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In a previous paper we showed that the phase space of loop quantum gravity on a fixed graph can be

parametrized in terms of twisted geometries, quantities describing the intrinsic and extrinsic discrete

geometry of a cellular decomposition dual to the graph. Here we unravel the origin of the phase

space from a geometric interpretation of twistors.
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I. INTRODUCTION

The phase space of loop gravity on a fixed graph is given
by holonomies of the gravitational connection and fluxes
of the triad field. In [1], we introduced a parametrization
of this phase space in terms of quantities describing the
intrinsic and extrinsic discrete geometry of a cellular de-
composition dual to the graph. The description provides a
natural extension of Regge geometries allowing for dis-
continuous metrics [1] (see also [2,3]). The name twisted
was meant to stress this discontinuous nature, but also to
imply the existence of a relation to twistors. In fact, as we
show explicitly in this brief article, the parametrization can
be derived from a geometric interpretation of twistors.

II. TWISTED GEOMETRIES FROM
PHASE SPACE REDUCTION

Our starting point is the twistor space

T � C2 � C2; (1)

with coordinates ðzA; ~zAÞ, A ¼ 0, 1. We equip T with the
standard Poisson algebra,

fzA; �zBg ¼ �i�AB; f~zA; �~zBg ¼ �i�AB: (2)

In eachC2 space we introduce the two-dimensional spinors
jzi � ðz0; z1Þ and jz� ¼ ð��z1; �z0Þ. Both spinors can be used
to construct a four-dimensional future-pointing null vector
X� ¼ ðX0; XiÞ. Choosing the first one, we have

jzihzj ¼ X01þ Xi�i; (3)

where �i are the Pauli matrices. In components,

X0 ¼ 1

2
ðjz0j2 þ jz1j2Þ � 1

2
hzjzi; Xþ ¼ �z0z1;

X� ¼ z0 �z1; X3 ¼ 1

2
ðjz0j2 � jz1j2Þ;

(4)

with Xi � TrðX�iÞ, and �� ¼ �1 � i�2.
1 Notice that (4)

is nothing but the classical version of the well-known
Schwinger representation of the angular momentum in
terms of two harmonic oscillators. We can then parame-
trize C2� ¼ C2nfhzjzi ¼ 0g in terms of the null vector X�

and a phase, ’ � argðz0Þ þ argðz1Þ (which is well defined
provided hzjzi � 0),

C 2� ¼ fðXi; ’Þg: (5)

The induced algebra reads

fXi; Xjg ¼ �ijkX
k; (6a)

fX0; ’g ¼ 1; fX3; ’g ¼ 0; fX�; ’g ¼ X0

X� : (6b)

Similarly, we denote ~X� the null vector built from ~zA as
j~zih~zj ¼ ~X01þ ~Xi�i, and ~’ the leftover phase. This leads
to parametrize T� ¼ C2� � C2� as

T � ¼ fðXi; ~Xi; ’; ~’Þg; (7)

where both ðXi; ’Þ and ð ~Xi; ~’Þ satisfy the same algebra (6),
while they commute with each other.
Consider now the constraint

H � X0 � ~X0 ¼ 0; (8)

imposing the two spatial vectors to have the same norm.
This constraint generates the following U(1) action on T,

fH; zAg ¼ i

2
zA; fH; ~zAg ¼ � i

2
~zA;

ðjzi; j~ziÞ � ðeið�=2Þjzi; e�ið�=2Þj~ziÞ;
(9)

which leaves Xi and ~Xi invariant, while it translates the
angles,

’ ! ’þ �; ~’ ! ~’� �: (10)

We claim that the symplectic reduction of the eight-
dimensional twistor space T� by the constraint (8) gives
the six-dimensional phase space of twisted geometries
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P� � S2j � S2j � T�S1 ¼ fðN; ~N; j; �Þgnfj ¼ 0g; (11)

where N and ~N are unit vectors parametrizing the two
spheres of radius j 2 Rnf0g, and � is an angle.

