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We analyze the definition of quasilocal energy in general relativity based on a Hamiltonian analysis of

the Einstein-Hilbert action initiated by Brown-York. The role of the constraint equations, in particular, the

Hamiltonian constraint on the timelike boundary, neglected in previous studies, is emphasized here. We

argue that a consistent definition of quasilocal energy in general relativity requires, at a minimum, a

framework based on the (currently unknown) geometric well-posedness of the initial boundary value

problem for the Einstein equations.
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The analysis of the gravitational field by Arnowitt-
Deser-Misner (ADM) [1] has led to a clear and well-
defined construction of the Hamiltonian, and resulting
definitions of energy, linear, and angular momentum in
the context of asymptotically flat spacetimes. These con-
cepts are obviously of basic importance in understanding
the physics of such (infinite) isolated gravitating systems.
Nevertheless, infinite systems are idealizations of more
realistic physical situations, and it is desirable to have
available a similar analysis in the case of physical systems
of finite extent.

However, the understanding of this issue for domains of
finite extent is much less satisfactory. Despite numerous
proposals, from a number of different viewpoints, a con-
sensus has not yet been reached on a suitable definition of
the Hamiltonian or energy of a finite system, i.e., a quasi-
local Hamiltonian; cf. [2] for an excellent detailed survey
of the current state of the art.

In this paper, we first examine and comment on the
approach to the definition of energy of a finite region of
spacetime based on the Hamiltonian formulation of general
relativity (GR). This is essentially based on a localization
of the approach taken by ADM [1] and Regge-Teitelboim
[3], keeping careful track of the boundary terms that arise
in a Hamiltonian or Hamilton-Jacobi analysis. This ap-
proach was initiated and pioneered by Brown-York (BY)
[4]. To keep the discussion focused on the central issue, we
only consider the gravitational field, (so other matter fields
are set to zero); in addition, we consider only the energy
and not related concepts such as linear and angular mo-
mentum, although this could be done without undue diffi-
culty. Finally, most of the discussion below applies also to
more recent modifications of the BY approach by several
authors, cf. [5–8], however, again for clarity and simplicity
we focus on the Brown-York Hamiltonian and leave it to
the reader to extend the analysis to the more recent
alternatives.

We first recall the setup. Let M be a spacetime region,
topologically of the form I ��, with I ¼ ½0; 1� parame-
trizing time and � a compact 3-manifold with boundary S;
typically S ¼ @� is a 2-sphere and � a 3-ball. The bound-
ary @M of M is a union of two spatial hypersurfaces �0 [
�1 and the timelike boundary T ¼ I � @S ¼ [St. These
boundaries meet at the seams or corners S0 and S1. The
Einstein-Hilbert action is then given by (setting 8�G ¼ 1),

IEHðgÞ ¼
Z
M
RgdVg; (1)

where g is a smooth Lorentz metric on M.
The Hamiltonian in GR plays two important but a priori

distinct roles. In classical field theories without dynamical
gravity and based on a fixed background (Minkowski)
spacetime, these two roles coincide. It is not at all clear,
at least in the case of finite domains, whether they can be
made to coincide in GR.
A HamiltonianH for the action (1) depends on a choice

of time function t and associated vector field @t, giving a
foliation �t of the spacetime, i.e., a 3þ 1 decomposition.
Given the spacetime metric g, this is equivalent to specify-
ing a lapse u and shift X, so that @t ¼ uT þ X, where T
is the unit timelike normal to the foliation. Thus, H ¼
Hðu;XÞ.
A full-fledged Hamiltonian analysis requires a well-

defined phase space T�Q, the cotangent bundle of the
configuration space Q, with variables ðg;�Þ where � is
the momentum conjugate to g; g is a Riemannian metric on
�. In the case of finite boundaries, boundary conditions for
the variables ðg;�Þmust be specified in such a way that the
Hamiltonian Hðu;XÞ: T�Q ! R is first a smooth function

on T�Q, and second the Hamiltonian vector field on T�Q
(generated from H by the symplectic structure on T�Q)
generates exactly the equations of motion; integral curves
of the Hamiltonian vector field give vacuum solutions of
the Einstein equations satisfying the boundary conditions.
For this to be consistent, boundary conditions for the lapse
shift ðu; XÞ must be determined, and these must also be
preserved under the equations of motion. If the above can
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be accomplished, one obtains a Hamiltonian depending on
the gauge choice ðu; XÞ.

