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The bulk viscosity in spin-one color superconducting strange quark matter is calculated by taking into

account the interplay between the nonleptonic and semileptonic week processes. In agreement with

previous studies, it is found that the inclusion of the semileptonic processes may result in non-negligible

corrections to the bulk viscosity in a narrow window of temperatures. The effect is generally more

pronounced for pulsars with longer periods. Compared to the normal phase, however, this effect due to the

semileptonic processes is less pronounced in spin-one color superconductors. Assuming that the critical

temperature of the phase transition is much larger than 40 keV, the main effect of spin-one color

superconductivity in a wide range of temperatures is an overall increase of the bulk viscosity with respect

to the normal phase. The corresponding enhancement factor reaches up to about 9 in the polar and A

phases, about 25 in the planar phase, and about 29 in the color-spin-locked (CSL) phase. This factor is

determined by the suppression of the nonleptonic rate in color superconducting matter and, therefore, may

be even larger if all quark quasiparticles happen to be gapped.
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I. INTRODUCTION

Understanding the physical properties of baryonic mat-
ter above nuclear saturation density is one of the funda-
mental challenges in modern nuclear astrophysics. Many
aspects of neutron stars (e.g., the mass-radius relation,
cooling and rotational dynamics, glitches, and pulsar
kicks) depend on these properties. For example, the equa-
tion of state of supranuclear baryonic matter plays the key
role in determining the maximum possible mass of neutron
stars. The harder (softer) the equation of state is, the larger
(smaller) maximum mass can be. The equation of state of
dense baryonic matter is also one of the essential ingre-
dients that determines the dynamics of core-collapse super-
novae and, in turn, the mass distribution of black holes in
the Universe [1]. Several characteristics of the gravitational
wave emission from merging neutron stars [2], which may
be observed, e.g., by advanced Laser Interferometer
Gravitational Wave Observatory (LIGO), are sensitive to
the details of the equation of state.

From the theoretical viewpoint, currently there is no
consensus even regarding the qualitative state of matter at
the highest densities reached in stellar cores. The most
conservative possibility is that such matter is made only of
nucleonic degrees of freedom. The study of several neutron
stars in Ref. [3], for example, does not exclude such a
possibility, although a phase transition may be in agreement
with their analysis, provided no extreme softening of the
equation of state occurs. Another astrophysical determina-
tion of masses and radii of three neutron stars in Ref. [4]
suggests, however, that the actual equation of state is too soft
to be purely nucleonic. Such contradictory interpretations

are representative of many studies, and show that the current
knowledge is too limited to settle the issue. Theoretically, it
may be also appropriate to mention that the observables
associated with the equation of state alone have limited
power to probe the actual nature of dense matter [5,6]. In
fact, a true insight regarding the stellar interior may require a
comprehensive understanding not only of the thermodynam-
ical but also the transport properties and neutrino emission
rates of various possible states of superdense matter.
In this paper, we assume that baryonic matter at the

highest stellar densities is deconfined quark matter. The
possible formation of quark matter in stars is an old hy-
pothesis [7] that dates back to the time when the concept of
quarks was first introduced [8,9]. This is also supported by
general considerations [10] based on the property of
asymptotic freedom in quantum chromodynamics (QCD)
[11]. The main uncertainties of this scenario are (i) the
value of the critical density, at which the deconfinement
transition occurs, and (ii) the actual highest density reached
in stars. If quark matter is formed, as we assume here, it is
also likely to be a color superconductor [12,13]. (For re-
views on color superconductivity and its general effects on
stellar properties see, for example, Refs. [14–19].) In this
paper, in particular, we concentrate on the scenario in
which color superconductivity is due to same-flavor,
spin-one Cooper pairing [20–23].
The fact of liberation of quark degrees of freedom and

the formation of a color superconducting state of matter is
likely to be revealed through a detailed study of the ob-
servational features of neutron stars. For example, one
promising class of observables is related to the rates of
weak processes. Such processes are known to be respon-
sible for the cooling rates [24] and damping of the rota-
tional (r-mode) instabilities [25] in stars. The cooling is*igor.shovkovy@asu.edu

PHYSICAL REVIEW D 82, 085007 (2010)

1550-7998=2010=82(8)=085007(10) 085007-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.82.085007


primarily determined by the neutrino emission rate, while
the damping of r-modes is controlled by the viscosity of
dense matter [26].

