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We derive the U-duality charge orbits, as well as the related moduli spaces, of ‘‘large’’ and ‘‘small’’

extremal black holes in nonmaximal ungauged Maxwell-Einstein supergravities with symmetric scalar

manifolds in d ¼ 5 space-time dimensions. The stabilizer groups of the various classes of orbits are

obtained by determining and solving suitable U-invariant sets of constraints, both in ‘‘bare’’ and

‘‘dressed’’ charge bases, with various methods. After a general treatment of attractors in real special

geometry (also considering nonsymmetric cases), the N ¼ 2 ‘‘magic’’ theories, as well as the N ¼ 2

Jordan symmetric sequence, are analyzed in detail. Finally, the half-maximal (N ¼ 4) matter-coupled

supergravity is also studied in this context.
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I. INTRODUCTION

Five-dimensional supergravity theories with nonmaxi-
mal supersymmetry (2 � N < 8), emerging from Calabi-
Yau compactifications of M theory, admit extremal black
p-brane solutions in their spectrum [1]. In particular, un-
gauged theories admit extremal black holes (p ¼ 0) and
black strings (p ¼ 1) which are asymptotically flat and
reciprocally related through U duality.1 These objects
have been intensely studied throughout the years, due to
the wide range of classical and quantum aspects they
exhibit.

For asymptotically flat, spherically symmetric, and sta-
tionary solutions, the attractor mechanism [3–6] proved to
be a crucial phenomenon, determining, in a universal
fashion, the stabilization of scalar fields in the near-horizon
geometry in terms of the fluxes of the 2-form field strengths
of the Abelian vector fields coupled to the system.
Moreover, the attractor mechanism turned out to be im-
portant also to unravel dynamical properties such as split
attractor flows [7] and wall crossing [8], and to gain in-
sights into the microstate counting analysis (see e.g. [9]
and references therein), also in relation to string topologi-

cal partition functions [10] (see also [11] for a recent
account and a list of references). In d ¼ 5 space-time
dimensions, progress has also been achieved with the dis-
covery of new attractor solutions (see e.g. [12]), as well as
with the formulation of a first-order formalism governing
the evolution dynamics of nonsupersymmetric scalar flows
[13].
For supergravity theories with scalar manifolds which

are symmetric cosets, the extremal solutions of the unga-
uged theory can be classified through the orbits of
the relevant representation space of the U-duality group,
in which the corresponding supporting charges sit. The
relation between U-invariant Bogomol’ny-Prasad-
Sommerfeld (BPS) conditions and charge orbits in d ¼ 5
supergravities has been the subject of various studies
throughout the years [14–20].
The present paper extends to d ¼ 5 space-time dimen-

sions the four-dimensional investigation of [21].
We derive the U-duality charge orbits, as well as the

related moduli spaces, of ‘‘large’’ and ‘‘small’’ extremal
black holes and black strings in ungauged Maxwell-
Einstein supergravities with symmetric scalar manifolds.
The stabilizer groups of the various classes of orbits are
obtained by determining and solving suitable U-invariant
sets of constraints, both in ‘‘bare’’ and ‘‘dressed’’ charge
bases, as well by exploiting İnönü-Wigner (IW) contrac-
tions and SOð1; 1Þ gradings.
It is worth pointing out here that in this paper we will not

deal with maximal N ¼ 8, d ¼ 5 supergravity, because a
complete analysis of extremal black hole attractors and
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1Here U duality is referred to as the ‘‘continuous’’ version,

valid for large values of the charges, of the U-duality groups
introduced by Hull and Townsend [2].
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their large and small charge orbits is already present in the
literature; see e.g. [14–18,20,22–26]. We will just mention
such a theory briefly, below Eq. (4.3).

The plan of the paper is as follows.
We start and give a résumé of real special geometry

(RSG) in Sec. II, setting up notation and presenting all
formulas needed for the subsequent treatment of charge
orbits and attractors.

In Sec. III extremal black hole (black string) attractors
are studied in full generality within real special geometry.
Starting from the treatment of [19], various refinements
and generalizations are performed, in particular, address-
ing the issue of generic, nonsymmetric vector multiplets’
scalar manifolds. In Sec. III A we analyze the various
classes of critical points of the effective potential V, also
within the so-called ‘‘new attractor’’ approach (see
Sec. III A 4). Then, in Sec. III B we compute the higher
order covariant derivatives of the previously introduced
rank-3 invariant tensor Txyz, which will play a key role in

the subsequent developments and results, exposed in
Secs. III C and III D, respectively, dealing with generic
and homogeneous symmetric real special manifolds. A
general analysis of the Hessian matrix of V, crucial in
order to establish the stability of considered attractor
points, is then performed in Sec. III E.

In Sec. IV all small charge orbits of symmetric,
‘‘magic,’’ real special geometries are explicitly deter-
mined and classified, by exploiting the properties of the

functional Î3 introduced in Sec. III C 3. Note that small
charge orbits support nonattractor solutions, which have
vanishing Bekenstein-Hawking [27] entropy in the
Einsteinian approximation. Nevertheless, they can be
treated by exploiting their symmetry properties under U
duality.

Section V analyzes the ‘‘duality’’ relating the N ¼ 2
magic theory coupled to 14 Abelian vector multiplets and
the N ¼ 6 ‘‘pure’’ supergravity, both based on the rank-3
Euclidean Jordan algebra JH3 and thus sharing the very

same bosonic sector.
Then, Sec. VI is devoted to the analysis of the large

(Sec. VIA) and small (Sec. VIB) charge orbits of N ¼ 2
Jordan symmetric sequence. Similarly, Sec. VII provides a
detailed treatment of the large (Sec. VII A) and small
(Sec. VII B) charge orbits of the half-maximal (N ¼ 4)
matter-coupled supergravity. The analysis of both Secs. VI
and VII is made in the bare charge basis, and various
subtleties, related to the reducible nature of the d ¼ 5
U-duality group and disconnectedness of orbits in these
two theories, are elucidated.

Two appendixes conclude the paper, containing various
details concerning the determination of the small orbits in
symmetric magic real special geometries.

The resolution ofU-invariant defining (differential) con-
straints, both in bare and dressed charge bases, is per-
formed in Appendix A.

Then, in Appendix B we give an equivalent derivation of
all small charge orbits of symmetric magic real special
geometries, relying on group theoretical procedures,
namely, İnönü-Wigner contractions (Appendix B 1) and
SOð1; 1Þ three-grading (Appendix B 2).
Finally, we point out that all results on charge orbits can

actually be obtained in various other ways, including the
analysis of cubic norm forms of the relevant Jordan sys-
tems in d ¼ 5; this will be investigated elsewhere.

II. RÉSUMÉ OF REAL SPECIAL GEOMETRY

RSG ([28–33] and references therein) is the geometry
underlying the scalar manifold M5 (with Euclidean signa-
ture) of Abelian vector multiplets coupled to the minimal
supergravity in d ¼ 5 space-time dimensions, namely, to
N ¼ 2, d ¼ 5 theory.
In the present section, we recall some basic facts about

RSG, setting up notation and presenting all formulas
needed for the subsequent treatment of charge orbits and
attractors. Apart from slight changes in notation, we will
adopt the conventions of [19], which are slightly different
from the ones used in [34] (see the observations in [34]).
We start by specifying the kind and range of indices

being used. The index in the ‘‘ambient space’’ is i ¼
0; 1; . . . ; nV [in which M5 is defined through a cubic con-
straint; see Eq. (2.5) below]. The ‘‘0’’ is the index pertain-
ing to the (bare) d ¼ 5 graviphoton, and nV stands for the
number of Abelian vector multiplets coupled to the super-
gravity multiplet. On the other hand, x ¼ 1; . . . ; nV and
a ¼ 1; . . . ; nV , respectively, denote ‘‘curved’’ and (local)
‘‘flat’’ coordinates in M5.
The metric aij in the ambient space (named gij in [34])

can be defined as follows:

aij ¼ � 1

3

@2 logV ð�Þ
@�i@�j ; (2.1)

where

V ð�Þ � dijk�
i�j�k > 0 (2.2)

is the volume of M5 itself, and dijk ¼ dðijkÞ is a rank-3,

completely symmetric, invariant tensor (see further be-
low). In turn, the �i’s are some real functions (with suitable
features of smoothness and regularity) of the set of scalars
�x of the theory, coordinatizing M5:

�i ¼ �ið�xÞ: (2.3)

They do satisfy the inequality (2.2). As elucidated e.g. in
[34], the �i’s are nothing but the (opposite of the) imagi-
nary (‘‘dilatonic’’) part of the complex scalar fields of the
special Kähler geometry (SKG) based on a cubic holomor-
phic prepotential (usually named d-SKG; see e.g. [32,35]),
characterizing the Abelian vector multiplets’ scalar mani-
fold of N ¼ 2 Maxwell-Einstein supergravity in four
space-time dimensions. In this respect, the ambient space
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in five dimensions is nothing but the ‘‘dilatonic sector’’ of
the d-SKG in four dimensions.

It is now convenient to introduce rescaled variables as
follows:

�̂ i � �iV�1=3 , dijk�̂
i�̂j�̂k ¼ V ð�̂Þ ¼ 1: (2.4)

Thus, the metric of M5 is the pullback of aij on the hyper-

surface

V ð�Þ � 1 (2.5)

in the ambient space, namely,

gxy � �̂i
x�̂

j
yaijjV ð�Þ�1

¼ � 1

3
�̂i

x�̂
j
y

@2 logV ð�Þ
@�i@�j

��������V ð�Þ�1
¼ gxyð�̂ð�ÞÞ

¼ g
ð�Þ

xyð�Þ; (2.6)

where (the semicolon denotes Riemann-covariant differ-
entiation throughout)

�̂ i
x � �

ffiffiffi
3

2

s
@�̂i

@�x � �
ffiffiffi
3

2

s
�̂i
;x ¼ �

ffiffiffi
3

2

s
�̂i
;x: (2.7)

Notice that the constraint (2.4) implies

@V ð�̂Þ
@�x

¼ 3dijk�̂
i
;x�̂

j�̂k � ffiffiffi
6

p
dijk�̂

i
x�̂

j�̂k ¼ 0: (2.8)

Let us now introduce Txyz, a rank-3, completely sym-

metric, invariant tensor, related to dijk through the defini-

tion

Txyz � �̂i
x�̂

j
y�̂

k
zdijk ¼ �ð32Þ3=2�̂i

;x�̂
j
;y�̂

k
;zdijk ¼ TðxyzÞ;

(2.9)

whose inversion reads

dijk ¼ 5
2�̂i�̂j�̂k � 3

2a
�
ðij�̂kÞ þ Txyz�̂i

x�̂j
y�̂k

z; (2.10)

where

a
�
ijð�̂Þ � aijjV ð�Þ�1: (2.11)

In other words, Txyz is the �-dependent ‘‘dressing’’

[through �̂i
;xð�Þ’s] of the constant (�-independent) tensor

dijk. It is worth anticipating here that Eqs. (2.9) and (2.10)

play the key role to relate the formalism based on the bare
charges with the formalism based on the dressed charges
(see further below).

Txyz enters the so-called ‘‘RSG constraints,’’ relating in

M5 the Riemann tensor Rxyzu to the metric tensor gxy, as

follows:

Rxyzu ¼ 4
3ðgx½ugz�y þ Tx½u

wTz�ywÞ
¼ 4

3ðgx½ugz�y þ Txw0½uTz�ywgww
0 Þ: (2.12)

It is worth noticing a direct consequence of such RSG

constraints: the sectional curvature (see e.g. [36,37]) of
matter charges in RSG globally vanishes:

R ðZÞ � Rxyzwg
xx0gyy

0
gzz

0
gww

0
Zx0Zy0Zz0Zw0 ¼ 0: (2.13)

This is trivially due to the symmetry properties of the
Riemann tensor Rxyzw (which are the ones for a generic

Riemann geometry), and it is a feature discriminating RSG
from SKG [in which RðZÞ generally does not vanish; see
e.g. [38,39]].
As a consequence of the constraints (2.12) (within the

metric postulate), the definition of M5 as a homogeneous
symmetric manifold

Rxyzu;t ¼ 0 (2.14)

yields

ðTxw0½u;tTz�yw þ Txw0½uTz�yw;tÞgww0

¼ 0 , Txw0½uTz�yw;tgww
0 ¼ Txw½uTz�y;t

w ¼ 0; (2.15)

which can be solved by

Txyz;u ¼ 0: (2.16)

Through Eqs. (2.9) and (2.10), and exploiting the con-
straints imposed by local N ¼ 2 supersymmetry, it can
be shown that Eq. (2.16) implies the following relation
between the tensors dijk:

dijkdjðmndpqÞk ¼ �i
ðmdnpqÞ , djðmndpqÞkdrsta

� sja
� tka

� ri

¼ �i
ðmdnpqÞ; (2.17)

where the index-raising through the contravariant metric

a
� ij

has been made explicit.

III. ATTRACTORS IN RSG

The present section is dedicated to the study of attractors
in RSG. This was first treated in [19] (and then reconsid-
ered in [20], in connection to d ¼ 6).
Starting from the treatment of [19], we will generalize

and elaborate further various results obtained therein.
It is worth recalling that no asymptotically flat dyonic

solutions of Einstein equations exist in d ¼ 5. Thus, the
d ¼ 5 asymptotically flat black holes (BHs) can only carry
electric charges qi. Their magnetic duals are the d ¼ 5
asymptotically flat black strings, which can only carry
magnetic charges pi.
We will perform all our treatment within the electric

charge configuration. Because of the mentioned BH/black
string duality, this does not imply any loss of generality.
Furthermore, we will study attractors within the Ansätze of
asymptotical (Minkowski) flatness, staticity, spherical
symmetry, and extremality of the BH space-time metric
(if no scalars are coupled, this is nothing but the so-called
Tangherlini extremal d ¼ 5 BH). The near-horizon geome-
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try of extremal electric BHs and extremal magnetic black
strings, respectively, is AdS2 � S3 and AdS3 � S2.

A. Classes of critical points of V

From the general theory of the attractor mechanism [3–
6], the stabilization of scalar fields in proximity to the
(unique) event horizon of a static, spherically symmetric,
and asymptotically flat extremal BH in N ¼ 2, d ¼ 5
Maxwell-Einstein supergravity is described by the critical
points of the positive-definite effective potential function

V � a
� ijqiqj ¼ ð�̂iqiÞ2 þ 3

2g
xy�̂i

;xqi�̂
j
;yqj

¼ Z2 þ 3
2g

xyZxZy; (3.1)

where theN ¼ 2, d ¼ 5 central charge function Z and its
Riemann-covariant derivatives (‘‘matter charges’’) have
been defined as follows:

Z � �̂iqi; (3.2)

Zx � �̂i
;xqi ¼ Z;x ¼ Z;x: (3.3)

The definitions (3.2) and (3.3) can be inverted, obtaining
the fundamental identities of RSG (in the electric formu-
lation) [19]:

qi ¼ �̂iZ� 3
2g

xy�̂i;xZy: (3.4)

The identities (3.4) relate the basis of bare (�-independent)
electric charges qi to the basis of dressed (central and
matter) charges fZ; Zxg, which do depend on the scalars
�x, as yielded by definitions (3.2) and (3.3).

By recalling definitions (3.2) and (3.3), one obtains that

Zxy � Zx;y ¼ Z;x;y ¼ Z;x;y ¼ �̂i
;x;yqi

¼ 2
3gxyZ�

ffiffi
2
3

q
Txyzg

zwZw: (3.5)

Therefore, by using Eq. (3.5) the criticality conditions
(alias attractor equations) for the effective potential V can
be easily computed to be [19]

Vx � V;x ¼ V;x ¼ 2

�
2ZZx �

ffiffi
3
2

q
Txyzg

ysgztZsZt

�
¼ 0:

(3.6)

A priori, there are three classes of critical points of V which
are nondegenerate (i.e. with VjVx¼0 � 0).

1. ð12Þ-BPS
This class is defined by the sufficient (but not necessary)

criticality constraint

Zx ¼ 0; 8 x; (3.7)

implying

V ¼ Z2: (3.8)

2. Non-BPS

This class is defined by the constraints

Z � 0; Zx � 0 for at least some x0s; (3.9)

which are critical provided the following algebraic con-
straint among Z and Zx’s holds:

Zx ¼ 1

2Z

ffiffiffi
3

2

s
Txyzg

ysgztZsZt: (3.10)

At least in symmetric RSG, this implies [19]

V ¼ 9Z2: (3.11)

3. Remark

It is worth recalling here the Bekenstein-Hawking
entropy-area formula [27], implemented for critical points
of V:

SBH;d¼5

�
¼ AH

4�
� R2

H ¼ ðVj@V¼0Þ3=4: (3.12)

The attractor mechanism [3–6] is known to hold only for
the so-called ‘‘large’’ BHs, which, through Eq. (3.12), have
a nonvanishing Bekenstein-Hawking entropy.
Therefore, attractors in a strict sense are given by non-

degenerate critical points of V. On the other hand, degen-
erate critical points of V, namely, critical points such that
Vj@V¼0 ¼ 0, are trivial. Indeed, by virtue of the positive
definiteness of V (inherited from the strictly positive def-

initeness of a
� ij

throughout all its domain of definition), it
holds that

V ¼ 0 , qi ¼ 0 8 i; (3.13)

which is the trivial limit of the theory with all (electric)
charges switched off.
The same reasoning can be repeated in the magnetic

case.
Thus, only large BHs exhibit a (classical) attractor

mechanism, implemented through nontrivial (alias nonde-
generate) critical points of the effective potential itself [6].

4. ‘‘New attractor’’ approach

Through the so-called new attractor approach [40], an
equivalent form of the nV real criticality conditions (i.e. of
the so-called attractor equations) for the various classes of
critical points of V can be obtained by plugging the criti-
cality conditions themselves into the nV þ 1 real RSG
identities2 (3.4). By doing so, one, respectively, obtains

2The extra real degree of freedom is only apparent, and it is
removed by the homogeneity of degree one of the RSG identities
(3.4) under a real overall shift of charges

qi ! �qi; � 2 R:
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(i) BPS attractor equations:

qi ¼ �̂iZ: (3.14)

While Eqs. (3.7) are nV real differential ones, the
nV þ 1 real equations (3.14) are purely algebraic.

(ii) Non-BPS attractor equations:

qi ¼ �̂iZ� 1

2

�
3

2

�
3=2 1

Z
TxyzZyZz�̂i;x: (3.15)

B. Derivatives of Txyz

Now, in order to proceed further, it is convenient to
compute the Riemann-covariant derivative of the invariant
tensor Txyz, namely, Txyz;w, a quantity which will be rele-

vant in the subsequent treatment. By using the definition
(2.9), one obtains

Txyz;w ¼ TðxyzÞ;w ¼ � ffiffiffi
6

p ½�1
2gðyzgxwÞ þ TrðyzTxwÞsgrs�

¼ Tðxyz;wÞ: (3.16)

Consequently, the condition (2.16) for the real special
manifold M5 to be a symmetric coset can be equivalently
recast as follows [see e.g. p. 14 of [19] and Eq. (3.2.1.9) of
[20]]:

TrðyzTxwÞsgrs ¼ 1
2gðyzgxwÞ: (3.17)

One can then proceed further, and compute Txyz;w;q.

Starting from Eq. (3.16) one obtains (within the metric
postulate)

Txyz;w;q ¼ Tðxyz;wÞ;q ¼ �2
ffiffiffi
6

p
Trðyzj;qTjxwÞsgrs

¼ �2
ffiffiffi
6

p
Trðyz;qTxwÞsgrs ¼ Tðxyz;w;qÞ: (3.18)

Through Eq. (3.16), this result can be further elaborated to
give

Txyz;w;q ¼ 12½�1
2gðyzTxwqÞ þ TðqjvrTpjyzTxwÞsgpvgrs�:

(3.19)

One can now introduce the following rank-5, completely
symmetric tensor ~Exyzwq, which is the ‘‘RSG analogue’’ of

the so-called E tensor3 of SKG:

~E xyzwq � 1

12
Txyz;w;q ¼ 1

12
Tðxyz;w;qÞ ¼ ~EðxyzwqÞ; (3.20)

satisfying, by definition, the relation

TðqjvrTpjyzTxwÞsgpvgrs ¼ 1
2gðyzTxwqÞ þ ~Exyzwq; (3.21)

which holds globally in RSG.

