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We study the supersymmetric N ¼ ð2; 2Þ Wess-Zumino model in two dimensions with the functional

renormalization group. At leading order in the supercovariant derivative expansion we recover the

nonrenormalization theorem which states that the superpotential has no running couplings. Beyond

leading order the renormalization of the bare mass is caused by a momentum-dependent wave function

renormalization. To deal with the partial differential equations we have developed a numerical toolbox

called FLOWPY. For weak couplings the quantum corrections to the bare mass found in lattice simulations

are reproduced with high accuracy. But in the regime with intermediate couplings higher-order operators

that are not constrained by the nonrenormalization theorem yield the dominating contribution to the

renormalized mass.
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I. INTRODUCTION

In the search for high energy theories beyond the stan-
dard model supersymmetric models are a topic of great
interest. Supersymmetry reduces the hierarchy and the
fine-tuning problem. It has to be broken at some energy
scale since supersymmetry has not been observed in low
energy physics. The breaking does not occur on the per-
turbative level and therefore nonperturbative tools are
needed to analyze these models, e.g. lattice formulations
or the function renormalization group.

Lattice formulations and simulations have been success-
fully applied to nonperturbative problems in field theory.
Although there has been considerable progress in the last
years [1–4] there are still some difficulties in the lattice
formulation of supersymmetry. The discretization leads to
a (partial) breaking of supersymmetry and the implemen-
tation of dynamical fermions on the lattice still poses a
challenge.

Nonperturbative continuum methods, such as the
functional renormalization group (FRG) which manifestly
preserve supersymmetry, can complement the lattice calcu-
lations. The FRGhas previously been applied to awide range
of nonperturbative problems such as critical phenomena,
fermionic systems, gauge theories and quantum gravity;
see e.g. [5–13] for reviews. Applied to supersymmetric theo-
ries it circumvents problemsof the lattice formulation such as
supersymmetrybreaking due todiscretization.But in order to
solve the FRG equations truncations have to be employed
which introduce a different kind of error.

Quite a few conceptual studies of supersymmetric
theories in the framework of the FRG have already been
performed. The main ingredient is the construction and use
of a manifestly supersymmetric regularization scheme. For

example such a regulator has been presented for the four-
dimensional Wess-Zumino model in [14,15]. Investigations
for one-, two-, and three-dimensional N ¼ 1 Wess-
Zumino models have been performed in [16–19]. A FRG
formulation of supersymmetric Yang-Mills theory employ-
ing the superfield formalism has been given in [20]; for
further applications see also [21,22]. General theories of a
scalar superfield including the Wess-Zumino model were
studied with a Polchinski-type RG equation in [11], which
yields a new approach to supersymmetric nonrenormaliza-
tion theorems. The nonrenormalization theorem has also
been proven with FRG methods in [23]. In [24] a Wilsonian
effective action for the Wess-Zumino model by perturba-
tively iterating the FRG is constructed.
The aim of this work is twofold. On the one hand, we

want to compare the results from the supersymmetric
formulation of the FRG equations to lattice data for the
renormalized mass in the two-dimensional N ¼ ð2; 2Þ
Wess-Zumino model [4]. This comparison allows us to
estimate the truncation error. The renormalized mass is
defined as the location of the pole of the propagator in
the complex plane; therefore we have to take the momen-
tum dependence in the FRG framework into account.
There are several applications, where this dependence is

important but the related contributions lead to a much
higher numerical effort for the solution of the flow equa-
tions. Full momentum dependence of propagators and
vertices has previously been treated successfully in the
literature [25–32]. We introduce a numerical toolbox called
FLOWPY which is designed to solve the flow equations with

momentum dependence as encountered in this paper.
FLOWPY can be adapted to solve not only flow equations

with momentum dependence but also other differential
equations encountered in the FRG framework e.g. for field
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dependent effective potentials. In this paper we demon-
strate that FLOWPY solves the flow equations reliably.

The paper is organized as follows: In Sec. II we introduce
theN ¼ ð2; 2ÞWess-Zumino model in two dimensions. In
Sec. III we sketch the derivation of the supersymmetric
flow equations for the superpotential and the (momentum-
dependent) wave function renormalization. The flow equa-
tion for the superpotential will lead to the nonrenormaliza-
tion theorem. In Sec. IV first FLOWPY is described and then
we specialize our flow equations and demonstrate that
perturbation theory is reproduced correctly. In Sec. V we
compare the renormalized mass calculated in the FRG
approach with the results from lattice simulations.

II. THE N ¼ ð2; 2Þ WESS-ZUMINO
MODEL IN TWO DIMENSIONS

TheN ¼ ð2; 2ÞWess-Zumino model in two dimensions
can be found by a dimensional reduction of the N ¼ 1
model in four dimensions [33]. The Lagrange density is
given by

L ¼ 2 �@ ��@�þ �cMc � 1
2
�FFþ 1

2FW
0ð�Þ þ 1

2
�F �W 0ð�Þ

(1)

with Dirac fermions c and �c . The fermion matrixM reads

M ¼ @þW 00ð�ÞPþ þ �W 00ð�ÞP� (2)

with P� ¼ ð1� ��Þ=2, F ¼ F1 þ iF2 and� ¼ �1 þ i�2

as well as @ ¼ 1
2 ð@1 � i@2Þ and z ¼ x1 þ ix2. The super-

potential is denoted by Wð�Þ ¼ uð�1; �2Þ þ ivð�1; �2Þ.
We work in the Weyl basis with �1 ¼ �1, �

2 ¼ ��2 and
�� ¼ i�1�2 ¼ �3. The complex spinors can be decom-
posed as c ¼ ð c 1 c 2 ÞT and �c ¼ ð �c 1

�c 2 Þ. The

Lagrange density is invariant under the supersymmetry
transformations

��¼ �c 1"1 þ �"1c 1; � ��¼ �c 2"2 þ �"2c 2;

� �c 1 ¼�1
2F �"1 � @� �"2; � �c 2 ¼� �@ �� �"1 � 1

2
�F �"2;

�c 1 ¼�1
2F"1 þ �@�"2; �c 2 ¼ @ ��"1 � 1

2
�F"2;

�F¼ 2ð@ �c 1"2 � �"2 �@c 1Þ; � �F¼ 2ð@ �c 2"1 � �"1 �@c 2Þ:
(3)

The superspace formulation of this model is constructed in
Appendix A. A detailed discussion of the underlying
supersymmetry algebra and a construction of the super-
space can be found e.g. in [34].

