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Recently Kuzenko and McCarty observed the cancellation of 4-derivative terms in the D ¼ 4 N ¼ 1

Volkov-Akulov supersymmetric action for the fermionic Nambu-Goldstone field. Here is presented a

simple algebraic proof of the cancellation based on using the Majorana bispinors and Fierz identities. The

cancellation shows a difference between the Volkov-Akulov action and the effective superfield action

recently studied by Komargodski and Seiberg and containing one 4-derivative term. We find out that the

cancellation effect takes place in coupling of the Nambu-Goldstone fermion with the Dirac field.

Equivalence between the Komargodski-Seiberg (KS) and the Volkov-Akulov (VA) Lagrangians is proved

up to the first order in the interaction constant of the Nambu-Goldstone (NG) fermions.

DOI: 10.1103/PhysRevD.82.085005 PACS numbers: 04.65.+e

I. INTRODUCTION

A general approach to the construction of the phenome-
nological Lagrangians for the Nambu-Goldstone bosons
associated with arbitrary group G, spontaneously broken
to its subgroup H, was studied in the known papers [1,2].
Volkov’s approach [2] uses the powerful Cartan’s formal-
ism of the exterior differential !-forms resulting in the
invariant phenomenological Lagrangians of the interacting
Nambu-Goldstone (NG) bosons

L ¼ 1

2
SpðG�1dGÞkðG�1dGÞk; G ¼ KH; (1)

where the differential 1-formsG�1dG ¼ H�1ðK�1dKÞHþ
H�1dH represent the vielbein ðG�1dGÞk, and the connec-
tion ðG�1dGÞh associated with the vacuum symmetry sub-
groupH. The generalization of the NG boson conception to
the fermions with spin 1=2 associated with the spontaneous
breaking of supersymmetry was proposed by Volkov in [3]
and their action was consructed in [4].

The idea of the fermionic Nambu-Goldstone particles
attracts much attention and was discussed in many papers.
As the NG fermion field gives a nonlinear realization of
supersymmetry, its connection with the linear realization
and superfields is an important issue within the sponta-
neous symmetry breaking theory. Light onto this question
was shed in papers [5–8]. In [6], Ivanov and Kapustnikov
generalized the known theorems of the nonlinear realiza-
tion theory of the internal symmetries [1] to the case of
supersymmetry. They proved that any superfield could be
split in a set of independently transforming components
with the supersymmetry parameters depending on the NG
field. Also, they found that the Volkov-Akulov Lagrangian
happened to be discovered in the invariant integration
measure, associated with x and � variable changes in the

superfield action. In [6], these changes were expressed in
the form of supersymmetry transformations, but with their
parameters substituted by the NG fermionic field. On the
other hand, in [7], Rocek derived the Volkov-Akulov (VA)
Lagrangian starting from the scalar superfield [9] with the
invariant constraints put on it. As a result, he revealed
the VA Lagrangian to be the component auxiliary field of
the scalar superfield expressed through NG field. In [8],
Lindstrom and Rocek generalized this approach to the case
of the vector superfield [10]. The connection between the
linear supersymmetry and constrained superfields was fur-
ther developed in the recent paper by Komargodski and
Seiberg [11], where a new superfield formalism for finding
the low-energy Lagrangian of the NG fermionic and other
fields was proposed, and its connection with the VA
Lagrangian was considered.1 The connection stimulates
some questions and further studies in this direction. Our
interest, in particular, is motivated by the Kuzenko and
McCarty paper [12], where they observed the complete
cancellation among 4-derivative terms in the D ¼ 4
N ¼ 1Volkov-Akulov supersymmetric action.2 This can-
cellation shows a difference between the VA [4] and
Komargodski-Seiberg (KS) [11] actions and gives rise to
the question about the constrained superfield action gen-
erating an effective NG Lagrangian without 4-derivative
and higher derivative terms. The difference between KS
and VA actions originates from the different realizations of
the NG fermionic field in the VA and KS actions. In view of
the invariance of the both actions under supersymmetry
transformations, the problem reduces to a proper redefini-
tion of the NG field. As experience shows, the finding of
the explicit redefinition formula may turn out to be an
intricate problem due to the presence of higher derivative
terms of the NG field (see e.g. [13]). Another question is
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whether such a cancellation takes place in the NG fermion
couplings with other fields.