By recalling the symmetricity condition (2.16),
Eqs. (3.18), (3.19), (3.20), and (3.21) yield

Txyz;w ¼ 0 ) Txyz;w;q ¼ 0 , ~Exyzwq ¼ 0

, TðqjvrTpjyzTxwÞsgpvgrs ¼ 1
2gðyzTxwqÞ: (3.22)

C. Generic RSG

Let us now consider the value of the effective potential V
in the various classes of its critical points. By recalling its
very definition, (3.1), (3.7), and (3.10) yield the following
results.

1. BPS

Recall Eq. (3.8):

V ¼ Z2: (3.23)

Through Eq. (3.12), this yields

SBH;d¼5

�
¼ AH

4�
� R2

H ¼ V3=4 ¼ jZj3=2: (3.24)

2. Non-BPS and the dressed charges’ sum rule

V ¼ Z2 þ 3

2
gxyZxZy

¼ Z2 þ 3

8

1

Z2
gxyTxztTwsyZ

zZtZwZs: (3.25)

By recalling Eq. (3.16), the second term in the right-hand
side of Eq. (7.17) can be further elaborated as follows:

ZxZ
x ¼ � 1

8

ffiffiffi
3

2

s
1

Z2
Tðztw;sÞZzZtZwZs þ 3

16

1

Z2
ðZxZ

xÞ2;
(3.26)

yielding (ZxZ
x � 0)

3

2
ZxZ

x ¼ 8Z2 þ
ffiffiffi
3

2

s
Tðxyz;wÞZxZyZzZw

ZuZ
u : (3.27)

Consequently, at non-BPS Z � 0 critical points of V, it
generally holds that

V ¼ 9Z2 þ ~�; (3.28)

where the real quantity

~� �
ffiffiffi
3

2

s
Tðxyz;wÞZxZyZzZw

ZuZ
u (3.29)

has been introduced. This latter is the RSG analogue of the
complex quantity � introduced in SKG [41] (see also
[21,38,39,42]). As � enters the dressed charges’ sum rule
at non-BPS (Z � 0) critical points of VBH in SKG [see e.g.

Eqs. (282)–(284) of [41]], ~� enters the dressed charges’
sum rule (3.28) at non-BPS critical points of V in RSG,

3The E tensor of SKG was first introduced in [32], and it has
been recently considered in the theory of extremal d ¼ 4 BH
attractors in [21,38,39,41,42].
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which further simplifies to (3.11), at least in symmetric

RSG (having ~� ¼ 0 globally). Notice that, through
Eq. (3.27) and definition (3.29), the (assumed) strictly
positive definiteness of gxy (throughout all M5 and, in

particular, in the considered class of critical points of V
itself) yields

Z2 þ
~�

8
> 0: (3.30)

Through Eq. (3.12), Eq. (3.28) yields

SBH;d¼5

�
¼ AH

4�
� R2

H ¼ V3=4 ¼ ð9Z2 þ ~�Þ3=4: (3.31)

3. The functional Î3

Within a generic RSG, let us now consider the function

Î 3 � 1
6Z

3 � 3
8ZZxZ

x � 1
4

ffiffi
3
2

q
TxyzZ

xZyZz: (3.32)

In general, Î3 is a diffeomorphism- and symplectic-
invariant function of the scalars �x in M5, or equivalently
a functional of the dressed charges fZ; Zxg in M5. Its
derivative reads [recalling Eq. (3.16)]

Î 3;w ¼ Î3;w ¼ �
ffiffi
3
2

q
Txyz;wZ

xZyZz

¼ �1
2ZxZ

xZw þ 1
3g

rsðTrzyTxws þ TrzxTyws

þ TrzwTxysÞZxZyZz: (3.33)

From the definition (3.29), it thus follows that

~� ¼ � Î3;xZ
x

ZyZ
y : (3.34)

The computation of Î3 and Î3;x [respectively given by

Eqs. (3.32) and (3.33)] at the various classes of critical
points of V [specified by Eqs. (3.7), (3.8), (3.9), and (3.10)]
respectively yield the following results.

BPS:

Î 3 ¼ 1
6Z

3; (3.35)

Î 3;x ¼ 0: (3.36)

Thus, by recalling Eqs. (3.23) and (3.24), it follows that

SBH;d¼5

�
¼ AH

4�
� R2

H ¼ jZj3=2 ¼ V3=4 ¼ ffiffiffi
6

p jÎ3j1=2:
(3.37)

Non-BPS:
Eq. (3.27) and definition (3.29) yield

ZxZ
x ¼ 16

3
Z2 þ 2

3
~�: (3.38)

On the other hand, by recalling Eqs. (3.10) and (3.16),
the term TxyzZ

xZyZz can be further elaborated at non-

BPS Z � 0 critical points of V as follows:

TxyzZ
xZyZz ¼ � 1

2
ffiffiffi
6

p ðZxZ
xÞ

Z

�
~�� 3

2
ZyZ

y

�
: (3.39)

Thus, definition (3.32) yields the following expression of

Î3 at non-BPS Z � 0 critical points of V:

Î 3 ¼ � 9

2
Z3

�
1þ 7

6

~�

32Z2

�
,

~�

32Z2
¼ � 6

7

�
2

9

Î3

Z3
þ 1

�
:

(3.40)

Thus, by recalling Eqs. (3.28) and (3.31), it follows that

SBH;d¼5

�
¼ AH

4�
� R2

H ¼ ð9Z2 þ ~�Þ3=4 ¼ V3=4

¼ 33=2

73=4
jZj3=2

�
1� 4

3

Î3

Z3

�
3=4

; (3.41)

thus necessarily yielding

3

4
>

Î3

Z3
: (3.42)

D. Symmetric RSG and large charge orbits

Let us now consider the case in which 4

M5 ¼ G5

H5

¼ G5

MCSðH5Þ (3.43)

is a symmetric coset.
At least in this case, dijk is the unique G5-invariant,

rank-3, completely symmetric tensor, whereas Txyz is the

unique H5-invariant, rank-3, completely symmetric tensor.
Magic symmetric M5’s are reported in Table I (see e.g.

[32] and references therein; see also [44] for a brief review
and a list of references).
Besides these four isolated cases, there are two infinite

sequences of other symmetric real special manifolds,
namely, the so-called Jordan symmetric sequence

MJ;5;n � SOð1; 1Þ � SOð1; nÞ
SOðnÞ ; n ¼ nV � 1 2 N;

(3.44)

and the non-Jordan symmetric sequence [45]

MnJ;5;n � SOð1; nÞ
SOðnÞ ; n ¼ nV 2 N; (3.45)

nV being the number of Abelian vector supermultiplets
coupled to the N ¼ 2, d ¼ 5 supergravity one.
The sequence (3.45) is the only (sequence of) symmetric

RSG which is not related to Jordan algebras of degree

4‘‘MCS’’ is an acronym for maximal compact subgroup (with
symmetric embedding). Unless otherwise noted, all considered
embeddings are symmetric. Moreover, the subscript ‘‘max’’
denotes the maximality of the embedding throughout.
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three. It is usually denoted by Lð�1; n� 1Þ in the classi-
fication of homogeneous Riemannian d spaces (see e.g.
[32] and references therein). It will not be further consid-
ered here, because it does not correspond to symmetric
spaces in four dimensions.

G5 and H5 can, respectively, be interpreted as the re-
duced structure group Str0 and the automorphism group
Aut of the corresponding Euclidean Jordan algebra of
degree three (see e.g. [46] for a recent review, and refer-
ences therein):

M5 ¼ G5

H5

¼ Str0ðJ3Þ
AutðJ3Þ : (3.46)

Furthermore (at least5) in symmetric RSG, due to
Eqs. (2.16) and (3.33), it holds that

Î 3;x ¼ Î3;x ¼ 0: (3.47)

In other words, Î3 is independent of all scalars �x.
Furthermore,

Î 3 ¼ I3; (3.48)

where I3 is the unique cubic invariant of the relevant
electric (irreducible) representation [(ir)repr.] RQ of d ¼
5 U-duality G5, defined by (7.2). As mentioned above, dijk

is G5 invariant in all RSG, whereas dijk is G5 invariant at
least in symmetric RSG.
In this framework, by virtue of the relations (7.27) and

(7.31), the Bekenstein-Hawking entropy-area formula
(3.12) can be completed as follows [recall Eq. (3.48)]:

SBH;d¼5

�
¼ AH

4�
� R2

H ¼ ðVj@V¼0Þ3=4 ¼
ffiffiffi
6

p jI3j1=2

¼ ffiffiffi
6

p jÎ3j1=2: (3.49)

Furthermore, in RSG based on symmetric cosets G5

H5
, the

representation space of the irrepr. of G5 in which the
(electric or magnetic) charges sit admits a stratification
in disjoint orbits [15,19]. Such orbits are homogeneous, in
some cases symmetric, manifolds.
The charge orbits supporting nondegenerate (in the

sense specified above; see the end of Sec. III A) critical
points of V are called large orbits, because they correspond
to the previously introduced class of large BHs with
nonvanishing Bekenstein-Hawking entropy area [see
Eq. (3.12)]. On the other hand, charge orbits corresponding
to small BHs (having vanishing Bekenstein-Hawking en-
tropy area) are correspondingly dubbed small orbits.
In the treatment of symmetric RSG performed in the

present subsection, only large orbits, first found in [19], are
considered.

In Sec. IV, through the properties of the function Î3

defined by Eq. (3.32), the stabilizers of all small charge
orbits of symmetric RSG will be derived, by suitably
solving G5-invariant (sets of) defining differential con-
straints, as well as by performing suitable group theoretical
procedures.
We can now specialize the results obtained in Sec. III C

and in Sec. III C 3 to magic symmetric RSG. The detailed
treatment of N ¼ 2 Jordan symmetric sequence (3.44)
will be given in Sec. VI. Actually, the large charge orbits of
(3.44) have already been considered in [19] (see also [23]
for the study of corresponding moduli spaces), but in
Sec. VI the treatment is further refined.

1. BPS

Equations (3.35) and (3.48) yield

Î 3 ¼ 1
6Z

3 ¼ I3; (3.50)

and thus

SBH;d¼5

�
¼ AH

4�
� R2

H ¼ ðVj@V¼0Þ3=4 ¼
ffiffiffi
6

p jI3j1=2

¼ ffiffiffi
6

p jÎ3j1=2 ¼ jZj3=2: (3.51)

Such a large BH is supported by (electric) charges belong-
ing to the large charge orbit (homogeneous symmetric
manifold) [19]

TABLE I. Homogeneous symmetric real special vector mul-
tiplets’ scalar manifolds M5 of N ¼ 2, d ¼ 5 magic supergrav-
ity. M5’s also are (1) the non-BPS Z � 0 moduli spaces of
N ¼ 2, d ¼ 4 special Kähler symmetric vector multiplets’
scalar manifolds [23], and (2) the large 1

2 -BPS charge orbits

OBPS;large ofN ¼ 2, d ¼ 5Maxwell-Einstein supergravity itself

[19]. The large non-BPS Z � 0 charge orbits OnBPS;large ¼ M�
5

(see e.g. Table 5 of [43] and references therein) and the related
non-BPS Z � 0 moduli spaces MnBPS;large are reported, as well.

The rank r of the orbit is defined as the minimal number of
charges defining a representative solution. As observed in [23],
for magic supergravities nV ¼ dimRM5 ¼ 3qþ 2, whereas
dimRMnBPS;large ¼ 2q, and Spinð1þ qÞ 	 ~h5. See text for

more details.

JA3

M5 ¼ G5

H5
¼ Str0ðJ3Þ

AutðJ3Þ¼ OBPS;large

r ¼ 3
H5 � mcsðG5Þ

M�
5 ¼ G5

~H5¼ OnBPS;large

r ¼ 3

MnBPS;large ¼ ~H5
~h5

~h5 � mcsð ~H5Þ
JO3 , q ¼ 8

E6ð�26Þ
F4ð�52Þ

E6ð�26Þ
F4ð�20Þ

F4ð�20Þ
SOð9Þ

JH3 , q ¼ 4 SU�ð6Þ
USpð6Þ

SU�ð6Þ
USpð4;2Þ

USpð4;2Þ
USpð4Þ�USpð2Þ

JC3 q ¼ 2 SLð3;CÞ
SUð3Þ

SLð3;CÞ
SUð2;1Þ

SUð2;1Þ
SUð2Þ�Uð1Þ

JR3 q ¼ 1 SLð3;RÞ
SOð3Þ

SLð3;RÞ
SOð2;1Þ

SOð2;1Þ
SOð2Þ

5Notice that, from Eq. (3.33), it follows that

Î 3;w ¼ 0 , Txyz;wZ
xZyZz ¼ 0;

for which (2.16) is a solution.
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O BPS;large ¼ G5

H5

¼ M5: (3.52)

The compactness of H5 yields the absence of a moduli
space related to 1

2 -BPS large attractor solutions, a fact that

can be seen also from the expression of the Hessian matrix
of V evaluated along the BPS criticality constraints (3.7)
[see Eq. (3.72) below].

It is worth remarking that M5’s also are the non-BPS
Z � 0 moduli spaces of N ¼ 2, d ¼ 4 special Kähler
symmetric vector multiplets’ scalar manifolds [23].

Notice that, in general,

dim RM5 ¼ nV: (3.53)

As observed in [23], for magic supergravities (based on
Euclidean Jordan algebras of degree three JA3 over the

division algebras A), it holds that

dimRM5 ¼ 3qþ 2;

q � dimRðA ¼ O;H;C;RÞ ¼ ð8; 4; 2; 1Þ:
(3.54)

2. Non-BPS

Equations (3.40) and (3.48) yield

Î 3 ¼ �9
2Z

3 ¼ I3: (3.55)

Indeed, from its very definition, in this framework it glob-
ally holds that

~� ¼ 0; (3.56)

and thus [recall Eq. (3.11)]

3
2ZxZ

x ¼ 8Z2 , V ¼ 9Z2: (3.57)

Through Eq. (3.49), it thus follows that

SBH;d¼5

�
¼ AH

4�
� R2

H ¼ ðVj@V¼0Þ3=4 ¼
ffiffiffi
6

p jI3j1=2

¼ ffiffiffi
6

p jÎ3j1=2 ¼ 33=2jZj3=2: (3.58)

Such a large BH is supported by (electric) charges belong-
ing to the large charge orbit (homogeneous symmetric
manifold)

O nBPS;large ¼ G5

~H5

¼ M�
5; (3.59)

where ~H5 is the unique noncompact, real form of H5 ¼
mcsðG5Þ which admits a maximal symmetric embedding
into G5:

G5 ⊋
max

~H5: (3.60)

The homogeneous symmetric pseudo-Riemannian mani-
fold M�

5 is the ‘‘� version’’ of M5, obtained through time-

like d ¼ 6 ! 5 reduction from the corresponding
anomaly-free uplifted N ¼ ð1; 0Þ, d ¼ 6 chiral theory

(see e.g. Table 5 of [43], and references therein). Notice
that Eq. (3.59) yields

O nBPS;large ¼ O�
BPS;large; (3.61)

in the sense we have just specified.
The noncompactness of ~H5 implies the existence of a

non-BPS moduli space [23]

M nBPS;large �
~H5

MCSð ~H5Þ
� ~H5

~h5
: (3.62)

As observed in [23], for magic supergravities it holds that
(see e.g. Table 8 of [44], and references therein)

dim RMnBPS;large ¼ 2q; Spinð1þ qÞ 	 ~h5; (3.63)

where Spinð1þ qÞ is the spin group in 1þ q dimensions.
Notice that 2q is the number of d ¼ 6 (scalarless) vector
multiplets needed for an anomaly-free uplift of the consid-
eredN ¼ 2, d ¼ 5 magic Maxwell-Einstein supergravity
to the corresponding N ¼ ð1; 0Þ chiral quarter-minimal
magic supergravity in d ¼ 6 (see e.g. Sec. 5 of [20], and
references therein).
Thus, by recalling (3.54), the number ] of ‘‘nonflat’’

scalar degrees of freedom along OnBPS;large is

nBPS; large � dimRM5 � dimRMnBPS;large ¼ qþ 2:

(3.64)

The large non-BPS Z � 0 charge orbits OnBPS;large ¼
M�

5, and the related non-BPS Z � 0 moduli spaces

MnBPS;large for magic models are reported in Table I.

Furthermore, it should be recalled that the Jordan symmet-
ric sequence (3.44) is related to the reducible rank-3
Euclidean Jordan algebra R 
 �1;n, where �1;n is the

rank-2 Jordan algebra with a quadratic form of
Lorentzian signature ð1; nÞ, i.e. the Clifford algebra of
Oðn; 1Þ [49].

E. Hessian matrix of V

From its very definition (3.1), the first derivative of V
reads [recall Eq. (3.6)]

Vx � V;x ¼ V;x ¼ 2

�
2ZZx �

ffiffi
3
2

q
Txyzg

ysgztZsZt

�
: (3.65)

By further differentiating, the global expression of the real
Hessian nV � nV matrix of V in a generic RSG can be
computed as follows:

Vx;y ¼ V;x;y

¼ 8
3gxyðZ2 � 3

8ZwZ
wÞ þ 2ZxZy � 8

ffiffi
2
3

q
ZTxyzZ

z

þ 2ðTxysTrzw þ 4TxzrTywsÞgrsZzZw

¼ Vðx;yÞ; (3.66)

where Eqs. (3.5) and (3.16) have been used.
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On the other hand, by recalling definitions (3.20) and
(3.33), it can be computed that

Î 3;x;y ¼ �3
ffiffi
3
2

q �
4 ~ExyzwrZ

r þ 2
3ZTxyz;w

�
ffiffi
2
3

q
Tzws;xTys0rg

ss0Zr

�
ZzZw: (3.67)

Then, further elaboration of Eq. (3.66) is possible for
Z � 0. Indeed, in such a case Eq. (3.67) implies that [recall
Eq. (3.16)]

Txzw;yZ
zZw ¼ � 1ffiffiffi

6
p 1

Z
Î3;x;y � 6

Z
~ExyzwrZ

zZwZr

þ 1

2Z
ðZwZ

wÞTxyzZ
z þ 1

Z
ZyTxzwZ

zZw

� 1

Z
ðTxrpTyr0sTtzw þ 2TxwpTyr0sTtzrÞ

� grr
0
gtpZsZzZw: (3.68)

Notice that the symmetry properties Î3;x;y ¼ Î3;ðx;yÞ and
Txzw;yZ

zZw ¼ Tðxzw;yÞZzZw are not manifest, respectively,

from Eqs. (3.67) and (3.68), due to the presence of ~Exyzwr,

Txyz;w, and Î3;x;y itself. By plugging Eq. (3.68) back into

Eq. (3.66), the following result is achieved:

Vx;y ¼ V;x;y

¼ 4ZxZy þ 8

3
Z2gxy � 8

ffiffiffi
2

3

s
ZTxyzZ

z þ 1

Z
Î3;x;y

þ 6
ffiffiffi
6

p
Z

~ExyzwrZ
zZwZr �

ffiffiffi
3

2

s
1

Z
ðZwZ

wÞTxyzZ
z

�
ffiffiffi
6

p
Z

ZyTxzwZ
zZw þ

ffiffiffi
6

p
Z

ðTxrpTyr0sTtzw

þ 2TxwpTyr0sTtzrÞgrr0gtpZsZzZw

þ 4TxzwTysw0gww
0
ZzZs; (3.69)

holding true for Z � 0. Once again, notice that the
symmetry property Vx;y ¼ Vðx;yÞ is not manifest from

Eq. (3.69), due to the presence of ~Exyzwr and Î3;x;y.

