	 ¼ 0 andD��	 ¼ 0

in Eq. (59). The remaining (potential) part of the energy
density in the external uniform magnetic field Bext is


0ð��; �
ð0Þ
	 Þ ¼ 1

2
B2
ext þ g2s

4
½ið�y

��	 � �y
	��Þ	2

þ ieBextð�y
1�2 � �y

2�1Þ þ
m2

�

2
ð�ð0Þ

� Þ2

þm2
��

y
���: (61)

where the sums over silent indices are written in the
Euclidean metric, O2

� � P
3
�¼0 O�O�. We remind that

we always take Bext � F12 > 0, and in this section F0i ¼
F3i ¼ 0.
The ground state of the model can be found via the

minimization of the potential energy (61) with respect to
the meson fields. To this end we notice that the field of
the neutral meson is vanishing at the energy minimum,

�ð0Þ
� ¼ 0. Then, the quadratic part of Eq. (61) becomes as

follows:


ð2Þ0 ð��Þ ¼ ieBextð�y
1�2 � �y

2�1Þ þm2
��

y
���

¼ X2
a;b¼1

�y
aMab�b þm2

�ð�y
0�0 þ �y

3�3Þ: (62)

The Lorentz components �1 and �2 possess the nondiag-
onal mass matrix

M ¼ m2
� ieBext

�ieBext m2
�

 !
: (63)

The eigenvalues �� and the corresponding eigenvectors
�� of the mass matrix (63) are, respectively, as follows:

�2� ¼ m2
� � eBext; �� ¼ 1ffiffiffi

2
p ð�1 þ i�2Þ: (64)

The mass terms for �0 and �3 components are diagonal in
(62) and their prefactors m2

� are unaltered by the external

magnetic field.
It is clear from Eq. (62) that in terms of the ‘‘longitudi-

nal’’ components �0 and �3, the ground state of the model
corresponds to �0 ¼ �3 ¼ 0 at any value of the magnetic
field. We express the transverse components �1;2 via the

eigenvalues and eigenvectors (64) of the mass matrix (63),
and then we get for (the potential part of) the energy
density (59) the following expression:
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0ð�þ; ��Þ ¼ 1

2
B2
ext þ g2s

2
ðj�þj2 � j��j2Þ2

þ�2þj�þj2 þ�2�j��j2: (65)

Since �2þ > 0 regardless of the value of the magnetic field
Bext, the ground state corresponds to �þ ¼ 0. In turn, this

means that �� � ffiffiffi
2

p
� and

�1 ¼ �i�2 ¼ �; �0 ¼ �3 ¼ 0; (66)

where � is a scalar complex field. In terms of the new field
� the energy density (65) takes the simple form


0ð�Þ ¼ 1

2
B2
ext þ 2ðm2

� � eBextÞj�j2 þ 2g2s j�j4: (67)

Thus, we get the familiar Mexican-hat potential which
describes various spontaneously broken systems. In par-
ticular, the same potential appears in the GL model of
superconductivity (37).

The ground state of the model (67) depends on the value
of the external magnetic field: if the field strength is weaker
than the critical value Bc ¼ m2

�=e, Eq. (5), then the poten-

tial is trivial, while if Bext >Bc then we get a nontrivial
ground state

j�j0 ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eðBext�BcÞ
2g2s

q
; Bext � Bc;

0; Bext < Bc;
(68)

(the subscript ‘‘0’’ in j�j0 indicates that we consider the
homogeneous-field approximation). In Fig. 3 we plot
the behavior of the condensate (68) as the function of the
external magnetic field Bext. The value of the condensate
follows a typical behavior of an order parameter for a
second-order phase transition at Bext ¼ Bc.

In Fig. 3 the subscript ‘‘AS’’ in j�ASj stands for the
‘‘anisotropic superconductor.’’ Indeed, the scalar field

�ðxÞ enjoys the gauge symmetry (15) of its vector prede-
cessor ��ðxÞ,

Uð1Þem: �ðxÞ ! ei!ðxÞ�ðxÞ: (69)

The formation of the nontrivial ground state � in the strong
external magnetic field Bext � Bc breaks spontaneously the
gauge symmetry (15) and forms, consequently, a super-
conducting state. The superconductor should exhibit spa-
tially anisotropic properties due to spatially anisotropic
condensate (66). This issue will be discussed in detail later.
Note that in the presence of the background magnetic

field ~Bext the rotational group SOð3Þrot is explicitly broken
to its Oð2Þrot subgroup generated by rotations around the
axis of the magnetic field. In the homogeneous approxi-
mation, the ground state (66) is transformed under the
global Oð2Þrot rotations as follows:

Oð2Þrot: �ðxÞ ! ei’�ðxÞ; (70)

where ’ is the azimuthal angle of the rotation in the
transverse plane. Thus, the ground state (66) is invariant
under a combination of the global transformation from the
gauge group (69) and the global rotation around the field
axis (70) provided the parameters of these transformations
are related (‘‘locked’’) to each other as follows: !ðxÞ ¼
�’. In analogy with the color superconductivity [9] one
can say that the ground state ‘‘locks’’ the residual rotational
symmetry with the electromagnetic gauge symmetry,

Uð1Þem �Oð2Þrot ! Uð1Þlocked: (71)

Below we will see that the inhomogeneities of the conden-
sate break the locked group (71) further to the group of
discrete rotations of the vortex lattice.
In the ground state (68) the potential energy (62) has the

form

"0ðj�j ¼ j�j0Þ
"0ðj�j ¼ 0Þ ¼

8<
:1� e2

g2s

�
1� Bc

Bext

�
2
; Bext � Bc;

1; Bext <Bc:
(72)

Obviously, for a strong magnetic field Bext � Bc, the con-
densed state has lower energy compared to the energy
"0ðj�j ¼ 0Þ ¼ B2

ext=2 of the normal (noncondensed) state.
Thus, we observed that the condensation of the ��

mesons in the QCD vacuum should be very different
from the condensation of the Cooper pairs � in the stan-
dard superconductor which is described by the phenome-
nological GL model (37). Indeed, in Sec. IVB we have
illustrated the destructive role of the strong magnetic field
on the conventional superconductivity. On the contrary, in
this section we have found that the strong-enough magnetic
field enforces the �-meson superconductivity.

B. Two-dimensional equations of motion

In order to study the properties of the emerged super-
conductor in more detail we should definitely go beyond
the homogeneous approximation. The inhomogeneous
state can be treated with the full system of the 3þ 1

0.5 0.6 0.7 0.8 0.9 1.0
0

20

40

60

80

eB, GeV2

A
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,M
eV

FIG. 3. The condensate j�ASj of the charged �� mesons as a
function of the external magnetic field B � Bext at the ground
state. This single curve describes both the uniform condensate
j�ASj � j�j0 in the homogeneous approximation (68) and the
mean-cell value j�ASj � j�ASjA of the inhomogeneous conden-
sate (96) in the weak-amplitude approximation.
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dimensional equations of motion for the �-meson fields
which were discussed in Sec. III B. We notice, however,
that a wave function of the lowest energy state of a free
particle in a uniform static magnetic field is independent on
the coordinate x3 which is longitudinal to the magnetic
field. The dependence on the time coordinate x0 comes as a
trivial phase factor only. The Abrikosov lattice solution in
the type-II superconductors is also known to be indepen-
dent of x0 and x3 coordinates (Sec. IVC). These well-
known properties suggest that we concentrate on x0- and
x3-independent solutions to the classical equation of mo-
tions for the � mesons. To this end we choose the complex
coordinate z ¼ x1 þ ix2 where x? ¼ ðx1; x2Þ are the coor-
dinates in the spatial plane which is transverse of the
magnetic field axis. We define the complex variables

O ¼ O1 þ iO2;
�O ¼ O1 � iO2 (73)

for the fields O ¼ Jð0Þ, J, �ð0Þ, A, and for the derivative
O ¼ @. It is also convenient to introduce two covariant
derivatives,

D�D1þ iD2 ¼Dþ igs�
ð0Þ; D¼ @� ieA: (74)

For the sake of convenience we use below both x? and z
notations interchangeably, so that the two-dimensional
Laplacian, for example, can bewritten in the three different
ways: @ �@ � @2? � @21 þ @22.

Our homogeneous field analysis (Sec. VA) suggests that
the charged currents should be chosen in the form

�0 ¼ �3 ¼ 0; �1 ¼ �i�2 ¼ �ðzÞ; (75)

where � is a complex field.5

The magnetic field (16a) and the field strength of the
neutral vector bosons (16b) are as follows:

F12 � Imð �@AÞ ¼ BðzÞ; (76)

fð0Þ12 � Imð �@�ð0ÞÞ ¼ CðzÞ: (77)

Notice that, despite the assumption that the external mag-
netic field Bext is uniform, the magnetic field (76) of the
classical solution may be (and, in fact, will be) inhomoge-
neous. The tensor quantities (16c) and (16d) take, respec-
tively, the following form (we omit the argument z
hereafter):

�ð0Þ
12 ¼ Cþ 2gsj�j2; �12 ¼ iD�: (78)