The bulk viscosity in the normal phase of three-flavor
quark matter is usually dominated by the nonleptonic weak
processes [27–33]. It was argued in Ref. [34], however, that
the interplay between the semileptonic and nonleptonic
processes may be rather involved even in the normal phase
of quark matter. Indeed, because of the resonance-like
dynamics responsible for the bulk viscosity and because
of a subtle interference between the two types of the weak
processes, a larger rate of the nonleptonic processes may
not automatically mean it has a dominant role. In fact, it
was shown that the contributions of the two types of weak
processes are generally not separable and that, for a range
of parameters, taking into account the semileptonic
processes may substantially modify the nonleptonic
result [34].

In this paper, we extend the analysis of Ref. [34] and
study the effect that spin-one color superconductivity has
on the bulk viscosity when the interplay between the two
types of weak processes is carefully taken into account.
(For calculation of the bulk viscosity in other color super-
conducting phases, see Refs. [35–39].) The necessary in-
gredients for the calculation of the bulk viscosity are the
rates of semileptonic (Urca) and nonleptonic weak pro-
cesses. While the needed rates for the semileptonic pro-
cesses in several spin-one color superconducting phases
were obtained several years ago in Ref. [37], the corre-
sponding rates of the nonleptonic processes remained un-
known until very recently [40]. Here, we utilize both to
obtain the bulk viscosity.

The rest of the paper is organized as follows. The general
formalism for the calculation of the bulk viscosity in
strange quark matter with several active weak processes
is reviewed in Sec. II. This formalism is then used in
Sec. III to obtain our main results for the bulk viscosity
as a function of temperature and the frequency of density
oscillations. There, we also study the enhancement effect
of color superconductivity on the bulk viscosity, as well as
the interplay of semileptonic and nonleptonic processes. In
Sec. IV, we discuss the results and their potential implica-
tions for the physics of compact stars. Two appendices at
the end of the paper contain our fits for the numerical
suppression factors of the semileptonic and nonleptonic
rates in spin-one color superconducting strange quark
matter.

II. FORMALISM

In this study, in order to calculate the bulk viscosity in
the presence of several types of active weak processes, we
follow the general formalism of Ref. [34]. We assume that
small oscillations of the quark matter density are described
by �n ¼ �n0 Reðei!tÞ where �n0 is the magnitude of the
oscillations. For such a periodic process, the bulk viscosity

� is defined as the coefficient in the expression for the
energy-density dissipation averaged over one period,
� ¼ 2�=!,

h _Edissi ¼ � �

�

Z �

0
dtðr � ~vÞ2; (1)

where ~v is the hydrodynamic velocity associated with the
density oscillations. By making use of the continuity equa-
tion, _nþ nr � ~v ¼ 0, we derive

h _Edissi ¼ � �!2

2

�
�n0
n

�
2
: (2)

Such an energy-density dissipation of a pulsating hydro-
dynamic flow is the outcome of a net work done on a
macroscopic volume over a period of the oscillation,

h _Edissi ¼ n

�

Z �

0
P _Vdt; (3)

where V � 1=n is the specific volume. By matching the
hydrodynamic definition in Eq. (2) with the relation in
Eq. (3), we derive the expression for the bulk viscosity,

� ¼ � 2

!2

�
n

�n0

�
2 n

�

Z �

0
P _Vdt: (4)

The dominant mechanism behind the bulk viscosity is
related to weak processes [26–29]. A periodic oscillation
of the density is responsible for an instantaneous departure
from � equilibrium in the system. As a result, the forward
and backward weak processes (e.g., uþ d ! sþ u and
sþ u ! uþ d), which have equal rates in equilibrium,
become unbalanced. Their net effect is to restore the
equilibrium composition. However, since the weak rates
are relatively slow, a substantial time lag between the
oscillations of the fermion number density (and, thus, the
specific volume) and the chemical composition (and, thus,
the pressure) develops. If the resulting relative phase shift
of the two oscillations is ��, one finds from Eqs. (3) and
(4) that the corresponding energy dissipation and the bulk
viscosity are proportional to sin��. (Note that the depar-
ture from the thermal equilibrium is negligible because it is
restored by strong forces on much shorter time scales.)
It should be clear that the instantaneous flavor compo-

sition in oscillating quark matter and the rate difference of
the forward and backward weak processes in Fig. 1 are
related to each other. The difference of the rates changes
the composition, while the composition in turn influences
the difference of rates. The corresponding dynamics can be
conveniently described in terms of the time-dependent
deviations of the chemical potentials from their equilib-
rium values.
In � equilibrium, the chemical potentials of the three

lightest quarks are related as follows: �s ¼ �d ¼ �u þ
�e. Here �u,�d, and�s are the chemical potentials of up,
down, and strange quarks, while �e is the electron chemi-
cal potential. In pulsating matter, the instantaneous
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departure from equilibrium is described by the following
two independent parameters:

��1 � �s ��d ¼ ��s � ��d; (5a)

��2 � �s ��u ��e ¼ ��s � ��u � ��e; (5b)

where ��i denotes the deviation of the chemical potential
�i from its equilibrium value. (Note that ��3 �
�d ��u ��e ¼ ��2 � ��1 is not independent.) When
��i are nonzero, the corresponding pairs of forward and
backward weak processes in Fig. 1 have different rates.
To leading order, the rate differences are linear in ��i:

�ðaÞ � �ðbÞ ¼ ��1��1; (6a)

�ðcÞ � �ðdÞ ¼ ��2��2; (6b)

�ðeÞ � �ðfÞ ¼ ��3ð��2 � ��1Þ: (6c)

The corresponding � rates have been calculated for the
normal phase [27,28,41,42] as well as several color-
superconducting phases of quark matter [36,37,40].
The results for the normal phase, in particular, read

�ð0Þ
1 ’ 64

5�3
G2

Fcos
2	Csin

2	C�
5
dT

2; (7a)

�ð0Þ
2 ’ 17

40�
G2

Fsin
2	C�sm

2
sT

4; (7b)

�ð0Þ
3 ’ 17

15�2
G2

Fcos
2	C
s�d�u�eT

4: (7c)

These will be used below as a benchmark for the rates in
spin-one color superconducting phases.

The semileptonic rate �3 is determined by the Urca
processes uþ e� ! dþ �e and d ! uþ e� þ ��e, shown
in diagrams (e) and (f) in Fig. 1. It was calculated in
Ref. [37] for four different spin-one color superconducting

phases of quark matter. The result has a form of the product

of the rate in the normal phase �ð0Þ
3 and a phase-specific

suppression factor,

�3 ¼ �ð0Þ
3

�
1

3
þ 2

3
H

�
�

T

��
; (8)

where � is the spin-one color superconducting gap
parameter, and Hð�=TÞ is a suppression factor for the
processes involving gapped quasiparticles. (The first term
in square brackets is the contribution of ungapped quasi-
particles.) When � ! 0, the suppression factor Hð�=TÞ
approaches 1 and the normal phase result is restored. A
simple fit to the numerical data of Ref. [37] for Hð�=TÞ is
presented in Appendix A.
Because of similar kinematics and phase space

constraints for the other pair of semileptonic processes,
uþ e� ! sþ �e and s ! uþ e� þ ��e, shown in dia-
grams (c) and (d) in Fig. 1, the dependence of the rate �2

on the color superconducting gap should take the same
form as �3 in Eq. (8), i.e.,

�2 ¼ �ð0Þ
2

�
1

3
þ 2

3
H

�
�

T

��
: (9)

In contrast, the rate �1 is determined by the nonleptonic
processes uþ d ! sþ u and sþ u ! uþ d, see dia-
grams (a) and (b) in Fig. 1, which have qualitatively differ-
ent kinematics. In spin-one color superconducting phases
of quark matter, this was recently calculated in Ref. [40].
The numerical result can be conveniently summarized by
the following expression:

�1 ¼ �ð0Þ
1

�
N þ ð1�N Þ ~H

�
�

T

��
; (10)

where, in addition to the suppression factor ~Hð�=TÞ, we
also introduced a constant N , which determines a
relative contribution of the ungapped quasiparticles to the
corresponding rate. In the four spin-one phases
studied in Ref. [40], the constant takes the following
values: N A ¼ N polar ¼ 1=9, N planar � 0:0393, and
N CSL ¼ 928=27 027 � 0:0343. A simple fit to the
numerical data for ~Hð�=TÞ is given in Appendix B.
When the rates (8)–(10) are known, the calculation of

the instantaneous pressure and, thus, the bulk viscosity
from Eq. (4) is straightforward [34]. Here, we quote only
the final expression for the viscosity,

� ¼ �1 þ �2 þ �3; (11)

where

ss

(b)(a)

u

W

ud

u

u d

W

eν

ss

(c) (d)

u

W e

u

ee ν

W

νe

(f)

u

W

d

e

u d

ee ν

W

(e)

FIG. 1. Diagrammatic representation of the � processes that
contribute to the bulk viscosity of dense quark matter.
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�1 ¼ n

!