Integrating out the auxiliary fields yields the on-shell
Lagrangian

L on ¼ 2 �@ ��@�þ 1
2W

0ð�Þ �W 0ð�Þ þ �cMc : (4)

In this paper we will consider the superpotential

Wð�Þ ¼ 1
2m�2 þ 1

3g�
3: (5)

The system has two bosonic ground states which lead to a
nonzero Witten index [35]; therefore supersymmetry is

never spontaneously broken in the N ¼ ð2; 2Þ Wess-
Zumino model.
A characteristic feature of the N ¼ 1 Wess-Zumino

model in four dimensions survives the dimensional reduc-
tion, namely, that bosonic and fermionic loop corrections
cancel in such a way that the effective superpotential
receives no quantum corrections. This is called the non-
renormalization theorem [36–38]. In the two-dimensional
model considered here the cancellations even render the
model finite. The model has been studied intensively in the
literature; see e.g. [3,4,39–41] for lattice simulations.

III. SUPERSYMMETRIC RG FLOW

Following the lines of our previous works [16–19] we
construct a manifestly supersymmetric flow equation in the
off-shell formulation. Our approach is based on the FRG
formulated in terms of a flow equation for the effective
average action �k, i.e. the Wetterich equation [42]

@k�k ¼ 1
2 STrf½�ð2Þ

k þ Rk��1@kRkg: (6)

The scale dependent �k interpolates between the micro-
scopic action S for k ! �, with � denoting the micro-
scopic UV scale, and the full quantum effective action
� ¼ �k!0. As the model considered in this paper is UV
finite, the cutoff � can be set to infinity. The interpolating
scale k denotes an infrared (IR) regulator scale below
which all fluctuations with momenta smaller than k are
suppressed. For k ! 0, all fluctuations are taken into
account and we arrive at the full solution of the quantum
theory in terms of the effective action �. The Wetterich
equation defines an RG trajectory in the space of action
functionals with the classical action S serving as initial
condition.
The second functional derivative of �k in Eq. (6) is

defined as

ð�ð2Þ
k Þab ¼

~�

��a

�k

�Q

��b

; (7)

where the indices a, b summarize field components,
internal and Lorentz indices, as well as spacetime or
momentum coordinates. In the present case, we have�T ¼
ð�; ��;F; �F; �c ; c Þ where � is not a superfield, but merely
a collection of fields. The momentum-dependent regulator
function Rk in Eq. (6) establishes the IR suppression of
modes below k. In the general case, three properties of the
regulator RkðpÞ are essential: (i) RkðpÞjp2=k2!0 > 0 which

implements the IR regularization, (ii) RkðpÞjk2=p2!0 ¼ 0

which guarantees that the regulator vanishes for k ! 0, and
(iii) RkðpÞjk!�!1 ! 1 which serves to fix the theory at
the classical action in the UV. Different functional forms of
Rk correspond to different RG trajectories manifesting the
RG scheme dependence but the end point �k!0 ! � re-
mains invariant; see e.g. Refs. [8,43–48]. Supersymmetry
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is preserved if the regulator contribution to the cutoff
action �Sk [cf. Eq. (11)] is supersymmetric.

As an ansatz for the effective action we use an expansion
in superspace (see Appendix A for our conventions)1

�k ¼ �2
Z

d2x
Z

dyd �yZ2
kð@ �@Þ ���

� 2
Z

d2x
Z

dyWkð�Þ � 2
Z

d2x
Z

d �y �Wkð ��Þ (8)

¼
Z d2p

4�2

�
Z2
kðp2Þ

�
2p2 ���þ �c ipc � 1

2
�FF

�

þ 1

2
FW 0

k þ
1

2
�F �W 0

k þ �c ðW 00
k Pþ þ �W 00

kP�Þc
�
: (9)

In contrast to the usual supercovariant derivative expansion
we have included those combinations of the supercovariant
derivatives that merely reduce to spacetime derivatives.
A momentum dependence in Wk is irrelevant as found in

Sec. III B. An arbitrary Kähler potential [Kð ��;�Þ inte-
grated over the whole superspace] is not taken into account
here, since we expect only a small influence for the renor-
malized mass. Another contribution neglected in this trun-
cation comes from the terms of higher than quadratic order
in the auxiliary field and the corresponding supersymmet-
ric partner terms, denoted as auxiliary field potential. In the
following we will only work with real and imaginary parts
�1, �2, F1, F2.

For this scale dependent effective action the auxiliary
fields obey the equations of motion F ¼ �W 0

kð�Þ=Z2
k and

�F ¼ W 0
kð�Þ=Z2

k. This leads to the on-shell action

�on
k ¼

Z d2p

4�2

�
1

2
Z2
kðp2Þp2� ��þ 1

2

jW 0
kð�Þj2

Z2
kðp2Þ

þ i �cpc þ �c ðW 00
k Pþ �W 00

kP�Þc
�
: (10)

A. Supersymmetric regulator

Supersymmetry is preserved if we shift the mass by a
momentum-dependent infrared regulator,2 m ! mþ Z2

k �
r1ðk; p2Þ or multiply the wave function renormalization by
a momentum-dependent regulator function, Z2

k ! Z2
k�

r2ðk; p2Þ. Such regulators are the same as the ones used
in the previous models [16–19]. To get a regularized path
integral Rk is included in terms of the cutoff action �Sk. It
reads in a matrix notation

�Sk ¼ 1

2

Z d2p

4�2
��Z2

kR
T
k�

T (11)

with � ¼ ð�1 �2 F1 F2 c ð�pÞT �c ðpÞ Þ and

Rk ¼ RB
k 0
0 RF

k

� �
with RB

k ¼ p2r2 � 1 r1 � �3

r1 � �3 �r2 � 1
� �

and RF
k ¼ 0 ip � r2 � r1 � 1

ip � r2 þ r1 � 1 0

� �
:

(12)

With these regulators at handwe can proceed to calculate the
flow equation. Inserting ansatz (9) in the flow equation (6),
the propagator can be calculated along the lines described

in [49]: The fluctuation matrix�ð2Þ
k þ Rk is decomposed into

the propagator �ð2Þ
0 þ Rk including the regulator functions

and a part ��k containing all field dependencies. The flow
equation (6) is expanded in the number of fields; see
Appendix B for the expansion and the explicit matrices.