Let us make this statement more precise. Recall [1] that
(11) is a symplectic space locally isomorphic to the cotan-
gent bundle of SU(2),2

P�=Z2 ffi T�SUð2ÞnfjXj ¼ 0g; (12)

where the quotient by Z2 corresponds to the identification

ðN; ~N; j; �Þ $ ð�N;� ~N;�j;��Þ: (13)

We can now make the following
Proposition 1:

T �==Uð1Þ ffi P�: (14)

Proof. To prove it, it suffices to consider one of the
two branches j _ 0 identified by (13). We consider
j > 0, but the proof is analogous for j < 0. Let us denote
by j > 0 the common norm of the vectors Xi and ~Xj,

j � 1

2
ðX0 þ ~X0Þ; (15a)

and introduce the unit vectors

Ni ¼ Xi

j
; ~Ni ¼ ~Xi

j
: (15b)

In order to make contact between the original variables zA
and (15b), we need to parametrize the vectors on the sphere
asNðzÞ in terms of the stereographic complex coordinate z.
For instance using the conventions of [1],

NiðzÞ ¼ 1

ð1þ jzj2Þ ðð1� jzj2Þ;�2z;�2�zÞ; i¼ ð3;�;þÞ

and the same for ~Nð~zÞ. Then taking (4), we see that (15b) is
achieved through the Hopf maps z � ��z1=�z0, ~z � ��~z1=�~z0.
The variables j, Ni, and ~Ni span a five-dimensional sub-
space commuting with the constraint (8). Hence, it only
remains to identify the sixth and last variable spanning the
reduced phase space. To do so, we evaluate

�
i ln

zA
�zA
;H

�
¼ 1;

�
i ln

~zA
�~zA

;H

�
¼ �1;

�
i ln

zA
�zA
; j

�
¼ 1

2
;

�
i ln

~zA
�~zA

; j

�
¼ 1

2
:

From these brackets it follows that if we define

�A � i

�
ln
zA
�zA

þ ln
~zA
�~zA

�
; (15c)

we have

f�A;Hg ¼ 0; f�A; jg ¼ 1: (16)

That is, both �0 and �1 commute with the constraint, and
furthermore are conjugated to j. They are thus equally
valid choices for the reduced space, related by the canoni-
cal transformation �1 ¼ �0 þ 2 argðzÞ þ 2 argð~zÞ.
We conclude that the reduced phase space is spanned by

ðNðzÞ; ~Nð~zÞ; j; �AÞ. Concerning its Poisson algebra, we
have the right bracket of (16), as well as the brackets
(6a) written in terms of (15b). It is also immediately seen
that j commutes with both N and ~N. The only remaining
brackets to evaluate are

f�A; jN
ig � Li

AðNÞ; (17)

which give, in cylindrical components ði ¼ 3;�;þÞ,
Li
0ðNðzÞÞ¼ ð1;�z;��zÞ; Li

1ðNðzÞÞ¼ ð1;1=�z;1=zÞ: (18)

Here LðNÞ � L0ðNðzÞÞ is precisely the Lagrangian intro-
duced in [1], and L1ðNÞ ¼ LðNð�1=�zÞÞ ¼ Lð�NðzÞÞ.
From now on, we take � � �0 as the reduced variable.
As explained in [1], the existence of canonical transforma-
tions which shift the � variable and the Lagrangian is
related to changes of section in the Hopf map.
Collecting the brackets (6a), (16), and (17), we find

fjNi;jNjg¼ �ijkjN
k; fj ~Ni;j ~Njg¼ �ijkj

~Nk; fNi; ~Njg¼ 0;

(19a)

f�;jg¼ 1; fNi;jg¼ 0; f ~Ni;jg¼ 0; (19b)

f�;jNig�LiðNÞ; f�;j ~Nig�Lið ~NÞ; (19c)

which can be recognized as the algebra of twisted geome-
tries, with both spheres positively oriented.3 j
The proof shows how the algebra (19) descends in a

simple way from the canonical Poisson brackets on twistor
space. We remark also that in the spirit of the Guillemin-
Sternberg theorem [4], the symplectic quotient P� can be
written as a complex quotient without imposing the con-
straints:

T �==Uð1Þ ffi P� ffi T�=C; (20)

where the C action is given by

ðjzi; j~ziÞ � ð�jzi; ��1j~ziÞ:
It is indeed trivial to show that we can always reach the

constraint surface by choosing � ¼ ffiffiffiffiffiffiffiffiffiffih~zj~zip
=

ffiffiffiffiffiffiffiffiffiffihzjzip
.

Let us go back to the symplectomorphism (12), and
notice that together with (14), it implies the symplectic
reduction from twistor space to the cotangent bundle of
SU(2). For completeness, we now give explicitly this alter-
native reduction.

2We parametrize T�SUð2Þ ffi suð2Þ � SUð2Þwith a pair ðX; gÞ.
The isomorphism can be made global, i.e., including the con-
figurations j ¼ 0 and jXj ¼ 0, taking an appropriate closure of
P� (see [1] for details).