By inserting the global condition (2.16) into Eq. (3.66),
one obtains that

Vx;y ¼ V;x;y

¼ 4ZxZy þ 8
3Z

2gxy � 8
ffiffi
2
3

q
ZTxyzZ

z

þ 4TxzwTysw0gww
0
ZzZs

� V;x;y;symm: (3.70)

This is the global expression of the real Hessian nV � nV
matrix of V (at least) in symmetric RSG, and indeed it
matches the result given by Eq. (5-1) of [19] (see also [20]).
Thus, Eqs. (3.66) and (3.70) yield the following result:

V;x;y ¼ V;x;y;symm � gxyðZwZ
wÞ � 2ZxZy

þ 2ð2TxwzTysz0 þ TxyzTswz0 Þgzz0ZwZs: (3.71)

1. Evaluation at critical points of V

Wewill now proceed to evaluate the Hessian matrix of V
given by Eq. (3.66) in the various classes of critical points
of V itself, as given by Eqs. (3.7), (3.8), (3.9), and (3.10).
BPS.—The necessary and sufficient BPS criticality con-

straints (3.7) plugged into Eq. (3.66) yield

V;x;y ¼ 8
3gxyZ

2: (3.72)

Equation (3.72) holds for a generic RSG, and it matches the
result given by Eq. (5-2) of [19]. For a strictly positive-
definite gxy (as it is usually assumed), it implies that the

Hessian matrix of V at its BPS critical points has all strictly
positive eigenvalues.
As mentioned above, the lack of Hessian massless

modes at 12 -BPS critical points of V determines the absence

of a moduli space in BPS attractor solutions, which thus
have all scalar fields �x stabilized at the (unique) event
horizon of the considered (electric) d ¼ 5 extremal BH.
Non-BPS.—It is worth noticing here that Eq. (3.10)

yields

ZxZ
x ¼

ffiffiffi
3

2

s
1

2Z
TxyzZ

xZyZz: (3.73)

By recalling the dressed charges’ sum rule given by
Eq. (3.27) and definition (3.29), Eq. (3.73) implies

32

3
Z2 þ ~� ¼

ffiffiffi
3

2

s
1

Z
TxyzZ

xZyZz: (3.74)

On the other hand, by using Eq. (3.16), one can compute
also that

ZxZ
x ¼ � 1

8

ffiffiffi
3

2

s
1

Z2
Txyz;wZ

xZyZzZw þ 3

16

1

Z2
ðZxZ

xÞ2:
(3.75)

By dividing by ZxZ
x � 0, one then obtains the dressed

charges’ sum rule given by Eq. (3.27). However, one can
also interpret Eq. (3.75) as a quadratic equation in the
unknown ZxZ

x, obtaining the result

0<ZxZ
x ¼ 8

3
Z2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64

9
Z4 � 2

3
Î3;xZ

x

s
: (3.76)

When Î3;x ¼ 0 (i.e.—at least—for symmetric RSG),

Eq. (3.76) consistently yields [19]

3
2ZxZ

x ¼ 8Z2: (3.77)
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IV. SMALL CHARGE ORBITS AND MODULI
SPACES IN SYMMETRIC MAGIC RSG

In the treatment of symmetric RSG performed in
Sec. III D, only large charge orbits, supporting solutions
to the corresponding attractor equations (and first found in
[19]; see also [20]), have been considered.

In the present section, by exploiting the properties of the

functional Î3 introduced in Sec. III C 3, all small charge
orbits of magic symmetric RSG will be explicitly deter-
mined through the resolution of G5-invariant defining (dif-
ferential) constraints both in bare and dressed charge bases,
as well as through group theoretical techniques.

By definition, Î3 [ ¼ I3 in symmetric RSG, as dis-
cussed in Sec. III D; see Eq. (3.48)] vanishes for all small
charge orbits. Consequently, such orbits do not support
solutions to the attractor equations [alias criticality con-
ditions of the effective potential V; see Eqs. (3.7), (3.8),
(3.9), and (3.10), or Eqs. (3.14) and (3.15) in the so-called
new attractor approach]. In other words, the (classical)
attractor mechanism does not hold for small charge orbits,
which indeed do support BH states which are intrinsically
quantum, in the sense that the effective description through
Einstein supergravity fails for them.

Besides the condition of vanishing Î3, further condi-

tions, formulated in terms of derivatives of Î3 in some
charge basis, may be needed to fully characterize the class
of small orbits under consideration. It is worth pointing out
here that the (sets of)G5-invariant constraints which define
small charge orbits in homogeneous symmetric real special

manifolds G5

H5
are characterizing equations for charges (in

both bare and dressed bases), but they actually are identi-

ties in all scalar fields�x, and thus they hold globally in G5

H5
.

This is to be contrasted with large charge orbits, which are
defined through the attractor equations themselves, which
are, at the same time, characterizing equations for charges
(in both bare and dressed bases) and stabilization equations
for the scalars �x at the event horizon of the extremal BH.

As it is well known [23], at non-BPS Z � 0 critical
points of V, some scalars are actually unstabilized at the
(unique) event horizon of the corresponding large extremal
BH solutions. Such unstabilized �x’s span the moduli
space MnBPS;large [given by Eq. (3.62)], associated with a

hidden compact symmetry of the non-BPS Z � 0 attractor
equations themselves, which can be traced back to the
noncompactness of the stabilizer of the non-BPS Z � 0
large charge orbit OnBPS;large [see Eq. (3.59), to be con-

trasted with Eq. (3.52)].
The small charge orbits are homogeneous manifolds of

the form

O small ¼ G5

Smax 2T ; (4.1)

where 2denotes the semidirect group product throughout,

and T is the non-semisimple part of the stabilizer of
Osmall, which in all symmetric RSG (with some extra
features characterizing the symmetric Jordan sequence;
see Sec. VI) can be identified with an Abelian translational
subgroup of G5 itself.
One can also associate a moduli space with small charge

orbits, by observing that the noncompactness of Smax 2T
yields the existence of a corresponding moduli space de-
fined as6

M small � Smax

MCSðSmaxÞ 2T : (4.2)

Note that, differently from large orbits, for small orbits
there also exists a moduli spaceMsmall ¼ T when Smax is
compact. As found in [47,48] for large charge orbits of the
N ¼ 2, d ¼ 4 stumodel, and recently proved in a model-
independent way in [49], the moduli spaces of charge
orbits are defined all along the scalar flows, and thus they
can be interpreted as moduli spaces of unstabilized scalars
at the event horizon (if any) of the extremal BH, as well as
moduli spaces of the Arnowitt-Deser-Misner (ADM) mass
of the extremal BH at spatial infinity. In the small case, the
interpretation at the event horizon breaks down, simply
because such a horizon does not exist at all (at least in the
Einsteinian supergravity approximation).
In general, the number ] of nonflat scalar degrees of

freedom supported by a (large or small) charge orbit O
with associated moduli space M is defined as follows:

] � dimRMd¼5 � dimRM: (4.3)

As an example, let us briefly consider the maximal N ¼
8, d ¼ 5 supergravity, whose large and small charge orbits
have been classified in [15]. The scalar manifold of the
theory is

MN¼8;d¼5 ¼
E6ð6Þ

USpð8Þ ; dimR ¼ 42: (4.4)

(1) The unique large charge orbit is 1
8 -BPS:

O ð1=8Þ-BPS ¼
E6ð6Þ
F4ð4Þ

; dimR ¼ 26; (4.5)

with corresponding moduli space [23]

Mð1=8Þ-BPS ¼ F4ð4Þ
USpð6Þ �USpð2Þ ;

dimR ¼ 28:

(4.6)

Thus, the number of nonflat directions along
Oð1=8Þ-BPS reads

6We thank M. Trigiante for a discussion on the ‘‘flat’’ direc-
tions of small charge orbits.
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]ð1=8Þ-BPS � dimRMN¼8;d¼5 � dimRMð1=8Þ�BPS

¼ 14: (4.7)

Since the charge orbit is large, ]ð1=8Þ-BPS also ex-

presses the actual number of scalar degrees of
freedom which are stabilized in terms of the electric
(magnetic) charges in the near-horizon geometry
of the extremal black hole (black string) under
consideration.

(2) The small 1
4 -BPS orbit is

O ð1=4Þ-BPS ¼
E6ð6Þ

SOð5; 4Þ 2R16
; dimR ¼ 26;

(4.8)

with corresponding moduli space

Mð1=4Þ-BPS ¼ SOð5; 4Þ
SOð5Þ � SOð4Þ 2R16;

dimR ¼ 36:

(4.9)

Thus, the number of nonflat directions along
Oð1=4Þ-BPS reads

] ð1=4Þ-BPS � dimRMN¼8;d¼5 �Mð1=4Þ-BPS ¼ 6:

(4.10)

(3) The small 1
2 -BPS orbit is

O ð1=2Þ-BPS ¼
E6ð6Þ

SOð5; 5Þ 2R16
; dimR ¼ 17;

(4.11)

with corresponding moduli space

Mð1=2Þ-BPS ¼ SOð5; 5Þ
SOð5Þ � SOð5Þ 2R16

¼ Mð2;2Þ;d¼6 2R16;

dimR ¼ 41;

(4.12)

where Mð2;2Þ;d¼6 is the scalar manifold of maximal

(nonchiral) supergravity in d ¼ 6. Thus, the number
of nonflat directions along Oð1=2Þ-BPS reads

] ð1=2Þ-BPS � dimRMN¼8;d¼5 �Mð1=2Þ-BPS ¼ 1:

(4.13)

As we will point out more than once in the treatment
below, result (4.13) expresses the pretty general fact
that the unique nonflat direction along maximally
supersymmetric (namely, 1

2 -BPS) charge orbits is

the Kaluza-Klein radius in the dimensional reduc-
tion d ¼ 6 ! d ¼ 5.

In the treatment of Sec. IVA, the G5-invariant con-
straints defining all classes of small charge orbits in all
symmetric RSG will be derived. Then they will be solved
both in bare and dressed charge bases in Appendix A.

Furthermore, in Appendix B the origin of small charge
orbits (and, in particular, of T ) will be elucidated through
group theoretical procedures [namely, İnönü-Wigner con-
tractions [50,51] and SOð1; 1Þ three-grading].
While the treatment of Sec. IVA holds for all symmetric

RSG, the treatments given in Appendixes A and B strictly
fit only the isolated cases of symmetric RSG provided by
the so-called magic symmetric RSG’s [28–31]. The main
results of Appendixes A and B are reported in Tables III
and IV [the symmetric Jordan sequence (3.44) is consid-

ered in Sec. VI]. In the magic octonionic case JO3 (q ¼ 8),
the results of [15] are matched.
Below we summarize the main results of Appendixes A

and B.
(i) The small lightlike BPS charge orbit (dimR ¼ 3qþ

2)

O lightlike;BPS¼ G5

ðSOðqþ1Þ�AqÞ 2Rðspinðqþ1Þ;spinðQqÞÞ ;

(4.14)

with

S max;lightlike;BPS ¼ SOðqþ 1Þ �Aq; (4.15)

T lightlike;BPS ¼ Rðspinðqþ1Þ;spinðQqÞÞ: (4.16)

Qq andAq, a further factor group in Smax, are given

by Table II. Furthermore, we define

spin ðqþ 1Þ � dimRðSpinðqþ 1ÞÞ; (4.17)

spin ðQqÞ � dimRðSpinðQqÞÞ; (4.18)

with Spinðqþ 1Þ and SpinðQqÞ, respectively, de-
noting the spinor irreprs. in qþ 1 and Qq dimen-

sions. It is worth remarking that Aq is independent

of the space-time dimension (d ¼ 3, 4, 5, 6) in which
the quarter-minimal symmetric magic (Maxwell-
Einstein) supergravity (classified by q ¼ 8, 4, 2, 1)
is considered. It also holds that

d ¼ 5; 6: Ĝcent ¼ SOð1; 1Þ � SOðq� 1Þ �Aq;

(4.19)

d ¼ 3; 4: Ĝcent ¼ Gpaint ¼ SOðqÞ �Aq; (4.20)

TABLE II. Qq and Aq for the various N ¼ 2, d ¼ 5 magic
supergravities (based on JA3 , A ¼ O, H, C, R), classified by q �
dimRA ¼ 8, 4, 2, 1.

q Qq Aq

8 � � � � � �
4 2 SOð3Þ
2 2 SOð2Þ
1 � � � � � �

CHARGE ORBITS OF EXTREMAL BLACK HOLES IN FIVE- . . . PHYSICAL REVIEW D 82, 085010 (2010)

085010-11



where the groups Ĝcent and Gpaint are usually intro-

duced in the treatment of supergravity billiards and
timelike reductions (for a recent treatment and a set
of related references, see e.g. [43]; see also Table V
therein, for subtleties concerning the case q ¼ 8 in

d ¼ 5, 6). The moduli space corresponding to (4.14)
is purely translational:

M lightlike;BPS ¼ Rðspinðqþ1Þ;spinðQqÞÞ; (4.21)

with real dimension

TABLE III. Small lightlike charge orbitsOlightlike;BPS andOlightlike;nBPS (with associated moduli
spaces) in symmetric magic RSG.

JA3 (þ rel: data)
Olightlike;BPS,

r ¼ 2 Mlightlike;BPS

Olightlike;nBPS

r ¼ 2 Mlightlike;nBPS

A ¼ O, q ¼ 8
Spinð9Þ ¼ 16
]light;BPS ¼ 10
]light;nBPS ¼ 2

E6ð�26Þ
SOð9Þ 2R16 R16 E6ð�26Þ

SOð8;1Þ 2R16
SOð8;1Þ
SOð8Þ 2R16

A ¼ H, q ¼ 4
A4 ¼ SOð3Þ,
Q4 ¼ 2
Spinð5Þ ¼ 4
SpinðQ4Þ ¼ 2
]light;BPS ¼ 6
]light;nBPS ¼ 2

SU�ð6Þ
ðSOð5Þ�SOð3ÞÞ 2Rð4;2Þ Rð4;2Þ SU�ð6Þ

ðSOð4;1Þ�SOð3ÞÞ 2Rð4;2Þ
SOð4;1Þ
SOð4Þ 2Rð4;2Þ

A ¼ C, q ¼ 2
A2 ¼ SOð2Þ
Q2 ¼ 2,
Spinð3Þ ¼ 2,
SpinðQ2Þ ¼ 2
]light;BPS ¼ 4
]light;nBPS ¼ 2

SLð3;CÞ
ðSOð3Þ�SOð2ÞÞ 2Rð2;2Þ Rð2;2Þ SLð3;CÞ

ðSOð2;1Þ�SOð2ÞÞ 2Rð2;2Þ
SOð2;1Þ
SOð2Þ 2Rð2;2Þ

A ¼ R, q ¼ 1
Spinð2Þ ¼ 2
]light;BPS ¼ 3
]light;nBPS ¼ 2

SLð3;RÞ
SOð2Þ 2R2 R2 SLð3;RÞ

SOð1;1Þ 2R2 SOð1; 1Þ 2R2

TABLE IV. Small critical charge orbit Ocritical;BPS (with asso-
ciated moduli space Mcritical;BPS) in symmetric magic RSG.

JA3 (þ rel: data) Ocritical;BPS, r ¼ 1 Mcritical;BPS

A ¼ O, q ¼ 8
Spinð9Þ ¼ 16
]crit;BPS ¼ 1

E6ð�26Þ
SOð9;1Þ 2R16

SOð9;1Þ
SOð9Þ 2R16

A ¼ H, q ¼ 4
A4 ¼ SOð3Þ, Q4 ¼ 2
Spinð5Þ ¼ 4,
SpinðQ4Þ ¼ 2
]crit;BPS ¼ 1

SU�ð6Þ
ðSOð5;1Þ�SOð3ÞÞ 2Rð4;2Þ

SOð5;1Þ
SOð5Þ 2Rð4;2Þ

A ¼ C, q ¼ 2
A2 ¼ SOð2Þ,
Q2 ¼ 2,
Spinð3Þ ¼ 2,
SpinðQ2Þ ¼ 2
]crit;BPS ¼ 1

SLð3;CÞ
ðSOð3;1Þ�SOð2ÞÞ 2Rð2;2Þ

SOð3;1Þ
SOð3Þ 2Rð2;2Þ

A ¼ R, q ¼ 1
Spinð2Þ ¼ 2
]crit;BPS ¼ 1

SLð3;RÞ
SOð2;1Þ 2R2

SOð2;1Þ
SOð2Þ 2R2

TABLE V. N -dependent supersymmetry-preserving features
of large and small charge orbits of the irrepr. 15 of the d ¼ 5
U-duality group SU�ð6Þ, related to JH3 . This corresponds to two

‘‘twin’’ theories, sharing the same bosonic sector: an N ¼ 2
Maxwell-Einstein theory and the N ¼ 6 ‘‘pure’’ theory. The
subscript ‘‘H’’ stands for ‘‘(evaluated at the) horizon.’’

JH3 N ¼ 2 N ¼ 6

SU�ð6Þ
USpð6Þ ,
large, I3 � 0

1
2 -BPS nBPS,

ZAB;H ¼ 0,
XH � 0

SU�ð6Þ
USpð4;2Þ ,
large, I3 � 0

nBPS, ZH � 0 1
6 -BPS,

ZAB;H � 0,
XH � 0

SU�ð6Þ
ðSOð5Þ�SOð3ÞÞ 2Rð4;2Þ ,

small, I3 ¼ 0

1
2 -BPS

1
6 -BPS

SU�ð6Þ
ðSOð4;1Þ�SOð3ÞÞ 2Rð4;2Þ ,

small, I3 ¼ 0

nBPS 1
3 -BPS

SU�ð6Þ
ðSOð5;1Þ�SOð3ÞÞ 2Rð4;2Þ ,

small, @I3 ¼ 0

1
2 -BPS

1
2 -BPS
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spin ðqþ 1Þ � spinðQqÞ ¼ 2q: (4.22)

Thus, by recalling (3.54), the number ] of scalar
degrees of freedom on which the ADM mass de-
pends along Olightlike;BPS is [recall Eq. (3.64)]

]light;BPS � dimRM5 � dimRMlightlike;BPS

¼ 3qþ 2� ðspinðqþ 1Þ � spinðQqÞÞ
¼ qþ 2: (4.23)

By recalling Eq. (3.63), it is worth noting that
MnBPS;large and Mlightlike;BPS have the same real

dimension, but they are completely different, as
yielded by Eqs. (3.62) and (4.21).

(ii) The small lightlike non-BPS charge orbit (dimR ¼
3qþ 2)

O lightlike;nBPS¼ G5

ðSOðq;1Þ�AqÞ 2Rðspinðqþ1Þ;spinðQqÞÞ ;

(4.24)

with

S max;lightlike;nBPS ¼ SOðq; 1Þ �Aq; (4.25)

T lightlike;nBPS ¼ Rðspinðqþ1Þ;spinðQqÞÞ ¼ T lightlike;BPS:

(4.26)

The related moduli space reads (dimR ¼ 3q)

M lightlike;nBPS ¼ SOðq; 1Þ
SOðqÞ 2Rðspinðqþ1Þ;spinðQqÞÞ

¼ MnJ;5;q 2Rðspinðqþ1Þ;spinðQqÞÞ;
(4.27)

where MnJ;5;q is the qth element of the generic non-

Jordan symmetric sequence (3.45). Thus, by recall-
ing (3.54), the number ] of scalar degrees of free-
dom on which the ADM mass depends along
Olightlike;nBPS is

]light;nBPS � dimRM5 � dimRMlightlike;nBPS

¼ 2qþ 2� ðspinðqþ 1Þ � spinðQqÞÞ ¼ 2:

(4.28)

(iii) The small critical BPS charge orbit (dimR ¼ 2qþ
1)

O critical;BPS ¼ G5

ðG6 �AqÞ 2Rðspinðqþ1Þ;spinðQqÞÞ ;

(4.29)

where

G6 ¼ SOð1; qþ 1Þ (4.30)

is the U-duality group of the corresponding (1, 0),
d ¼ 6 chiral supergravity theory. Thus,

Smax;critical;BPS ¼ G6 �Aq;

T critical;BPS ¼ T lightlike;nBPS ¼ T lightlike;BPS:
(4.31)

The related moduli space reads (dimR ¼ 3qþ 1)

M critical;BPS ¼ SOðqþ 1; 1Þ
SOðqþ 1Þ 2Rðspinðqþ1Þ;spinðQqÞÞ

¼ MnJ;5;qþ1 2Rðspinðqþ1Þ;spinðQqÞÞ:
(4.32)

Thus, by recalling (3.54), the number ] of scalar
degrees of freedom on which the ADM mass de-
pends along Ocritical;BPS is

]crit;BPS � dimRM5 � dimRMcritical;BPS

¼ 2qþ 1� ðspinðqþ 1Þ � spinðQqÞÞ ¼ 1:

(4.33)

The unique scalar degree of freedom on which the
ADM mass depends can be interpreted as the
Kaluza-Klein radius in the d ¼ 6 ! d ¼ 5 reduc-
tion. Furthermore, it is worth observing that

M critical;BPS ¼ Mð1;0Þ;d¼6;JA
3

2Rðspinðqþ1Þ;spinðQqÞÞ;

(4.34)

where Mð1;0Þ;d¼6;JA
3
is the manifold of tensor mul-

tiplets’ scalars in the corresponding (1, 0), d ¼ 6
theory (see e.g. Sec. 5 of [20] for a recent
treatment).