The charged and neutral components of the current (25)
become simple expressions, respectively,

Jch ¼ 2ieð�yD�þ @j�j2Þ; Jð0Þ ¼ i
e

gs
@C: (79)

The conservation law for the charged current (26),

Imf �@½�yD�� �ð �D�Þy	g ¼ 0, is satisfied automatically
due to relation (34),

D� ¼ 0 (80)

[we also used the identity @j�j2 � �yD�þ ð �D�Þy�].
Equations (23), (28), and (32) reduce, respectively, to

gs@Bþ iem2
0�

ð0Þ ¼ 0; (81)

ð� �@@þm2
0 þ 2g2s j�j2Þ�ð0Þ � 2igs@j�j2 ¼ 0; (82)

½� �DDþ 2ðgsC� eBþ 2g2s j�j2 þm2
�Þ	� ¼ 0: (83)

Equation (77) along with the conservation law (29),

Reð �@�ð0ÞÞ ¼ 0, lead to a simple expression for the trans-
verse component of the field tensor (16b) of the neutral
mesons,

C ¼ �i �@�ð0Þ: (84)

C. Inhomogeneous condensate of small amplitude

1. Linearized equations of motion

The classical equations of motion (80)–(84) comprise a
complicated system of equations which is difficult to solve
analytically due to the nonlinearities. However, following
our discussion for the GL model (Sec. IVB), let us assume
that the amplitude of the condensate � is very small. Then
the equations of motion can be linearized and a leading
analytical solution can be obtained. The condensate �
should be small if the background magnetic field Bext

exceeds slightly the critical value Bc, Eq. (5). Concretely,
for Bext � Bc we consider the condition

2g2s j�j2 
 m2
0; or

Bext

Bc

� 1 
 1: (85)

These relations are analogous to, respectively, weak-
condensate conditions (44) and (43) in the GL model of
superconductivity. We show below that the first and the
second relations in (85) are, in fact, equivalent.
Notice that Eq. (80) coincides with Eq. (46) for the order

parameter of the ordinary superconductivity in the GL
model (37) provided that the external magnetic field is
close to the critical field (42) of this model. Therefore we
should expect emergence of an analogue of the vortex
lattice (49) in the � system (14) similarly to the appearance
of the Abrikosov lattice (49) in the GL model. Thus, the
condensate of the � mesons in the external magnetic field
should definitely be inhomogeneous. Following the classic
example [29], we consider below the simplest case of the
square lattice with the elementary length (50).
In the weak-condensate regime (85) we can work in the

leading order in terms of the condensate �AS (higher order
corrections are always omitted below). Then the equation
of motion (82) gives the following relation:

5In a strong field limit one can show that due to presence of
inhomogeneities the ansatz (75) may be generalized : �1 ¼
�ðzÞ þ �ðzÞ, �2 ¼ i½�ðzÞ � �ðzÞ	. In our analysis we ignore the
subleading field � because its amplitude is suppressed by the
factor e=gs 
 1.
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�ð0Þ
ASðx?Þ ¼

2igs
�@2? þm2

0

@j�ASj2; (86)

where

1

�@2? þm2
0

ðx?Þ ¼ 1

2�
K0ðmjx?jÞ (87)

is the two-dimensional Euclidean propagator of a scalar
particle with the mass m0 and K0 is a modified Bessel
function (remember that the subscript AS stands for the
anisotropic superconductor solution).

It is very important to notice that Eq. (86) relates the
condensate of the neutral �0 mesons with the condensate of
the charged �� mesons. Thus, if the have an inhomoge-
neous condensate of the charged �� mesons, then we
automatically get the inhomogeneous condensate (86) of
the neutral �0 mesons as well! This fact may indicate that
the superconductivity of the �� mesons may induce the
superfluidity of the �0 mesons. Notice that a relation

between the superfluidity of the neutral �ð0Þ mesons and
the superconductivity of the charged �� mesons may be
guessed from the fact of the vector dominance, Eq. (31).

We interpret the nonzero condensate (86) as a ‘‘super-

fluid’’ because of the complex nature of the field �ð0Þ.
Moreover, if for a moment we assume that this field is
homogeneous (i.e., coordinate-independent) then rotations
of the system around the magnetic field axis (70) would
transform it as a usual complex field in simplest bosonic

theories of superfluidity [28], �ð0Þ ! ei’�ð0Þ. The inhomo-
geneities of the condensate (86) break spontaneously this
global group down to a discrete group of the rotations of
the vortex lattice.