2
3

g21 þ g22
½
1
2
3C

2
1 þ ð
1 þ 
2 þ 
3Þ

� ðA1C2 � A2C1Þ2�; (12a)

�2 ¼ n

!


1
3

g21 þ g22
½
1
2
3C

2
2 þ ð
1 þ 
2 þ 
3Þ

� ½ðA2 � B2ÞC1 � A2C2�2�; (12b)

�3 ¼ n

!


1
2

g21 þ g22
½
1
2
3ðC1 � C2Þ2 þ ð
1 þ 
2 þ 
3Þ

� ðB1C2 � B2C1Þ2�; (12c)

and

g1 ¼ �
1
2
3 þ ð
1 þ 
2 þ 
3ÞðB1A2 � A1B2Þ; (13a)

g2 ¼ 
1
2ðB1 � B2Þ þ 
1
3ðA2 � B2Þ þ 
2
3A1: (13b)

Here 
i � n!=�i (i ¼ 1, 2) and n is the baryon density of
quark matter. The quantities Ai, Bi, and Ci are
susceptibility-like functions; see Ref. [34] for the defini-
tion. To leading order in �=�i, they are the same as in the
normal phase.

For comparison, let us also note that the bulk viscosity in
the limit of the vanishing semileptonic rates reads

�non ¼ n

!


1C
2
1


2
1 þ A2

1

: (14)

III. NUMERICAL RESULTS
FOR BULK VISCOSITY

In our calculation of the bulk viscosity in spin-one color
superconducting quark matter below, we choose the same
two representative sets of model parameters as in Ref. [34]:

Set A Set B

n ¼ 5�0 n ¼ 10�0

ms ¼ 300 MeV ms ¼ 140 MeV

s ¼ 0:2 
s ¼ 0:1

In both cases, the masses of light quarks are the same:
mu ¼ 5 MeV and md ¼ 9 MeV. In accordance with gen-
eral expectations, the values of the strange quark mass ms

and the strong coupling constant 
s should be larger
(smaller) in the case of lower (higher) density. This quali-
tative property is reflected in the model parameters in Set A
(Set B). The values of all chemical potentials as well as the
coefficient functions Ai, Bi, and Ci for each set of parame-
ters are quoted in Table I.

It may be appropriate to briefly comment about the
choice of the strong coupling constant 
s in the model at
hand. The values of
s in both sets of parameters may seem
abnormally small. Indeed, the running coupling in QCD is
about 0.12 at the scale of MZ (mass of Z boson) and about

0.32 at
ffiffiffi
3

p
GeV [43]. However, here we use the model

parameter 
s only in order to capture several qualitative
(Fermi liquid) effects in quark matter. Its nonzero value
allows us (i) to avoid the underestimation of the rate of
semileptonic processes due to a limited phase space [24]
and (ii) to mimic the modification of the quark equation of
state due to strong interactions; see Ref. [34] for details.
The naive extension of the corresponding leading order
corrections to the regime of strong coupling is problematic.
Not only would this imply the use of the perturbative
results beyond the range of their validity, but this would
also lead to very large and seemingly unphysical effects on
the equation of state, used to determine the susceptibility
functions Ai, Bi, and Ci. (Notably, if the equation of state is

kept unchanged, the increase of 
s in the �
ð0Þ
3 -rate, even by

an order of magnitude, has little effect on the viscosity.)
This dilemma could be resolved by properly accounting
the nonperturbative dynamics of QCD. At present, how-
ever, such a task seems insurmountable at the low-energy
scales relevant for neutron stars. For the purposes of this
study, therefore, we treat 
s as a small independent pa-
rameter that captures only some qualitative properties of
quark matter.
Here, the critical temperature of the spin-one color

superconducting phase transition is assumed to be
Tc ¼ 2 MeV. This may be a somewhat high, but still
reasonable value for Tc. Indeed, in QCD the spin-one gap
is estimated to be about 2 orders of magnitude smaller than
the spin-zero gap [20–22], and the latter is naturally of
order 100 MeV [14–19]. Even higher values of the spin-
one gap have been reported in Ref. [44]. The effect of
varying the critical temperature is easy to understand and
will be briefly discussed below. As in Ref. [37], we use the
following model temperature dependence of the gap
parameter:

�ðTÞ ¼ �0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
T

Tc

�
2

s
; for T < Tc; (15)

with �0 being the value of the gap parameter at T ¼ 0.
Note that the ratio Tc=�0 depends on the choice of the
phase [22]. The approximate values of this ratio are 0.8
(CSL), 0.66 (planar), 0.49 (polar), and 0.81 (A-phase).