3With respect to the opposite orientation taken in [1], this
different choice affects the isomorphism with T�SUð2Þ in a
minor way [see (A2b)].
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Proposition 2:

T �==Uð1Þ ffi T�SUð2ÞnfjXj ¼ 0g: (21)

Proof. Recall [1] that if we trivialize T�SUð2Þ ffi
suð2Þ � SUð2Þ as ðX; gÞ with right-invariant vector fields
X, we have that

~X � �g�1Xg (22)

is a left-invariant vector field and that the Poisson algebra
on linear functions reads

fXi; Xjg ¼ �ijkX
k; f ~Xi; ~Xjg ¼ �ijk

~Xk;

fXi; gg ¼ ��ig; f ~Xi; gg ¼ g�i:
(23)

The first two brackets hold automatically in the reduction
of T�, since Xi and ~Xi commute with H and satisfy (6a).
It thus suffices to find gðzA; ~zAÞ in T� such that (i) it is an
SU(2) group element, (ii) it commutes with H, and (iii) it
satisfies (22) and (23). It is not hard to see that

gðzA; ~zAÞ � jzi½~zj � jz�h~zjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihzjzih~zj~zip (24)

fulfills (i)–(iii). Indeed, thanks to h�zjz� ¼ 0, one can check
that this map satisfies

gj~z� ¼ jzi; gj~zi ¼ �jz�; ggy ¼ gyg¼ 1: (25)

The commutation with H is straightforward. A less trivial
calculation shows also that the matrix elements commute
among themselves when H ¼ 0 is satisfied. Finally, (22)
follows from gj~z�½~zjgy ¼ jzihzj, and (23) from the brack-
ets (2) and the parametrization (4). j

III. NULL TWISTORS

Thus far, we have connected the twisted geometries to
pairs of spinors in C4. We now show that our construction
is effectively related to twistors, in particular, to null twist-
ors. To that end, let us briefly review some basic facts about
twistors, referring the reader to the literature [5] for details.
A twistor Z	 2 C4 can be viewed as a pair of spinors Z	 ¼
ðj!i; j
iÞ, where j
i defines a null direction p
 ¼ j
�½
j
in Minkowski space, while j!i defines a point x in com-
plexified Minkowski space via j!i ¼ ixj
i. On twistor
space there is a natural Hermitian pairing given by

�Z 	Z
	 ¼ h!j
i þ h
j!i;

and the quantity s ¼ �Z	Z
	=2 is called the helicity of the

twistor. When a twistor is null, i.e., s ¼ 0, the matrix x is
Hermitian and thus identifies a point in real Minkowski
space. However, x is defined only up to the addition of a
null momentum p
, since p
j
i ¼ 0. The resulting null
ray xþ �p
 can be explicitly reconstructed as

xð�Þ ¼ j!ih!j
ih!j
i þ �j
�½
j; � 2 R: (26)

Hence, a null twistor defines a null generator p
 and a null
ray in Minkowski space. We call these data a ‘‘ruled’’ null
ray, since the ray has a specific generator.
The relation between twistors and twisted geometries is

established through the map

j!i � jzi þ j~z�; j
i � jzi � j~z�: (27)

Under this map the twistor Hermitian pairing becomes

s ¼ 1

2
ðh!j
i þ h
j!iÞ ¼ hzjzi � ½~zj~z�: (28)

Then, the constraint H ¼ 0 in (8) is equivalent to the
statement that Z	ðz; ~zÞ is a null twistor, and the U(1) action
(9) translates into a global rescaling of Z	:

Z	 ¼ ðj!i; j
iÞ ! ðei�=2j!i; ei�=2j
iÞ ¼ ei�=2Z	: (29)

Therefore P�, which is the symplectic reduction of the
space fðjzi; j~ziÞg by H ¼ 0, can be interpreted as a phase
space of null twistors TN up to a global phase,

P� ¼ TN=Uð1Þ: (30)

This is the connection between (null) twistors and
twisted geometries. Notice that the U(1) rescaling (29)
leaves invariant the ruled null ray xþ �p
 defined by
Z	; thus (30) means that an element of P� defines a ruled
null ray. The reverse is also true: Given a null ray in
Minkowski space with a specific null generator, we can
reconstruct uniquely a null twistor up to a global phase, and
hence an element of the phase space P�.
This mathematical correspondence shows that we can

think of an element of P�, the edge phase space of loop
quantum gravity, as a ruled null ray in Minkowski space.
Whether this is just a mathematical correspondence, or it
has a deeper geometrical origin, is still a mystery for us,
and a fascinating one.