We would like also to note an important role of the
inhomogeneities in the charged �� condensate for the
superfluidity. In Sec. VA we have seen that the homoge-
neous condensate of the charged �� mesons alone is un-

able to induce the superfluidity of the �ð0Þ mesons: a
uniform nonzero expectation value of �� does not imply

�ð0Þ � 0. However, the inhomogeneous charged conden-
sate of �� automatically induces the inhomogeneous neu-

tral condensate of �ð0Þ as one can see from the presence
of the derivative @ in the numerator in the right-hand side
of Eq. (86).

The transverse component of the strength tensor (77) of
the neutral �0 mesons is given by Eq. (84),

CASðx?Þ ¼ �i �@�ð0Þ
AS ¼ 2gs

@2?
�@2? þm2

0

j�ASj2: (88)

Because of the identity

Z
d2x?

@2?
�@2? þm2

0

ðx? � y?Þ ¼ 0; (89)

the total ‘‘flux’’ of the neutral �0 mesons through the
transverse plane is always zero,

Z
A

d2x?ðfð0Þ12 ÞASðx?Þ �
Z
A

d2x?CASðx?Þ ¼ 0; (90)

where the integral is taken over a unit cell A of the
periodic structure of the ‘‘� vortices.’’
Next, Eq. (81) gets simplified,

@

�
B� 2em2

0

�@2? þm2
0

j�ASj2
�
¼ 0; (91)

and its solution becomes as follows:

BASðx?Þ ¼ Bext þ 2em2
0

�@2? þm2
0

j�ASj2 � 2eðj�ASj2ÞA:

(92)

Here the last term

ðj�ASj2ÞA ¼ 1

L2
B

Z
A

d2y?j�ASðy?Þj2 (93)

is ‘‘the mean-cell value’’ of the condensate squared j�ASj2.
Because of the identity

Z
d2x?

m2
0

�@2? þm2
0

ðx? � y?Þ ¼ 1; (94)

the last term in Eq. (92) guarantees the conservation of the
net magnetic flux through each elementary cell A,Z

A
d2x?BASðx?Þ ¼

Z
A

d2x?Bext � L2
BB

ext ¼ 2�

e
(95)

[here we have used Eq. (50)]. The quantization of the
magnetic flux (95) is similar to the quantization of the
flux of the Abrikosov vortex (47).
Finally, Eqs. (83), (90), (92), and (95) give us

j�ASjA � ðj�ASj2Þ1=2A ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eðBext�BcÞ
2g2s

q
; Bext � Bc;

0; Bext <Bc;
(96)

for the mean value (93) of the condensate. The mean-cell
value of the condensate (96) is shown in Fig. 3. Notice that
the mean-cell value of the condensate (96) coincides with
the value of the uniform condensate (68) obtained in the
homogeneous-field approximation.
Equation (96) has a few interesting properties. First, this

equation represents a typical behavior of an order parame-
ter. Second, Eq. (96) suggests that the phase transition,
which separates the superconducting and the nonsupercon-
ducting phases at Bext ¼ Bc, is of a second order (as is
shown clearly in Fig. 3). And third, Eq. (96) proves the
equivalence between the first and the second conditions of
the weak-condensate regime, Eq. (85).
Concluding this section we would like to stress that here

we have introduced the new topological object, the �
vortex, which is the vortex made of the superconducting
�� mesons and superfluid �0 mesons. This unit vortex cell
carries the nonzero quantized flux of the magnetic field
(95) and zero �0 flux (90). The lattice of such vortices is a
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ground state of the superconductivity of the QCD vacuum
at strong magnetic field. We discuss this lattice state in
detail in the next section.

2. Inhomogeneous condensate: �-vortex lattice

In the regime (85) the degree of the inhomogeneity of
the magnetic field �Bðx?Þ ¼ BASðx?Þ � Bext in the super-
conducting state is extremely small. Indeed, according to
Eq. (92),

j�Bj � 2ej�j2 
 em2
0

g2s
� e2

g2s
Bext 
 Bext: (97)

Thus, the inhomogeneity of the magnetic field �B is sup-
pressed both by the small amplitude of the condensate (85)
and by the very small factor e2=g2s ¼ 8:8� 10�3. From
Eqs. (88) and (92) one also finds that the stress tensor of the
neutral bosons (77) is small compared to the magnetic field
(76), jCj 
 ðe=gsÞBext. Therefore we can set BðxÞ ’ Bext

with very good accuracy. Then,

D ’ Dext ¼ @� eAext ¼ @þ eB

2
z (98)

so that the solution of Eq. (80) is

�ASðzÞ ¼ e�ðeB=4Þjzj2HASðz=LBÞ; (99)

where HASðzÞ is an arbitrary analytic function of the argu-
ment z and the intervortex distance LB is given in Eq. (50).