B. Flow equation for the superpotential—The
nonrenormalization theorem

The quantity at leading order in the supercovariant
derivative expansion is the scale dependent superpotential.
We obtain the flow equation by projecting onto the terms
linear in the auxiliary fields. We can choose either the real
or imaginary part of the auxiliary field as they are bound to
give the same results due to supersymmetry. The super-
potential Wð�Þ ¼ uð�1; �2Þ þ ivð�1; �2Þ is a holomor-
phic function of �1 and �2, and therefore its real and
imaginary parts obey the Cauchy-Riemann differential
equations

@u

@�1
¼ @v

@�2

;
@u

@�2

¼ � @v

@�1

: (13)

Using these equations we find for the flow equations of the
superpotential

@kuk ¼ 0; @kvk ¼ 0 ) @kWk ¼ @k �Wk ¼ 0: (14)

This means that the superpotential remains unchanged
during the RG flow. The Kähler potential does therefore
not influence the flow of the superpotential, as found in
[37]. Even the nontrivial momentum dependence consid-
ered here does not change this result. The nonrenormaliza-
tion theorem is verified by the flow equations in the present
truncation. This result is similar to the proofs in four
dimensions discussed in [11,23].
As the flow vanishes at leading order, the first quantity

with a nonvanishing flow is the wave function renormal-
ization which is a term at next-to-leading order in our
truncation. It will turn out later that the momentum depen-
dence is important for the renormalized mass (cf. Sec. V);
therefore we already include it in ansatz (9).

1For the Fourier transformation we use the convention @j !
ipj with the notations p ¼ ðp1; p2ÞT and p ¼ jpj where there is
no risk of misunderstanding.

2The regulator function is multiplied with the wave function
renormalization to ensure reparametrization invariance of the
flow equation.
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C. Momentum-dependent flow equation for
the wave function renormalization

The flow equation for the wave function renormalization
can be obtained from a projection onto the terms quadratic
in the auxiliary fields. It is derived in Appendix B and
reads

@kZ
2
kðpÞ ¼ �8g2

Z d2q

4�2

hðp� qÞhðqÞ
vðqÞ2vðp� qÞ2 ½@kR1ðq� pÞ

�Mðp� qÞvðqÞ þ @kR1ðqÞMðqÞvðp� qÞ�

þ 4g2
Z d2q

4�2

hðp� qÞ@kR2ðqÞuðqÞvðp� qÞ
vðqÞ2vðp� qÞ2

þ 4g2
Z d2q

4�2

hðqÞ@kR2ðq� pÞvðqÞuðp� qÞ
vðqÞ2vðp� qÞ2

(15)

with the abbreviations (recall that jqj ¼ q)

hðqÞ ¼ ðr2ðqÞ þ 1ÞZ2
kðqÞ; MðqÞ ¼ mþ r1ðqÞZ2

kðqÞ;
RiðqÞ ¼ riðqÞZ2

kðqÞ; uðqÞ ¼ MðqÞ2 � q2h2ðqÞ;
vðqÞ ¼ MðqÞ2 þ q2h2ðqÞ: (16)

Here we are dealing with a UV-finite theory and therefore it
is sufficient to use the simple, masslike infrared regulator

r1ðk; p2Þ ¼ k and r2ðk; p2Þ ¼ 0: (17)

After a shift in the integration variables in the second part
of the integral (15) the flow equation simplifies to

@kZ
2
kðpÞ ¼ �16g2

Z d2q

4�2

kZ2
kðqÞ þm

NðqÞ2Nðp� qÞZ
2
kðqÞ

� Z2
kðjp� qjÞ@kðkZ2

kðqÞÞ; (18)

where we have introduced the abbreviation

NðqÞ ¼ ðq2Z4
kðqÞ þ ðkZ2

kðqÞ þmÞ2Þ: (19)

In order to deal with the partial differential equation we
have developed a (parallelizable) numerical toolbox called
FLOWPY. In the next section we present the main ideas

behind our numerical setup to solve the momentum-
dependent flow equation. A detailed presentation of
FLOWPY is deferred to a future paper [50].

IV. NUMERICAL SETUP

Structurally, the flow equation to be solved numerically
is of the form

@kzðk;pÞ ¼
Z

dnqI½k;p;q; zðk; f1ðp; qÞÞ;
zðk; f2ðp; qÞÞ; . . . ; zðk; fnðp; qÞÞ�; (20)

where the external momentum p is treated with a discre-
tized grid. While the integrand I may actually also be a

function of @kzðk;pÞ, and hence the integral flow equation
be given in implicit form only, numerical results suggest
that, at least in the model studied here, @kzðk;pÞ should
be sufficiently small to allow an iterative approach, where
the integrand is evaluated first under the assumption
@kzðk;pÞ ¼ 0, and the result is then used to reevaluate
the integrand with a better approximation to @kzðk;pÞ until
convergence is reached. Apart from this conceptual issue,
the technology to deal with an evolution equation of this
kind is readily available in an accessible form via the SciPy
‘‘Scientific Python’’ extension [51] to the PYTHON [52]
programming language. The details of the numerical strat-
egy are described in Appendix C.
As a test for the numerical approximation and the abili-

ties of FLOWPY, we solve the flow of the perturbative wave
function renormalization. It is inferred by setting ZkðqÞ to
its classical value ZkðqÞ � 1 on the right-hand side of
Eq. (18). The perturbative flow with 60 discretization
points is shown in Fig. 1 for different values of k.
It is possible to calculate the perturbative expression for