Here we present an independent proof of the cancella-
tion effect [12], based on using the Majorana bispinor
representation of the D ¼ 4 N ¼ 1 fermionic NG field
and the corresponding Fierz rearrangements. We also find
out that the cancellation effect occurs in interactions of the
NG fermion with other fields. As a result, the 4-derivative
and higher terms, associated with the fermionic NG field,
are absent in the VA Volkov-Akulov Lagrangian with
couplings [4]. We show that the maximal numbers of the
NG fermions and their derivatives in the VA Lagrangian of
interactions with the Dirac fields equal six and three,
respectively. An algorithmic procedure to verify the as-
sumption about equivalency between the KS and VA
Lagrangians, based on the redefinition of the KS fermionic
field, is discussed, and their equivalence up to the first
order in the constant a, describing the interaction between
the NG fermions themselves, is proved.

In Sections II, III, and IV, we draw attention to super-
symmetry algebra in the Weyl and Majorana representa-
tions, the Volkov-Akulov action, and its generalizations
including the higher derivative terms. In Section V, we
present a new proof of the cancellations of 4-derivative
terms in the Volkov-Akulov action. In Section VI, we find
out that the cancellation effect takes place in the NG
fermion couplings with the Dirac and other fields. The
explicit formula, expressing the KS fermionic field through
the VA fermion up to the first order in the interaction
constant a, is derived in Section VII.

II. SUPERSYMMETRYAND SUPERALGEBRA

The focus here is on the case of D ¼ 4, N ¼ 1 super-
symmetry, which transformations are given by

�0� ¼ �� þ ��; ��0 _� ¼ �� _� þ �� _�;

x0� _� ¼ x� _� þ i

2
ð�� �� _� � ��

�� _�Þ
(2)

in the Weyl spinor representation with x� _� ¼ xm�
m
� _�.

3 The
Pauli matrices �i and the identity matrix �0 form a basic
set �m ¼ ð�0; �iÞ in the space of all SLð2CÞ matrices. The
Lorentz covariant description uses the second set of the
Pauli matrices with the upper indices ~�m :¼ ð~�0; ~�iÞ :¼
ð�0;��iÞ

f�m; ~�ng ¼ �2�mn; Sp�m ~�n ¼ �2�mn;

�m
� _� ~�

_��
m ¼ �2��

��
_�
_�;

(3)

where �mn ¼ diagð�1; 1; 1; 1Þ. The matrices �m and ~�m

are Lorentz invariant similarly to the tensors �mn and the
spinor antisymmetric metric "�� with the components

"12 ¼ "21 ¼ �1. The supersymmetry generators Q� and
their complex conjugate �Q _� :¼ �ðQ�Þ� have the form

Q�¼ @

@��
� i

2
�� _�

@

@x� _�

; �Q _�¼ @

@ �� _�

� i

2
��

@

@x� _�

(4)

and form the supersymmetry algebra

fQ�; �Q _�g ¼ �i
@

@x� _�

¼ 1

2
~� _��
m Pm;

fQ�;Q�g ¼ f �Q _�; �Q
_�g ¼ ½Q�;Pm� ¼ ½ �Q _�; Pm� ¼ 0

(5)

together with the translation generator Pm ¼ i @
@xm

.

The supersymmetry transformations (2) and superalge-
bra (5) are presented in equivalent bispinor form after
transition to the Majorana spinors

�� ¼ �; � �� ¼ ��; �xm ¼ � i

4
ð ���m�Þ;

fQa;Qbg ¼ 1

2
ð�mC

�1ÞabPm;

(6)

where �� ¼ �TC with the antisymmetric matrix of the
charge conjugation C

Cab¼ "�� 0
0 " _� _�

 !
; Qa¼ @

@ ��a
� i

4
ð�m�Þa @

@xm
: (7)

The Majorana spinors and the Dirac �-matrices are defined
as in [10]

�a ¼
��
�� _�

 !
; �a ¼

��

�� _�

 !
; �m ¼ 0 �m

~�m 0

 !
;

f�m; �ng ¼ �2�mn: (8)