Following the known solution (49) in the conventional
superconductivity [29], we choose the square form of the
lattice cells. For such periodic structure, one gets

HASðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðBext �BcÞffiffiffi

2
p

g2s

s
e�ð�=2Þz2 Xþ1

n¼�1
e��n2þ2�nz; (100)

where the prefactor was determined with the help of the
normalization relation (96) supplemented by the explicit
expressions (99) and (100).

We already know that the homogeneous condensate
locks the rotational and gauge degrees of freedom (71).
The inhomogeneities in the condensate break the locked
subgroup (71) further down to a discrete subgroup of the
lattice rotations Glat

locked,

Uð1Þem �Oð2Þrot ! Uð1Þlocked ! Glat
locked: (101)

The discrete group Glat
locked depends on the lattice structure

formed by the vortices.
Similarly to the mixed state of the ordinary type-II

superconductivity, the �-vortex centers are located at the
points (51), where the condensate �AS vanishes. In the
vicinity of the �-vortex centers the condensate (99) follows
the typical Abrikosov-vortex behavior (48). However,
there are many essential dissimilarities between the vortex
systems in the GL model and in the system of the con-
densed � mesons.

In Fig. 4 we visualize four elementary lattice cells
of the �-vortex lattice in the transverse plane. We take
the external magnetic field with the strength eBext ¼
ð800 MeVÞ2 > eBc, so that the system is already in the
superconducting state. The strength of the field satisfies the
weak-condensate condition (85). The magnetic length and
the elementary distance between the vortices in the square
vortex lattice are, respectively,6 (50), ‘B ¼ 0:25 fm and
LB ¼ 0:63 fm. The mean value of the condensate (96)
of the �� mesons is j�ASj ’ 23 MeV. In Fig. 4 we plot
various quantities that characterize the vortex: the ampli-
tudes of the superconducting and superfluid condensates,
the excess of the magnetic field with respect to the external
magnetic field, and the field strength of the neutral meson
field C. One can clearly see that:

(1) The superconducting condensate � of the charged
vortices ��, Eqs. (99) and (100), vanishes at the
centers of the vortices (51), Fig. 4(a). In the vortex
core the amplitude of the condensate j�j is a linear
function of the distance from the vortex center.
This feature is similar to the behavior of the con-
densate near a typical Abrikosov vortex with a unit
vorticity (48).

(2) The superfluid condensate �ð0Þ, Eq. (86), has a tooth-
like structure, Fig. 4(b). It vanishes at the locations
of all local extrema of the superconducting conden-
sate including the centers of the vortices. The am-
plitude of the superfluid condensate is maximal at
the points of steepest behavior of the superconduct-
ing condensate, Fig. 4(a).

(3) The magnetic field strength B, Eq. (92), takes its
minimal values at the centers of the vortices,
Fig. 4(c). The maxima of B are located outside the
vortex cores. This feature contradicts our intuition:
in the ordinary superconductivity the strength of the
magnetic field is maximal at the center of the
Abrikosov vortex. In fact, the �� condensate has
its own magnetic dipole moment due to the large,
g ¼ 2, gyromagnetic ratio of the � vortex. This
dipole moment contributes only to the magnetic
field outside the vortex cores, where the condensate
of the �� condensate is large, Fig. 4(a). The electric
current J, Eq. (24), is visualized in Fig. 5.

(4) The strength of the neutral meson field C of the
superfluid [Eq. (88)] takes its maxima at the loca-
tions of the � vortices, Fig. 4(d). Thus, the � vortices

6Note that the magnetic length ‘B is of the order of the size of
the � meson itself, r� �m� ’ 0:25 fm. Thus, at these magnetic
fields the � mesons should mutually overlap similarly to the
overlapping Cooper pairs in the conventional superconductivity.
However, regarding the success of the phenomenological GL
model of the superconductivity we do not question the applica-
bility of the phenomenological DSGS model (14) in the strong-
field regime.
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share this important property of the ordinary super-
fluid vortices as well.

Summarizing, the vortex core expels both superconduct-
ing and superfluid condensates of the charged and neutral �
mesons, respectively. The magnetic field takes its maxima
outside the vortices, while the strength of the superfluid
(electrically neutral) field is peaked at the vortex centers.