Z2
1-loopðpÞ analytically from the perturbative flow equation

by performing the k integral using limk!1r1, r2 ! 1 and
limk!0r1, r2 ! 0. This yields

Z2
1-loop ¼ 1þ g2

�2

Z d2q

ðm2 þ q2Þðm2 þ jq� pj2Þ

¼ 1þ 4g2
artanhðpð4m2 þ p2Þ�1=2Þ

�p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ p2

p ; (21)

which is shown as a solid line in Fig. 1. This shows that
possible errors in the numerical calculation of the wave
function renormalization with FLOWPY due to discretization,
interpolation and the boundary condition Zkðq ! 1Þ ¼ 1
are under control. We will consider Zk and the renorma-
lized masses obtained from it as exact in the employed
truncation.

 1

 1.005

 1.01

 1.015

 1.02

 1.025

 1.03

-20 -15 -10 -5  0  5  10  15  20

(Z
k1-

lo
op

)2

ln(p2/m2)

k=101

k=100

k=10-1

k=10-2

k=10-6

perturbation theory

FIG. 1 (color online). Perturbative flow for the parameters � ¼
g=m ¼ 0:3 and m ¼ 1. The solid line is the plot of Eq. (21).
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In the next section we will determine renormalized
masses from the nonperturbative wave function renormal-
ization with full momentum dependence calculated with
FLOWPY.

V. THE RENORMALIZED MASS

The analytic continuation of the bosonic propagator

GbosðpÞ ¼ 1

p2 þm2 þ �ðp;m; gÞ (22)

has a pole which defines the renormalized mass. Since the
bare massm is a parameter of the superpotential (5) it is not
changed during the flow. � is the self-energy. As expected
from a supersymmetric theory, the pole of the fermionic
propagator leads to the same renormalized mass as the
bosonic propagator.

The Fourier transformation of GbosðpÞ yields the
correlator

Cbosðx1Þ ¼
Z dp

2�
Gðp1; 0Þeip1x1 : (23)

The renormalized mass can be obtained from the long
range exponential decay of this quantity and is in the
following denoted as correlator mass mcorr. One can also
define a renormalized mass, which we denote as a propa-
gator mass, through m2

prop ¼ ðGbosðpÞÞ�1jp¼0.

To compare the renormalized masses from the FRG with
the results of the lattice simulation [4] we consider the
masses of the particles in the on-shell theory. In our trun-
cation the bosonic propagator from the on-shell action (10)
reads in the infrared limit

GNLO
bos ðpÞ ¼ 1

p2Z2
k!0ðp2Þ þm2=Z2

k!0ðp2Þ ; (24)

and the fermionic propagator reads

GNLO
ferm ðpÞ ¼

p

p2Z4
k!0ðp2Þ þm2

: (25)

Both propagators have the same poles and therefore lead to
the same renormalized masses for bosons and fermions.

For the propagator mass the fields in the on-shell action
have to be rescaled with the wave function renormalization
such that the kinetic term is of the canonical form.
Neglecting the momentum dependence in the wave func-
tion renormalization we obtain

mprop ¼ m

Z2
k!0ðp ¼ 0Þ : (26)

For a small self-energy � a comparison between Eqs. (22)
and (24) leads to the approximate relation

Z2
k!0ðpÞ ¼ 1þ �ðp;m; gÞ

p2 �m2
: (27)

A numerical calculation can provide Z2
kðpÞ only for real p

and its analytic continuation cannot be determined straight-
forwardly. Instead we consider the discrete Fourier trans-
formation of GNLO

bos ðpÞ with momenta p ¼ f0; 2�=aN; . . . ;
2�ðN � 1Þ=aNg on the interval x 2 ½0; aN ¼ L�. For
distances much smaller than L this should approximate
CNLO
bos ðxÞ in a well-defined way. More precisely, instead of

the exponential decay one gets the long distance behavior

Ca;mcor
ðx1Þ / coshðmcorrðx1 � L=2ÞÞ (28)

after the integration over the spatial direction. The mass can
be determined from a fit to this function, as it is done in
lattice simulations. The details of this procedure can be
found in Appendix D.
With the analytic result (21) for Z2

1-loop at hand we can

calculate the poles of GNLO
bos ðpÞ and obtain a perturbative

approximation of mcorr. Note that this analytic solution of
the perturbative flow together with Eq. (27) leads to the
same result as a one-loop on-shell calculation of the
polarization � (cf. Appendix E). Expanding the pole of
the propagator (22) to first order in the dimensionless
parameter �2 ¼ g2=m2 leads to the one-loop approxima-
tion of the renormalized mass

ðm1-loop
corr Þ2 ¼ m2

�
1� 4ffiffiffiffiffiffi

27
p �2 þOð�4Þ

�
: (29)

A. Weak couplings

Let us start with an investigation of the weak coupling
sector which is defined as � < 0:3, where perturbation
theory provides an excellent cross-check to establish the
correctness of our ansatz and the errors in the numerical
approximation.
The bare mass in the lattice simulations [4] is taken to be

m ¼ 15. Concerning the units of the mass note the follow-
ing: In the lattice calculation, the mass is measured in units
of the box size, i.e. the physical volume of the lattice
simulation. Similarly, everything can be reformulated in
terms of the dimensionless ratio of bare and renormalized
mass.
For the numerical treatment of Eq. (18) we have to use

dimensionless quantities. Because of the nonrenormaliza-
tion theorem the bare mass quantities in the superpotential
enter in the flow equation only as parameters. Rescaling the
dimensionful quantities with the bare mass sets the scale in
this model. We have set this scale to m ¼ 1. To get the
same units as in the lattice simulations the resulting renor-
malized mass is multiplied with 15.
The correlator masses in the weak coupling regime are

calculated with the momentum-dependent wave function
renormalization from the flow equation (18) solved with
FLOWPY. The technical details of the determination of the

correlator masses are described in Appendix D. The results
are shown in the second column of Table I. The values in
the fourth column are taken from aMonte Carlo simulation
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on the lattice [4]. We discuss the lattice results further in
Sec. VB. For the time being it suffices to note the agree-
ment of lattice and perturbative results within the statistical
errors. Hence perturbation theory already provides a good
check for our results.