It should also be noticed that OnBPS;large [given by

Eq. (3.59)] and Ocritical;BPS [given by Eq. (4.29)] share the

same compact symmetry, or equivalently that MnBPS;large

[given by Eq. (3.62)] andMcritical;BPS [given by Eq. (4.32)]

share the same stabilizer group (apart from an Aq com-

muting factor), but they do not coincide. This is due to the
fact that ~H5 and G6 �Aq share the same MCS, namely,

~h 5 � MCSð ~H5Þ ¼ MCSðG6 �AqÞ
¼ SOðqþ 1Þ �Aq: (4.35)

In the case A ¼ R (q ¼ 1), the following further results
hold (see also Tables III and IV):

MnBPS;large;JR3
2
�R2

Rð2;2Þ ¼ MN¼ð1;0Þ;d¼6;JR3
2
�R2

Rð2;2Þ

¼
�Mcritical;BPS;JR3

Mlightlike;nBPS;JC
3
:

(4.36)

Notice that JR3 is the unique case, among JA3 in d ¼ 5, in
whichMnBPS;large andMcritical;BPS not only share the same

stabilizer, but actually do coincide (up to 2R2). Moreover,
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MnBPS;large;JR3
also coincides with Mlightlike;nBPS;JC

3
(up to

2Rð2;2Þ), because the respective charge orbits OnBPS;large;JR
3

and Olightlike;nBPS;JC
3
share the same semisimple, namely,

nontranslational, part of the stabilizer [apart from a com-
muting A2 ¼ SOð2Þ factor], i.e. SOð2; 1Þ.

The Jordan symmetric infinite sequence [28–32,35,52]
given by Eq. (3.44) needs some extra care (also at the level
of large charge orbits), because of the factorization of G5.
The large and small charge orbits for such a sequence will
be treated in Sec. VI. This treatment refines and complete
the ones given e.g. in [19,20,23].

A. G5-invariant defining constraints

As mentioned above, small charge orbits in all symmet-
ric RSG are all characterized by the constraint [recall
Eq. (3.48)]

Î 3 ¼ I3 ¼ 0; (4.37)

where Î3 ¼ I3 is the unique cubic scalar invariant of the
relevant electric representation Rq of the d ¼ 5 U-duality

groupG5 (in which the electric charges qi sit). By recalling
definitions (3.32) and (7.2), the ‘‘smallness’’ condition
(4.37) can be recast as follows:

Î 3 ¼ 0 , Z3 �
�
3

2

�
2
ZZxZ

x �
�
3

2

�
3=2

TxyzZ
xZyZz ¼ 0;

(4.38)

I 3 ¼ 0 , dijkqiqjqk ¼ 0; (4.39)

in the dressed and bare charge bases, respectively.
It is worth noticing here that Eq. (4.38) can be recast as a

cubic algebraic equation:

Z3 þ pZ� q ¼ 0; p � �ð32Þ2ZxZ
x < 0;

q � ð32Þ3=2TxyzZ
xZyZz;

(4.40)

with a polynomial discriminant

D � p3

9
þ q2

4
¼ 33

26
½2ðTxyzZ

xZyZzÞ2 � ðZxZ
xÞ3�: (4.41)

Thus, for D> 0 one gets one real and two complex con-
jugate (unacceptable) roots, whereas forD< 0 all roots are
real and unequal. In the particular case

D ¼ 0 , 2ðTxyzZ
xZyZzÞ2 ¼ ðZxZ

xÞ3; (4.42)

all roots are real, and at least two are equal.
Let us proceed further, by differentiating the functional

Î3 with respect to the dressed charges

Z � fZ; Zxg; (4.43)

as well as the function I3 with respect to the bare charges
fqig. One, respectively, obtains

@Î3

@Z
¼

8<
:

@Î3

@Z ¼ 1
2Z

2 � 3
8ZxZ

x

@Î3

@Zx
¼ � 3

4ZZ
x � 1

2 ð32Þ3=2Tx
yzZ

yZz;
(4.44)

@I3

@qi
¼ 1

2
dijkqjqk; (4.45)

where it should be recalled once again that here we are

considering symmetric real special manifolds G5

H5
, where

Eqs. (2.16) and (2.17) hold true.
A further differentiation with respect to Z or fqig, re-

spectively, yields

@2Î3

ð@ZÞ2 ¼

8>>>><
>>>>:

@2Î3

ð@ZÞ2 ¼ Z

@2Î3

@Z@Zx
¼ � 3

4Z
x

@2Î3

@Zx@Zy
¼ � 3

4Zg
xy � ð32Þ3=2Txy

zZ
z ¼ @2Î3

@Zðx@ZyÞ
;

(4.46)

@2I3

@qi@qj
¼ dijkqk ¼ @2I3

@qði@qjÞ
: (4.47)

By further differentiating, one then obtains

@3Î3

ð@ZÞ3 ¼

8>>>>>>>><
>>>>>>>>:

@3Î3

ð@ZÞ3 ¼ 1

@3Î3

ð@ZÞ2@Zx
¼ 0

@3Î3

@Z@Zx@Zy
¼ � 3

4g
xy ¼ @3Î3

@Z@Zðx@ZyÞ
@3Î3

@Zx@Zy@Zz
¼ �ð32Þ3=2Txyz ¼ @3Î3

@Zðx@Zy@ZzÞ
;

(4.48)

@3I3

@qi@qj@qk
¼ dijk ¼ @3I3

@qði@qj@qkÞ
: (4.49)

Starting from the fourth order of differentiation, all deriva-

tives vanish. This is no surprise, because Î3 is a homoge-
neous functional polynomial of degree three in dressed
charges Z, and (equivalently) I3 is a homogeneous poly-
nomial of degree three in bare charges qi.
At this point, it is possible to classify the various small

charge orbits throughG5-invariant conditions involving Î3

and its nonvanishing functional derivatives with respect to
Z, or equivalently through G5-invariant conditions involv-
ing I3 and its nonvanishing derivatives with respect to qi’s.

1. Small lightlike orbits

The small lightlike charge orbits are defined by the
constraints [recall Eqs. (4.38) and (4.39)]

CERCHIAI et al. PHYSICAL REVIEW D 82, 085010 (2010)

085010-14



Î3 ¼ 0, Z3 �
�
3

2

�
2
ZZxZ

x �
�
3

2

�
3=2

TxyzZ
xZyZz ¼ 0;

@Î3

@Z
� 0,

8>>><
>>>:

Z2 � 3
4ZxZ

x � 0;

and=or

ZZx þ
ffiffi
3
2

q
Tx

yzZ
yZz � 0 ðat least for some xÞ;

(4.50)

or equivalently,

I3 ¼ 0 , dijkqiqjqk ¼ 0;

@I3

@qi
� 0 , dijkqjqk � 0 ðat least for some iÞ:

(4.51)

The sets of constraints (4.50) and (4.51) are both G5

invariant, but their manifest invariance is different.
Indeed, the dressed charge basisZ is covariant with respect
to H5, and thus the set of constraints (4.50) exhibits a
manifest H5 invariance. Instead, the bare charge basis
fqig is G5 covariant, and thus the set of constraints (4.50)
is manifestly G5 invariant.

In the dressed charge basis, it is immediate to realize that
two classes of small lightlike charge orbits exist.
(i) A small lightlike charge orbit for which the con-

straints (4.50) are solved with Z ¼ 0:

Î3jZ¼0 ¼ 0, TxyzZ
xZyZz ¼ 0;

@Î3

@Z
jZ¼0 � 0,

8>>><
>>>:
ZxZ

x � 0

and=or

Tx
yzZ

yZz � 0 ðat least for some xÞ:
(4.52)

Notice that the constraint ZxZ
x � 0 is automatically

satisfied, because (1) gxy is assumed to be strictly

positive definite, and (2) Zx � 0 at least for some x
(otherwise, since Z ¼ 0, one would obtain the trivial
limit in which all charges vanish).

(ii) A small lightlike charge orbit for which the con-
straints (4.50) are solved with Z � 0 [also recall
Eqs. (4.40), (4.41), and (4.42)]:

Î3jZ�0 ¼ 0 , Z3 �
�
3

2

�
2
ZZxZ

x �
�
3

2

�
3=2

TxyzZ
xZyZz ¼ 0;

@Î3

@Z

��������Z�0
� 0 ,

8>>><
>>>:

Z2 � 3
4ZxZ

x � 0

and=or

ZZx þ
ffiffi
3
2

q
Tx

yzZ
yZz � 0 ðat least for some xÞ:

(4.53)

2. Small critical orbit

The small critical charge orbit is defined by the con-
straints [recall Eqs. (4.38) and (4.39)]

Î3 ¼ 0 , Z3 �
�
3

2

�
2
ZZxZ

x �
�
3

2

�
3=2

TxyzZ
xZyZz ¼ 0;

@Î3

@Z
¼ 0 ,

8<
:
Z2 � 3

4ZxZ
x ¼ 0

ZZx þ
ffiffi
3
2

q
Tx

yzZ
yZz ¼ 0;

(4.54)

or equivalently,

I3 ¼ 0 , dijkqiqjqk ¼ 0;

@I3

@qi
¼ 0 , dijkqjqk ¼ 0:

(4.55)

As noticed above for the sets of constraints (4.50) and
(4.51), the sets of constraints (4.54) and (4.55) are both
G5 invariant: while (4.54) is manifestly invariant only
under H5 ¼ MCSðG5Þ, (4.55) is actually manifestly G5

invariant.
Once again, in the dressed charge basis it is immediate to

realize that only one class of small critical charge orbits
exists, namely, a small critical charge orbit for which the
constraints (4.54) are solved with Z � 0:

Î3jZ�0 ¼ 0 , Z3 �
�
3

2

�
2
ZZxZ

x �
�
3

2

�
3=2

TxyzZ
xZyZz

¼ 0;

@Î3

@Z

��������Z�0
¼ 0 ,

8<
:
Z2 � 3

4ZxZ
x ¼ 0;

ZZx þ
ffiffi
3
2

q
Tx

yzZ
yZz ¼ 0:

(4.56)

Notice that, for the same reason the constraint @Î3

@Z jZ¼0 �

0 is automatically satisfied for the small lightlike charge
orbit whose representative in the dressed charge basis is
given by Eq. (4.52), a small critical charge orbit with a
representative having Z ¼ 0 cannot exist. Indeed, such an
orbit should have Z ¼ 0 and ZxZ

x ¼ 0. Because of the
assumed strictly positive definiteness of gxy, this would be

possible only in the trivial limit of the theory in which all
charges do vanish. This can be formally stated as follows:

@Î3

@Z

��������Z¼0
¼ 0 , Z ¼ 0: (4.57)

V. JH
3 : N ¼ 2 VS N ¼ 6

The rank-3 Euclidean Jordan algebra JH3 (q ¼ 4) is

related to two different theories, namely, anN ¼ 2 theory
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coupled to 14 Abelian vector multiplets and the N ¼ 6
‘‘pure’’ theory. These two theories share the same bosonic
sector [15,19,53], but their fermionic sectors, exploiting
the supersymmetric completion of the bosonic one, are
different.

Thus, it also follows that the supersymmetry-preserving
features of the large and small charge orbits of the relevant
irrepr. 15 ofG5 ¼ SU�ð6Þ are different. TheN -dependent
supersymmetry properties of the various orbits are given in
Table V (notice they are consistent with the results of [54]).
In the large (attractor) cases, these match the results of
[20].

VI. N ¼ 2, d ¼ 5 JORDAN SYMMETRIC
SEQUENCE

The Jordan symmetric sequence of N ¼ 2, d ¼ 5 su-
pergravity coupled to nV ¼ nþ 1 vector multiplets reads
(dimR ¼ nþ 1, rank ¼ 2, n 2 N [ f0g)

MN¼2;d¼5;Jordan;symm ¼ SOð1; 1Þ � SOð1; nÞ
SOðnÞ : (6.1)

This sequence is associated with the rank-3 Euclidean
reducible Jordan algebra R 
 �1;n. In the following treat-

ment, we will determine the large and small orbits of the
irrepr. ð1; 1þ nÞ of the U-duality group SOð1; 1Þ �
SOð1; nÞ.

For the sake of brevity, we will do this only through an
analysis in the bare charges’ basis.

Without any loss of generality, one can choose to treat
only d ¼ 5 extremal (electric) BHs. Indeed, due to the
symmetricity of the reducible coset (6.1), the treatment
of d ¼ 5 extremal (magnetic) black strings is essentially
analogous.

Two disconnected geometric structures emerge in the
treatment, as follows.

(i) Timelike two-sheet hyperboloid Tn, with the two
disconnected sheets T�

n , respectively, related to q0 _
0:

Tn � SOð1; nÞ
SOðnÞ

��������q2I>0
¼ Tþ

n

q0 > 0
[ T�

n

q0 < 0
;

Tþ
n \ T�

n ¼ ;: (6.2)

(ii) Forward/backward light-cone �n of ðnþ
1Þ-dimensional Minkowski space with metric �IJ

defined by (6.5), with two (forward �þ
n and back-

ward ��
n ) cone branches, respectively, related to

q0 _ 0:

�n � SOð1;nÞ
SOðn� 1Þ 2Rn�1

¼�þ
n [��

n ;�
þ
n \��

n ¼ 0;

(6.3)

with ‘‘0’’ here denoting the origin of �n itself.

Because of such structures, as well as the lower (N ¼
2) supersymmetry, the case study of large and small charge
orbits in N ¼ 2, d ¼ 5 Jordan symmetric sequence ex-
hibits some subtleties absent in the N ¼ 4, d ¼ 5 theory
analyzed in Sec. VII.
In the bare charges’ basis, the electric cubic invariant of

the ð1; 1þ nÞ of SOð1; 1Þ � SOð1; nÞ reads as follows (I ¼
0, i, where i ¼ 1; . . . ; n, throughout; 0 pertains to the d ¼ 5
graviphoton field, which through the dimensional reduc-
tion d ¼ 5 ! d ¼ 4 becomes the Maxwell vector field of
the axio-dilatonic vector multiplet):

I 3;el � qHqIqJ�
IJ � qHq

2
I ¼ qH

�
q20 �

Xn
i¼1

q2i

�
; (6.4)

where qH is the electric charge of the dilatonic vector
multiplet: it is an SOð1; nÞ singlet, with SOð1; 1Þ weight
þ2. On the other hand, the SOð1; nÞ vector qI has SOð1; 1Þ
weight �1, such that I3;el defined by (6.4) is SOð1; 1Þ �
SOð1; nÞ invariant. Notice that the action of the U-duality
group does not mix qH and qI, and this originates more
charge orbits with respect to the irreducible cases.
Moreover, �IJ ¼ �IJ is the Lorentzian metric of SOð1; nÞ:

�IJ ¼ �IJ � diag

�
þ1;�1; . . . ;�1

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{n �
: (6.5)

In N ¼ 2, d ¼ 5 Jordan symmetric sequence, as well
as in N ¼ 4, d ¼ 5 theory, the reducibility of the asso-
ciated rank-3 Jordan algebra gives rise to many subtleties
and differences with respect to the theories associated with
irreducible Euclidean rank-3 Jordan algebras. In theN ¼
2 case under consideration, the major difference consists in
a higher number of large and small orbits with respect to
the magic supergravities.

A. Large orbits

(i) BPS (3-charge) orbits are defined as follows:

qH > 0; q20 �
Xn
i¼1

q2i > 0;

q0 > 0; or qH < 0; q20 �
Xn
i¼1

q2i > 0;

q0 < 0: (6.6)

By recalling definition (6.2), the orbit reads (n  0)

OBPS;large ¼ ½SOð1; 1Þþ � Tþ
n � [ ½SOð1; 1Þ� � T�

n �;
(6.7)

with no related moduli space. In particular, for n ¼
0, namely, in the so-called N ¼ 2, d ¼ 5 SOð1; 1Þ
model (d ¼ 5 uplift of the d ¼ 4 st2 model), in
which only the dilatonic vector multiplet is coupled
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to the gravity multiplet, this orbit is actually 2-
charge, and it is given by

O BPS;large;SOð1;1Þ ¼ fðqH; q0Þ ¼ ðþ;þÞ; ð�;�Þg:
(6.8)

On the other hand, for n ¼ 1, i.e. in the so-called
N ¼ 2, d ¼ 5 ½SOð1; 1Þ�2 model (d ¼ 5 uplift of
the stu model), the cubic invariant (6.4) can be
rewritten as follows:

I3;el � qHqIqJ�
IJ � qHðq20 � q21Þ ¼ qHqþq�;

q� � q0 � q1; (6.9)

and thus the hyperboloid (6.2) and light-cone (6.3)
structures get, respectively, factorized as follows
(‘‘þ,’’ ‘‘�,’’ and ‘‘0,’’ respectively, denote strictly
positive, strictly negative, and vanishing values):

T1 ¼ SOð1; 1Þjqþq�>0

¼ Tþ
1

q0 > 0
[ T�

1

q0 < 0
;Tþ

1 \ T�
1 ¼ ;;

Tþ
1 ¼ fðqþ; q�Þ ¼ ðþ;þÞg;

T�
1 ¼ fðqþ; q�Þ ¼ ð�;�Þg:

(6.10)

�1 ¼ SOð1; 1Þ ¼ �þ
1 [��

1 ; �
þ
1 \��

1 ¼ 0;

�þ
1 ¼ fðqþ; q�Þ ¼ ðþ; 0Þ; ð0;þÞg;

��
1 ¼ fðqþ; q�Þ ¼ ð�; 0Þ; ð0;�Þg:

(6.11)

For n ¼ 1, orbit (6.7) reads

O BPS;3-charge;½SOð1;1Þ�2 ¼ fðqH; qþ; q�Þ
¼ ðþ;þ;þÞ; ð�;�;�Þg:

(6.12)

This is invariant under triality permutation symmetry
of qH, qþ, and q�, and it is consistent with the
analysis of [34].