3. Anisotropic superconductivity

The basic property of a superconductor is the absence of
the resistivity. This feature is reflected, in particular, in the
first London equation (53) in the GL model.
There is a simple way to derive analogues of the London

equations for the condensed state of � mesons in the
external magnetic field. First, we notice that Eqs. (28) and
(31) imply

ð@
@
 þm2
0Þ@½�J		 ¼ m2

0@½�J
ch
		 : (102)

Then, we take � ¼ 0 and 	 ¼ 3 in Eq. (102) and use
Eq. (25a) to get expressions for the � ¼ 0; 3 components
of the charged currents,

Jcha ¼ 2ie½��Da�� ðDa�Þ��	; a ¼ 0; 3: (103)

Following the logic of the derivation of the London equa-
tion (53) in the Ginzburg-Landau approach (Sec. IVD),
one gets from Eqs. (102) and (103)

@J3ðx0; x?Þ
@x0

¼ �4e2h2ASðx?ÞE3; (104)

where x? ¼ ðx1; x2Þ. The inhomogeneous quantity

h2AS ¼
m2

0

�@2? þm2
0

j�ASj2 (105)

FIG. 4 (color online). Four elementary cells of the �-vortex
lattice in the plane x? ¼ ðx1; x2Þ, which is perpendicular to the
external magnetic field with eBext ¼ ð800 MeVÞ2. From top to
bottom: (a) the amplitude of the superconducting condensate �
[Eqs. (99) and (100)]; (b) the amplitude of the superfluid
condensate �ð0Þ [Eq. (86)]; (c) the excess of the magnetic field
�Bðx?Þ � Bðx?Þ � Bext [Eq. (92)]; and (d) the field strength C
of the superfluid condensate �ð0Þ [Eq. (88)].
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FIG. 5. The transverse components J1 and J2 of the electric
current J, Eq. (24), in the transverse plane x? ¼ ðx1; x2Þ. Four
elementary cells of the �-vortex lattice at the external magnetic
field with eBext ¼ ð800 MeVÞ2 are shown.
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plays the role of the j�0j2 condensate or m2
A=e

2 in the
conventional London relation (53).

Equation (104) implies that the �-meson condensate
exhibits the superconductivity phenomenon along the di-

rection of the external magnetic field ~B: the electric current
is growing linearly as a function of time once a weak
external electric field is applied.

Notice that due to the periodicity of the inhomogeneous
condensed state the mean-cell values of the squares of the
effective condensate (105) and of the real condensate (93)
coincide identically,

ðh2ASÞA � ðj�ASj2ÞA: (106)

Averaging Eq. (104) over an elementary square cell in
transverse directions and using Eq. (96) we get the cell-
averaged value of the electric current ðJ3ÞA,

@

@t
ð �J3ÞA ¼ � 2e3

g2s
ðBext � BcÞE3; (107)

where Bext > Bc and we assumed, as usual, that the exter-
nal electric field E3 is a spacetime-independent quantity.

The longitudinal (i.e., directed along ~Bext) superconductiv-
ity sets in as the external field Bext exceeds the critical
value Bc, Eq. (5).

It is easy to prove that the superconductivity phenome-
non has an anisotropic nature: in the transverse (i.e.,

perpendicular to ~Bext) directions the superconductivity
is absent. In order to prove this fact let us apply a

weak spacetime-independent electric field ~Eext ¼
ðEext;1; Eext;2; 0Þ perpendicularly to the strong magnetic

field background ~Bext ¼ ð0; 0; BextÞ. This electric field
should test a possible transverse superconductivity of the
��-meson condensate which could also be created by the
strong magnetic field.

In order to show that the ~Bext-transverse electric field
does not create an accelerating electric current, we notice
that an appropriate Lorentz boost may transform this sys-

tem of the nonparallel ~Eext and ~Bext fields into the frame

where the electric field is zero, ~E0
ext ¼ 0. Obviously, in the

new frame there are no linearly growing electric currents,
so that in the initial frame such runaway currents are absent
as well and

@Jiðx0; x?Þ
@t

¼ 0;
@

@t
ð �JiÞA ¼ 0; i ¼ 1; 2: (108)

This argument does not work for the parallel electric
and magnetic fields which were used to prove the longitu-
dinal superconductivity (104). Indeed, in this case the

scalar product ð ~Eext 
 ~BextÞ / "�	
�F
�	
extF


�
ext is a Lorentz-

invariant quantity which is insensitive to boosts and rota-

tions. Thus, if ~Eext k ~Bext then there is no frame where the

external electric field ~E0
ext is zero.

Equations (107) and (108) imply that the (cell-averaged)
electric conductivity (54) contains an anisotropic complex
contribution (55) which is singular at ! ¼ 0:

�
sing
kl ð!Þ ¼ �e3

g2s
ðBext � BcÞ

�
�ð!Þ þ 2i

�!