III. THE VOLKOV-AKULOVACTION

To construct the phenomenological Lagrangian of the
Nambu-Goldstone fermions, the elegant formalism of the
invariant Cartan !-forms [2], unified with supersymmetry
by Volkov, was used in [4]. The supersymmetry invariant
differential !-forms in extended superspace with the
Grassmannian coordinates �I� have the form

!I
� ¼ d�I�; �! _�I ¼ d �� _�I;

!� _� ¼ dx� _� � i

2
ðd�I� �� _�I � �I�d �� _�IÞ;

(9)

where I ¼ 1; 2; . . . ; N is the index of the internal SUðNÞ
symmetry.
In the Majorana representation these fermionic and

bosonic 1-forms are

!¼d�; �!¼d ��; !m¼dxm� i

4
ðd ���m�Þ: (10)

The !-forms (9) were used in [4] as the building blocks
for the construction of supersymmetric actions for the3We use algebraic agreements accepted in [14].
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interacting NG fermions. Possible actions for the fermionic
NG fields are constructed in the form of the wedge pro-
ducts of the !-forms (9), forming hyper-volumes im-
bedded in the extended superspace. The action candidates
have to be invariant under the Lorentz and internal (uni-
tary) symmetries. In the case of the 4D Minkowski space
the invariant action of the NG fermions must include the
factorized volume element d4x. This requirement res-
tricts the structure of the admissible combinations of the
!-forms. If such a combination is given by a wedge
product of the !-forms (9) and their differentials, it should
have the general number of the differentials equals four.
The condition is satisfied by the well known invariant [4]

d4V ¼ 1

4!
"mnpq!

m ^!n ^!p ^!q; (11)

where ^ is the wedge product symbol, that gives the super-
symmetric extension of the volume element d4x of the
Minkowski space. The supersymmetric volume (11) is
invariant under the Lorentz and unitary groups. It does
not contain the spinorial 1-forms !I

� and �! _�I, but they
appear, e.g. in the following invariant products [4]

�ð4Þ ¼ !I
� ^ �! _�I ^ ~�

_��
m d ^!m;

~�ð4Þ ¼ "��!I
� ^!J

� ^ �! _�I ^ �! _�J"
_� _�;

(12)

where d ^!m is the exterior differential of !m. The addi-
tional important symmetry of the invariants (11) and (12) is
their independence on the choice of the superspace coor-
dinate realization. It means that the four dimensional
hypersurfaces, associated with (11) and (12), may be pa-
rametrized by various ways. Because Volkov’s idea was to
identify the Grassmannian � coordinates with the fermi-
onic NG fields, associated with the spontaneous breaking
of supersymmetry, they must be considered as functions of
x. This requirement means transition to the nonlinear
realization of supersymmetry.

It explains why the pullbacks of the 4-form d4V (11) or
its generalizations (12) on the 4-dimensional Minkowski
subspace were proposed in [4] to generate supersymmetric
actions for the fermionic NG fields. As a result of the
observations, the differential forms !m (10) and d4V are
presented as

!m ¼
�
�n
m � i

4

@ ��

@xn
�m�

�
dxn ¼ Wn

mdxn;

d4V ¼ detWd4x:

(13)

The identification of � with the fermionic NG field is

achieved by the change: c ðxÞ ¼ a�1=2�ðxÞ, where a has
sense of the interaction constant ½a� ¼ L4 that introduces a
supersymmetry breaking scale. This constant restores the

correct dimension L�3=2 of the fermionic field c ðxÞ and
the transition to c in (13) and d4V yields the original
Volkov-Akulov action [4]

S ¼ 1

a

Z
detWd4x (14)

with the 4� 4 matrix Wn
mðc ; @mc Þ defined by the follow-

ing relations

Wn
m ¼ �n

m þ aTn
m; Tn

m ¼ � i

4
@n �c�mc : (15)