TABLE I. Two sets of parameters used in the calculation of the bulk viscosity.

model �e [MeV] �u [MeV] �d ¼ �s [MeV] A1 [MeV] A2 [MeV] B1 [MeV] B2 [MeV] C1 [MeV] C2 [MeV]

Set A 39.139 402.463 441.602 239.432 127.937 111.386 �3:726� 104 �60:463 �60:460
Set B 7.396 495.275 502.671 324.556 164.288 160.268 �2:080� 106 �10:692 �10:709
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For model parameters in Set A, the numerical results are
presented in Fig. 2. As we can see, the value of Tc deter-
mines the point where the bulk viscosity starts to deviate
from the benchmark result in the normal phase (shown by
the gray solid line). The upper panels show the dependence
of the bulk viscosity � on temperature for two representa-
tive values of the oscillation frequency, ��1 ¼ 10 Hz and
��1 ¼ 1000 Hz. The lower panels in the same figure show
the temperature dependence of the ratio �=�non, where � is
the bulk viscosity that takes into account all weak pro-
cesses, while �non is an approximate result in Eq. (14), in
which only the nonleptonic processes are included and the
semileptonic processes are not. When the ratio �=�non is
substantially larger than 1, it is an indication that the
semileptonic processes play an important role and, thus,
cannot be neglected.

Compared to the normal phase result, the main features
of the temperature dependences in spin-one color super-
conducting phases (see the upper panels in Fig. 2) are (i) a
smoothed shape of the semileptonic ‘‘hump’’ and (ii) an
overall enhancement of the bulk viscosity due to color
superconductivity for a substantial range of temperatures
below Tc.

As in the case of the normal phase, the semileptonic
processes are responsible for an increase (hump) of the
bulk viscosity in a region of temperatures around Thump,

where

TðSet AÞ
hump ’ 2:1 MeV

�
1 ms

�

�
1=4

; (16a)

TðSet BÞ
hump ’ 1:4 MeV

�
1 ms

�

�
1=4

(16b)

are the approximate positions of the peak of the hump in
the normal phase in the case of the model parameters in Set
A and Set B, respectively. In order to derive these results,
we used an approximate expression for the bulk viscosity
in Eq. (24) of Ref. [34], which is valid when the non-
leptonic rate is infinitely large while the semileptonic rates
are finite. The maximum of that expression corresponds to
�2 þ �3 ¼ n!A1=ðB1A2 � B2A1Þ, whose solution deter-
mines an approximate value for Thump. Two remarks are

in order here: (i) the scaling law Thump / 1=�1=4 follows

from the power-law temperature dependence of the semi-
leptonic rates �2; �3 / T4, and (ii) the overall value in
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FIG. 2 (color online). Temperature dependence of bulk viscosity � and the ratio �=�non for model parameters in Set A and the spin-
one color superconducting critical temperature Tc ¼ 2 MeV. The results for two fixed frequencies of the density oscillations are
shown.
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Eq. (16) is slightly corrected to match the actual numerical
results in the case of a finite nonleptonic rate.

When Tc * Thump, the semileptonic hump is partially

washed out by the presence of color superconductivity.
This is most clearly seen from the ratio of the bulk vis-
cosities �=�non in the lower panels in Fig. 2. While the
inclusion of the semileptonic processes leads to an increase
of the viscosity, the effect is not as large as in the normal
phase. Of course, this conclusion is sensitive to the choice
of the color superconducting critical temperature Tc. In
general, two qualitatively different regimes can be real-
ized. When Tc & Thump, the hump occurs in the normal

phase and, therefore, its shape is almost unaffected by
color superconductivity. In the opposite case, Tc * Thump,

the effect is present and gets stronger as Tc increases
relative to Thump.