IV. GEOMETRICAL MEANING
OF THE CONSTRAINTS

To understand the geometrical meaning of the con-
straints He, consider a cellular decomposition dual to the
graph. A twisted geometry assigns to each face (dual to the
edge e) its oriented area je, the two unit normalsNe and ~Ne

as seen from the two vertex frames sharing it, and an
additional angle �e related to the extrinsic curvature be-
tween the frames. Working with C4

e ¼ fðzA; ~zAÞge ¼
fðN; ~N;X0; ~X0; ’; ~’Þge corresponds to relaxing the unique-
ness of the area, and assigning to each face two areas
X0
e and ~X0

e (and their conjugate variables ’e and ~’e), one
for each polyhedral frame. The constraints He impose the
matching of these areas (as well as reducing ’e and ~’e to a
single �e).
This is the geometric meaning of the constraintsHe ¼ 0.

What we have shown is that the phase space of loop
quantum gravity on a fixed graph can be obtained starting
from a geometric interpretation of twistors and imposing
an area matching condition equivalent to saying that the
twistors are null.

TWISTORS TO TWISTED GEOMETRIES PHYSICAL REVIEW D 82, 084041 (2010)

084041-3



V. CONCLUSIONS

Let us summarize. We unraveled a relation between the
space P� of twisted geometries, isomorphic to T�SUð2Þ,
and null twistors in C4. Since the phase space of loop
quantum gravity on a fixed graph is just the Cartesian
product �eT

�SUð2Þ, our results imply that it can be
derived starting from the larger space �eC

4, and then
imposing the area matching constraint (8) at each edge.
The derivation can be done in both the usual holonomy-
flux parametrization ðge; XeÞ (proposition 2) and in
the twisted geometries parametrization ðNe; ~Ne; je; �eÞ
(proposition 1).

An interesting aspect of the twistor description is that
it admits a complete factorization over the vertices, as
opposed to the edges:

�e C
4 ¼ �vC

2EðvÞ; (31)

where EðvÞ is the valency of the vertex v. This result
follows straightforwardly once we use the orientation of
the edges to uniquely assign jzi to, say, the source vertex,
and j~zi to the target one. The factorization over the vertices
is an interesting spin-off of the twistor description, and can
lead to useful applications (e.g., [6]).

Twistors and twisted geometries form natural spaces that
can be associated to a graph. They admit simple geometric
interpretations, and are related to loop gravity. Specifically,
to the kinematical (i.e., prior to imposing the Gauss law
implementing gauge-invariance) phase space of loop grav-
ity on a fixed graph. For completeness, let us also recall [1]
that gauge-invariance is implemented reducing the space
of twisted geometries by the closure conditions

Cv � X
e2v

jeNe ¼ 0 (32)

at each vertex. The resulting space of closed twisted ge-
ometries is isomorphic to the gauge-invariant phase space
of loop gravity, �eT

�SUð2Þ==SUð2ÞV . The variables
parametrize it as �eT

�S1e �v S~|v , where T
�S1 is the cotan-

gent bundle of a circle, and S~|v is the space of shapes of a

polyhedron, introduced in [7] and studied in relation to
loop gravity in [8,9]. Closed twisted geometries define a
local flat metric on each polyhedron. However, this metric
is discontinuous: although each face has a unique area, it
acquires a different shape when determined from the var-
iables associated to the two polyhedra sharing it, since
there is nothing enforcing a consistent matching of the
faces. This discontinuity can be traced back to the fact
that the normals carry both intrinsic and extrinsic
geometry.

Finally, for graphs dual to triangulations, the space of
closed twisted geometries can be related to the phase space
of Regge calculus when one further imposes the gluing or
shape matching conditions [10]. For more discussions on
the relation between loop gravity/twisted geometries and
discrete gravity, see discussions in [1–3].

The various phase spaces that can be associated to a
graph, and their relations, are summarized by the following
scheme:

This scheme shows how twisted geometries fit into
a larger hierarchy. From top to bottom, we move from
larger and simpler spaces, with less intuitive geometrical
meaning, to smaller and more constrained spaces, with
clearer geometrical meaning. The results establish a path
between twistors and Regge geometries, via loop gravity.4

Furthermore, notice also that each phase space but the
twistor one is related to a well-known representation of
general relativity on a given graph, be it loop gravity
or Regge calculus. This raises the intriguing question of
whether such a representation can be given directly in
terms of twistors. The possibility of defining a ‘‘twistor
gravity’’ is a fascinating new direction opened by this new
way of looking at loop quantum gravity.