An explicit form of the action S (14) follows from the
definition of detW

detW ¼ � 1

4!
"n1n2n3n4"

m1m2m3m4Wn1
m1
Wn2

m2
Wn3

m3
Wn4

m4
; (16)

where we chose "0123 ¼ 1. Using (15) and (16) presents S
(14) in the form

S ¼
Z

d4x

�
1

a
þ Tm

m þ a

2
ðTm

mT
n
n � Tn

mT
m
n Þ þ a2Tð3Þ

þ a3Tð4Þ
�
; (17)

where Tð3Þ and Tð4Þ code the interaction terms of the NG
fermions that are cubic and quartic in the fermion deriva-
tive @mc . The first term in (17) provides a nonzero vacuum
expectation value for the VA Lagrangian, confirming that it
describes the spontaneously broken supersymmetry. In
supergravity this term associates with the cosmological
term [15,16]. The second term reproduces the free action
for the massless NG fermion c ðxÞ

S0 ¼
Z

d4xTm
m ¼ � i

4

Z
d4x@m �c�mc : (18)

The terms Tð3Þ and Tð4Þ cubic and, respectively, quartic in
the NG fermion derivatives were presented in [4] in the
form

Tð3Þ ¼ 1

3!

X
p

ð�ÞpTm
mT

n
nT

l
l ;

Tð4Þ ¼ 1

4!

X
p

ð�ÞpTm
mT

n
nT

l
lT

k
k ;

(19)

where the sum
P

p corresponds to the sum in all permuta-

tions of subindices in the products of the tensors Tm
n . The

terms (19) describe the vertices with six and eight NG
fermions.

IV. HIGHERDERIVATIVE GENERALIZATIONSOF
THE VOLKOV-AKULOVACTION

The !-form formalism [4] yields a clear geometric way
to extend the VA action by the higher degree terms in the
NG fermion derivatives. In general case, the combinations
of the !-forms (10), admissible for the higher order
invariant actions, have to be the homogeneous functions
of the degree four in the differentials dx and dc . The latter
condition guarantees the factorization of the volume ele-
ment d4x in the action integral. To restrict the number of
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these invariants, the minimality condition for the degree of
derivatives @mc in the general action

S ¼
Z

d4xLðc ; @mc Þ (20)

was proposed in [4]. The minimality condition takes into
account only the lowest degrees of the derivatives @mc in
the Lagrangian and corresponds to the low-energy limit. To
count the degree of @mc in different invariants observed
was that these derivatives appear from the differentials dc
in the fundamental !-forms. From this point of view there
is an important difference among the spinor and vector 1-
forms (9). The spinor 1-forms contain one derivative @mc ,
but the vector forms (13) either do not contain the c fields
at all or contain one derivative @mc accompanied by c . As
a result, the whole number of the derivatives @mc with
respect to the whole number of the fermionic NG fields is
lower in the vector differential 1-forms than in the spinor
ones. The invariants including the exterior differential of

the !-forms, like �ð4Þ in (12), have the higher degree in
@mc in comparison with the product of !-forms them-

selves. The same conclusion concerns the invariant ~�ð4Þ

including only the spinor forms.
Thus, the demand of the minimality of the number of the

derivatives @mc in S (20) will be satisfied if the admissible
invariants will contain only the vector differential 1-forms
!m. The exact realization of the minimality condition by
the VA action fixes the latter, and solves the problem of the
effective action construction in the low-energy limit.

V. CANCELLATION OF 4-DERIVATIVE TERMS IN
THE VOLKOV-AKULOVACTION

For the case of N ¼ 1 supersymmetry, the algebraic

structure of the terms Tð3Þ and Tð4Þ (19) was analyzed in
[12] using the Weyl spinor basis. It was observed that the

terms having the fourth degree in @mc and collected in Tð4Þ
completely cancel out.

Here we consider an alternative proof of the observation
using the Majorana bispinor representation. In correspon-

dence to representation (16), the term Tð4Þ (19) may be
written as

Tð4Þ ¼ � 1

4!
"n1n2n3n4"

m1m2m3m4Tn1
m1
Tn2
m2
Tn3
m3
Tn4
m4

¼ � 1

4!
ð"n1n2n3n4 �c ;n1

a1
�c ;n2
a2

�c ;n3
a3

�c ;n4
a4 Þ

� ð"m1m2m3m4�a1b1
m1

�a2b2
m2

�
a3b3
m3

�a4b4
m4

Þ
� ðc b1c b2c b3c b4Þ; (21)

where �ab
m ¼ ðC�mÞab is a symmetric matrix in the bispi-

nor indices (a, b ¼ 1, 2, 3, 4) and the condensed notation
�c ;n
a :¼ @n �c a is introduced. The product c b1c b2c b3c b4 in