(ii) Non-BPS (3-charge) orbits, with Z � 0 at the hori-
zon, are defined as follows:

qH > 0; q20 �
Xn
i¼1

q2i > 0;

q0 < 0; or qH < 0; q20 �
Xn
i¼1

q2i > 0;

q0 > 0: (6.13)

By recalling definition (6.2), the orbit reads (n  0)

OnBPS;large;I ¼ ½SOð1; 1Þþ � T�
n �

[ ½SOð1; 1Þ� � Tþ
n �; (6.14)

with no related moduli space. In particular, for n ¼

0, this orbit is actually 2-charge, and it is given by

O nBPS;large;SOð1;1Þ ¼ fðqH; q0Þ ¼ ðþ;�Þ; ð�;þÞg:
(6.15)

On the other hand, for n ¼ 1, orbit (6.14) reads

O nBPS;large;I;½SOð1;1Þ�2 ¼ fðqH; qþ; q�Þ
¼ ðþ;�;�Þ; ð�;þ;þÞg:

(6.16)

The supersymmetry properties of OBPS;large and

OnBPS;large;I can be understood by noticing that the flip of

the sign of qH amounts, in the dressed charges’ basis, to the
exchange Z $ @sZ, where s is the real dilaton scalar field,
parametrizing SOð1; 1Þ of (6.1).
It is worth pointing out that both the N ¼ 2

orbits OBPS;large and OnBPS;large;I [respectively given by

(6.7) and (6.14)] uplift to the same N ¼ 4 orbit
Oð1=4Þ-BPS;large;N¼4;d¼5 given by Eq. (7.4). As mentioned,

this is due to the fact that in N ¼ 4, d ¼ 5, qH > 0 $
qH < 0 amounts to exchanging the two gravitinos in the
gravity multiplet, i.e. the two (opposite) skew eigenvalues

of the skew-traceless central charge matrix Z
�
AB (A; B ¼

1; . . . ; 4).
Another non-BPS (3-charge) orbit, with Z � 0 at the

horizon, is defined as follows [19]:

qH _ 0; q20 �
Xn
i¼1

q2i < 0: (6.17)

Thus, the resulting orbit reads (existing only for n  1)

O nBPS;large;II ¼ SOð1; 1Þ � SOð1; nÞ
SOð1; n� 1Þ ; (6.18)

with related moduli space [recall (3.44) and (3.45)]

MnBPS;large;II ¼ SOð1; n� 1Þ
SOðn� 1Þ ¼ MJ;5;n�1

SOð1; 1Þ ¼ MnJ;5;n�1

¼ Mð1;0Þ;d¼6jn�1; (6.19)

where MnJ;5;n�1 denotes the N ¼ 2, d ¼ 5 non-Jordan

symmetric sequence with n� 1 vector multiplets [45], and
Mð1;0Þ;d¼6jn�1 is the scalar manifold of (1, 0), d ¼ 6 super-
gravity with nT ¼ n� 1 tensor multiplets. Thus, by recall-
ing (6.1), the number ] of nonflat scalar degrees of freedom
along OnBPS;large;II is independent of n > 1:

]nBPS;large;II � dimRMN¼2;d¼5;Jordan;symm

� dimRMnBPS;large;II ¼ 2: (6.20)

For n ¼ 1, orbit (6.18) reads
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O nBPS;large;II;½SOð1;1Þ�2 ¼ fðqH; qþ; q�Þ ¼ ðþ;þ;�Þ; ðþ;�;þÞ; ð�;þ;�Þ; ð�;�;þÞg; (6.21)

with no corresponding moduli space. Equation (6.21) is
equivalent to (6.16) through triality permutation symmetry
of qH, qþ, and q�. Thus, consistent with the analysis of
[34], the non-BPS large orbit of the ½SOð1; 1Þ�2 model is
given, up to permutations of the triplet ðqH; qþ; q�Þ, by

O nBPS;3-charge;½SOð1;1Þ�2 ¼ fðqH; qþ; q�Þ
¼ ðþ;þ;�Þ; ðþ;�;�Þg: (6.22)

B. Small orbits

Let us now consider the small orbits, and compute the
criticality and double-criticality conditions on I3;el defined

by (6.4):

@I3;el

@Q
¼

8<
:

@I3;el

@qH
¼ q2I

@I3;el

@qI
¼ 2qHqJ�

IJ;
(6.23)

@2I3;el

@Q2
¼

8>>><
>>>:

@I3;el

ð@qHÞ2 ¼ 0
@I3;el

@qH@qI
¼ @I3;el

@qI@qH
¼ 2qJ�

IJ

@I3;el

@qI@qJ
¼ 2qH;

(6.24)

where

Q � ðqH; qIÞ (6.25)

is shorthand for the vector of electric charges. As expected
from the fact that I3;el is homogeneous of degree three,

(6.24) implies that the unique doubly critical orbit is the
trivial one with all charges vanishing, because

@2I3;el

@Q2
¼ 0 , Q ¼ 0: (6.26)

The small orbits of the ð1; 1þ nÞ of the U-duality group
SOð1; 1Þ � SOð1; nÞ are listed as follows:

(1) BPS lightlike (I3;el ¼ 0,
@I3;el

@Q � 0: 2-charge) orbit

with vanishing qH and timelike qI:

qH ¼ 0; q20 �
Xn
i¼1

q2i > 0: (6.27)

By recalling definition (6.2), the orbit reads (n  0)

O BPS;small;I ¼ SOð1; 1Þ � Tn; (6.28)

with no corresponding moduli space. In particular,
for n ¼ 0 this orbit is actually 1-charge, and it is
given by

O BPS;small;I;SOð1;1Þ ¼ fðqH; q0Þ ¼ ð0;þÞ; ð0;�Þg:
(6.29)

On the other hand, for n ¼ 1, the orbit (6.28) reads

O BPS;small;I;½SOð1;1Þ�2 ¼ fðqH; qþ; q�Þ
¼ ð0;þ;þÞ; ð0;�;�Þg;

(6.30)

with no corresponding moduli space, and thus

] BPS;small;I;½SOð1;1Þ�2 ¼ 2: (6.31)

(2) Non-BPS lightlike (I3;el ¼ 0,
@I3;el

@Q � 0: 2-charge)

orbit with vanishing qH and spacelike qI:

qH ¼ 0; q20 �
Xn
i¼1

q2i < 0: (6.32)

It reads (existing only for n  1)

O nBPS;small;I ¼ SOð1; 1Þ � SOð1; nÞ
SOð1; n� 1Þ ; (6.33)

with corresponding moduli space [recall Eq. (6.19)]

M nBPS;small;I ¼ MnBPS;large;II: (6.34)

Thus, by recalling (6.1), the number ] of nonflat
scalar degrees of freedom along OnBPS;small;I is in-

dependent of n  1:

]nBPS;small;I � dimRMN¼2;d¼5;Jordan;symm

� dimRMnBPS;small;I ¼ 2: (6.35)

For n ¼ 1, orbit (6.33) reads

O nBPS;small;I;½SOð1;1Þ�2 ¼ fðqH; qþ; q�Þ
¼ ð0;þ;�Þ; ð0;�;þÞg;

(6.36)

with no corresponding moduli space.

(3) BPS critical (I3;el ¼ 0,
@I3;el

@Q ¼ 0: 1-charge) orbit

with vanishing qH and lightlike qI:

qH ¼ 0; q20 �
Xn
i¼1

q2i ¼ 0: (6.37)

By recalling definition (6.3), the orbit reads (existing
only for n  1)

O BPS;small;II ¼ �n; (6.38)

and the corresponding moduli space is (n  1)
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M BPS;small;II ¼ SOð1; 1Þ � Rn�1: (6.39)

Thus, by recalling (6.1), the number ] of nonflat
scalar degrees of freedom along OBPS;small;II is inde-

pendent of n  1:

]BPS;small;II � dimRMN¼2;d¼5;Jordan;symm

� dimRMBPS;small;II ¼ 1: (6.40)

Analogously to what holds for symmetric magic
RSG [noted below Eq. (4.33)], the unique scalar
degree of freedom on which the ADMmass depends
can be interpreted as the Kaluza-Klein radius in the
d ¼ 6 ! d ¼ 5 reduction. For n ¼ 1, orbit (6.38)
reads

O BPS;small;II;½SOð1;1Þ�2 ¼ fðqH; qþ; q�Þ ¼ ð0; 0;þÞ; ð0;þ; 0Þ; ð0; 0;�Þ; ð0;�; 0Þg: (6.41)

(4) BPS lightlike (I3;el ¼ 0,
@I3;el

@Q � 0: 2-charge) orbit,

defined as follows:

qH > 0; q20 �
Xn
i¼1

q2i ¼ 0;

q0 > 0; or qH < 0; q20 �
Xn
i¼1

q2i ¼ 0;

q0 < 0:

(6.42)

By recalling definition (6.3), the orbit reads (n  2)

OBPS;small;III ¼ ½SOð1; 1Þþ ��þ
n �

[ ½SOð1; 1Þ� ���
n �; (6.43)

and the corresponding moduli space is purely trans-
lational (n  2):

M BPS;small;III ¼ Rn�1 ¼ MBPS;small;II: (6.44)

Thus, by recalling (6.1), the number ] of nonflat
scalar degrees of freedom along OBPS;small;III is in-

dependent of n  2:

]BPS;small;III � dimRMN¼2;d¼5;Jordan;symm

� dimRMBPS;small;III ¼ 2: (6.45)

This orbit exists also for n ¼ 1, and it reads

O BPS;small;III;½SOð1;1Þ�2 ¼ fðqH; qþ; q�Þ ¼ ðþ; 0;þÞ; ðþ;þ; 0Þ; ð�; 0;�Þ; ð�;�; 0Þg; (6.46)

with no corresponding moduli space. Equation
(6.46) is equivalent to (6.30) through triality permu-
tation symmetry of qH, qþ, and q�. Thus, the BPS 2-
charge orbit of the ½SOð1; 1Þ�2 model is given, up to
permutations of the triplet ðqH; qþ; q�Þ, by

O BPS;2-charge;½SOð1;1Þ�2 ¼ fðqH; qþ; q�Þ
¼ ðþ;þ; 0Þ; ð�;�; 0Þg:

(6.47)

(5) Non-BPS lightlike (I3;el ¼ 0,
@I3;el

@Q � 0: 2-charge)

orbit, defined as follows:

qH < 0; q20 �
Xn
i¼1

q2i ¼ 0;

q0 > 0; or qH > 0; q20 �
Xn
i¼1

q2i ¼ 0;

q0 < 0: (6.48)

By recalling definition (6.3), the orbit reads (n  2)

OnBPS;small;II ¼ ½SOð1; 1Þþ ���
n �

[ ½SOð1; 1Þ� ��þ
n �; (6.49)

with corresponding moduli space (n  2)

M nBPS;small;II ¼ Rn�1 ¼ MBPS;small;II

¼ MBPS;small;III: (6.50)

Thus, by recalling (6.1), the number ] of nonflat
scalar degrees of freedom along OnBPS;small;II is in-

dependent of n  2:

]nBPS;small;II � dimRMN¼2;d¼5;Jordan;symm

� dimRMnBPS;small;II ¼ 2: (6.51)

This orbit exists also for n ¼ 1, and it reads
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O nBPS;small;II;½SOð1;1Þ�2 ¼ fðqH; qþ; q�Þ ¼ ðþ; 0;�Þ; ðþ;�; 0Þ; ð�; 0;þÞ; ð�;þ; 0Þg; (6.52)

with no corresponding moduli space. Equa-
tion (6.52) is equivalent to (6.36) through triality
permutation symmetry of qH, qþ, and q�. Thus,
the non-BPS 2-charge orbit of the ½SOð1; 1Þ�2 model
is given, up to permutations of the triplet
ðqH; qþ; q�Þ, by

O nBPS;2-charge;½SOð1;1Þ�2 ¼ fðqH; qþ; q�Þ
¼ ðþ;�; 0Þg: (6.53)

(6) BPS critical (I3;el ¼ 0,
@I3;el

@Q ¼ 0: 1-charge) orbit

with vanishing qI and nonvanishing qH:

qH 2 R0; qI ¼ 0: (6.54)

It exists for every n  0, and it reads

O BPS;small;IV ¼ SOð1; 1Þ; (6.55)

with moduli space [n  1; recall (3.45)]

M BPS;small;IV ¼ SOð1; nÞ
SOðnÞ ¼ MnJ;5;n: (6.56)

Thus, by recalling (6.1), the number ] of nonflat
scalar degrees of freedom along OBPS;small;IV is in-

dependent of n  1:

]BPS;small;IV � dimRMN¼2;d¼5;Jordan;symm

�MBPS;small;IV ¼ 1: (6.57)

Analogously to what holds for symmetric magic
RSG [noted below Eq. (4.33)], the unique scalar
degree of freedom on which the ADMmass depends
can be interpreted as the Kaluza-Klein radius in the
d ¼ 6 ! d ¼ 5 reduction. Furthermore, as in the
corresponding N ¼ 4, d ¼ 5 small orbit [given
by Eq. (7.34)], the sign of qH does not matter here.
Orbit (6.55) originates from the d ¼ 6 ! d ¼ 5
reduction of (1, 0) theory with all charges switched
off. Indeed, qH is the electric charge of the Kaluza-
Klein vector in the reduction d ¼ 6 ! d ¼ 5. In
particular, for n ¼ 0, this orbit reads

O BPS;small;IV;SOð1;1Þ ¼ fðqH; q0Þ ¼ ðþ; 0Þ; ð�; 0Þg;
(6.58)

with no corresponding moduli space. On the other

hand, for n ¼ 1 the orbit (6.55) reads

O BPS;small;IV;½SOð1;1Þ�2 ¼ fðqH; qþ; q�Þ
¼ ðþ; 0; 0Þ; ð�; 0; 0Þg; (6.59)

which is equivalent to (6.41) through triality permu-
tation symmetry of qH, qþ, and q�. Thus, the BPS
1-charge orbit of the ½SOð1; 1Þ�2 model is given, up
to permutations of the triplet ðqH; qþ; q�Þ, by

O BPS;1-charge;½SOð1;1Þ�2 ¼ fðqH; qþ; q�Þ
¼ ðþ; 0; 0Þ; ð�; 0; 0Þg:

(6.60)

Thus, the stratification structure of the ð1; 1þ nÞ-repr.
space of the d ¼ 5 U-duality group SOð1; 1Þ � SOð1; nÞ
can be given through the following two chains of relations,
proceeding (left to right) from 1-charge orbits to 2-charge
orbits to 3-charge orbits:

O BPS;small;II !

8>>>>>>>><
>>>>>>>>:

OBPS;small;I !
�
OBPS;large

OnBPS;large;I

OnBPS;small;I ! OnBPS;large;II

OBPS;small;III !
�
OBPS;large

OnBPS;large;II

OnBPS;small;II !
�
OnBPS;large;I

OnBPS;large;II;

(6.61)

O BPS;small;IV !

8>>><
>>>:
OBPS;small;III !

�
OBPS;large

OnBPS;large;II

OnBPS;small;II !
�
OnBPS;large;I

OnBPS;large;II:

(6.62)

For the SOð1; 1Þ model (n ¼ 0), such a stratification struc-
ture simplifies as follows:

SOð1; 1Þ:
1-charge
OBPS;small;I

OBPS;small;IV

9>>>>=
>>>>;

!

8>>>><
>>>>:

2-charge
OBPS;large

OnBPS;large:

(6.63)

On the other hand, for the ½SOð1; 1Þ�2 model (n ¼ 1), the
stratification structure (6.61) and (6.62) reads

½SOð1; 1Þ�2: OBPS;1-charge !
8><
>:
OBPS;2-charge !

�
OBPS;3-charge
OnBPS;3-charge

OnBPS;2-charge ! OnBPS;3-charge:
(6.64)
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Thus, summarizing, theN ¼ 2, d ¼ 5 Jordan symmet-
ric sequence admits six small charge orbits describing the
flux configurations supporting static, spherically symmet-
ric, asymptotically flat small BHs: four 1

2 -BPS and two
non-BPS. Furthermore, there are three large orbits, namely,
one 1

2 -BPS and two non-BPS (with Z � 0 at the horizon).

VII. N ¼ 4, d ¼ 5 SUPERGRAVITY

The scalar manifold of N ¼ 4, d ¼ 5 supergravity
coupled to nV ¼ n 2 N [ f0g matter (vector) multiplets
reads [dimR ¼ 1þ 5n, rank ¼ 1þminð5; nÞ]

MN¼4;d¼5 ¼ SOð1; 1Þ � SOð5; nÞ
SOð5Þ � SOðnÞ : (7.1)

This theory is associated with the rank-3 Euclidean reduc-
ible Jordan algebra R 
 �5;n. In the following treatment,

we will determine the large and small orbits of the irrepr.
ð1; 5þ nÞ of the U-duality group SOð1; 1Þ � SOð5; nÞ.

For the sake of brevity, we will do this only through an
analysis in the bare charges’ basis.

Without any loss of generality, one can choose to treat
only d ¼ 5 extremal (electric) BHs. Indeed, due to the
symmetricity of the reducible coset (7.1), the treatment
of d ¼ 5 extremal (magnetic) black strings is essentially
analogous.

In the bare charges’ basis, the electric cubic invariant of
the ð1; 5þ nÞ of SOð1; 1Þ � SOð5; nÞ reads as follows (I ¼
1; . . . ; 5þ n throughout; the indices 1; . . . ; 5, with positive
signature, pertain to the fiveN ¼ 4, d ¼ 5 graviphotons):

I 3;el � qHqIqJ�
IJ � qHq

2
I ; (7.2)

where qH is the electric charge of the 3-form field strength
of the 2-form B�� (�, � ¼ 0; 1; . . . ; 4) in the gravity mul-

tiplet (see e.g. [55,56]). qH is an SOð5; nÞ singlet, with
SOð1; 1Þweightþ2. On the other hand, the SOð5; nÞ vector
qI has SOð1; 1Þ weight �1, such that I3;el defined by (7.2)

is SOð1; 1Þ � SOð5; nÞ invariant. Notice that the action of
the U-duality group does not mix qH and qI, and this
originates more charge orbits with respect to the irreduc-
ible cases. Moreover, �IJ ¼ �IJ is the pseudo-Euclidean

metric of SOð5; nÞ, with signature ðþ; . . . ;þ
zfflfflfflfflffl}|fflfflfflfflffl{5

;�; . . . ;�zfflfflfflfflffl}|fflfflfflfflffl{n

Þ.

A. Large orbits

(i) 1
4 -BPS (3-charge) orbit, defined by a timelike qI
vector, with qH of any sign:

qH 2 R0; qIqJ�
IJ > 0: (7.3)

The resulting form of the orbit reads [20] (n  0)

O ð1=4Þ-BPS;large ¼ SOð1; 1Þ � SOð5; nÞ
SOð4; nÞ ; (7.4)

with related moduli space

M ð1=4Þ-BPS;large ¼ SOð4; nÞ
SOð4Þ � SOðnÞ ¼

Mð1;1Þ;d¼6

SOð1; 1Þ ;
(7.5)

where Mð1;1Þ;d¼6 is the scalar manifold of nonchiral

half-maximal supergravity in d ¼ 6 with n matter
(vector) multiplets. The exchange between qH > 0
and qH < 0 amounts to exchanging the two graviti-
nos in the gravity multiplet, i.e. the two (opposite)
skew eigenvalues of the skew-traceless central

charge matrix Z
�
AB (A; B ¼ 1; . . . ; 4). Thus, the num-

ber ] of nonflat scalar degrees of freedom along
Oð1=4Þ-BPS;large is (for n  1)

] ð1=4Þ-BPS;large � dimRMN¼4;d¼5

� dimRMð1=4Þ-BPS;large

¼ nþ 1: (7.6)

In N > 2-extended supergravity theories, in gen-
eral, 1

N -BPS attractors have a related moduli space

[23]. It corresponds to the hypermultiplets’ scalar
manifold in the supersymmetry reductionN > 2 !
N ¼ 2 of the theory under consideration. In this
case, it is amusing to observe that Mð1=4Þ-BPS;large
given by (7.5) is the c map of the vector multiplets’
scalar manifold of the N ¼ 2, d ¼ 4 Jordan sym-
metric sequence:

M ð1=4Þ-BPS;large ¼ c

�
SUð1; 1Þ
Uð1Þ

� SOð2; n� 2Þ
SOð2Þ � SOðn� 2Þ

�
: (7.7)

Thus, Mð1=4Þ-BPS;large admits an interpretation either

as (1) a scalar manifold of theN ¼ 4, d ¼ 3 Jordan
symmetric sequence in d ¼ 3, or as (2) the hyper-
multiplets’ scalar manifold of the Jordan symmetric
sequence in d ¼ 4, 5 (N ¼ 2) and 6 [(1, 0)]. In
particular, Mð1=4Þ-BPS;large parametrizes the N ¼ 2

hyperscalar degrees of freedom in the supersymme-
try/Jordan algebra reduction:

d ¼ 5:
N ¼ 4
R 
 �5;n

! N ¼ 2
R 
 �1;n�3

: (7.8)

The pure theory (i.e. n ¼ 0) limit of orbit (7.4) is
actually 2-charge [indeed, SOð5Þ symmetry can be
used to make only one component of the Euclidean
vector qI nonvanishing], and it reads

O ð1=4Þ-BPS;large;n¼0 ¼ SOð1; 1Þ � SOð5Þ
SOð4Þ

� SOð1; 1Þ � S4; (7.9)

with no corresponding moduli space, and thus trivi-
ally
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] ð1=4Þ-BPS;large;n¼0 ¼ 1: (7.10)

(ii) Non-BPS (3-charge) orbit with Z
�
AB ¼ 0 (at the

horizon), defined by a spacelike qI vector, and qH
of any sign:

qH 2 R0; qIqJ�
IJ < 0: (7.11)

Notice that both signs of qH are allowed, due to the

fact that the non-BPS Z
�
AB ¼ 0 attractor equations

are quadratic in qH (see e.g. [20]). The resulting
orbit reads (n  1, not existing in pure theory) [20]

O nBPS;large ¼ SOð1; 1Þ � SOð5; nÞ
SOð5; n� 1Þ ; (7.12)

with related moduli space

M nBPS;large ¼ SOð5; n� 1Þ
SOð5Þ � SOðn� 1Þ

¼ Mð2;0Þ;d¼6jn�1; (7.13)

whereMð2;0Þ;d¼6jn�1 is the scalar manifold of (2, 0),

d ¼ 6 supergravity with nT ¼ n� 1 tensor multip-
lets. Note that N ¼ 4, d ¼ 5 and (2, 0), d ¼ 6
supergravities share the same R symmetry
SOð5Þ �USpð4Þ. Thus, the number ] of nonflat
scalar degrees of freedom along OnBPS;large is inde-

pendent of n  2:

]nBPS;large � dimRMN¼4;d¼5 � dimRMnBPS;large

¼ 6: (7.14)

B. Small orbits

The conditions on I3;el defined by (7.2) are formally the

same as the ones holding in N ¼ 2, d ¼ 5 Jordan sym-
metric sequence, and given by Eqs. (6.23) and (6.24). Thus,
analogously to the case ofN ¼ 2, d ¼ 5 Jordan symmet-
ric sequence, and as expected from the fact that I3;el is

homogeneous of degree three, (6.24) implies that
the unique doubly critical orbit is the trivial one with
all charges vanishing [namely, 0-charge orbit; recall
Eq. (6.26)].