In Fig. 2 we show the correlator masses from the flow
equation, the lattice simulation and the one-loop result (29)
for mcorr. The masses calculated from the flow equation
agree verywell with perturbation theory andwith the results
from lattice simulations. This can be quantified by compar-
ing the correction to the bare mass �mcorr ¼ m�mcorr.
We find �mFRG

corr =�m
lattice
corr ’ 0:95. Taking into account the

statistical error of the lattice data no significant difference to
the FRG results can be found.

We conclude that in the weak coupling regime the
truncation of the flow equation with full momentum de-
pendence suffices to capture the main aspects of the model.
Higher-order operators, which yield an auxiliary field
effective potential, have, as expected, little influence.
To investigate the influence of the momentum depen-

dence in the wave function renormalization, we calculate
the propagator mass (26). The results are shown in the third
column of Table I and in Fig. 2. A comparison between the
propagator mass and the correlator mass from the lattice
calculation yields �mFRG

prop=�m
lattice
corr ’ 0:75. Already in the

weak coupling regime it is necessary to include the mo-
mentum dependence in order to determine the corrections
to the renormalized mass with satisfying accuracy.

B. Intermediate couplings

At intermediate couplings 0:3 � � � 1 a significant
deviation of our numerical results from perturbation theory
can be observed. In this regime the perturbative calcula-
tions can no longer provide a reliable test for the numerical
results and we have to rely on lattice calculations. In a
supersymmetric theory their result must, however, be con-
sidered with care as a lattice formulation of supersymmetry
still poses difficulties [53]. A common approach is to
implement only a part of the supersymmetry which allows
one to recover the complete symmetry in the continuum
limit in many cases.
In the present model there are further complications for a

lattice formulation, especially in the intermediate coupling
sector [4]. The considered discretizations are invariant
under half of the supersymmetry. They suffer, however,
from the dominance of a contribution to the action that is a
mere discretization of a surface term at larger couplings. In
general the correct continuum limit can only be obtained
with unrealistically high numerical effort. The relevance of
this effect depends on the coupling strength and on the
specific discretization. For intermediate couplings the non-
local SLAC discretization and the twisted Wilson discre-
tization provides the most reliable results (cf. [4] for
details). The renormalized masses of these discretizations
are used for a comparison with our results. They are shown
in the third and fourth columns of Table II3 and displayed
in Fig. 3 (boxes with error bars) together with the order �2

expanded result (29) for mcorr (dashed line).
Note that the spontaneous breaking of the Z2 symmetry

introduces also finite volume effects in the lattice simula-
tions. Although there are well-known prescriptions to im-
plement these properties of the theory in lattice simulations,
they still lead to additional complications [54].
The correlator masses determined from the FRG are

shown in the second column of Table II and displayed in
Fig. 3 (crosses). Additionally the perturbative result for the
renormalized mass is shown (solid line), which is deter-

TABLE I. Renormalized masses obtained with the flow equa-
tion with and without momentum dependence (mFRG

corr and mFRG
prop )

as well as lattice data mlattice
corr from a continuum extrapolation [4]

in the weak coupling regime.

� mFRG
corr mFRG

prop mlattice
corr

0.02 14.998 14.998 14.999(1)

0.04 14.991 14.992 14.993(3)

0.06 14.979 14.983 14.977(4)

0.08 14.963 14.970 14.963(5)

0.10 14.943 14.952 14.935(6)

0.12 14.917 14.931 14.905(9)

0.14 14.888 14.907 14.871(9)

0.16 14.854 14.878 14.83(1)

0.18 14.815 14.846 14.82(1)

0.20 14.773 14.810 14.75(2)

0.22 14.674 14.771 14.71(2)

0.24 14.674 14.728 14.63(2)

0.26 14.619 14.681 14.60(2)

0.28 14.559 14.631 14.53(2)

0.30 14.496 14.578 14.45(3)

 14.4
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g/m
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mcorr
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FRG

FIG. 2 (color online). Comparison between lattice data taken
from [4] and our results for the correlator mass mFRG

corr with
momentum dependence and mFRG

prop without momentum depen-

dence in the weak coupling regime. 3All lattice results are extrapolated to the continuum.
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mined from the pole of the propagator (22) with the
polarization calculated in Appendix E.4

Although the corrections from the wave function renor-
malization with full momentum dependence to the bare
mass capture some of the quantum effects, they do not
account for all of the nonperturbative effects present in this
model. To quantify this, we compare these corrections to
the corrections found in lattice calculations. This yields
results between �mFRG

corr =�m
lattice
corr ’ 0:9 for � ¼ 0:35 and

�mFRG
corr =�m

lattice
corr ’ 0:65 for � ¼ 1:0. The fact that the

wave function renormalization accounts for less of the
quantum corrections as the coupling grows is due to
the growing influence of higher-order operators, especially
the auxiliary field potential. In the present truncation we
have only considered terms that are at most quadratic in the
auxiliary field and have neglected backreactions from a
potential for the auxiliary field. As can be seen from a
diagrammatic expansion of the flow equation, terms up to
order F4

i directly modify the flow equation for the wave
function renormalization, which is proportional to F2

i . It is
known from our previous investigations of scalar super-
symmetric models [16] that the influence of higher-order
operators grows with the strength of the couplings. A
truncation that goes beyond the momentum-dependent

wave function renormalization has to be considered to
improve the results in the regime with intermediate
couplings.
The results for the propagator mass are shown in the

third column of Table II and in Fig. 3 (triangles). Compared
to the lattice results we find �mFRG

prop=�m
lattice
corr ’ 0:75 for

� ¼ 0:35 and �mFRG
prop=�m

lattice
corr ’ 0:6 for � ¼ 1:0. The

improvement due to the momentum dependence in Z2
k is

not as pronounced as it is in the weak coupling regime.