(21) is a completely antisymmetric spin-tensor of the
maximal rank four because of the Grassmannian nature

of the spinor components c b. Then we find that the
product may be presented in the equivalent form as

c b1c b2c b3c b4 ¼ �ðC�1
b1b2

C�1
b3b4

þ C�1
b1b3

C�1
b4b2

þ C�1
b1b4

C�1
b2b3

Þc 1c 2c 3c 4; (22)

where the antisymmetric matrix C�1 is inverse of the
charge conjugation matrix C (6). The representation (22)
collects all spinors c without derivatives in the form of a
scalar multiplier. The substitution of (22) in (21) trans-
forms it into the sum of products of the bilinear spinor
covariant expressions

Tð4Þ ¼ 3

4!
��; � :¼ c 1c 2c 3c 4;

� :¼ "n1n2n3n4"
m1m2m3m4ð �c ;n1�m1m2

c ;n2Þð �c ;n3�m3m4
c ;n4Þ;
(23)

where �mn :¼ 1
2 ½�m; �n� are the Lorentz transformation

generators.
Taking into account the well known property of �mn

"m1m2m3m4�m3m4
¼ �2�5�m1m2

;

�5 :¼ �0�1�2�3 ¼ �i 0
0 i

� �
;

(24)

one can present the Lorentz invariant � (23) in the
compact form

� ¼ �2"n1n2n3n4ð �c ;n1�m1m2
c ;n2Þð �c ;n3�m1m2�5c ;n4Þ:

(25)

Using representation (25), we shall prove the vanishing of
�. To this end, let us recall the known Fierz relation for the
Grassmannian spinors 	i

ð �	1	2Þð �	3	4Þ ¼ � 1

4

X16
N¼1

ð �	1�
A	4Þð �	3�A	2Þ; (26)

where the 16 Dirac matrices �A and their inverse �A ¼
ð�AÞ�1, defined as

�A :¼ ð1; �m;�mn; �5; �5�mÞ;
�A :¼ ð�AÞ�1 ¼ ð1;��m;��mn;��5;��5�mÞ;

(27)

form the complete basis in the space of 4� 4 matrices. As
a result, we obtain

� ¼ 1

2
"n1n2n3n4

X16
A¼1

ð �c ;n1�m1m2
�A�m1m2�5c ;n4Þ

� ð �c ;n3�Ac
;n2Þ: (28)

The right-hand side of (28) includes the products of two
bilinear covariant expressions. The second (right) of them
ð �c ;n3�Ac

;n2Þ is either symmetric or antisymmetric under
the permutation n3 $ n2. Only the antisymmetric cova-
riant expressions generated by �A ¼ ð��r;��rsÞ give
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nonzero contribution to (28). The first (left) covariant
expression in (28), corresponding to the above choice of
�A, includes either the matrix Lv or Lt given by the
expressions

Lv¼�m1m2
�r�m1m2�5; Lt¼�m1m2

�rs�m1m2�5: (29)

Using the representation of �m1m2
in the form �m1m2

¼
ð�m1m2

þ �m1
�m2

Þ, we obtain the following relations

�m1m2
�A�m1m2 ¼ 4�A � �m1

�m2
�A�m2�m1 ;

�m�
r�m ¼ 2�r; �m�

rs�m ¼ 0
(30)

which show that

Lv ¼ 0; Lt ¼ 4�rs�5: (31)

Using the results (31) permits to present (28) in the next
form

� ¼ �2"n1n2n3n4ð �c ;n1�rs�5c ;n4Þð �c ;n3�rsc
;n2Þ: (32)

Taking into account the symmetry property ðC�rs�5Þab ¼
ðC�rs�5Þba and changing the summation indices n3 $ n1,
one can present the expression (32) in the form

� ¼ 2"n1n2n3n4ð �c ;n1�rsc
;n2Þð �c ;n3�rs�5c ;n4Þ: (33)

The matching (25) and (33) yields the expected result

� ¼ �� ) � ¼ 0; Tð4Þ ¼ 0 (34)

which proves that the 4-derivative term Tð4Þ (21) actually
vanishes in agreement with the observation [12].