The small orbits of the ð1; 5þ nÞ of the U-duality group
SOð1; 1Þ � SOð5; nÞ can be listed as follows:

(1) Lightlike (I3;el ¼ 0,
@I3;el

@Q � 0: 2-charge) orbit with

vanishing qH and timelike qI:

qH ¼ 0; q2I > 0: (7.15)

This orbit is 1
2 -BPS [14]. It reads (n  0)

O ð1=2Þ-BPS;small;I ¼ SOð1; 1Þ � SOð5; nÞ
SOð4; nÞ ; (7.16)

with corresponding moduli space [recall Eq. (7.5)]

M ð1=2Þ-BPS;small;I ¼ Mð1=4Þ-BPS;large: (7.17)

Thus, the number ] of nonflat scalar degrees of
freedom along Oð1=2Þ-BPS;small;I is (for n  1)

] ð1=2Þ-BPS;small;I � dimRMN¼4;d¼5

� dimRMð1=2Þ-BPS;small;I

¼ nþ 1: (7.18)

The pure theory (i.e. n ¼ 0) limit of orbit (7.16) is
actually 1-charge, and it reads

O ð1=2Þ-BPS;small;I;n¼0 ¼ SOð1; 1Þ � S4; (7.19)

with no related moduli space, and thus

] ð1=2Þ-BPS;small;I;n¼0 ¼ 1: (7.20)

(2) Lightlike (I3;el ¼ 0,
@I3;el

@Q � 0: 2-charge) orbit with

vanishing qH and spacelike qI:

qH ¼ 0; q2I < 0: (7.21)

This orbit is non-BPS. It reads (n  1, not existing
in pure theory)

O nBPS;small ¼ SOð1; 1Þ � SOð5; nÞ
SOð5; n� 1Þ ; (7.22)

with corresponding moduli space [recall Eq. (7.13)]

M nBPS;small ¼ MnBPS;large: (7.23)

Thus, the number ] of nonflat scalar degrees of
freedom along OnBPS;small is independent of n  1:

]nBPS;small � dimRMN¼4;d¼5 � dimRMnBPS;small

¼ 6: (7.24)

(3) Critical (I3;el ¼ 0,
@I3;el

@Q ¼ 0: 1-charge) orbit with

vanishing qH and lightlike qI:

qH ¼ 0; q2I ¼ 0: (7.25)

This orbit is 1
2 -BPS [14]. It reads (n  1, not exist-

ing in pure theory)

O ð1=2Þ-BPS;small;II ¼ SOð5; nÞ
SOð4; n� 1Þ 2R4;n�1

; (7.26)

with corresponding moduli space [recall Eq. (7.17)]

Mð1=2Þ-BPS;small;II

¼ SOð1; 1Þ �Mð1=2Þ-BPS;small;Ijn!n�1 2R4;n�1

¼ SOð1; 1Þ �Mð1=4Þ-BPS;largejn!n�1 2R4;n�1:

(7.27)
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Thus, the number ] of nonflat scalar degrees of
freedom along Oð1=2Þ-BPS;small;II is independent of

n  1:

]ð1=2Þ-BPS;small;II � dimRMN¼4;d¼5

� dimRMð1=2Þ-BPS;small;II ¼ 1:

(7.28)

Analogously to what holds for symmetric magic
RSG [noted below Eq. (4.33)] and for N ¼ 2, d ¼
5 Jordan symmetric sequence treated in Sec. VI, the
unique scalar degree of freedom on which the ADM
mass depends can be interpreted as the Kaluza-
Klein radius in the d ¼ 6 ! d ¼ 5 reduction.

(4) Lightlike (I3;el ¼ 0,
@I3;el

@Q � 0: 2-charge) orbit with

nonvanishing qH and lightlike qI:

qH 2 R0; q2I ¼ 0: (7.29)

This orbit is 1
4 -BPS. It reads (n  1)

O ð1=4Þ-BPS;small ¼ SOð1; 1Þ

� SOð5; nÞ
SOð4; n� 1Þ 2R4;n�1

; (7.30)

with corresponding moduli space [recall Eq. (7.27)]

M ð1=4Þ-BPS;small ¼ Mð1=2Þ-BPS;small;Ijn!n�1 2R4;n�1

¼ Mð1=4Þ-BPS;largejn!n�1 2R4;n�1:

(7.31)

Thus, the number ] of nonflat scalar degrees of
freedom along Oð1=2Þ-BPS;small;II is independent of

n  1:

]ð1=4Þ-BPS;small � dimRMN¼4;d¼5

� dimRMð1=4Þ-BPS;small ¼ 2:

(7.32)

Critical (I3;el ¼ 0,
@I3;el

@Q ¼ 0: 1-charge) orbit with

vanishing qI and nonvanishing qH:

qH 2 R0; qI ¼ 0: (7.33)

This orbit is 1
2 -BPS [14]. It reads (independent of

n  0)

O ð1=2Þ-BPS;small;III ¼ SOð1; 1Þ; (7.34)

with moduli space

M ð1=2Þ-BPS;small;III ¼ SOð5; nÞ
SOð5Þ � SOðnÞ : (7.35)

Thus, the number ] of nonflat scalar degrees of
freedom along Oð1=2Þ-BPS;small;III is independent of

n  0:

]ð1=2Þ-BPS;small;III � dimRMN¼4;d¼5

�Mð1=2Þ-BPS;small;III ¼ 1: (7.36)

Notice that Oð1=2Þ-BPS;small;III can also be seen as the

‘‘n ¼ 0 formal limit’’ of Oð1=4Þ-BPS;small given by

Eq. (7.30). Indeed, the n ¼ 0 limit of (7.29) is given
by (7.33) itself. Furthermore, analogously to
what holds for symmetric magic RSG [noted below
Eq. (4.33)] and for N ¼ 2, d ¼ 5 Jordan symmetric
sequence treated in Sec. VI, the unique scalar degree
of freedom on which the ADMmass depends can be
interpreted as the Kaluza-Klein radius in the d ¼
6 ! d ¼ 5 reduction. Orbit (7.34) is originated by
the d ¼ 6 ! d ¼ 5 reduction of (2, 0) theory with
all charges switched off. Indeed, qH is the electric
charge of the Kaluza-Klein vector in the reduction
d ¼ 6 ! d ¼ 5. Notice that in the pure theory (i.e.
n ¼ 0) Mð1=2Þ-BPS;small;III vanishes, and thus

] ð1=2Þ-BPS;small;III;n¼0 ¼ 1: (7.37)

Thus, the stratification structure of the ð1; 5þ nÞ-repr.
space of the d ¼ 5 U-duality group SOð1; 1Þ � SOð5; nÞ
can be given through the two chains of relations, proceed-
ing (left to right) from 1-charge orbits to 2-charge and then
3-charge orbits:

O ð1=2Þ-BPS;small;II !

8>>>><
>>>>:

Oð1=2Þ-BPS;small;I ! Oð1=4Þ-BPS;large
OnBPS;small ! OnBPS;large

Oð1=4Þ-BPS;small !
�
Oð1=4Þ-BPS;large
OnBPS;large;

(7.38)

O ð1=2Þ-BPS;small;III ! Oð1=4Þ-BPS;small !
�
Oð1=4Þ-BPS;large
OnBPS;large:

(7.39)

For pure N ¼ 4, d ¼ 5 supergravity, such a stratification
structure simplifies as follows:

1-charge
Oð1=2Þ-BPS;small;I;n¼0

Oð1=2Þ-BPS;small;III

9>>=
>>; ! 2-charge

Oð1=4Þ-BPS;large;n¼0:
(7.40)

Thus, summarizing, N ¼ 4, d ¼ 5 supergravity theory
admits five small charge orbits describing the flux configu-
rations supporting static, spherically symmetric, asymp-
totically flat small BHs: one 1

4 -BPS, three
1
2 -BPS, and

one non-BPS. There are two large orbits, namely, one
1
4 -BPS and one non-BPS (with Z

�
AB ¼ 0 at the horizon).

The relations among the charge orbits ofN ¼ 4, d ¼ 5
supergravity and the charge orbits of N ¼ 2, d ¼ 5
Jordan symmetric sequence can be determined through
the supersymmetry reduction
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d ¼ 5:
N ¼ 4
R 
 �5;n

! N ¼ 2
R 
 �1;n

; (7.41)

yielding the results summarized in Table VI.
Finally, it is worth summarizing the results obtained

about the number ] of nonflat scalar degrees of freedom,
within the symmetric RSG studied in previous sections.
For the magic supergravities, it holds that

JA3 :

8>>>>><
>>>>>:

“large”ðrank ¼ 3Þ:
�
BPS: ] ¼ 3qþ 2
nBPS: ] ¼ qþ 2

“small”:

8<
: rank ¼ 3:

�
BPS: ] ¼ qþ 2
nBPS: ] ¼ 2

rank ¼ 3: BPS: ] ¼ 1;

(7.42)

whereas forN ¼ 4 supergravity andN ¼ 2 Jordan sym-

metric sequence the results are reported in Table VI. As
pointed out above, in the symmetric RSG’s under consid-
eration the unique scalar degree of freedom on which the
ADMmass depends along the 1-charge 1

2 -BPS (maximally

symmetric) charge orbits can be interpreted as the Kaluza-
Klein radius in the d ¼ 6 ! d ¼ 5 reduction.
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APPENDIX A: RESOLUTION OF G5-INVARIANT
CONSTRAINTS

In this appendix, we explicitly solve the G5-invariant
defining constraints of small charge orbits in magic sym-
metric RSG, both in the bare (Appendix A 1) and dressed
(Appendix A 2) charge bases.

1. Bare charge basis

Let us start by noticing that for each of the four magic
symmetric RSG’s a unique maximal symmetric embedding
into G5 exists containing a factor SOð1; 1Þ. It reads [recall
Eq. (4.30)] [57]

G5 ⊋
max

G6 �Aq � SOð1; 1Þ; (A1)

where the group Aq has been defined in Table II. Notice

that, in the cases q ¼ 4 and 2, G6 � SOð1; 1Þ is not em-
bedded maximally (also considering nonsymmetric em-
beddings [58]) into G5 itself.

When removing Aq in the cases q ¼ 4 and 2 (and thus

losing the maximality), the embedding (A1) has a nice
interpretation in terms of truncation of the magic super-
gravity to theories belonging to the Jordan symmetric
sequence (3.44) [19]:

JO3 ⊋
max

R 
 JO2 : E6ð�26Þ ⊋
max

SOð1; 1Þ � SOð1; 9Þ;

JH3 ⊋R 
 JH2 : SU
�ð6Þ⊋ SOð1; 1Þ � SOð1; 5Þ;

JC3 ⊋R 
 JC2 : SLð3;CÞ⊋ SOð1; 1Þ � SOð1; 3Þ;
JR3 ⊋

max
R 
 JR2 : SLð3;RÞ ⊋

max
SOð1; 1Þ � SOð1; 2Þ;

(A2)

where it should be recalled that (q ¼ 8, 4, 2, 1; see e.g.
[46])

JA2 � �1;qþ1: (A3)

a. Olightlike;BPS

In order to solve the small lightlike G5-invariant defin-
ing constraints (4.51) in bare charges in a way consistent
with an orbit representative having Z � 0, let us further
embed the MCS of the group in the right-hand side of
Eq. (A1), thus obtaining

G5 ⊋
max

G6 �Aq � SOð1; 1Þ ⊋
MCS

SOðqþ 1Þ �Aq:

(A4)

Thus, under the ‘‘branching’’ (A4) the irrepr. RQ of G5 in

which the electric charges qi sit decomposes as follows:

RQ ! ð1; 1Þþ4 þ ðqþ 2; 1Þ�2

þ ðSpinðqþ 2Þ;SpinðQqÞÞþ1

! ð1; 1ÞI þ ðqþ 1; 1Þ þ ð1; 1ÞII
þ ðSpinðqþ 1Þ;SpinðQqÞÞ: (A5)

This in turn entails the branching

qi ! ðqð1;1ÞI ; qð1;1ÞII ; qðqþ1;1Þ; qðSpinðqþ1Þ;SpinðQqÞÞÞ: (A6)

In the first and second lines of (A5) subscripts denote the
weight with respect to SOð1; 1Þ, whereas in the third and
fourth lines they just discriminate between the two singlets
of SOðqþ 1Þ �Aq. Also recall that, as given in Table II,

Aq and Qq are absent for q ¼ 8 and q ¼ 1.

Therefore, with respect to SOðqþ 1Þ �Aq, one ob-

tains:
(i) two singlets [note that ð1; 1ÞI is a singlet of SOðqþ

1; 1Þ �Aq, as well];

(ii) one vector ðqþ 1; 1Þ;
(iii) a (double) spinor ðSpinðqþ 1Þ;SpinðQqÞÞ.
The representation decomposition (A5) yields that dijk,

the rank-3 completely symmetric G5-invariant tensor
[namely, the unique singlet in the tensor product ðRQÞ3],
decomposes in such a way that ð1; 1ÞII and ðqþ 1; 1Þ have
the same couplings inside ðRQÞ3.
Details concerning the various magic symmetric RSG’s

are given further below.
The position which solves [with maximal—compact—

symmetry SOðqþ 1Þ �Aq] the small lightlike

G5-invariant defining constraints (4.51) in bare charges
(and in a way consistent with an orbit representative having
Z � 0) reads as follows:

qð1;1ÞI ¼ 0; qðqþ1;1Þ ¼ 0;

qðSpinðqþ1Þ;SpinðQqÞÞ ¼ 0; qð1;1ÞII � 0:
(A7)

Since SOðqþ 1Þ �Aq is the unique group maximally

(and symmetrically) embedded into G6 �Aq � SOð1; 1Þ
which has SOðqþ 1Þ �Aq as (in this case, improper)

MCS, it follows that SOðqþ 1Þ �Aq is also the maximal
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semisimple symmetry of Olightlike;BPS, which is thus given

by Eq. (4.14).
The origin of the non-semi-simple Abelian (namely,

translational) factor Rðspinðqþ1Þ;spinðQqÞÞ in the stabilizer of
Olightlike;BPS will be explained through the procedure of

suitable İnönü-Wigner contraction performed in
Appendix B 1.

b. Ocritical;BPS

Equation (A4) and subsequent ones are also relevant for
the resolution of the small critical G5-invariant defining
constraints (4.55) in bare charges in a way consistent with
an orbit representative having Z � 0 (which is the unique
possible case; see treatment above). In this case, the posi-
tion which solves (with maximal—noncompact—symme-
try G6 �Aq) the constraints (4.55) in bare charges reads

as follows:

qð1;1ÞII ¼ 0; qðqþ1;1Þ ¼ 0;

qðSpinðqþ1Þ;SpinðQqÞÞ ¼ 0; qð1;1ÞI � 0:
(A8)

At least for the relevant values q ¼ 8, 4, 2, 1, it holds that
spinðqþ 2Þ ¼ spinðqþ 1Þ [recall definition (4.17)].
Therefore, since

qð1;1ÞII ¼ 0; qðqþ1;1Þ ¼ 0 , qðqþ2;1Þ ¼ 0; (A9)

it follows that the position (A8) exhibits maximal—non-
compact—symmetry G6 �Aq, which is then the maxi-

mal semisimple symmetry of Ocritical;BPS, which is thus

given by Eq. (4.29).

The origin of Rðspinðqþ2Þ;spinðQqÞÞ in the stabilizer of
Ocritical;BPS will be explained through the procedure of

suitable SOð1; 1Þ (three-)grading performed in
Appendix B 2.

c. Olightlike;nBPS

In order to solve the small lightlikeG5-invariant defining
constraints (4.51) in bare charges in a way consistent with
an orbit representative having Z ¼ 0, the embedding (A1)
has to be further elaborated as follows:

G5 ⊋
max

G6 �Aq � SOð1; 1Þ ⊋
max

SOðq; 1Þ �Aq

� SOð1; 1Þ ⊋
MCS

SOðqÞ �Aq: (A10)

Thus, under the branching (A10) the irrepr. RQ decom-

poses as follows:

RQ ! ð1; 1Þþ4 þ ðqþ 2; 1Þ�2

þ ðSpinðqþ 2Þ;SpinðQqÞÞþ1

! ð1; 1Þþ4 þ ðqþ 1; 1Þ�2 þ ð1; 1Þ�2

þ ðSpinðqþ 1Þ;SpinðQqÞÞþ1

! ð1; 1ÞI þ ðq; 1Þ þ ð1; 1ÞIII þ ð1; 1ÞII
þ ðSpin0ðqÞ;SpinðQqÞÞ þ ðSpin00ðqÞ;SpinðQqÞÞ;

(A11)

where, besides the obvious irrepr. decompositions deter-
mining the last two lines of (A11), one should recall that

ðSpinðqþ 1Þ;SpinðQqÞÞ ! ðSpin0ðqÞ;SpinðQqÞÞ
þ ðSpin00ðqÞ;SpinðQqÞÞ;

(A12)

where the primes discriminate between the two spinor
irreprs. of SOðqÞ �Aq. The branching of electric charges

corresponding to (A11) reads

qi ! ðqð1;1ÞI ; qð1;1ÞII ; qð1;1ÞIII ; qðq;1Þ; qðSpin0ðqÞ;SpinðQqÞÞ;

qðSpin00ðqÞ;SpinðQqÞÞÞ: (A13)

In the first four lines of (A11) subscripts denote the weight
with respect to SOð1; 1Þ, whereas in the fifth and sixth lines
they just discriminate between the three singlets of
SOðqÞ �Aq.

Therefore, with respect to SOðqÞ �Aq, one obtains

(i) three singlets [notice that ð1; 1ÞI is also a singlet of
SOðq; 1Þ �Aq and of G6 �Aq, and that ð1; 1ÞII is
a singlet of SOðq; 1Þ �Aq, as well];

(ii) a vector ðq; 1Þ;
(iii) two (double) spinors ðSpin0ðqÞ;SpinðQqÞÞ and

ðSpin00ðqÞ;SpinðQqÞÞ.
As a feature peculiar to (A11), the vector ðq; 1Þ and the

two (double) spinors ðSpin0ðqÞ;SpinðQqÞÞ and

ðSpin00ðqÞ;SpinðQqÞÞ do exhibit a ‘‘triality symmetry,’’

realized differently depending on q ¼ 8, 4, 2, 1, as given
in Appendix A 1.
The representation decomposition (A11) yields that dijk

decomposes in such a way that the manifest ‘‘triality’’
exhibited by the branching of RQ is removed, and the

two (double) spinors are put on a different footing with
respect to the vector. As a consequence,
(i) ð1; 1ÞII, ð1; 1ÞIII, and ðq; 1Þ;
(ii) ðSpin0ðqÞ;SpinðQqÞÞ and ðSpin00ðqÞ;SpinðQqÞÞ

separately have the same couplings inside ðRQÞ3.
The position which solves [with maximal—compact—

symmetry SOðqÞ �Aq] the small lightlike G5-invariant

defining constraints (4.51) in bare charges (and in a way
consistent with an orbit representative having Z ¼ 0) reads
as follows:
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qðq;1Þ ¼ 0; qðSpin0ðqÞ;SpinðQqÞÞ ¼ 0;

qðSpin00ðqÞ;SpinðQqÞÞ ¼ 0;
(A14)

with the three singlets qð1;1ÞI , qð1;1ÞII , and qð1;1ÞII constrained
by

qð1;1ÞI

dð1;1ÞIð1;1ÞIIð1;1ÞIIq
2
ð1;1ÞIIþ2dð1;1ÞIð1;1ÞIIð1;1ÞIIIqð1;1ÞIIqð1;1ÞIIIþdð1;1ÞIð1;1ÞIIIð1;1ÞIIIq
2
ð1;1ÞIII

2
64

3
75 ¼ 0: (A15)

Notice that in (A14) the charges related to the vector and to
the two (double) spinors are on equal footing, thus exhib-
iting a triality symmetry, as already mentioned above.

Notice that SOðq; 1Þ �Aq is the unique group which is

maximally [if one considers also the factor SOð1; 1Þ] and
symmetrically embedded into G6 �Aq � SOð1; 1Þ, and
also which has SOðqÞ �Aq as MCS. Therefore, it follows

that SOðq; 1Þ �Aq is also the maximal semisimple sym-

metry of Olightlike;nBPS, which is thus given by Eq. (4.24).