Now, let us turn to an overall enhancement of the bulk
viscosity due to color superconductivity below Tc. This is
observed almost for the whole range of temperatures
T0;max & T � Tc, where T0;max is the temperature at which

the bulk viscosity of the normal phase has a global maxi-
mum. The value of T0;max can be easily estimated by

considering an approximate expression for the bulk vis-
cosity (14) when only the nonleptonic processes are taken
into account. The maximum of Eq. (14) corresponds to

1 ¼ A1. After solving this for the temperature, we obtain

TðSet AÞ
0;max ’ 47 keV

ffiffiffiffiffiffiffiffiffiffiffi
1 ms

�

s
; (17a)

TðSet BÞ
0;max ’ 41 keV

ffiffiffiffiffiffiffiffiffiffiffi
1 ms

�

s
; (17b)

where � is the period of oscillations measured in milli-
seconds. Notably, the location of the maximum is almost
the same for both sets of model parameters. Because of the
superconductivity, the location of the maximum is shifted

to a higher temperature, T�;max ’ T0;max=
ffiffiffiffiffiffiffi
N

p
, where N

is the same parameter that appears in Eq. (10). Taking the
shift of the maximum into account, we find that the
enhancement relative to the normal phase is observed for

T? � T � Tc, with T? ’ T0;max=N 1=4 being the point be-

tween T0;max and T�;max, at which the bulk viscosities for

the normal and superconducting phases cross. At lower
temperatures, T < T?, the effect of color superconductivity
is opposite: it reduces the bulk viscosity.
The range of temperatures in which the bulk viscosity

increases relative to the normal phase of quark matter
depends on the value of the critical temperature Tc and
the frequency of oscillations. While the actual enhance-
ment of the viscosity also depends on the specific pattern of
spin-one pairing, the qualitative features in all four phases
studied here are similar. As an example, let us consider the
CSL phase in more detail. In Fig. 3, we show the contour
plot for the bulk viscosity enhancement factor due to color
superconductivity. The ratio �CSL=�normal is larger than 1
only in the colored regions in Fig. 3. In white regions, it is
either 1 (when T > Tc) or less than 1 (otherwise).
As evident from Fig. 3, the enhancement of the bulk

viscosity by spin-one color superconductivity occurs in a
rather wide range of temperatures, especially when the
frequency of density oscillations is not too large and the
value of Tc is not too small. At ��1 ¼ 10 Hz, for example,
it extends over an order of magnitude or more in tempera-
ture, provided Tc * 100 keV. At ��1 ¼ 1000 Hz, in con-
trast, an order of magnitude or wider temperature range for
the enhancement is seen only if Tc * 1 MeV. (It should be
noted that, in the case ��1 ¼ 10 Hz shown in the left
panel in Fig. 3, the ratio �CSL=�normal is truly less than 1
in a small white region just below the T ¼ Tc line. This
‘‘abnormality’’ is due to a subtle interplay between the
semileptonic and nonleptonic processes when the value of
Tc is fine-tuned to be near Thump.)

FIG. 3 (color online). The contour plot of the bulk viscosity enhancement factor due to spin-one color superconductivity. The results
are for the CSL phase in a model with the parameters in Set A. The results for two frequencies of the density oscillations are shown:
��1 ¼ 10 Hz (left panel) and ��1 ¼ 1000 Hz (right panel). The ratio �CSL=�normal is larger than 1 in the colored regions and is equal to
or less than 1 in the white region. The contours are labeled by the corresponding values of the ratio �CSL=�normal.
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By ignoring the subtle complications due to the semi-
leptonic hump around Thump, we find that the enhancement

of the bulk viscosity in the window of temperatures T? �
T � Tc (as well as the suppression at lower temperatures,
T < T?) is primarily due to the reduction of the nonlep-
tonic rate �1 in color superconducting phases. At tempera-
tures below Tc, when all gapped quasiparticles effectively
cease to contribute, the corresponding reduction factor for
the rate is approximately given by the value of N . This
means that the enhancement factor for the viscosity ap-
proaches its inverse value, N �1. By making use of the
numerical results for N , we find that the enhancement
factor for the bulk viscosity reaches up to about 9 in the A
and polar phases, 25 in the planar phase, and 29 in the CSL
phase. (The suppression factors at T < T? approach the
same values.) In the region of the hump, of course, the
behavior is more complicated, but the overall effect of
superconductivity is still mainly to increase the bulk
viscosity.