Thus, the maximal number of derivatives present in the
Volkov-Akulov action reduces to three and the action takes
the following form

S ¼
Z

d4x

�
1

a
þ Tm

m þ a

2
ðTm

mT
n
n � Tn

mT
m
n Þ

þ a2

3!

X
p

ð�ÞpTm
mT

n
nT

l
l

�
(35)

with the maximal number of NG fermions in the vertices
equal to six.

Matching the Lagrangian (35) and the Komargodski and
Seiberg Lagrangian [11], having the form

L KS ¼ �f2 þ i@
 �G~�
Gþ 1

4f2
�G2@2G2

� 1

16f6
G2 �G2@2G2@2 �G2; (36)

shows their difference, because of the presence of one 4-
derivative term including eight NG fermions in (36). We
shall explain that the difference originates from various
realizations of the NG field used in the VA and KS
Lagrangians. The second question concerns a possibility
of such type cancellations in the NG fermion couplings
with other fields.

VI. COUPLING OF THE FERMIONIC NAMBU-
GOLDSTONE FIELDS WITH THE DIRAC FIELD

Herewe show that the above discussed cancellation of the
4-derivative terms also occurs in the NG fermion couplings
with other fields. It is easy to see by the application of the
general Volkov method [2] in the construction of the phe-
nomenological Lagrangian, describing the NG particles
interacting with other fields. The extension of this method,
aimed at including the supersymmetric couplings, is based
on joining of the differential d	 of a given field 	, carrying
arbitrary spinor and unitary indices, to the set of the super-
symmetric !-forms [4]. Then the above described proce-
dure for the minimal VA action construction, using only the
!-forms (9), may be applied to the enlarged set of these
supersymmetric 1-forms. The only restriction on the admis-
sible 	-terms is the demand of their invariance under the
Lorentz and the internal symmetry groups. The effective
actions must be the homogenious functions of the degree
four in the differentials dx, dc , and d	, and, generally, it
has to restrict the number of the derivatives @mc to be less
than four. Then the considered cancellations are not rele-
vant. However, if d	 is absent in the couplings, then the
4-derivative cancellationmay take place andwill reduce the
derivative @mc number in the corresponding vertices.
An instructive example of the described possibility gives

the N ¼ 1 minimal supersymmetric coupling of the
fermionic NG particle with the massive Dirac field 	 in
the low-energy limit [4]

S ¼
Z �i

2
"mnpqð �	�md	� d �	�m	Þ ^!n ^!p ^!q

þm �		"mnpq!
m ^!n ^!p ^!q

�
: (37)

The kinetic term of the Dirac field in (37) includes the
differential d	 and the cancellation is absent here. The
maximal number of the NG fermions at this term nNGf
equals six and the maximal number nNGd of their deriva-
tives equals three, just as in the case of the VA Lagrangian
(35) after 4-derivative cancellation. The mass term in (37)
does not include d	 and, respectively, it includes the super-
volume form d4V (11), because of the minimality condi-
tion. Then the cancellation effect does work and results in
the same maximal numbers nNGf ¼ 6 and nNGd ¼ 3 as in

the kinetic term. To present (37) in the standard notations
[4], we substitute the !-forms (13) in (37) and obtain

S ¼
Z

d4x

�
Rm
m þ aðRm

mT
n
n � Rm

n T
n
mÞ þ a2

2

X
p

ð�ÞpRm
mT

n
nT

l
l

þ a3

3!

X
p

ð�ÞpRm
mT

n
nT

l
lT

k
k þm �		 detW

�
; (38)

where Rm
n :¼ i

2 ð �	�m@n	� @n �	�
m	Þ is the kinetic term

for 	. Using the expression for detW from (35), the mass
term in (38) is presented as
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m �		 detW ¼ m �		þ am �		

�
Tm
m þ a

2
ðTm

mT
n
n � Tn

mT
m
n Þ

þ a2

3!