As mentioned above, the origin of Rðspinðqþ1Þ;spinðQqÞÞ in
the stabilizer of Olightlike;nBPS will be explained through the

procedure of suitable İnönü-Wigner contraction performed
in Appendix B 1.

d. Details

We now give some details of the treatment of symmetric
magic RSG.

We start by giving the explicit form of Eqs. (A4) and
(A5) for all q ¼ 8, 4, 2, 1 classifying symmetric magic
RSG.

(i) q ¼ 8 (JO3 ):

E6ð�26Þ ⊋
max

SOð9; 1Þ � SOð1; 1Þ ⊋
MCS

SOð9Þ;

27 ! 1þ4 þ 10�2 þ 16þ1 ! 1I þ 9þ 1II þ 16:

(A16)

(ii) q ¼ 4 (JH3 ) [SOð5; 1Þ � SU�ð4Þ, SOð5Þ �USpð4Þ]:

SU�ð6Þ ⊋
max

SOð5; 1Þ � SOð3Þ � SOð1; 1Þ

⊋
MCS

SOð5Þ � SOð3Þ;
15 ! ð1; 1Þþ4 þ ð6; 1Þ�2 þ ð4; 2Þþ1

! ð1; 1ÞI þ ð5; 1Þ þ ð1; 1ÞII þ ð4; 2Þ: (A17)

(iii) q ¼ 2 (JC3 ) [SLð2;CÞ � SOð3; 1Þ, GLð1;CÞ �
SOð2Þ � SOð1; 1Þ]:

SLð3;CÞ ⊋
max

SLð2;CÞ � SLð1;CÞ �GLð1;CÞ

⊋
MCS

SOð3Þ � SOð2Þ;
9 ! ð10Þþ4 þ ð30 þ 10Þ�2 þ ð23 þ �2�3Þþ1

! ð10ÞI þ 30 þ ð10ÞII þ 23 þ 2�3; (A18)

where the first subscript in the second step and the
subscript in the last step denote charges with re-
spect to (w.r.t.) SOð2Þ �Uð1Þ, and the second sub-
script in the second step denotes weights w.r.t.
SOð1; 1Þ. In order to derive (A18), the decomposi-
tions of the irreprs. of SLð3;CÞ under SLð2;CÞ�
SLð1;CÞ�GLð1;CÞ�SLð2;CÞ�SOð2Þ�SOð1;1Þ
have been recalled [the charges and weights w.r.t.
SOð2Þ and SOð1; 1Þ are given]:

3 ! ð2; 1;�1Þ þ ð1;�2; 2Þ; (A19)

�3 ! ð�2;�1;�1Þ þ ð1; 2; 2Þ; (A20)

3 0 ! ð2;�1; 1Þ þ ð1; 2;�2Þ; (A21)

�3 0 ! ð�2; 1; 1Þ þ ð1;�2;�2Þ: (A22)

Thus, through (A19) and (A20), the irrepr.

R q¼2 ¼ 9 � 3� �3 (A23)

branches as given by (A18).
(iv) q ¼ 1 (JR3 ) [SLð2;RÞ � SOð2; 1Þ]:

SLð3;RÞ ⊋
max

SOð2; 1Þ � SOð1; 1Þ ⊋
MCS

SOð2Þ;

60 ! 1þ4 þ 3�2 þ 2þ1 ! 1I þ 2þ 1II þ 2;

(A24)

where the normalizations and conventions of
Table 58 of [58] have been adopted.

Next, wewrite down Eqs. (A10) and (A11) for all q ¼ 8,
4, 2, 1 classifying symmetric magic RSG.

(i) q ¼ 8 (JO3 ):

E6ð�26Þ ⊋
max

SOð9; 1Þ � SOð1; 1Þ ⊋
max

SOð8; 1Þ

� SOð1; 1Þ ⊋
MCS

SOð8Þ;
27 ! 1þ4 þ 10�2 þ 16þ1 ! 1þ4 þ 9�2 þ 1�2

þ 16þ1 ! 1I þ 8v þ 1III þ 1II þ 8s þ 8c:

(A25)

The triality in irreprs. of SOðqÞ is implemented here
through the triality of ð8v; 8s; 8cÞ of SOð8Þ.
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(ii) q ¼ 4 (JH3 ):

SU�ð6Þ ⊋
max

SOð5; 1Þ � SOð3Þ � SOð1; 1Þ

⊋
max

SOð4; 1Þ � SOð3Þ � SOð1; 1Þ

⊋
MCS

SOð4Þ � SOð3Þ � SUð2Þ
� SUð2Þ � SUð2Þ; (A26)

15 ! ð1; 1Þþ4 þ ð6; 1Þ�2 þ ð4; 2Þþ1

! ð1; 1Þþ4 þ ð5; 1Þ�2 þ ð1; 1Þ�2 þ ð4; 2Þþ1

! ð1; 1; 1ÞI þ ð2; 2; 1Þ þ ð1; 1; 1ÞIII þ ð1; 1; 1ÞII
þ ð1; 2; 2Þ þ ð2; 1; 2Þ: (A27)

Thus, the triality in irreprs. of SOðqÞ �Aq is im-

plemented for q ¼ 4 through the triality of
ðð2; 2; 1Þ; ð2; 1; 2Þ; ð1; 2; 2ÞÞ of SUð2Þ � SUð2Þ �
SUð2Þ.

(iii) q ¼ 2 (JC3 ):

SLð3;CÞ⊋ maxSLð2;CÞ � SLð1;CÞ �GLð1;CÞ
⊋ maxSOð2; 1Þ � SOð2Þ � SOð1; 1Þ
⊋

MCS
SOð2Þ � SOð2Þ; (A28)

9 ! ð10Þþ4 þ ð30 þ 10Þ�2 þ ð23 þ �2�3Þþ1

! ð10Þþ4 þ ð30Þ�2 þ ð10Þ�2 þ ð23Þþ1

þ ð2�3Þþ1

! ð10ÞI þ 20 þ ð10ÞIII þ ð10ÞII þ 23 þ 2�3:

(A29)

Thus, the triality in irreprs. of SOðqÞ �Aq is

implemented for q ¼ 2 through the triality of
ð20; 23; 2�3Þ of SOð2Þ � SOð2Þ [notice the different
charges w.r.t. Aq¼2 ¼ SOð2Þ �Uð1Þ].

(iv) q ¼ 1 (JR3 ):

SLð3;RÞ ⊋
max

SOð2; 1Þ � SOð1; 1Þ

⊋
max

SOð1; 1Þ � SOð1; 1Þ ⊋
MCS

1;

60 ! 1þ4 þ 3�2 þ 2þ1 ! 1þ4 þ 2�2

þ 1�2 þ 2þ1

! 1I þ 1II þ 1III þ 1IV þ 1V þ 1VI;

(A30)

where in the second line ‘‘1’’ denotes the identity
element. Notice that there is no compact symmetry
in Olightlike;nBPS;JR

3
;d¼5, as also given by the fact that

Mlightlike;nBPS;JR
3
;d¼5 ¼ SOð1; 1Þ 2R2 (see Table III).

Thus, the triality of irreprs. of SOðqÞ in this case
trivially degenerates into a ‘‘sextality’’ [six singlets
in the last line of (A30)].

2. Dressed charge basis

Concerning the resolution of the G5-invariant (sets of)
constraints in the basis of dressed charges, one should
notice that for each of the four magic symmetric RSG’s a
unique noncompact, real form ~H5 of the compact group
H5 � MCSðG5Þ exists with maximal symmetric embed-
ding into G5 (see e.g. [57]; also recall Sec. III D and
Table I):

G5 ⊋
max

~H5: (A31)

a. Olightlike;BPS

In order to solve the small lightlikeG5-invariant defining
constraints (4.51) in dressed charges in a way consistent
with an orbit representative with Z � 0, let us further
embed

~h 5 � MCSð ~H5Þ ¼ SOðqþ 1Þ �Aq; (A32)

thus obtaining

G5ð ⊋
max

~H5Þ ⊋
MCS

SOðqþ 1Þ �Aq; (A33)

where the brackets denote the auxiliary nature of the
embedding. Thus, under the branching (A33) RQ decom-

poses as follows:

RQð! 1þ R̂Þ ! ð1; 1ÞI þ ðqþ 1; 1Þ
þ ðSpinðqþ 1Þ;SpinðQqÞÞ þ ð1; 1ÞII;

(A34)

where R̂ is an irrepr. of ~H5 used as an intermediate step.
Equation (A34) corresponds to the branching

Z � ðZ; ZxÞ ! ðZ; Zð1;1ÞII ; Zðqþ1;1Þ; ZðSpinðqþ1Þ;SpinðQqÞÞÞ;
(A35)

where

Z ð1;1ÞI � Z (A36)

throughout. Therefore, with respect to SOðqþ 1Þ �Aq,

one obtains
(i) two singlets;
(ii) one vector ðqþ 1; 1Þ;
(iii) one (double) spinor ðSpinðqþ 1Þ;SpinðQqÞÞ.
The position which solves [with maximal—compact—

symmetry SOðqþ 1Þ �Aq] the small lightlike

G5-invariant defining constraints (4.51) in dressed charges
(and in a way consistent with an orbit representative having
Z � 0) reads as follows:

CERCHIAI et al. PHYSICAL REVIEW D 82, 085010 (2010)

085010-28



Zðqþ1;1Þ ¼ 0; ZðSpinðqþ1Þ;SpinðQqÞÞ ¼ 0; (A37)

with Z and Zð1;1ÞII constrained by

Z3 � ð32Þ2ZZ2
ð1;1ÞII � ð32Þ3=2Tð1;1ÞIIð1;1ÞIIð1;1ÞIIZ

3
ð1;1ÞII ¼ 0:

(A38)

Notice that SOðqþ 1Þ �Aq is the unique group which is

maximally (and symmetrically) embedded into ~H5 and
which has SOðqþ 1Þ �Aq as (in this case, improper)

MCS [actually, SOðqþ 1Þ �Aq ¼ MCSð ~H5Þ]. There-

fore, it follows that SOðqþ 1Þ �Aq is also the maximal

semisimple symmetry of Olightlike;BPS, which is thus given

by Eq. (4.14).
The explicit form of Eqs. (A33) and (A34) for all q ¼ 8,

4, 2, 1 classifying symmetric magic RSG is given below.

(i) q ¼ 8 (JO3 ):

E6ð�26Þð ⊋
max

F4ð�20ÞÞ ⊋
MCS

SOð9Þ;

27ð! 1þ 26Þ ! 1I þ 9þ 16þ 1II:

(A39)

(ii) q ¼ 4 (JH3 ):

SU�ð6Þð ⊋
max

USpð4; 2ÞÞ ⊋
MCS

USpð4Þ �USpð2Þ

� SOð5Þ � SOð3Þ;
15ð! 1þ 14Þ ! ð1; 1ÞI þ ð5; 1Þ

þ ð4; 2Þ þ ð1; 1ÞII: (A40)

(iii) q ¼ 2 (JC3 ):

SLð3;CÞð ⊋
max

SUð2; 1ÞÞ ⊋
MCS

SUð2Þ �Uð1Þ

� SOð3Þ � SOð2Þ;
9ð! 1þ 8Þ ! ð10ÞI þ 2�3 þ 23

þ 30 þ ð10ÞII: (A41)

(iv) q ¼ 1 (JR3 ):

SLð3;RÞð ⊋
max

SOð2; 1ÞÞ ⊋
MCS

SOð2Þ;

60ð! 1þ 5Þ ! 1I þ 2þ 2þ 1II: (A42)

As mentioned in the resolution in the basis of bare

(electric) charges qi, the origin of Rðspinðqþ1Þ;spinðQqÞÞ in the
stabilizer of Olightlike;BPS will be explained through the

procedure of suitable İnönü-Wigner contraction performed
in Appendix B 1.

b. Olightlike;nBPS

In order to solve the small lightlike G5-invariant defin-
ing constraints (4.51) in dressed charges in a way consis-
tent with an orbit representative having Z ¼ 0, the
embedding (A31) has to be further elaborated as follows:

G5ð ⊋
max

~H5Þ ⊋
max

ĥ5 ⊋
MCS

SOðqÞ �Aq; (A43)

where

ĥ 5 ¼ SOðq; 1Þ �Aq (A44)

is the unique noncompact form of ~h5 [defined by (A32)] to
be embedded maximally and symmetrically into ~H5 (see
e.g. [57]).
Thus, under the branching (A43), RQ decomposes as

follows:

RQð! 1þ R̂Þ ! ð1; 1ÞI þ ðqþ 1; 1Þ
þ ðSpinðqþ 1Þ;SpinðQqÞÞ þ ð1; 1ÞII

! ð1; 1ÞI þ ðq; 1Þ þ ð1; 1ÞIII
þ ðSpin0ðqÞ;SpinðQqÞÞ
þ ðSpin00ðqÞ;SpinðQqÞÞ þ ð1; 1ÞII:

(A45)

Equation (A45) corresponds to the branching [recall
Eq. (A36)]

Z � ðZ; ZxÞ ! ðZ; Zð1;1ÞII ; Zð1;1ÞIII ; Zðq;1Þ; ZðSpin0ðqÞ;SpinðQqÞÞ; ZðSpin00ðqÞ;SpinðQqÞÞÞ: (A46)

Therefore, with respect to SOðqÞ �Aq, besides Z, one
obtains

(i) two singlets [note that ð1; 1ÞII is a singlet of
SOðq; 1Þ �Aq, as well];

(ii) one vector ðq; 1Þ;
(iii) two (double) spinors ðSpin0ðqÞ;SpinðQqÞÞ and

ðSpin00ðqÞ;SpinðQqÞÞ.
The position which solves [with maximal—compact—

symmetry SOðqÞ �Aq] the small lightlike G5-invariant

defining constraints (4.50) in dressed charges (and in a way
consistent with an orbit representative having Z ¼ 0) reads
as follows:

Z � Zð1;1ÞI ¼ 0; Zðq;1Þ ¼ 0;

qðSpin0ðqÞ;SpinðQqÞÞ ¼ 0; qðSpin00ðqÞ;SpinðQqÞÞ ¼ 0;
(A47)

with the two singlets Zð1;1ÞII and Zð1;1ÞIII constrained by

CHARGE ORBITS OF EXTREMAL BLACK HOLES IN FIVE- . . . PHYSICAL REVIEW D 82, 085010 (2010)

085010-29



Tð1;1ÞIIð1;1ÞIIð1;1ÞIIZ
2
ð1;1ÞII þ 3Tð1;1ÞIIð1;1ÞIIIð1;1ÞIIIZ

2
ð1;1ÞIII ¼ 0:

(A48)

Besides SOðqþ 1Þ �Aq, the only other group which is

maximally (and symmetrically) embedded into ~H5 and
which has SOðqÞ �Aq as MCS is SOðq; 1Þ �Aq.

Therefore, SOðq; 1Þ �Aq is also the maximal semisimple

symmetry ofOlightlike;BPS, which is thus given by Eq. (4.24).

The explicit form of Eqs. (A43)–(A45) for all q ¼ 8, 4,
2, 1 classifying symmetric magic RSG is given below.

(i) q ¼ 8 (JO3 ):

E6ð�26Þð ⊋
max

F4ð�20ÞÞ ⊋
max

SOð8;1Þ ⊋
MCS

SOð8Þ;

27ð! 1þ 26Þ ! 1I þ 9þ 16þ 1II

! 1I þ 8v þ 1IIIþ 1II þ 8s þ 8c:

(A49)

(ii) q ¼ 4 (JH3 ) [USpð2; 2Þ � SOð5; 1Þ, USpð2Þ �
SUð2Þ]:

SU�ð6Þð ⊋
max

USpð4; 2ÞÞ ⊋
max

USpð2; 2Þ �USpð2Þ

⊋
MCS

USpð2Þ �USpð2Þ
�USpð2Þ; (A50)

15ð! 1þ 14Þ ! ð1; 1ÞI þ ð5; 1Þ þ ð4; 2Þ þ ð1; 1ÞII
! ð1; 1; 1ÞI þ ð1; 1; 1ÞIII

þ ð2; 2; 1Þ þ ð2; 1; 2Þ
þ ð1; 2; 2Þ þ ð1; 1; 1ÞII: (A51)

(iii) q ¼ 2 (JC3 ):

SLð3;CÞð ⊋
max

SUð2; 1ÞÞ ⊋
max

SUð1; 1Þ �Uð1Þ

⊋
MCS

Uð1Þ �Uð1Þ;
9ð! 1þ 8Þ ! ð10ÞI þ 23 þ 2�3 þ 30

þ ð10ÞII
! ð10ÞI þ 20 þ 23 þ 2�3

þ ð10ÞIII þ ð10ÞII: (A52)

(iv) q ¼ 1 (JR3 ):

SLð3;RÞð ⊋
max

SOð2; 1ÞÞ ⊋
max

SOð1; 1Þ ⊋
MCS

1;

60ð! 1þ 5Þ ! 1I þ 2þ 1II þ 2

! 1I þ 1II þ 1III þ 1IV

þ 1V þ 1VI; (A53)

where ‘‘1’’ denotes the identity element.

The origin of Rðspinðqþ1Þ;spinðQqÞÞ in the stabilizer of
Olightlike;BPS will be explained through the procedure of

suitable İnönü-Wigner contraction performed in
Appendix B 1.

APPENDIX B: EQUIVALENT DERIVATIONS

In this appendix, we determine the general form of small
charge orbits of symmetric magic RSG [see Eqs. (4.14),
(4.24), and (4.29)] through suitable group theoretical pro-
cedures, namely,
(i) İnönü-Wigner contractions, for small lightlike orbits

(Appendix B 1),
(ii) SOð1; 1Þ three-grading, for small critical orbits

(Appendix B 2).
Such procedures will clarify the origin of the non-semi-

simple Abelian (namely, translational) factor [recall
Eq. (4.1), definitions (4.17) and (4.18), and see Eq. (B41)
below]

T ¼ Rðspinðqþ1Þ;spinðQqÞÞ (B1)

in all three classes (lightlike BPS, lightlike non-BPS,
and critical BPS) of small orbits (for each relevant q ¼
8, 4, 2, 1).