On the other hand, in other classical field theories, the
energy is understood as the Noether charge associated to
time-translation symmetries; for Minkowski backgrounds,
the energy is thus the time component of an invariantly
defined energy-momentum 4-vector. In GR, one has typi-
cally no symmetries, i.e., Killing fields, and so no con-
served charges. Nevertheless, one can attempt to define
preferred or distinguished ‘‘quasisymmetries’’ or ‘‘quasi-
Killing fields.’’ This gives a preferred choice of the lapse
shift ðu; XÞ, and the Hamiltonian is then taken with respect
to such a choice, cf. [2,9] for further discussion.

The approach of Brown-York is to choose Dirichlet
boundary conditions for the metric � ¼ �T induced on
T . This choice naturally conforms to the modification of
the Einstein-Hilbert (EH) action by the addition of a
boundary term—the well-known Gibbons-Hawking-York
or trK boundary term [10,11]. Thus, consider the modified
Lagrangian

I ðgÞ ¼
Z
M
RgdVg þ 2

Z
T
kdV�; (2)

where k ¼ trK is the mean curvature of the boundary T
in ðM; gÞ with respect to the outward unit normal and � is
the metric on T induced by g. A straightforward calcu-
lation shows that the variation of I at g in the direction h
is given by

�gIðhÞ ¼ �
Z
M
hE; hidVg �

Z
T
h�T ; hTidV�; (3)

where EðgÞ ¼ Ricg � R
2 g is the Einstein tensor, �T ¼

K � k� is momentum conjugate to � on T , and hT is
the induced variation of � on T ; h�; i is the pairing
induced by the metric g. Thus, the variation vanishes
on-shell, when the metric � is held fixed at T , (hT ¼ 0).
The action is functionally differentiable (in fact C1
smooth) with respect to variations of the metric fixed
on the boundary. In other words, one has a well-defined
variational principle for Dirichlet boundary data. [The
variational formula (3) should also include other terms at
�0 and �1 and the corners, but these will be ignored
here since they play no role in the analysis.]

On-shell, i.e., on the space of solutions of the vacuum
Einstein equations, the BY quasilocal Hamiltonian (or
quasilocal energy) is formed by taking the on-shell varia-
tion of the action (2) in the direction of a timelike unit
normal vector field T on the boundary S ¼ @�; one as-
sumes here that T is tangent to T . Since �ðT; TÞ ¼ H,
where H is the mean curvature of S � �, the on-shell
variation in the ðT; TÞ direction is given by

�
Z
S
HdV�S

; (4)

where �S is the metric induced on S. More generally, let
ðu; XÞ be the lapse-shift of the foliation �t. A standard
Hamiltonian analysis gives

Hðu;XÞ ¼ �
Z
S
½uH � �ðX; �Þ�dV�S

; (5)

on-shell, where � is the outward unit normal of S � �. The
case (4) is recovered by setting ðu; XÞ ¼ ð1; 0Þ. There
remains a freedom in specifying the zero-point energy;
the prescription of Brown-York is to define

HBYðSÞ ¼
Z
S
ðH0 �HÞdV�S

; (6)

whereH0 is the mean curvature of an isometric embedding
of ðS; �SÞ into Euclidean 3-space R3. Hence HBYðSÞ is
well defined only if there exists a unique isometric embed-
ding into R3; this is the case if for instance the Gauss
curvature K�S

is positive, by the Weyl embedding theorem.