The numerical results in the case of the model parame-
ters in Set B are shown in Fig. 4. The qualitative features
are similar to those obtained for Set A. However, the effect
of the semileptonic processes is less pronounced: the

corresponding hump is almost nonexistent and the ratio
�=�non does not much deviate from 1. At the same time, the
effect of color superconductivity is very well pronounced.
Compared to the normal phase result, an enhancement of
the bulk viscosity by a factor of about N �1 is seen in a
relatively wide window of temperatures from T? to Tc.

IV. DISCUSSION

In this study, we calculated the bulk viscosity in spin-one
color superconducting strange quark matter by carefully
taking into account the interplay between the nonleptonic
and semileptonic week processes.
As expected, the nonleptonic processes give the domi-

nant contribution to the viscosity in a wide range of pa-
rameters. Yet, as in the normal phase [34], the semileptonic
processes may also lead to a substantial correction in a
window of temperatures around Thump; see Eq. (16). The

value of Thump scales as 1=�
1=4 and happens to be of order

1 MeV for millisecond pulsars. The size and the relative
importance of the hump can be conveniently measured by
the ratio �=�non when it is noticeably larger than 1. For
millisecond pulsars, however, this ratio remains close to 1.
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FIG. 4 (color online). Temperature dependence of bulk viscosity � and the ratio �=�non for model parameters in Set B and the spin-
one color superconducting critical temperature Tc ¼ 2 MeV. The results for two fixed frequencies of the density oscillations are
shown.
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The effect is more pronounced when the period is a few
orders of magnitude longer. We also find that the corre-
sponding hump in the temperature dependence of the bulk
viscosity of color superconductors is partially washed out
compared to the normal phase. The higher Tc is, relative to
Thump, the larger washout of the hump is seen. At suffi-

ciently low Tc, i.e., Tc & Thump, the hump occurs in the

normal phase and, therefore, its shape is unaffected by
color superconductivity.

If the critical temperature of the spin-one color super-
conducting phase transition Tc is larger than T0;max [see

Eq. (17)], the main effect of color superconductivity is an
overall increase of the bulk viscosity in a range of subcrit-
ical temperatures, T? � T � Tc, see Fig. 3. The corre-
sponding range of temperatures widens with increasing
the value of Tc and with decreasing the frequency of oscil-
lations. The increase of the viscosity is primarily due to the
suppression of the nonleptonic rate by color superconduc-
tivity. At almost all temperatures below Tc, the rate is
dominated by the ungapped quasiparticles, whose relative
contribution is scaled by the factor N with respect to the
normal phase (note that N < 1). It is the inverse value
N �1 that determines the maximal enhancement of the bulk
viscosity at subcritical temperatures. The corresponding
enhancement factor is equal to 9 in the A and polar phases,
about 25 in the planar phase, and about 29 in the CSL phase.
(At temperatures below T?, color superconductivity leads to
a suppression of the bulk viscosity, and the maximal sup-
pression will approach the same value of N �1.)

In relation to this result, it might be appropriate to note
that a similar enhancement mechanism was previously
observed for spin-zero color superconductors [36]. A spe-
cial feature of spin-one color superconductivity is that the
maximum enhancement factor can be much larger.

In our analysis, we utilized the same spin-one pairing
pattern as in Refs. [20–22]. In the case of zero-quark
masses, the main signature of the corresponding phases is
the presence of ungapped quasiparticles. When quarks
have small masses, the gaps of the corresponding modes
are of order �m=�. These may be still too small to
significantly affect our main results. However, if the spin-
one gaps are larger, as some studies suggest [44], the
suppression of the nonleptonic rates and, therefore, the
enhancement of the bulk viscosity in color superconduct-
ing matter may turn out to be even stronger.

In application to compact stars, we may speculate that
the transition to a spin-one color superconducting phase in
a stellar core can have a stabilizing effect against the r-
modes driven by the gravitational radiation [25]. If the
critical temperature of the corresponding phase transition
is on the order of or above 1 MeV, the corresponding
dynamics can affect even relatively young stars. The study
of the actual quantitative effect that spin-one color super-
conductivity has on the reduction of the instability window
in the pulsar frequency and temperature plane can be done

along the lines of Refs. [45–47]. However, this problem is
beyond the scope of the present paper.
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APPENDIX A: �-RATES OF SEMILEPTONIC
(URCA) PROCESSES