VI. CONCLUSIONS

In this paper we have applied the functional renormal-
ization group to the N ¼ ð2; 2Þ Wess-Zumino model in
two dimensions. The model is UV finite which allows a
direct comparison to results from lattice simulation.
The first quantity to be calculated in a supercovariant

derivative expansion is the superpotential. It is well known
from the nonrenormalization theorem that it does not re-
ceive quantum corrections. In the language of the FRG the
nonrenormalization theorem is recovered in a very simple
form, namely, that the superpotential has a vanishing flow
equation. The proof only uses the fact that the superpoten-
tial is a holomorphic function and therefore the Cauchy-
Riemann differential equations for its real and imaginary
parts hold.
Hence the first term in the expansion that receives a

correction from renormalization is the wave function re-
normalization. It leads to the renormalization of the bare
mass in the on-shell theory, with the renormalized mass
defined as the pole of the propagator in the complex plane.
We have calculated the renormalized mass with and
without momentum dependence in the wave function
renormalization.
In order to benchmark our results we use lattice calcu-

lations. In the weak coupling regime the results for the

TABLE II. Masses obtained with the flow equation with and
without momentum dependence (mFRG

corr and mFRG
prop ) as well as

lattice data [4] in the regime with intermediate couplings.

� mFRG
corr mFRG

prop Twisted Wilson SLAC imp.

0.35 14.321 14.428 14.23(2)

0.40 14.123 14.259 13.99(3) 14.00(1)

0.45 13.905 14.069 13.62(5)

0.50 13.666 13.861 13.30(6)

0.55 13.411 13.636 12.8(1)

0.60 13.138 13.394 12.2(1) 12.44(6)

0.65 12.854 13.137 11.9(2)

0.70 12.556 12.866 10.4(5)

0.75 12.248 12.583

0.80 11.932 12.290 10.2(3)

0.85 11.609 11.987

0.90 11.280 11.676

0.95 10.948 11.358

1.00 10.613 11.036 8.1(3)a

aC. Wozar (private communication).
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FIG. 3 (color online). Comparison between lattice data taken
from [4] and our results for the correlator mass mFRG

corr with
momentum dependence and mFRG

prop without momentum depen-

dence in the intermediate coupling regime.

4The perturbative results in this regime have to be interpreted
with care. The dashed line is an expansion of the on-shell one-
loop pole mass to orderOð�2Þ whereas the solid line is the result
of an off-shell calculation. Both results agree up to order �2 but
perturbation theory can no longer be trusted in the regime with
intermediate coupling strength. The on-shell calculation has to
fail at large values of �2 because otherwise the renormalized
masses will become negative. To preserve supersymmetry in the
RG flow the FRG uses an off-shell formulation. Therefore it is
not unexpected that it is close to the off-shell perturbation theory.
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renormalized mass calculated without the full momentum
dependence capture only 75% of the quantum corrections
to the bare mass whereas 95% of the corrections are
captured if the full momentum dependence in the wave
function renormalization is taken into account. This leads
to the conclusion that the momentum dependence of wave
function renormalization dominates in this regime. Higher-
order operators only have a small influence.

For intermediate couplings the picture changes. We have
investigated the complete contribution to the flow from the
momentum-dependent wave function renormalization. Our
findings are that in this truncation only 65% of the quantum
corrections to the bare mass determined in the lattice
simulations are captured for the largest coupling consid-
ered in this paper. Without momentum dependence 60% of
the corrections are generated. This leads to the conclusion
that in the regime with intermediate couplings the momen-
tum dependence in the wave function renormalization does
not include all important contributions to the renormalized
mass. Instead, the quantum corrections generated by
higher-order-operators which lead to an auxiliary field
potential are expected to be relevant for the renormalized
mass. They have to be included in order to reduce the
deviations between the results from lattice calculations
and the FRG. The calculation of these contributions as
well as contributions from the Kähler potential remains
an interesting challenge for future work.

Although there have been great improvements in the
simulations of the model on the lattice they still suffer
from finite size effects and the finite lattice spacing, which
leads to a breaking of supersymmetry.5 An interesting
application of the FRG is an analysis that includes finite
volume effects which could help to estimate the influence
of the finite size. This can allow one to separate it from the
discretization errors.

The analysis presented in this paper can easily be ap-
plied to the N ¼ 1 Wess-Zumino model in four dimen-
sions from which the two-dimensional N ¼ ð2; 2Þ model
is derived. Especially the nonrenormalization theorem for
the superpotential emerges in the sameway. In both models
the momentum-dependent wave function renormalization
is the first relevant contribution in the covariant derivative
expansion and the flow equations differ only in the measure
of integration. As we have found in the present model the
effective potential for the auxiliary field is expected to
dominate the quantum effects as the strength of the cou-
pling constant grows.