X
p

ð�ÞpTm
mT

n
nT

l
l

�
; (39)

where Tn
m ¼ � i

4@
n �c�mc in accordance with the defini-

tion (15).
The mass term (39) contains the maximal number of the

NG fermions nNGf ¼ 6 and, respectively, the derivative

number nNGd ¼ 3, as a consequence of the cancellation
of 4-derivative terms. These maximal numbers nNGf ¼ 6

and nNGd ¼ 3, characterizing the structure of the interac-
tion action (37), are the same as for the VA action (35). The
considered example shows that the cancellation effect
takes place in the supersymmetric couplings containing
the supervolume (11). So, we obtain that a sufficient con-
dition for the 4-derivative cancellation in the couplings of
the fermionic NG particles is the presence of d4V (11)
there. The observation sets issue on the restoration of a
constrained superfield action with couplings which coin-
cide with the effective VA action.

VII. RELATION BETWEEN THE
KS AND THE VA LAGRANGIANS

Despite the difference between the VA and the KS
Lagrangians, it seems that they are equivalent up to the
NG field redefinition. Here we outline a straightforward
way to check this assumption, and prove equivalence of
these Lagrangians up to the first order in the constant a.
The proof is analogous with the one considered in [7], and
further developed in [13], in the context of nonlinear
realization of the N ¼ 1 Maxwell superfield and the
component structure of the supersymmetric nonlinear elec-
trodynamics [12] (see additional refs. in these papers).

To make a comparison between the VA Lagrangian (35)

LVA ¼ 1

a
� i

4
�c ;m�mc � a

32
½ð �c ;m�mc Þ2 � ð �c ;n�mc Þ

� ð �c ;m�nc Þ� þ a2Tð3Þ (40)

and the KS Lagrangian (36) clearer, we present the latter in
the bispinor Majorana representation omitting the terms
which have the form of total derivative

L KS ¼ 1

a
� i

4
�g;m�mg� a

16
½ð �g;mgÞ2 þ ð �g;m�5gÞ2�

�
�
a

16

�
3½ð �ggÞ2 þ ð �g�5gÞ2�½ð@2ð �ggÞÞ2

þ ðð@2ð �g�5gÞÞ2�; (41)

where g :¼ ffiffiffi
2

p
G, a :¼ �1=f2, and the relations [14] con-

necting bilinear covariant expressions in the Weyl and the
Majorana representations were used. To eliminate the 4-
derivative term from LKS, the expression for the Majorana
spinor field ga in terms of c a has to include its higher

derivatives. So, we shall seek for it in the form of a
polynomial in the interaction constant a

g ¼ c þ a	þ a2	2 þ a3	3; (42)

where the sought-for Grassmannian spinors 	, 	2, 	3 are
the spinor nilpotent monomials of the form c ð@ �c c Þn, n ¼
1, 2, 3, respectively. The substitution of the expansion (42)
in the KS Lagrangian (41) and making it equal to the VA
Lagrangian (40) will produce the equations defining the
spinors 	, 	2, and 	3. Thus, the proof of the equivalency of
the Lagrangians is reduced to the solutions of these
equations.
The comparison of the terms, having the same degree

with respect to the constant a in the redefined KS and the
original VA Lagrangians, provides an algorithmic way to
generate the equations under question. In this way, we
observe that the spinors 	2 and 	3 do not contribute in
the terms linear in a in the redefined LKS. Thus, it is easy to
obtain an equation defining the spinor 	. Actually, the
substitution of (42) into (41) and omitting the total deriva-
tive term redefines the kinetic term to the form

� i

4
�g;m�mg ¼ � i

4
�c ;m�mc � i

2
að �c ;m�m	Þ þOða2Þ:

(43)

The next relevant term from LKS (41) is the term linear in a
and quartic in the field number. Summing up of the men-
tioned terms results in the redefined KS Lagrangian in the
linear order in a

LKS ¼ 1

a
� i

4
�c ;m�mc � i

2
að �c ;m�m	Þ

� a

16
½ð �c ;mc Þ2 þ ð �c ;m�5c Þ2� þOða2Þ: (44)

Matching the Lagrangians (44) and (40) yields the sought-
for equation for 	

ið �c ;m�m	Þ ¼ � 1

8
½ð �c ;mc Þ2 þ ð �c ;m�5c Þ2� þ 1

16

�½ð �c ;m�mc Þ2 � ð �c ;n�mc Þð �c ;m�nc Þ�:
(45)