The BY quasilocal Hamiltonian has a number of impor-
tant and interesting properties, both physically and mathe-
matically. The expression (4) is local on S and easily
computable, although the subtraction term in (6) is more
complicated since it depends on the global structure of
ðS; �SÞ. Particularly noteworthy is the result of Shi-Tam
[12] that for time-symmetric data (�� ¼ 0), if the Gauss
curvature K�S

> 0 then HBYðSÞ � 0 with equality if and

only if � is flat. However, for general surfaces S, HBYðSÞ
may be negative.
Observe that HBYðSÞ depends only on the Cauchy data

on the initial surface �; in fact it depends only on the
metric g on� near S. It depends on the choice of�, (within
the domain of dependence) and one obtains different en-
ergies for different Cauchy surfaces, i.e. the Brown-York
energy is gauge dependent. However, it does not in fact
depend on the actual unit normal T at S; this is due to a
cancellation of boundary terms. Note that the Cauchy data
ðg; �Þ of � do not determine the unit normal T at S;
equivalently the lapse shift ðu; XÞ at S is undetermined by
Cauchy data.
It follows that given an initial data surface �, the BY

Hamiltonian is independent of the structure of the space-
time outside the domain of dependenceDð�Þ of �; it is the
same no matter what the metric is outside Dð�Þ. It is not
a priori clear why the energy of the gravitational field
should be independent of its structure at T .
Although certainly natural, there is a basic problem with

a definition of the Hamiltonian depending on the choice of
Dirichlet boundary data as in and following (2). As stated
explicitly in [4], the action evaluated on a classical solution
(i.e., the on-shell action) is understood to be a function of
the boundary metric � on T . The space E of solutions
of the Einstein equations is thus to be smoothly parame-
trized by the space of metricsMetðT Þ on the boundary T ,
together with the space C of Cauchy data on � (satisfying
the constraint equations):

E ’ C�MetðT Þ:
However, this is not the case. In fact for generic choices
of boundary metric �, there will be no solution of the
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equations of motion inducing � on T . This is due the
constraint equations, and, in particular, to the Hamiltonian
or scalar constraint, on T . This issue, that there may be no
solutions to the equations of motion on the phase space
without the correct boundary conditions, is exactly the
underlying issue and theme in the Regge-Teitelboim analy-
sis of the ADM Hamiltonian.

To illustrate this point clearly, we discuss it in three
different but related situations.

(I) Consider first the simpler case of the pure Cauchy
problem for the Einstein equations. Here the Cauchy
data ðg; �Þ on � parametrize the space of solutions,
and one may ask if one may specify the metric g
(Dirichlet data) arbitrarily on � to generate a solu-
tion. However, this is not the case since the data must
satisfy the momentum constraint �� ¼ 0 and, more
importantly here, the Hamiltonian or Gauss con-
straint j�j2 � 1

2 ðtr�Þ2 � Rg ¼ 0. The initial data

ðg;�Þ are usually assumed to lie in Sobolev spaces
Hs �Hs�1; the arguments below are equally valid
in simpler spaces such as Ck � Ck�1. The Hamil-
tonian constraint then implies Rg 2 Hs�1. For

generic g 2 Hs, Rg 2 Hs�2, not in Hs�1. Hence,

g 2 Hs cannot be freely prescribed. Thus, as in the
Lichnerowicz approach to solving the constraint
equations, only, for example, the conformal class
[g] can be prescribed.

(II) Consider next the Euclidean situation, i.e., the
Euclidean Einstein equations on a compact domain
M with boundary @M. Here the Einstein equations
EðgÞ ¼ 0 with Dirichlet boundary conditions � ¼
gj@M given, do not form a well-posed elliptic
boundary value problem (for any choice of gauge)
essentially for the same reasons described in (I),
namely, the Gauss or Hamiltonian constraint. This
is in spite of the fact that the variational problem for
the action (2) is well defined for Dirichlet boundary
data, exactly as in the Lorentzian case.
There are many choices of boundary data that can
be used to obtain a well-posed elliptic boundary
value problem; geometrically perhaps the most
natural is that given by

ð½��; kÞ; (7)

i.e., prescribing the conformal class [�] of the met-
ric on @M and the mean curvature k of @M in M;
cf. [13] for proof of these results and further
discussion.