For the treatment of the partial differential equation
we have developed FLOWPY, a numerical toolbox. It can
be applied in quite generic situations to solve the FRG
equations and to calculate contributions such as the full

momentum dependence of vertices. We hope that numeri-
cal software like FLOWPY will help to obtain better pre-
dictions from FRG calculations. We would like to add that
it can also be applied for the calculation of an arbitrary
potential Vð�Þ instead of the full momentum dependence
ZðpÞ. We plan to make FLOWPY available soon [50].
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APPENDIX A: SUPERSPACE FORMULATION

The superspace formulation is constructed from the
supersymmetry transformations. The chiral and antichiral
superfields can be obtained from the lowest component by
acting on it with the exponentiated supersymmetry trans-
formations

�ðz; �z; �; ��Þ ¼ expð���Þ�ðz; �zÞ ¼ X4
n¼0

1

n!
ð���Þn�ðz; �zÞ

¼ �ðu; �uÞ � �c 1ðu; �uÞ�1 � ��1c 1ðu; �uÞ

� Fðu; �uÞ
2

��1�1;

��ðz; �z; �; ��Þ ¼ expð���Þ ��ðz; �zÞ ¼ X4
n¼0

1

n!
ð���Þn ��ðz; �zÞ

¼ ��ðu; �uÞ � �c 2ðu; �uÞ�2 � ��2c 2ðu; �uÞ

� �Fðu; �uÞ
2

��2�2 (A1)

with the chiral variables u ¼ z� 1
2 ��2�1 and �u ¼

�zþ 1
2 ��1�2. The supercharges are

Q1 ¼ � @

@ ��1

þ 1

2
�2

�@; �Q1 ¼ @

@�1

� 1

2
��2@;

Q2 ¼ � @

@ ��2

þ 1

2
�1@; �Q2 ¼ @

@�2

� 1

2
��1

�@;

(A2)

and the supercovariant derivatives read

D1 ¼ � @

@ ��1

� 1

2
�2

�@; �D1 ¼ @

@�1

þ 1

2
��2@;

D2 ¼ � @

@ ��2

� 1

2
�1@; �D2 ¼ @

@�2

þ 1

2
��1

�@:

(A3)

The superfield obeys the (anti)chiral constraint

D2� ¼ �D2� ¼ 0; D1
�� ¼ �D1

�� ¼ 0: (A4)

5In contrast to common lattice formulations the basic require-
ments of locality and reflection positivity are broken in the
current simulations of this theory. This was done to reduce the
unavoidable breaking of supersymmetry on the lattice.
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The supersymmetry transformations are generated by

�� ¼ ð �"Qþ �Q"Þ�; � �� ¼ ð �"Qþ �Q"Þ ��: (A5)

The Lagrange density is given by

L ¼ Lkin þLpot

¼ �2
Z

dyd �y ���� 2
Z

dyWð�Þ � 2
Z

d �y �Wð ��Þ
(A6)

with dy � d ��1d�1 and d �y � d�2d ��2.

APPENDIX B: FLOW EQUATION FOR THE
MOMENTUM-DEPENDENT WAVE FUNCTION

RENORMALIZATION

To obtain the flow equations for the wave function
renormalization we decompose the second derivative of

the effective action into a field independent part �ð2Þ
0 þ Rk

and a field dependent part ��ð2Þ
k (in the following we drop

the momentum dependence of the regulators for simplicity
of notation):

ð�ð2Þ
0 þ RkÞðq; q0Þ þ ��kðq; q0Þ

¼ A0 0
0 B0

� �
�ðq� q0Þ þ �A 0

�D �B

� �
(B1)

with [h ¼ ð1þ r2ÞZ2
kðqÞ, M ¼ ðr1Z2

kðqÞ þmÞ]

A0 ¼ q2h � 1 M � �3

M � �3 �h � 1
� �

; B0 ¼ iqhþM1 (B2)

and

�A ¼ 2g

F1 �F2 �1 ��2

�F2 �F1 ��2 ��1

�1 ��2 0 0
��2 ��1 0 0

0
BBB@

1
CCCAðqþ q0Þ;

�C ¼ 2g

�c 1 i �c 2
�c 1 �i �c 2

0 0
0 0

0
BBB@

1
CCCAðqþ q0Þ;

�D ¼ 2g
c 1 ic 1 0 0
c 2 �ic 2 0 0

� �
ðqþ q0Þ;

�B ¼ 2g
�1 þ i�2 0

0 �1 � i�2

� �
ðqþ q0Þ:

(B3)

The flow equation can then be expanded [49] in

@t�k ¼ 1
2
~@t STrðð�ð2Þ

0 þ RkÞ�1��Þ
� 1

4
~@t STrðð�ð2Þ

0 þ RkÞ�1��Þ2 þ � � � (B4)

with ~@t acting only on the regulator. STr denotes a trace in
field space as well as an integration in momentum space.
The wave function renormalization is a term proportional

to F2
i and can be obtained from the second term in this

expansion. To calculate this we define

Mðq; q0Þ �
Z
q00
ð�ð2Þ

0 þ RkÞ�1ðqÞ�ðqþ q00Þ��ðq00; q0Þ

¼ ð�ð2Þ
0 þ RkÞ�1ðqÞ��ð�q; q0Þ (B5)

and the second term in the expansion reads

~@t Str
Z
q;q0

Mðq; q0ÞMðq0; qÞ

¼ Str
Z
q;q0

ð�ð2Þ
0 þ RkÞ�1ðqÞ@tRkð�ð2Þ

0 þ RkÞ�1

� ðqÞ��ð�q; q0Þð�ð2Þ
0 þ RkÞ�1ðq0Þ��ð�q0; qÞ

þ Str
Z
q;q0

ð�ð2Þ
0 þ RkÞ�1ðqÞ��ð�q; q0Þð�ð2Þ

0 þ RkÞ�1

� ðq0Þ@tRkðq0Þð�ð2Þ
0 þ RkÞ�1ðq0Þ��ð�q0; qÞ; (B6)

where Str denotes a trace in field space. We take the func-
tional derivative with respect to FiðpÞ and Fið�pÞ and set
all fields to zero in order to project on the wave function
renormalization Zkðp2Þ. This yields

@kZ
2
kðpÞ ¼ �8g2

Z d2q

4�2

hðp� qÞhðqÞ
vðqÞ2vðp� qÞ2 ½@kR1ðq� pÞ

�Mðp� qÞvðqÞ þ @kR1ðqÞMðqÞvðp� qÞ�

þ 4g2
Z d2q

4�2

hðp� qÞ@kR2ðqÞuðqÞvðp� qÞ
vðqÞ2vðp� qÞ2

þ 4g2
Z d2q

4�2

hðqÞ@kR2ðq� pÞvðqÞuðp� qÞ
vðqÞ2vðp� qÞ2

(B7)

with the abbreviations

hðqÞ ¼ ðr2ðqÞ þ 1ÞZ2
kðqÞ; MðqÞ ¼ mþ r1ðqÞZ2

kðqÞ;
RiðqÞ ¼ riðqÞZ2

kðqÞ; uðqÞ ¼ MðqÞ2 � q2h2ðqÞ;
vðqÞ ¼ MðqÞ2 þ q2h2ðqÞ: (B8)