The rates of the semileptonic processes in spin-one color
superconducting quark matter were calculated in Ref. [37].
The general expression for the rate takes the following
form:

�i ¼ �ð0Þ
i

�
1

3
þ 2

3
H

�
�

T

��
for i ¼ 2; 3; (A1)

where �ð0Þ
i is the corresponding rate in the normal phase of

quark matter and Hð�=TÞ is a phase-specific suppression
factor. By construction, it satisfies the constraintHð0Þ ¼ 1,
which corresponds to the case of the normal phase. We
used the numerical data of Ref. [37] to obtain the following
fits for the suppression factors as functions of the dimen-
sionless ratio ’ � �=T in the four spin-one color super-
conducting phases of quark matter:

HAð’Þ ¼ a1’
4 þ b1’

3 þ c1’
2 þ d1

’5 þ e1’
3 þ f1’

2 þ d1
; (A2)

where a1 ¼ 1:069, b1 ¼ �0:2187, c1 ¼ 3:666, d1 ¼
21:50, e1 ¼ 1:333, and f1 ¼ 9:349;

Hpolarð’Þ ¼ a2’
3 þ b2’

2 þ c2
’5 þ d2’

4 þ e2’
3 þ f2’

2 þ c2
; (A3)

where a2 ¼ �, b2 ¼ 21:94, c2 ¼ 1386, d2 ¼ 6:994,
e2 ¼ 11:20, and f2 ¼ 214:0;

Hplanarð’Þ ¼ a3’
3:5 þ b3’

3 þ c3’
2 þ d3ð1þ ’Þ

’3 þ e3’
2 þ d3

e�’;

(A4)

where a3 ¼ 0:917, b3 ¼ 0:456, c3 ¼ 11:69, d3 ¼ 34:0,
and e3 ¼ 4:221;

HCSLð’Þ ¼ a4’
4 þ b4’

3 þ c4’
2 þ d4ð1þ

ffiffiffi
2

p
’Þ

’3 þ e4’
2 þ d4

e�
ffiffi
2

p
’;

(A5)

where a4 ¼ 1:034, b4 ¼ 1:001, c4 ¼ 9:735, d4 ¼ 13:81,
and e4 ¼ 1:684.
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APPENDIX B: �-RATES OF
NONLEPTONIC PROCESSES

The �-rate of the nonleptonic processes in spin-one
color superconducting quark matter was calculated in
Ref. [40]. The general expression for the rate takes the
following form:

�1 ¼ �ð0Þ
1

�
N þ ð1�N Þ ~H

�
�

T

��
; (B1)

where �ð0Þ
1 is the corresponding rate in the normal phase of

quark matter, N is a constant that determines the relative
contribution of ungapped quasiparticles to the rate, and
~Hð�=TÞ is a phase-specific suppression factor due to
gapped quasiparticles. The normal phase corresponds to
� ¼ 0, in which case there is no suppression, and ~Hð0Þ ¼
1. The value of N for each phase reads

N A ¼ 1

9
; (B2a)

N polar ¼ 1

9
; (B2b)

N planar � 0:0393; (B2c)

N CSL ¼ 928

27 027
: (B2d)

For this study, we used the numerical data of Ref. [40] to
obtain the following fits for the suppression factors as
functions of the dimensionless ratio ’ � �=T:

~H Að’Þ ¼ 
1’
2 þ �1

’3 þ 
1’
2 þ �1

; (B3)

where 
1 ¼ 0:1247, �1 ¼ 12:60, and 
1 ¼ 5:042;

~H polarð’Þ ¼ 
2’
2 þ �2

’4 þ 
2’
2 þ �2

; (B4)

where 
2 ¼ 0:0271, �2 ¼ 65:45, and 
2 ¼ 13:35;

~H planarð’Þ ¼ 
3’
4 þ �3’

3 þ 
3’
2 þ �3ð1þ ’Þ

’2 þ �3

e�’;

(B5)

where 
3 ¼ 0:0717, �3 ¼ �0:2663, 
3 ¼ 1:108, and
�3 ¼ 4:561;

~H CSLð’Þ ¼ 
4’
4 þ �4’

2 þ 
4ð1þ
ffiffiffi
2

p
’Þ

’3 þ �4’
2 þ 
4

e�
ffiffi
2

p
’; (B6)

where 
4 ¼ 0:6981, �4 ¼ �2:045, 
4 ¼ 4:482, and
�4 ¼ �1:217.
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