(III) The same argument applies for a timelike bound-
aryT . The ‘‘Hamiltonian constraint’’ jKj2 � k2 þ
R� ¼ 0 along T again constrains the freedom of

the metric � on T . For example, given a 3þ 1
decomposition of the spacetime, let ðgt; �tÞ be the
curve of Cauchy data on the surfaces �t. Working
again in Sobolev spaces Hs, the trace of the metric

(or any function) on the boundary, loses half a

derivative, so on T , �S 2 Hs�1=2. The second
fundamental form K of T involves a (spatial)

derivative of g, so K 2 Hs�3=2. The constraint

equation then gives R� 2 Hs�3=2. But for generic

� 2 Hs�1=2, one will not have R� 2 Hs�3=2 but

instead R� 2 Hs�5=2—the same behavior as in (I)

or (II).
As noted above, the quasilocal energy HBYðSÞ is the

value of the on-shell Hamiltonian that generates unit time
translation orthogonal to S at the boundary � and is given
by the variation of the TrK action in a unit timelike normal
direction along the boundary. From the point of view of the
initial boundary value problem (IBVP) for the vacuum
Einstein equations, this presupposes that there exists a
solution of the Einstein equations in the bulk M, whose
boundary metric is of the form

�T ¼ �dt2 þ �t; (8)

onT , at least to 1st order in t, so that one is prescribing the
form of the metric, i.e., Dirichlet boundary data, onT . The
Cauchy data ðg; �Þ at t ¼ 0 determine the derivative
@t�T jt¼0. However, the boundary value problem (8) can-
not be solved in general; the IBVP is not well posed (even
at the linearized level) for Dirichlet boundary data. The
Hamiltonian constraint serves as an obstruction to
solvability in general.
In sum, the constraint equations on the Cauchy surface

� and boundary T ‘‘generate’’ the diffeomorphisms and
impose constraints on the allowed Cauchy and boundary
data. The Hamiltonian constraint on T generates diffeo-
morphisms normal to T and so is related to the location of
T in the spacetime which thus cannot be fully prescribed
a priori. The presence of the constraints on T and the
difficulties they present in obtaining a well-behaved qua-
silocal Hamiltonian has not been addressed previously in
the literature.
For the flow of the Hamiltonian vector field to be well-

defined, it is necessary that the IBVP for the Einstein
equations is well-posed. It is this criterion one should
choose to seek suitable boundary conditions on T .
Before discussing the problem in general, we consider

some constructions of possible alternatives to the BY
Hamiltonian. First, the linearization of the scalar curvature
Rg in the direction of a variation h of g is given by LðhÞ ¼
R0
h ¼ �h trhþ ��h� hRic; hi, where �h is the diver-

gence of h. Hence,

�IEHðhÞ ¼
Z
M
�h tr hþ ��h� hRic; hi þ 1

2
R tr h

¼ �
Z
M
hE; hi þ

Z
@M

��ðtrhÞ � ð�hÞð�Þ; (9)

where � is the unit outward normal to @M in M. One has
��ðtrhÞ � ð�hÞð�Þ ¼ �2k0h � hK; hi þ �ðhð�ÞÞTÞ. The last
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term is a divergence term, which integrates to 0 on the
boundary, so

�IEHðhÞ ¼ �
Z
M
hE; hi �

Z
@M

2k0h þ hK; hi:

Since ðkdVgÞ0h ¼ k0hdVg þ 1
2 k trhdVg, this gives the varia-

tional formula for I in (3).
Consider next for instance the variational problem for a

fixed conformal class and mean curvature, as in (7) above.
One has hK; hi ¼ hK0; h0i þ 1