APPENDIX

In this Appendix we give a direct derivation of (24) that
uses explicitly the symplectomorphism (12). To that end,
let us briefly review it, referring the reader to [1] for details.
We first write the unit vectors as N ¼ n�3n

�1, ~N ¼
~n�3~n

�1, where n � nðzÞ 2 SUð2Þ is the Hopf section cor-
responding to the projection S3 � S2: z � ��z1=�z0,

nðzÞ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jzj2p 1 z

��z 1

� �
: (A1)

Then the (2-to-1) isomorphism is given by

ðN; ~N; j; �Þ ! ðX; gÞ: X ¼ jN (A2a)

g ¼ ne��3�~n�1; (A2b)

where � ¼ i�2 is the metric tensor in spinor space.5 The
form of g guarantees that ~X � j ~N ¼ �g�1Xg.

4For a different relation between twistors and (two-
dimensional) Regge calculus, see [11].

5This was absent in [1] because the spheres had opposite
orientations.
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The Hopf section defines two families of SU(2) coherent
states in the fundamental representation, jni ¼ nðzÞj�i
and jn� ¼ �nðzÞjþi, and allows us to bridge between
these and spinors through the map z ¼ ��z1=�z0,

jzi ¼ z0
z1

� �
¼ z0

1
��z

� �
¼

ffiffiffiffiffiffiffiffiffiffi
hzjzi

q
ei argðz0ÞnðzÞjþi; (A3)

jz� ¼ ��z1
�z0

� �
¼ �z0

z
1

� �
¼

ffiffiffiffiffiffiffiffiffiffi
½zjz�

q
e�i argz0nðzÞj�i: (A4)

From these two expressions one immediately finds

gðzA; ~zAÞ ¼ ne��3�~n�1

¼ nðe�ði=2Þ�jþih�j � e�ði=2Þ�j�ihþjÞ~n�1

¼ jzi½~zj � jz�h~zjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihzjzih~zj~zip ; (A5)

where we used � � �0 ¼ �2ðargðz0Þ þ argð~z0ÞÞ, and � ¼
i�2 ¼ jþih�j � j�ihþj.

[1] L. Freidel and S. Speziale, Phys. Rev. D 82, 084040
(2010).

[2] C. Rovelli and S. Speziale, Phys. Rev. D 82, 044018
(2010).

[3] B. Dittrich and J. P. Ryan, arXiv:0807.2806.
[4] V. Guillemin and S. Sternberg, Inventiones Mathematicae

67, 515 (1982); V. Guillemin and S. Sternberg, Symplectic
Techniques in Physics (Cambridge University Press,
Cambridge, England, 1990).

[5] R. Penrose and W. Rindler, Spinors and Space-Time
(Cambridge University Press, Cambridge, England,
1984), Vol. 2.

[6] L. Freidel and E. R. Livine, arXiv:1005.2090.
[7] M. Kapovich and J. J. Millson, J. Diff. Geom. 44, 479

(1996).
[8] F. Conrady and L. Freidel, J. Math. Phys. (N.Y.) 50,

123510 (2009).
[9] L. Freidel, K. Krasnov, and E. R. Livine, Commun. Math.

Phys. 297, 45 (2010).
[10] B. Dittrich and S. Speziale, New J. Phys. 10, 083006

(2008).
[11] M. Carfora, C. Dappiaggi, and V. L. Gili, J. High Energy

Phys. 12 (2006) 017.

TWISTORS TO TWISTED GEOMETRIES PHYSICAL REVIEW D 82, 084041 (2010)

084041-5

http://dx.doi.org/10.1103/PhysRevD.82.044018
http://dx.doi.org/10.1103/PhysRevD.82.044018
http://arXiv.org/abs/0807.2806
http://dx.doi.org/10.1007/BF01398934
http://dx.doi.org/10.1007/BF01398934
http://arXiv.org/abs/1005.2090
http://dx.doi.org/10.1063/1.3257109
http://dx.doi.org/10.1063/1.3257109
http://dx.doi.org/10.1007/s00220-010-1036-5
http://dx.doi.org/10.1007/s00220-010-1036-5
http://dx.doi.org/10.1088/1367-2630/10/8/083006
http://dx.doi.org/10.1088/1367-2630/10/8/083006
http://dx.doi.org/10.1088/1126-6708/2006/12/017
http://dx.doi.org/10.1088/1126-6708/2006/12/017