APPENDIX C: THECOMPUTATIONAL STRATEGY

To solve flow equations depending on an external mo-
mentum the computational strategy is as follows:
(i) Mapping the k ! 0 flow to a forward time evolution

problem by introducing ~k ¼ �k.
(ii) Discretization of the problem by approximating

zðk;pÞ with an interpolation function that is deter-
mined by N support points. These are best chosen to
be equidistant on a logarithmic scale, accounting for
the expectation that a wide range of scales should
contribute in a comparable way to the integral.

(iii) For now, we have been using interpolation in
conjunction with the two-dimensional integration
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function SCIPY.INTEGRATE.DBLQUAD() from Scien-
tific Python. However, this ad hoc approach should
allow great efficiency improvements by instead
considering a tighter integration of numerical quad-
rature with adaptive discretization. In particular,
it should then also be possible to also pass on
information about the discretized flow equation’s
Jacobian matrix to the numerical ordinary differ-
ential equation (ODE) integrator. There hence is
considerable potential for further efficiency im-
provements of numerical RG flow code.

(iv) Solving the resulting ordinary differential equation
for the values of zðk;pÞ at the support points with
SciPy’s SCIPY.INTEGRATE.ODEINT() function (which
internally uses LSODA from ODEPACK).

Concerning the numerical solution of the ODE, some
manual tweaking of integration parameters such as maxi-
mal step sizes is required when the coupling constant g is
large and k	m. We note that, by the very nature of this
problem, the computation is readily parallelized: The effort
to numerically determine the right-hand side integral is

expected to roughly grow likeOðN2Þwith the number N of
support points, and computations for different support
points are independent. In comparison to the computa-
tional effort required to compute the integrals, the commu-
nication overhead to distribute the values of zðk;pÞ at
different support points is fairly negligible; hence using
one of the readily available message passing interface
extensions to PYTHON to intelligently distribute the work-
load becomes an attractive option. One should, however,
take care that the core structure of the integrand then is
implemented in a compiled (C code) PYTHON extension
before even thinking about parallelization.

APPENDIX D: DETERMINATION OF
THE RENORMALIZED MASS

The numerical calculations of Z2
k in the main text use a

grid of N ¼ 60 points in the direction of p2, distributed
equidistantly on a logarithmic scale. The result for Zk!0ðpÞ
is interpolated with splines to calculate the propagator
GNLO

bos ðpÞ. A discreet Fourier transformation of GNLO
bos ðpÞ
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FIG. 4 (color online). Left panel: mlocal
corr with � ¼ 0:6 for discretizations N ¼ 200 and N ¼ 600 and different box sizes L ¼ 15, 25,

35 and 45. Right panel: m
global
corr with � ¼ 0:6 for discretizations N ¼ 200 and N ¼ 600 and different box sizes L ¼ 15, 25, 35 and 45.
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yields the correlator Cðx1Þ on the interval x1 2 ½0; L� with
n ¼ 100 01 intermediate points. In the main text we have
used L ¼ 15. From its large distance behavior

Ca;mcor
ðx1Þ / coshðmcorrðx1 � L=2ÞÞ (D1)

the correlator massmcorr is determined by a least square fit.
The fit range is constrained to the interval ½x1;skip; . . . ;
L� x1;skip� where the contributions of excited states are

negligible. The value of x1;skip is determined such that

mcorrðx1;skipÞ shows a plateau. We can either fit on the whole

range ½x1;skip; . . . ; L� x1;skip�—this quantity is called

mglobal
corr —or make the fit just inside a small interval of

size 0.2 starting from x1;skip—this quantity is called mlocal
corr .

In the left panel of Fig. 4mlocal
corr is shown for two different

discretizations of Z2
kðp2Þ, N ¼ 200 in the upper and

N ¼ 600 in the lower panel. In the right panel the same

is shown for m
global
corr . From these plots we can read off that

for x1;skip not too large there is a clear plateau which is

stable if the box size is increased. But for very large x1;skip
the local mass oscillates. As this oscillation is reduced if
the discretization is increased it is due to fluctuations in the
spline interpolation of Z2

k. At small values of the correlator

the numerical errors are more important for the masses. As
the fluctuations become visible for large box sizes, in these
cases the global mass fit is of no use because it averages
over the local mass and is strongly influenced by the
oscillations. We will therefore take the plateau of mlocal

corr

as the value of the renormalized mass.

APPENDIX E: PERTURBATION THEORY

In perturbation theory the mass is determined from the
one particle irreducible (proper) vertex �ðpÞ. The pertur-
bative expansion of this vertex is

�ðpÞ ¼ 2g2
Z d2s

4�2

6m2 � 4ððp� sÞ2 þm2Þ
ðs2 þm2Þððs� pÞ2 þm2Þ

þ 2g2
Z d2s

4�2

4ðs2 � s � p� i�	
s	ðs
 � p
ÞÞ
ðs2 þm2Þððs� pÞ2 þm2Þ

¼ 2g2
Z d2s

4�2

2ðm2 � p2Þ
ðs2 þm2Þððs� pÞ2 þm2Þ

¼ 2g2
Z 1

0
dz

Z d2s

4�2

2ðm2 � p2Þ
ðs2 þ zð1� zÞp2 þm2Þ2

¼ 2g2
Z 1

0
dz

2ðm2 � p2Þ
4�ðzð1� zÞp2 þm2Þ2

¼ 4g2ðm2 � p2Þ
�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ p2

p artanhðpð4m2 þ p2Þ�1=2Þ: (E2)
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