3 k trh where K0 and h0 de-

note the trace-free parts. On other hand, 23 ðkdVÞ0h ¼ 2
3 k

0
h þ

1
3 k trh, and so for the action

I CkðgÞ ¼
Z
M
Rþ 2

3

Z
T
k;

one has

�ICkðhÞ ¼ �
Z
M
hE; hi �

Z
T

�
h�0; h0i þ 4

3
k0h
�
: (10)

This gives a well-defined variational problem with pre-
scribed conformal class [�] and mean curvature k on T ,
i.e., this action is a smooth function on the configuration
space of 4d metrics with boundary data (7) fixed.

In the case of Euclidean signature, the boundary data
ð½��; kÞ form a well-posed elliptic boundary value problem,
so that one may expect to find a unique solution, (at least
under mild conditions). Whether this holds for the
Lorentzian signature is unknown, (but unlikely). Suppose
nevertheless for the sake of argument that the Lorentzian
problem is well posed. If one takes a timelike vector field
@t to form a Hamiltonian then linearized boundary data
ðh0; k0hÞ on T determine a unique bulk h solution along �
(or�t); from this one may then read off Dirichlet boundary
data hT on T . To evaluate the Hamiltonian, one then
chooses h (if possible) so that hT ¼ T � T at S. The corre-
sponding data ðh0; k0hÞ are then paired with the coefficients

ð�0;
4
3Þ above, allowing one to determine the corresponding

quasilocal Hamiltonian. The determination of the
Hamiltonian is thus ’’global’’ on the solution and is rather
complicated.

The simplest solutions of the Einstein equations are the
time-independent static solutions, of the form

g ¼ �u2dt2 þ g;

where @t is a (hypersurface orthogonal) Killing field.
Consider then a Hamiltonian analysis for static metrics.
In place of the EH action (1) or the BYaction (2), consider
here

I StðgÞ ¼
Z
M
RgdVg þ 2

Z
@M

�ðuÞdV�;

where � is the outward unit normal. The term Rg may be

computed in terms of Rg and u, and via an integration by

parts it is easily verified that

IStðgÞ ¼
Z
�
uRgdVg; (11)

so that the boundary term disappears on passage to the
Cauchy surface. A straightforward computation along the
lines of (9) and (10) above gives

�gIStðh; u0Þ ¼
Z
�

��
L�uþ 1

2
uR�; h

�
þ Ru0

�

þ
Z
S
huK � �ðuÞ�S; h

Ti þ 2uk0h; (12)

cf. [14] for a proof. Here L�u ¼ D2u� �u � �� uRic is
the adjoint of the linearization L of the scalar curvature.
The vanishing of the bulk term in (12) gives exactly the
static vacuum Einstein equations, as expected. The bound-
ary term vanishes when hT ¼ 0 and k0h ¼ 0. The mean

curvature k of T in M is the same as the mean curvature
H of S in �.
This gives a well-defined variational problem for the

boundary data

ð�S;HÞ at S ¼ @�; (13)

so that the Lagrangian is a smooth function on the con-
figuration space with these boundary data. Note that one
may (trivially) Wick rotate static spacetimes to Euclidean
signature. In contrast to Dirichlet boundary data ð�S; uÞ,
the boundary data (13) are well posed, i.e., elliptic, for the
static Einstein equations, (cf. [15]).
The time function t and vector field @t give the natural

lapse shift ðu; 0Þ for static metrics. With respect to this, the
static HamiltonianHSt, given by the variation of the action
in the direction of the unit normal, is just given by (11).
In more detail, for h ¼ T � T on T , one has hT ¼ 0 and
k0h ¼ 0, and so, on-shell, one has

HSt ¼ 0:

Thus, in this situation, the quasilocal energy is zero.
Physically, the simplest and most natural energy of a static
vacuum system where one has a preferred timelike Killing
field is given by the Komar energy or mass. It is clear that
the Komar mass vanishes for finite boundaries S ¼ @� of
compact static vacuum domains as above; (vacuum implies
there are no interior source terms). Thus, the energy HSt

agrees with the Komar energy. However, by the result of
Shi-Tam [12], the BYenergy of a static vacuum solution is
strictly positive (when K�S

> 0) unless the solution is

flat.
Turning now to the general problem one would like to

find a boundary term Bðg;KÞ such that the action

Z
M
Rþ

Z
T
Bð�;KÞ (14)

gives a well-defined variational problem, for a choice of
boundary data on T . Next, one would like to find an
associated Hamiltonian
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H ðu;XÞ ¼
Z
�
uCþ X�C� þ

Z
S
Bðu;XÞðg;�Þ; (15)

where C and C� are the Hamiltonian and momentum

constraints, respectively. Then, boundary conditions are
specified for the variables ðg; �Þ on the phase space T�Q
such that the Hamiltonian is functionally differentiable
(smooth as a function on T�Q) and the Hamiltonian vector
field generates the equations of motion E ¼ 0, so that one
has a well-posed IBVP (in some gauge). Finally, if pos-
sible, one would like to select a preferred choice of time-
like vector field @t (i.e. a preferred lapse-shift) giving a
choice of quasi-Killing field.

Given a choice of lapse-shift ðu; XÞ the EH action (1)
decomposes into a time-space integral when the scalar
curvature R is expressed in terms of the data ðg;�Þ on
the phase space T�Q; the spatial integral is then just the
integrated constraint operator given by

Cðu; XÞ ¼
Z
�
u

�
R� �2 þ 1

2
ðtr�Þ2

�
� h��; Xi:

Integrating the last term by parts gives

Cðu; XÞ ¼
Z
�

�
u

�
R� �2 þ 1

2
ðtr�Þ2

�
� h�; ��Xi

�

�
Z
S
h�ðXÞ; �i:

Now consider the variation of C on the phase space, so
with respect to ðg; �Þ. Calculating the variation of R and
performing an integration by parts gives rise to the usual
Einstein evolution equations in Hamiltonian form in the
bulk, together with a boundary term equal to

Z
S
uhr�h; gi þ uh�; �hi þ hh; du � �i
þ hh; 2X � �ð�Þi � hh; �ih�; Xi þ 2h�0; X � �i; (16)

cf. [9] for example. Observe that the first three terms
involve only the lapse u while the last three terms involve
only the shift X. A well-defined variational problem then
holds for (14) or (15) with B ¼ 0 provided the boundary
term (16) vanishes. In general, sum of the variation of B in
(15) and (16) must vanish.

The first three terms in (16) can be expressed in terms of
the induced metric �S on S and the mean curvature H of
S � �. In fact, (up to signs) the first three terms can be
rewritten as

Z
S
huK � �ðuÞ�S; h

Ti þ 2uk0h;

exactly as the boundary term in (12). Consider then
as configuration space the space of metrics with shift
X ¼ 0, i.e., the space of metrics of the form

g ¼ �u2dt2 þ gt;

with u ¼ uðt; xÞ. Imposing the boundary conditions (13)
then gives a well-defined variational problem for (14) with
B ¼ 0, again with zero Hamiltonian on-shell.
This example, as well as the examples discussed pre-

viously, give quasilocal Hamiltonians coming from a well-
defined variational principle with corresponding boundary
conditions. However, in each case the Hamiltonian vector
field is not integrable, i.e., the associated flow equation is
not generally solvable.
If the Hamiltonian vector field ð@H@� ;� @H