1. İnönü-Wigner contractions

a. Olightlike;BPS

In order to deal withOlightlike;BPS, we start from the group

embedding (A33). This determines the following decom-
positions of irreprs. (Adj and Fund, respectively, denoting
the adjoint and fundamental irrepr.):

AdjðG5Þ ! Adjð ~H5Þ þ Fundð ~H5Þ; (B2)

and further

Adjð ~H5Þ ! ðAdjðSOðqþ 1ÞÞ; 1Þ þ ð1;AdjðAqÞÞ
þ ðSpinðqþ 1Þ;SpinðQqÞÞI; (B3)

Fundð ~H5Þ ! ð1; 1Þ þ ðqþ 1; 1Þ
þ ðSpinðqþ 1Þ;SpinðQqÞÞII; (B4)

where trivially AdjðSOðqþ 1ÞÞ ¼ qðqþ1Þ
2 . Equa-

tions (B2)–(B4) thus imply
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AdjðG5Þ ! ðSpinðqþ 1Þ;SpinðQqÞÞI
þ ðAdjðSOðqþ 1ÞÞ; 1Þ þ ð1;AdjðAqÞÞ
þ ð1; 1Þ þ ðqþ 1; 1Þ
þ ðSpinðqþ 1Þ;SpinðQqÞÞII: (B5)

The decomposition of the branching (B3) yields

Adjð ~H5Þ|fflfflfflfflffl{zfflfflfflfflffl}
g ~H5

! ðAdjðSOðqþ 1ÞÞ; 1Þ þ ð1;AdjðAqÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
h ~H5

þ

s

ðSpinðqþ 1Þ;SpinðQqÞÞI:|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k ~H5

(B6)

The coset [recall Eq. (3.62)]

~H5

MCSð ~H5Þ
¼ ~H5

SOðqþ 1Þ �Aq

¼ MnBPS;large (B7)

is symmetric, with real dimension, Euclidean signature
and character, respectively (see e.g. [57,59]; here ‘‘c’’
and ‘‘nc,’’ respectively, stand for ‘‘compact’’ and ‘‘non-
compact’’):

dim R ¼ 2q; ðc; ncÞ ¼ ð0; 2qÞ;
� � c� nc ¼ �2q:

(B8)

By definition, the symmetricity of MnBPS;large implies that

½h ~H5
;h ~H5

� ¼ h ~H5
; ½h ~H5

; k ~H5
� ¼ k ~H5

;

½k ~H5
; k ~H5

� ¼ h ~H5
:

(B9)

The ‘‘decoupling’’ of h ~H5
, with subsequent transformation

of the irrepr. ðSpinðqþ 1Þ;SpinðQqÞÞI of SOðqþ 1Þ �
Aq into the non-semisimple, Abelian (namely, transla-

tional) part of the stabilizer of Olightlike;BPS, is achieved

by performing a uniform rescaling of the generators of k ~H5
:

k ~H5
! �k ~H5

; � 2 Rþ
0 ; (B10)

and then by letting � ! 1. This amounts to performing an
IW contraction [50,51] on k ~H5

. Thus [recall Eqs. (4.14) and

(4.16)]

IW

�
OnBPS;large ¼ G5

~H5

�
!ðA:33ÞOlightlike;BPS

¼ G5

ðSOðqþ 1Þ �AqÞ 2Rðspinðqþ1Þ;spinðQqÞÞ ; (B11)

T lightlike;BPS � Rðspinðqþ1Þ;spinðQqÞÞ: (B12)

Thus, T lightlike;BPS given by (B12) is the k ~H5
part of the

decomposition (B6) of the Lie algebra g ~H5
of ~H5 with

respect to MCSð ~H5Þ ¼ SOðqþ 1Þ �Aq, which then

gets ‘‘decoupled’’ from g ~H5
and Abelianized through the

IW contraction procedure (B10) and (B11).

b. Olightlike;nBPS

On the other hand, the treatment ofOlightlike;nBPS requires

one to start from the embedding (A43) [actually, without

the last step involving SOðqÞ �Aq ¼ MCSðĥ5Þ; recall

Eq. (A44)]:

G5 ⊋
max

~H5 ⊋
max

ĥ5 ¼ SOðq; 1Þ �Aq: (B13)

The subsequent decompositions of AdjðG5Þ, Adjð ~H5Þ,
and Fundð ~H5Þ are given by Eqs. (B2)–(B4), respectively,
thus yielding the same decomposition as in (B5). Con-
sequently, the decomposition of the branching (B3) yields
the same result as in (B6).
The coset [recall Eq. (3.62)]

~H5

ĥ5
¼ ~H5

SOðq; 1Þ �Aq

(B14)

is symmetric, with real dimension, Euclidean signature and
character, respectively:

dim R ¼ 2q; ðc; ncÞ ¼ ðq; qÞ; � � c� nc ¼ 0:

(B15)

By definition, the symmetricity of
~H5

ĥ5
implies the same

relations as in (B9).
Thus, the decoupling of h ~H5

, with subsequent transfor-

mation of the irrepr. ðSpinðqþ 1Þ;SpinðQqÞÞI of

SOðq; 1Þ �Aq into the non-semi-simple, Abelian

(namely, translational) part of the stabilizer of
Olightlike;nBPS, is achieved by performing a uniform rescal-

ing of the generators of k ~H5
as given by Eq. (B10), and then

by letting � ! 1. This amounts to performing an IW
contraction [50,51] on k ~H5

. Therefore, one obtains [recall

Eqs. (4.24) and (4.26)]

IW ðOnBPS;largeÞ !ðA:43ÞOlightlike;nBPS

¼ G5

ðSOðqþ 1Þ �AqÞ 2Rðspinðqþ1Þ;spinðQqÞÞ ; (B16)

T lightlike;nBPS ¼ T lightlike;BPS ¼ Rðspinðqþ1Þ;spinðQqÞÞ:
(B17)

Thus, T lightlike;nBPS given by (B17) is the k ~H5
part of the

decomposition (B6) of the Lie algebra g ~H5
of ~H5 with

respect to ĥ5 ¼ SOðq; 1Þ �Aq, which then gets de-

coupled from g ~H5
and Abelianized through the IW con-

traction procedure [see Eqs. (B10) and (B16)].
Note that the IW contraction does not change the di-

mension of the starting orbit. Indeed Olightlike;BPS, obtained

through the IW contraction ofOnBPS;large along the branch-
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ing (A33), has the same real dimension ofOnBPS;large itself.

Analogously, also Olightlike;nBPS, obtained through the IW

contraction of OnBPS;large along the branching (A43), has

the same real dimension of OnBPS;large itself.

c. Details

Below, besides (B2)–(B4), we write down the relevant
formulas of the derivations given above, namely, Eqs. (B7),

(B8), (B11), and (B14)–(B16), for all q ¼ 8, 4, 2, 1 clas-
sifying symmetric magic RSG.

(i) q ¼ 8 (JO3 ):

78 ! 26þ 52; 52 ! 36þ 16I;

26 ! 1þ 9þ 16II;
(B18)

~H5

MCSð ~H5Þ
¼ ~H5

SOðqþ 1Þ �Aq

��������q¼8
¼ MnBPS;large;JO

3
;d¼5 ¼

F4ð�20Þ
SOð9Þ ; dimR ¼ 16; ðc; ncÞ ¼ ð0; 16Þ;

� ¼ �16; IW

�
OnBPS;large;JO

3
¼ E6ð�26Þ

F4ð�20Þ

�
!ðA:33ÞOlightlike;BPS;JO

3
¼ E6ð�26Þ

SOð9Þ 2R16
;

(B19)

~H5

ĥ5
¼ ~H5

SOðq; 1Þ �Aq

��������q¼8
¼ F4ð�20Þ

SOð8; 1Þ ; dimR ¼ 16; ðc; ncÞ ¼ ð8; 8Þ; � ¼ 0;

IWðOnBPS;large;JO
3
Þ !ðA:43ÞOlightlike;nBPS;JO

3
¼ E6ð�26Þ

SOð8; 1Þ 2R16
:

(B20)

(ii) q ¼ 4 (JH3 ):

35 ! 14þ 21; 21 ! ð4; 2ÞI þ ð10; 1Þ þ ð1; 3Þ; 14 ! ð1; 1Þ þ ð5; 1Þ þ ð4; 2ÞII; (B21)

~H5

MCSð ~H5Þ
¼ ~H5

SOðqþ 1Þ �Aq

��������q¼4
¼ MnBPS;large;JH

3
;d¼5 ¼

USpð4; 2Þ
USpð4Þ �USpð2Þ ; dimR ¼ 8; ðc; ncÞ ¼ ð0; 8Þ;

� ¼ �8; IW

�
OnBPS;large;JH

3
¼ SU�ð6Þ

USpð4; 2Þ
�
!ðA:33ÞOlightlike;BPS;JH

3
¼ SU�ð6Þ

ðSOð5Þ � SOð3ÞÞ 2Rð4;2Þ ; (B22)

~H5

ĥ5
¼ ~H5

SOðq; 1Þ �Aq

��������q¼4
¼ USpð4; 2Þ

USpð2; 2Þ �USpð2Þ ; dimR ¼ 8; ðc; ncÞ ¼ ð4; 4Þ; � ¼ 0;

IWðOnBPS;large;JH
3
Þ !ðA:43ÞOlightlike;nBPS;JH

3
¼ SU�ð6Þ

ðSOð4; 1Þ � SOð3ÞÞ 2Rð4;2Þ :
(B23)

(iii) q ¼ 2 (JC3 ). Notice that in this case Eq. (B2) gets modified into

AdjðG5Þ ! Adjð ~H5Þ þAdjð ~H5Þ; 16 ! 8þ 8; 8 ! 30 þ 10 þ 23 þ 2�3: (B24)

Everything fits also because for q ¼ 2 it holds that

ðqþ 1; 1Þ ¼ ðAdjðSOðqþ 1ÞÞ; 1Þ ¼ 30; ð1;AdjðAqÞÞ ¼ ð1; 1Þ ¼ 10: (B25)

~H5

MCSð ~H5Þ
¼ ~H5

SOðqþ 1Þ �Aq

��������q¼2
¼ MnBPS;large;JC

3
;d¼5 ¼

SUð2; 1Þ
SUð2Þ �Uð1Þ ; dimR ¼ 4; ðc; ncÞ ¼ ð0; 4Þ;

� ¼ �4; IW

�
OnBPS;large;JC

3
¼ SLð3;CÞ

SUð2; 1Þ
�
!ðA:33ÞOlightlike;BPS;JC

3
¼ SLð3;CÞ

ðSOð3Þ � SOð2ÞÞ 2Rð2;2Þ : (B26)
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~H5

ĥ5
¼ ~H5

SOðq; 1Þ �Aq

��������q¼2
¼ SUð2; 1Þ

SUð1; 1Þ �Uð1Þ ; dimR ¼ 4; ðc; ncÞ ¼ ð2; 2Þ; � ¼ 0;

IWðOnBPS;large;JC
3
Þ !ðA:43ÞOlightlike;nBPS;JC

3
¼ SLð3;CÞ

ðSOð2; 1Þ � SOð2ÞÞ 2Rð2;2Þ :
(B27)

(iv) q ¼ 1 (JR3 ). Notice that in this case Eq. (B2) gets modified into

AdjðG5Þ ! Adjð ~H5Þ þ Spins¼2ð ~H5Þ; 8 ! 3þ 5; 3 ! 1II þ 2I; 5 ! 1I þ 2III þ 2II: (B28)

Everything fits also because for q ¼ 1 it holds that

ðqþ 1; 1Þ ¼ ðAdjðSOðqþ 1ÞÞ; 1Þ ¼ 2; ð1;AdjðAqÞÞ ¼ ð1; 1Þ ¼ 1: (B29)

~H5

MCSð ~H5Þ
¼ ~H5

SOðqþ 1Þ �Aq

��������q¼1
¼ MnBPS;large;JR3 ;d¼5 ¼

SOð2; 1Þ
SOð2Þ � SUð1; 1Þ

Uð1Þ ; dimR ¼ 2; ðc; ncÞ ¼ ð0; 2Þ;

� ¼ �2; IW

�
OnBPS;large;JR

3
¼ SLð3;RÞ

SOð2; 1Þ
�
!ðA:33ÞOlightlike;BPS;JR

3
¼ SLð3;RÞ

SOð2Þ 2R2
: (B30)

~H5

ĥ5
¼ ~H5

SOðq; 1Þ �Aq

��������q¼1
¼ SOð2; 1Þ

SOð1; 1Þ ; dimR ¼ 2; ðc; ncÞ ¼ ð1; 1Þ; � ¼ 0;

IWðOnBPS;large;JR3
Þ !ðA:43ÞOlightlike;nBPS;JR3

¼ SLð3;RÞ
ðSOð1; 1ÞÞ 2R2

:

(B31)

2. SOð1; 1Þ three-grading and Ocritical;BPS

In order to deal withOcritical;BPS, we start from the group

embedding (A1). As pointed out above, this is the unique
maximal embedding (at least among the symmetric ones;
see e.g. [57]) into G5 to exhibit a commuting factor
SOð1; 1Þ.

Therefore, the Lie algebra gG5
of G5 admits a three-

grading with respect to the Lie algebra R of SOð1; 1Þ as
follows:

g G5
¼ Wþ3 
s W 0 
s W�3; (B32)

where as above the subscripts denote the weights with
respect to SOð1; 1Þ itself. At the level of branching of
AdjðG5Þ, the SOð1; 1Þ three-grading reads as follows:

AdjðG5Þ ! ð1; 1Þ0 þ ðAdjðG6Þ; 1Þ0 þ ð1;AdjðAqÞÞ0
þ ðSpinðqþ 2Þ;SpinðQqÞÞ�3

þ ðSpin0ðqþ 2Þ;SpinðQqÞÞþ3: (B33)

Thus, the decomposition (B33) yields the following iden-
tification of the graded terms in (B32):

W 0 �
ð1; 1Þ0
# exp

SOð1; 1Þ

þðAdjðG6Þ; 1Þ0
# exp
G6

þð1;AdjðAqÞÞ0;
# exp
Aq

(B34)

W þ3 � ðSpin0ðqþ 2Þ;SpinðQqÞÞþ3; (B35)

W �3 � ðSpinðqþ 2Þ;SpinðQqÞÞ�3; (B36)

with ‘‘exp’’ denoting the exponential mapping.
Thus, Ocritical;BPS is obtained by cosetting G5 with the

þ3-graded (or equivalently �3-graded) extension of
W 0 � ð1; 1Þ0, namely,

O critical;BPS ¼ G5

N þ3ð�3Þ
; (B37)

where

N þ3 � exp½ðW 0 � ð1; 1Þ0Þ 
s Wþ3�
¼ exp½ððAdjðG6Þ; 1Þ0 þ ð1;AdjðAqÞÞ0Þ


s ðSpin0ðqþ 2Þ;SpinðQqÞÞþ3�
¼ ðG6 �AqÞ 2Rðspinðqþ2Þ;spinðQqÞÞ; (B38)

N �3 � exp½ðW 0 � ð1; 1Þ0Þ 
s W�3�
¼ exp½ððAdjðG6Þ; 1Þ0 þ ð1;AdjðAqÞÞ0Þ


s ðSpinðqþ 2Þ;SpinðQqÞÞ�3�
¼ ðG6 �AqÞ 2Rðspinðqþ2Þ;spinðQqÞÞ: (B39)

Thus, it holds that Eqs. (B37) and (B38) [or equivalently
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Eqs. (B37) and (B39)] are consistent with the general form
of Ocritical;BPS given by Eq. (4.29).

Therefore, in the stabilizer of Ocritical;BPS, the factor

T critical;BPS ¼ Rðspinðqþ2Þ;spinðQqÞÞ ¼ Rðspinðqþ1Þ;spinðQqÞÞ

(B40)

is given by the exponential mapping of the Abelian sub-
algebra of gG5

contained into the þ3-graded (or equiva-

lently �3-graded) extension of W 0 � ð1; 1Þ0 through
the SOð1; 1Þ three-grading (B32), corresponding to the
irrepr. ðSpin0ðqþ 2Þ;SpinðQqÞÞþ3 [or equivalently

ðSpinðqþ 2Þ;SpinðQqÞÞ�3] of G6 �Aqð�SOð1; 1ÞÞ.
The results obtained in Appendixes B 1 and B 2(and

reported in Tables III and IV) allow one to conclude that all
small charge orbits of symmetric magic RSG (classified by
q ¼ 8, 4, 2, 1) share the same non-semi-simple, Abelian
(namely, translational) part of the stabilizer. Namely,
Eqs. (B17) and (B40) yield

T lightlike;BPS ¼ T lightlike;nBPS ¼ T critical;BPS

¼ Rðspinðqþ1Þ;spinðQqÞÞ: (B41)

Details

Below, we write down Eqs. (B33)–(B36) for all q ¼ 8,
4, 2, 1 classifying symmetric magic RSG.

(i) q ¼ 8 (JO3 ):

78 ! 10 þ 450
zfflfflfflffl}|fflfflfflffl{W 0

þ 16�3

z}|{W�3

þ 160þ3

z}|{Wþ3

: (B42)

(ii) q ¼ 4 (JH3 ):

35 ! ð1; 1Þ0 þ ð15; 1Þ0 þ ð1; 3Þ0
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{W 0

þ ð4; 2Þ�3

zfflfflffl}|fflfflffl{W�3

þ ð4; 2Þþ3:
zfflfflfflffl}|fflfflfflffl{Wþ3

(B43)

(iii) q ¼ 2 (JC3 ). In this case it should be recalled that

AdjðSLð3;CÞÞ ¼ 16

� 3� 30 þ �3� �30 � 2 singlets:

(B44)

Thus, by recalling Eqs. (A19)–(A22), one can
compute that under SLð3;CÞ⊋max SLð2;CÞ �
SLð1;CÞ �GLð1;CÞ,
3� 30 ! ð30Þ0 þ ð10Þ0 þ ð23Þ�3 þ ð�2�3Þ3 þ ð10Þ0;
�3� �30 ! ð30Þ0 þ ð10Þ0 þ ð�2�3Þ�3 þ ð23Þ3 þ ð10Þ0:

(B45)

Therefore,

AdjðSLð3;CÞÞ

¼ 16 ! 2ð30Þ0 þ 2ð10Þ0
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{W 0

þ ð23Þ�3 þ ð�2�3Þ�3

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{W�3

þ ð23Þþ3 þ ð�2�3Þþ3:
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{Wþ3

(B46)

(iv) q ¼ 1 (JR3 ):

8 ! 10 þ 30
zfflfflffl}|fflfflffl{W 0

þ 2�3

z}|{W�3

þ 2þ3:
z}|{Wþ3

(B47)

[1] G.W. Gibbons and P. K. Townsend, Phys. Rev. Lett. 71,
3754 (1993).

[2] C. Hull and P. K. Townsend, Nucl. Phys. B438, 109

(1995).
[3] S. Ferrara, R. Kallosh, and A. Strominger, Phys. Rev. D

52, R5412 (1995).
[4] A. Strominger, Phys. Lett. B 383, 39 (1996).
[5] S. Ferrara and R. Kallosh, Phys. Rev. D 54, 1514 (1996);

54, 1525 (1996).
[6] S. Ferrara, G.W. Gibbons, and R. Kallosh, Nucl. Phys.

B500, 75 (1997).
[7] F. Denef and G.W. Moore, arXiv:hep-th/0702146.
[8] B. Bates and F. Denef, arXiv:hep-th/0304094.

[9] A. Sen, Gen. Relativ. Gravit. 40, 2249 (2008).
[10] H. Ooguri, A. Strominger, and C. Vafa, Phys. Rev. D 70,

106007 (2004).
[11] B. Pioline, Classical Quantum Gravity 23, S981 (2006).
[12] P. Kraus and F. Larsen, Phys. Rev. D 72, 024010 (2005);

A. Castro, J. L. Davis, P. Kraus, and F. Larsen, J. High

Energy Phys. 04 (2007) 091.
[13] A. Ceresole and G. Dall’Agata, J. High Energy Phys. 03

(2007) 110; G. Lopes Cardoso, A. Ceresole, G.

Dall’Agata, J.M. Oberreuter, and J. Perz, J. High

Energy Phys. 10 (2007) 063.
[14] S. Ferrara and J.M. Maldacena, Classical Quantum

Gravity 15, 749 (1998).

CERCHIAI et al. PHYSICAL REVIEW D 82, 085010 (2010)

085010-34

http://dx.doi.org/10.1103/PhysRevLett.71.3754
http://dx.doi.org/10.1103/PhysRevLett.71.3754
http://dx.doi.org/10.1016/0550-3213(94)00559-W
http://dx.doi.org/10.1016/0550-3213(94)00559-W
http://dx.doi.org/10.1103/PhysRevD.52.R5412
http://dx.doi.org/10.1103/PhysRevD.52.R5412
http://dx.doi.org/10.1016/0370-2693(96)00711-3
http://dx.doi.org/10.1103/PhysRevD.54.1514
http://dx.doi.org/10.1103/PhysRevD.54.1525
http://dx.doi.org/10.1016/S0550-3213(97)00324-6
http://dx.doi.org/10.1016/S0550-3213(97)00324-6
http://arXiv.org/abs/hep-th/0702146
http://arXiv.org/abs/hep-th/0304094
http://dx.doi.org/10.1007/s10714-008-0626-4
http://dx.doi.org/10.1103/PhysRevD.70.106007
http://dx.doi.org/10.1103/PhysRevD.70.106007
http://dx.doi.org/10.1088/0264-9381/23/21/S05
http://dx.doi.org/10.1103/PhysRevD.72.024010
http://dx.doi.org/10.1088/1126-6708/2007/04/091
http://dx.doi.org/10.1088/1126-6708/2007/04/091
http://dx.doi.org/10.1088/1126-6708/2007/03/110
http://dx.doi.org/10.1088/1126-6708/2007/03/110
http://dx.doi.org/10.1088/1126-6708/2007/10/063
http://dx.doi.org/10.1088/1126-6708/2007/10/063
http://dx.doi.org/10.1088/0264-9381/15/4/004
http://dx.doi.org/10.1088/0264-9381/15/4/004


[15] S. Ferrara and M. Günaydin, Int. J. Mod. Phys. A 13, 2075
(1998).

[16] H. Lu, C. N. Pope, and K. S. Stelle, Classical Quantum
Gravity 15, 537 (1998).

[17] L. Andrianopoli, R. D’Auria, and S. Ferrara, Phys. Lett. B
411, 39 (1997).

[18] R. D’Auria, S. Ferrara, and M.A. Lledó, Phys. Rev. D 60,
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[50] E. İnönü and E. P. Wigner, Proc. Natl. Acad. Sci. U.S.A.

39, 510 (1953).
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