�
�k3�l3; (109)

where the i ¼ 3 is the direction of the external magnetic

field ~Bext.
The anisotropy of the superconductivity is quite similar

to the anisotropy of the ‘‘usual’’ conductivity of the QCD
vacuum which was found in lattice simulation in Ref. [8]
for much weaker magnetic fields. An explanation of the
anisotropy could be as follows: in a background of a
uniform magnetic field the electric charges may move
along the axis of the magnetic field while the motion in
the transverse direction is limited to the spatial size ‘B of
the low Landau orbits (50). In a sufficiently strong mag-
netic field, and in the absence of scattering of the charge
carriers (we are working in a vacuum), the net transverse
motion of the charges is suppressed contrary to the motion
in the longitudinal direction.

4. Absence of a longitudinal Meissner effect

We have a very unusual situation In our paper we
suggest that in the QCD vacuum the strong magnetic field
induces the superconductivity of � mesons, while all our
experience in the condensed matter systems tells us that we
should expect the opposite phenomenon [28,29]: the ex-
ternal magnetic field should destroy the superconductivity
due to the Meissner effect (Sec. IVE). In order to find a
reason for this would-be inconsistency between the usual
superconductor and the �-meson system, let us apply the
considerations of Sec. IVE to the � mesons.
According to theMaxwell equations the electric currents

that could screen the external magnetic field ~Bext ¼
ð0; 0; BextÞ should circulate in the transverse x? plane. In
turn, the superconducting current in the transverse plane,
JAS � JAS;1 þ iJAS;2, can be related to the neutral meson

current (86) via the vector dominance relation (31),

JASðx?Þ ¼ em2
0

gs
�ð0Þ
ASðx?Þ ¼

2iem2
0

�@2? þm2
0

@j�ASj2: (110)

Then in the system of the condensed � mesons, the ana-
logue of the second London equation (57) for the longitu-
dinal magnetic field can be written as follows (here we use
the relation �@@ ¼ @2?):

ð ~@� ~JASÞ3 � Imð �@JASÞ ¼ 2em2
0

@2?
�@2? þm2

0

j�ASj2: (111)

The right-hand side of this equation depends on the exter-
nal magnetic field Bext via the superconducting density
�AS, Eq. (99).
Equations (99), (100), and (111) provide us with an

implicit expression for the curl of the screening currents.
However, even without knowledge of the explicit form of
these solutions one can show that these transverse currents
both screen and enhance the external magnetic field in
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such a way that the net effect in one elementary vortex cell
is precisely zero. Indeed, let us integrate left- and right-
hand sides of Eq. (111) over an elementary unit cell, take
into account the periodicity of the solution (99), and use the
following property:

Z
d2x?

@2?
�@2? þm2

0

ðx? � y?Þ ¼ 0: (112)

Thus, the cell-averaged right-hand side of the second
London equation (111) for � mesons is zero,Z

A
d2x?ð ~@� ~JASÞ3 ¼ 0; ½condensed �� mesons	;

(113)

while in the GL model the same procedure would give us
the constant quantity in the right-hand side of (57),Z

A
d2x?ð ~@� ~JGLÞ3 ¼ �m2

ABext; ½GLmodel	:
(114)

This fact simply means that, in the state of the condensed �
mesons, the external magnetic field induces the transverse
superconducting currents which are circulating both clock-
wise and counterclockwise. Consequently, the external
magnetic field is enhanced in some regions of the trans-
verse plane and it is suppressed in the other regions.
Contrary to the ordinary superconductor, the net current
circulation of the superconducting � currents per a unit
lattice cell is exactly zero (113), while in the ordinary
superconductor the net circulation is a linearly growing
function of the external magnetic field.

Thus, we have found that the external magnetic field of
any strength Bext > Bc does not experience the screening
inside the � superconductor: the magnetic flux propagates
freely inside the superconductor. The same statement is not
true for the ordinary superconductor in the purely super-
conducting state: the magnetic field tries to avoid the su-
perconductor (the Meissner effect). Thus, in a loose sense
one can interpret the absence of the net circulating currents
(113) as the absence of the longitudinal Meissner effect.

On the other hand, our system is very similar to the
ordinary Abrikosov lattice in the mixed state of the type-II
superconductor, Sec. IVC: in the mixed state the magnetic
field forms an inhomogeneous state and propagates
through the superconductor, basically, in the cores of the
Abrikosov vortices. In this case, however, the external
magnetic field must be bounded both from above and
from below, contrary to our � superconductivity in the
QCD vacuum.