@�Þ is to have a

well-defined flow on the phase space T�Q, then there
must exist a gauge choice (and, in particular, a choice of
lapse-shift ðu; XÞ) such that the IBVP for the Hamiltonian
evolution equations are well posed, i.e., one has existence
and uniqueness of solutions with given Cauchy and
boundary data, and smooth dependence of the solutions
on such data. Further, the IBVP must be geometric in the
sense that solutions are isometric if and only if the
Cauchy and boundary data differ by the action of
diffeomorphisms.
However, as clearly stressed by Friedrich [16], it is

currently a basic open problem if in fact there exists a
choice of gauge and boundary data such that the IBVP is
geometrically well posed in this sense. There is a well-
posed formulation of the IBVP first discovered by
Friedrich-Nagy [17] and a more recent formulation due
to Kreiss-Winicour [18,19]. The results in [18,19], in par-
ticular, are naturally formulated in harmonic gauge for the
spacetime metric g��; however, in both [17] and [18,19]

the boundary data imposed are not geometric, but incor-
porate or assume an extraneous choice of timelike unit
vector T along the boundary T .
To obtain a well-posed geometric IBVP, one expects that

it is necessary to choose maximally dissipative boundary
conditions on T , (cf. also [5] for discussion of various
boundary conditions). The exact form of these will depend
on the choice of gauge (and is currently unknown) but
typically such boundary conditions have the schematic
form

@tgij þ @�gij ¼ Fij; (17)

where � is the outward unit normal to S � � and Fij is

given. Such boundary conditions are not close to Dirichlet
(or Neumann) boundary conditions and so are far from the
BY prescription. In fact, no component of the metric �
itself appears in (17). As discussed following (12), the
timelike unit normal T to the Cauchy surface � is deter-
mined only globally, by solving the IBVP for given data
(17), and then reading off the value of T at S. Only at that
point can the Hamiltonian be actually computed as the
unit-time variation of the action. [There is also the issue
of finding a boundary term B as in (15) so that boundary
conditions analogous to (17) give a well-defined varia-
tional problem.]
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The notion of quasilocal energy is difficult to make
precise since energy is to be defined for an ‘‘isolated
system’’ and it not a priori clear how to isolate a given
region from its surroundings. (This issue bears some re-
semblance to certain versions of Mach’s principle.)
Typically one would impose conditions such as no incom-
ing radiation or absorbing boundary conditions, cf. [20] for
example. However, due partly to the general covariance of
GR, such boundary conditions are notoriously difficult to
identify and implement in practice. Although simple and
natural, it is unclear in what manner Dirichlet boundary
conditions effectively model isolated physical systems.

There are now several very interesting and useful geo-
metric notions associated to local spacetimes, such as the
Hawking mass, the Brown-York energy, the Bel-Robinson
energies and many others. These concepts are clearly very
useful tools in understanding the physics, geometry and
analysis of such spacetimes. However, as discussed above,
they do not provide a fully satisfactory notion of quasilocal
energy or Hamiltonian.

In closing, two brief remarks. First, the definition of the
BY Hamiltonian, as well as its more recent modifications
[5–8], requires a choice of subtraction term to normalize
the zero-point of the energy. These subtraction terms are

typically determined by choices of isometric embedding of
ðS; �SÞ into either Euclidean space R3 or Minkowski space
R1;3. On the other hand, one might hope that a correct
choice of gauge and boundary conditions would obviate
the need for such subtraction terms (which are somewhat
artificial and ad hoc given the intrinsic nature of GR).
Finally, the approach of Brown-York is used in the

determination of the energy, mass, and other charges for
asymptotically anti–de Sitter (AdS) spacetimes in the AdS/
CFT correspondence, cf. [21,22], for instance. These con-
cepts, which are of basic importance in the aspects of the
correspondence related to thermodynamics of black holes,
are global, and the charges are given by suitably renormal-
ized integrals at conformal infinity. The difficulties dis-
cussed above in the quasilocal case do not apply in this
context where limits at infinity are taken (as in the AF
case). For example, in contrast to the finite case, the
Dirichlet boundary value problem is well-posed at confor-
mal infinity in the AdS context (for Euclidean metrics); the
constraint equations ‘‘disappear’’ in the limit at infinity as
restrictions on the form of the conformal metric at infinity.
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