To solve Eq. (45), we observe that its terms have the
multiplier �c ;m which can be canceled, resulting in

�m	¼ i

8
½c ð �c ;mc Þþ�5c ð �c ;m�5c Þ�� i

16
½�mc ð �c ;n�nc Þ

��nc ð �c ;n�mc Þ�þ4m; (46)

where 4m is defined by the condition ið �c ;m4mÞ = total
derivative terms. Multiplication of Eq. (46) by �m results in
the general solution

	¼� i

32
½ð�mc Þð �c ;mc Þþ ð�m�5c Þð �c ;m�5c Þ�� i

64

�½3c ð �c ;m�mc Þþ ð�mnc Þð �c ;n�mc Þ�� 1

4
ð�m4mÞ:

(47)
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Substitution of (47) in (42) yields the explicit expression
connecting the KS and the VA realizations of the NG field
up to terms linear in affiffiffi
2

p
G ¼ c

�
1þ 3ia

64
ð �c ;m�mc Þ

�
� ia

32

�
ð�mc Þð �c ;mc Þ

þ ð�m�5c Þð �c ;m�5c Þ � 1

2
ð�mnc Þð �c ;n�mc Þ

�

� a

4
ð�m4mÞ þOða2Þ: (48)

The spin-vector 4ma in (48) is composed by a linear
combination of the Lorentz covariant nilpotent monomials
c ð@ �c c Þ of the third order in c , analogouswith the general
monomials	n (42), of the order ð2nþ 1Þ in c and @c . The
quadratic terms in a are restored through the substitution of
	 (47) into the expansion (42), and subsequently repetition
of the above considered procedure with respect to the
quadratic terms in a. Having fulfilled this, one can find
	2, and then repeat again a similar procedure with respect
to the cubic terms in the constant a. As a result, one can
obtain the explicit expression for the KS fieldG through the
VAfield c , and to conclude about the expected equivalency
between the KS and VA Lagrangians.

VIII. DISCUSSIONS

Here we presented an independent algebraic proof of
the cancellation of 4-derivative terms in theD ¼ 4N ¼ 1
VA action using the Majorana bispinor representation and
the Fierz rearrangements. The Majorana representation
may simplify the investigation of such cancellations in
the case of extended supersymmetries and/or of the
higher dimensional spaces. We observed that the cancella-
tion results in the difference between the Komargodski-
Seiberg superfield [11] and the Volkov-Akulov [4]
actions.

The difference gives rise to the question of whether the
KS Lagrangian is equivalent to the VA Lagrangian. The
second question arising from the cancellation concerns its
presence in the NG fermion interactions with other fields.
We found out that the cancellation occurs in the coupling
of the fermionic NG field with massive Dirac fields. It
yields the maximal number of the NG fermions nNGf and

their derivatives nNGd in the interaction Lagrangian which

equals six and three, respectively. The maximal numbers
nNGf ¼ 6 and nNGd ¼ 3 are the same as in the VA action

describing the NG fermion interactions between them-
selves. The observation poses the issue of restoration of
superfield Lagrangian of interactions which uses realiza-
tion of the NG fermionic field coinciding with the one in
the VA Lagrangian with couplings. A way to solve these
issues implies the construction of the explicit expression
connecting the KS and the VA realizations of the NG field.
The representation of the KS fermion field through the VA
field has to contain terms with its derivatives. We discussed
the problem and found the explicit formula connecting the
VA and the KS realizations of NG field up to the first order
in the interaction constant a. The substitution of the ex-
pression into the KS action reduced it to the VA action. It
points to the expected equivalence of these actions in all
orders in a. The equivalency problem posed in [17], has
recently been discussed in [18] with pointing to some
difficulties appearing on the way.
Taking into account the recent application of the formal-

ism of N ¼ 1 constrained superfields in the minimal
supersymmetric standard model (MSSM), as well as its
generalizations to N -extended supersymmetric models
(see e.g. [19,20]), it is interesting to study the above
considered kind of cancellations in these models.
Availability of an explicit formula connecting VA and KS
realizations of NG field could simplify the phenomeno-
logical analysis of the mentioned and other new
models.
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