One can try to address the question about the existence
of theMeissner effect in the � superconductor in a different
way. In the ordinary superconductivity the Meissner effect
is usually formulated as follows: if we apply a weak ‘‘test’’

magnetic field, say ~B0
ext ¼ ðB0

ext; 0; 0Þ, along the boundary
of a superconductor then this field will be screened inside

the superconductor according to Eq. (58), i.e. ~Bðx3Þ ¼
ðe�mAx3B0

ext; 0; 0Þ. This experiment, however, is senseless
in the case of the � condensation because this condensation
is induced in the rotationally invariant vacuum by the
magnetic field itself. Indeed, assume that we have a com-
bination of the two external magnetic fields: the strong

field ~B0
ext, which induces the conductivity, and the addi-

tional weak field ~B00
ext, which is superimposed onto ~B0

ext

transversely ð ~B0
ext 
 ~B00

extÞ ¼ 0, in order to check the
Meissner effect. Because of the vacuum environment, it

is clear that the sole role of the additional field ~B00
ext is to

rotate the primary field ~B0
ext. After simple rotation of our

coordinate around its origin we get a new field ~Bext ¼
~B0
ext þ ~B00

ext so that the role of the additional test field is
to rotate the directions of the � vortices in the condensed
state. Thus, the question of the (non)existence of the trans-
verse Meissner effect cannot be formulated in a self-
consistent way.

VI. CONCLUSIONS

We argue that in a sufficiently strong background mag-
netic field the QCD vacuum may undergo a spontaneous
transition to a superconducting state via condensation of the
charged �� mesons. The critical strength of the magnetic
field is given in Eq. (5). The superconductivity is under-
stood in the usual electromagnetic sense. Moreover, unlike
the color superconductivity, the superconducting QCD state
is suggested to be formed in the cold vacuum, i.e. at zero
temperature and at zero chemical potentials. Our vision of
the phase diagram of the cold QCD vacuum in terms of the
�-meson degrees of freedom is illustrated is Fig. 6.
We have found the following basic properties of the

superconducting state:
(1) The effect occurs because of the nonminimal cou-

pling of the charged � mesons to the electromag-
netic field. The strong magnetic field enhances the
superconductivity instead of destroying it.

(2) Because of simple kinematical reasons a strong-
enough magnetic field makes the lifetime of the �
mesons much longer by closing the dominant decay
channels (�� ! ���0 and �0 ! �þ��) of the �
mesons into the charged pions. The estimations of

FIG. 6 (color online). The expected phase diagram: the impact
of strong external magnetic field B � Bext on the �-meson
degrees of freedom in the QCD vacuum.
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the corresponding critical field strengths for the
charged and neutral � mesons are given in Eqs. (9)
and (11). Since these critical strengths are smaller
than the condensation point (5), the condensate
should be intrinsically stable, at least at the scale
of the strong interactions.

(3) The transitions between the unstable and stable
regions of the � mesons are expected to be smooth
crossovers while the onset of the superconductivity
is expected to be a second-order phase transition.

(4) The superconducting state is anisotropic: the elec-
tric resistance is zero only along the axis of the
magnetic field.

(5) The superconducting state is inhomogeneous: the
condensate shares similarity with the Abrikosov
vortex lattice in the mixed state of a type-II
superconductor.

(6) The pure homogeneous superconducting state is not
formed.

(7) The onset of the superconductivity of the charged
�� mesons leads to emergence of an inhomogene-
ous superfluidity of the neutral �0 mesons. The
superfluidity is induced by the inhomogeneities of
the superconducting condensate.

(8) The inhomogeneous superconducting state is given
by the �-vortex lattice. Locally, the �-vortex core
expels both superconducting and superfluid conden-
sates of the charged and neutral � mesons, respec-
tively. The magnetic field takes its maxima outside

the vortices, while the strength of the superfluid
(electrically neutral) field is peaked at the vortex
centers. However, the unit �-vortex cell carries one
unit of the quantized magnetic flux of the magnetic
field and no net �0 flux.

(9) The spontaneous emergence of the superconducting
condensate locks the rotations of the system around
the magnetic field axis with a global subgroup of
the gauge transformations. The inhomogeneities
of the condensate break the locked group further to
the group of discrete rotations of the vortex lattice.

(10) TheMeissner effect (understood in the usual sense)
cannot be realized in the superconducting QCD
state due to the Lorenz invariance of the vacuum.

Our results also imply that the inhomogeneous
Ambjørn-Olesen state [12,13] of the vacuum of the elec-
troweak model is, in fact, a superconducting state. This
state may in principle be realized in the first moments of
the Universe if strong-enough magnetic fields are created
in the primordial era [30]. The superconducting nature of
the Ambjørn-Olesen state may have imprints in the large-
scale structure of the magnetic fields in the present-day
Universe.
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